
JIT Compilation
Policy For Modern

Machines
Prasad A. Kulkarni

OOPSLA'11

Presentation: Piotr Górski

JIT compilation

a method to improve the runtime

performance of computer programs

written in languages supporting

„compile-once, run-anywhere” model
for code generation and distribution

Problems

• JIT compilation contributes to the

overall execution time of the

application

• Compilation policies need to carefully

tune if and when different program

regions are compiled to achieve the

best performance

Existing policies

• Selective compilation

• Online profiling to detect hot methods

o Method counters

o Interrupt-timer-based sampling

o Assumption that current hot methods will remain hot in the future

o Delays

• Time to reach the compilation threshold

• Time spent in compilation queue

• Proposed approaches
o Offline profiling

o Dynamically determining loop iteration bounds to predict future hot

methods

Contribution of the paper

• Quantifying the impact of altering if and when

methods are compiled on application performance

• Demonstrating the effect of multiple compiler

threads on average program performance for

single-core machines

• Explaining the impact of different JIT compilation

strategies on multi-core machines

• Showing the benefit of prioritizing method compiles

on program performance

Benchmarks

Effect of JIT compilation

Effect of early compilation

JIT compilation on single-core machines

One thread

JIT compilation on single-core machines

Multiple threads

JIT compilation on multi-core machines

Simulation of multi-core VM execution on

single-core processor

JIT compilation on many-core machines

Priority-based compiler queue

single-core machine

configuration

Priority-based compiler queue

many-core machine

configuration

Priority-based compiler queue

heuristic approach

• Offline profiling is rarely acceptable

• Need to devise a dynamic priority

scheme

 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑚𝑒𝑡ℎ𝑜𝑑 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑙𝑜𝑏𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 − 𝑋

Priority-based compiler queue

heuristic approach

many-core machine

configuration →

← single-core machine

 configuration

Conclusions
• On single-core machines the same compilation

threshold achieves the best overall program

performance with a single and multiple compiler

threads, and regardless of the priority queue

algorithm.

• Multi-core and many-core hardware can enable

more aggressive JIT compilation policies, which can

be benefactory to performance …

• … but achieving such benefits requires accurate

assignment of method priorities.

Thank you

