
EMBO
open

Jmjd3 contributes to the control of gene
expression in LPS-activated macrophages
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Jmjd3, a JmjC family histone demethylase, is induced by

the transcription factor NF-kB in response to microbial

stimuli. Jmjd3 erases H3K27me3, a histone mark associated

with transcriptional repression and involved in lineage

determination. However, the specific contribution of

Jmjd3 induction and H3K27me3 demethylation to inflam-

matory gene expression remains unknown. Using chroma-

tin immunoprecipitation-sequencing we found that Jmjd3

is preferentially recruited to transcription start sites char-

acterized by high levels of H3K4me3, a marker of gene

activity, and RNA polymerase II (Pol_II). Moreover, 70% of

lipopolysaccharide (LPS)-inducible genes were found to be

Jmjd3 targets. Although most Jmjd3 target genes were

unaffected by its deletion, a few hundred genes, including

inducible inflammatory genes, showed moderately im-

paired Pol_II recruitment and transcription. Importantly,

most Jmjd3 target genes were not associated with detect-

able levels of H3K27me3, and transcriptional effects of

Jmjd3 absence in the window of time analysed were

uncoupled from measurable effects on this histone mark.

These data show that Jmjd3 fine-tunes the transcriptional

output of LPS-activated macrophages in an H3K27 demethy-

lation-independent manner.
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Introduction

Inflammatory responses require the activation of a complex

gene expression program that involves the inducible tran-

scription of hundreds of genes whose products restrain

microbial colonization, recruit and activate leukocytes,

increase vascular permeability, amplify the response, and

protect inflammatory and tissue cells from apoptosis

(Medzhitov, 2008). Transcription factors belonging to the

NF-kB/Rel, IRF and STAT families (Ivashkiv and Hu, 2004;

Hayden et al, 2006; Honda and Taniguchi, 2006) are well-

established regulators of inflammatory gene expression.

However, knowledge on the essential transcriptional coregu-

lators, chromatin modifiers and transcriptional circuits

underlying inflammation is still rather primitive.

We previously reported that the histone demethylase

(HDM) Jmjd3 is quickly induced by NF-kB in primary mouse

macrophages in response to inflammatory stimuli, whereas its

paralog Utx is expressed at low and constant levels (De Santa

et al, 2007). With the only exception of LSD1 (Shi et al, 2004),

all known HDMs belong to the JmjC family, which includes 27

members in the current human genome annotation (Klose and

Zhang, 2007; Shi and Whetstine, 2007; Cloos et al, 2008). The

JmjC domain is a variant of a common structural motif found

from bacteria to mammals, the 2-histidine-1-carboxylate facial

triad (Koehntop et al, 2005), that serves as a platform for

binding divalent iron. The metal centre of this motif is used to

activate molecular oxygen and transfer an oxygen atom to the

substrate. Priming of the metal centre for attack by molecular

oxygen depends on binding to the substrate and in some cases

to a 2-oxoacid cofactor (most often a-ketoglutarate). Although

the spectrum of metabolic transformations carried out by

oxygenases with a 2-histidine-1-carboxylate facial triad is

extremely broad (Loenarz and Schofield, 2008), JmjC proteins

in animals can apparently catalyse only hydroxylation reac-

tions. If the target of hydroxylation is a methyl–lysine, an

unstable hydroxy-methyl group is generated that is released as

a formaldehyde molecule, thus eventually restoring the un-

methylated state of the lysine residue (Tsukada et al, 2006).

Overall, JmjC family HDMs are characterized by a high level of

specificity both regarding the target lysine in the amino-

terminal histone tails, and the level of methylation (mono-,

di- and tri-methylation) they can reverse.

The closely related Jmjd3 and Utx specifically demethylate

trimethylated lysine 27 in histone H3 (H3K27me3), a
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chromatin modification associated with transcriptional

repression (Agger et al, 2007; De Santa et al, 2007; Lan

et al, 2007; Lee et al, 2007). Hence, NF-kB-induced Jmjd3

upregulation links inflammation to the control of a histone

modification involved in lineage determination, differentia-

tion and tissue homeostasis (Kirmizis et al, 2004; Boyer et al,

2006; Bracken et al, 2006; Lee et al, 2006; Sparmann and van

Lohuizen, 2006; Burgold et al, 2008; Sen et al, 2008), which

may provide a mechanistic connection between chronic

inflammation and the associated alterations of differentiation

(e.g. metaplasia, discussed in De Santa et al, 2007). However,

the specific contribution, if any, of Jmjd3 induction to innate

immunity and inflammation remains unknown. In this study,

we investigated the genomic distribution of Jmjd3, its

relationship to H3K27me3, H3K4me3 and RNA polymerase

II (Pol_II) occupancy, and finally its role in controlling the

gene expression program of lipopolysaccharide (LPS)-acti-

vated macrophages. The data we report here show the

involvement of Jmjd3 in tuning the transcriptional output

of LPS-stimulated macrophages and suggest that this activity

is largely independent of H3K27me3 demethylation.

Results

Analysis of Jmjd3 genomic distribution in LPS-activated

macrophages

Jmjd3 induction by LPS depends on multiple evolutionary

conserved binding sites for the transcription factor NF-kB

(De Santa et al, 2007), which map to a region of the gene

containing a large CpG island and multiple peaks of H3K4

trimethylation (Supplementary Figure 1), likely representing

alternative sites of transcriptional initiation. The presence of

multiple conserved binding sites for an inflammatory tran-

scription factor such as NF-kB (Hayden et al, 2006) suggests a

possible involvement of Jmjd3 in the control of inflammatory

gene expression programs. To address this possibility we

analysed the genomic distribution of newly synthesized

Jmjd3 in mouse bone marrow-derived macrophages using

chromatin immunoprecipitation coupled with high-through-

put sequencing (ChIP-Seq). Macrophages were stimulated

with LPS and interferon gamma (IFNg) for 2 h, corresponding

to the peak of Jmjd3 induction in these cells (Figure 1A). We

generated a set of B8 million high quality and uniquely

aligned reads. Using a very restrictive false discovery rate

(FDR)¼ 0.1% (clusters of tags with X9 overlaps) as a cutoff,

we identified 4398 peaks, whereas considering clusters of X7

tags 14 013 peaks were detected (Supplementary Table I).

Subsequent analyses were carried out considering an

FDR¼ 0.1%. Validation by ChIP–qPCR on a representative

set of Jmjd3 targets in stimulated versus unstimulated macro-

phages showed good correlation with peak calling with

an overall validation rate of about 93% (Supplementary

Figure 2A). Jmjd3 binding preferentially occurred at tran-

scription start sites (TSS), often extending at various distance

inside the coding region (Figure 1B; Supplementary Figure 3).

Fifty-four per cent of the Jmjd3 peaks were within ±0.5 kb

Figure 1 Genomic distribution of Jmjd3 in LPS-stimulated macrophages. (A) Jmjd3 induction in primary mouse bone marrow-derived
macrophages. A western blot (left) and an RT–qPCR (right) analysis are shown. (B) Genome-wide analysis of Jmjd3 association with TSSs.
Macrophages were stimulated with LPSþ gIFN for 2 h and distribution of Jmjd3 peaks relative to mapped TSS was determined. (C) Jmjd3
binding to a representative region of mouse chromosome 5. The y axis indicates the number of tags in peaks. (D) A zoomed-in view of the same
region shows the association of Jmjd3 with the TSSs of two genes. (E) Kinetics of Jmjd3 recruitment. TSS1 of Arhgef3, which was negative for
Jmjd3 in the ChIP-Seq data, was used as a negative control. Guanylate-binding protein 6 (Gbp6) encodes an antiviral GTPase representing one
of the most abundant proteins induced by LPSþ gIFN. Error bars: s.e.m. from a triplicate experiment. (F) Abrogation of ChIP signals in Jmjd3
knockout macrophages. Anti-Jmjd3 ChIP was carried out in wild type and Jmjd3�/� foetal liver-derived macrophages.

Jmjd3 controls gene expression in macrophages
F De Santa et al

The EMBO Journal VOL 28 | NO 21 | 2009 &2009 European Molecular Biology Organization3342



from a mapped TSS, and more than 70% of them were within

2.5 kb, a value much higher than expected for a random

distribution.

Using±100 kb around promoters as cutoff, we found 4331

Jmjd3 peaks (98.5%) associated with 3339 genes (based on

the annotated TSSs from the DBTSS database; Supplementary

Table I). The binding of Jmjd3 to a large (0.85Mbp) repre-

sentative region of chr5 is shown as an example in Figure 1C

and a zoomed-in view of the same region is shown in

Figure 1D. The kinetic profile of Jmjd3 recruitment to

individual target genes closely mirrored the behaviour of

bulk Jmjd3 protein levels (Figure 1E) and ChIP signals were

dependent on the presence of Jmjd3, as indicated by their

abrogation in Jmjd3 knockout macrophages (Figure 1F;

Supplementary Figure 2B).

In activated macrophages, newly synthesized Jmjd3 is

rapidly recruited to the TSSs of thousands of genes

(Supplementary Table I) including those encoding LPS-indu-

cible immune response and inflammatory mediators such as

chemokines (e.g. Cxcl2, Cxcl11, Ccl5), cytokines (e.g. Tnfa,

Il6, Il27), proteins or enzymes involved in microbial recogni-

tion and killing (Nos2, Nod1, Nod2, multiple 20–50 oligoade-

nylate synthetase family members, antiviral GTPases such as

Gbp2-6), adhesion molecules and immuno-receptors (Sdc4,

Icam1, Cd40, Cd83, Cd86), complement components (C3),

growth factors (Vegfa, Vegfc), signal transducers and

transcription factors (Jak2, Socs1, Socs3, Nfkbie, Nfkbiz,

Bcl3, Jun, Junb, Irf2, Irf7), histo-compatibility molecules

(H2-Q2) and enzymes involved in prostaglandin biosynthesis

(Ptgs2). Thus, widespread Jmjd3 genomic recruitment in

activated macrophages seems to provide a satisfactory

explanation of the evolutionary link of Jmjd3 gene expression

to NF-kB activation in vertebrates.

Jmjd3 distribution correlates with gene activity

To systematically analyse the transcriptional state of Jmjd3-

bound TSSs, we first generated genomic maps of H3K4me3,

a histone mark associated with the TSSs of genes that are

either active or poised for activation (Kouzarides, 2007;

Ruthenburg et al, 2007), in both unstimulated and 4 h

LPSþ IFNg-stimulated primary macrophages. More than 17

million uniquely aligned sequencing reads were obtained in

each condition, corresponding to 21 418 and 19 631 peaks,

respectively (FDR 0.1%) (Supplementary Tables II and III);

18 618 (87%) peaks were overlapping between unstimulated

and stimulated macrophages and they were used for further

analyses (Supplementary Table IV). In agreement with pre-

vious gene-specific data (Foster et al, 2007), H3K4me3 was

quickly upregulated at several LPSþ IFNg-inducible genes:

based on the total tag counts within each H3K4me3 cluster,

H3K4me3 intensity increased more than 2-fold at the TSS of

173 genes and more than 1.5-fold at 496 genes (Supplementary

Table IV; Supplementary Figure 4), thus indicating a very

dynamic behaviour of H3K4me3 in this system (as opposed

to what was found during embryonic stem cell differentiation)

(Mikkelsen et al, 2007; Zhao et al, 2007). The observation that

in yeast H3K4me3 completely turns over completely in less

than 2h (Seward et al, 2007) also supports the dynamic nature

of this modification and suggests that steady-state levels

measured by ChIP may in fact reflect a dynamic equilibrium.

Visual browsing through the data suggested a strong

correlation between Jmjd3 binding and H3K4me3 positivity

and levels (Figure 2A). To assess the correlation between

Jmjd3 and H3K4me3 genome-wide in a quantitative manner,

we sorted all 19 631 H3K4me3 peaks in LPS-stimulated cells

in the order of their total tag counts (the number of tags that

form the peak). Then we calculated the percentage of peaks

in each bin that overlap a Jmjd3 peak. Almost 100% of the

highest H3K4me3 peaks were found associated with a Jmjd3

peak (Figure 2B; Supplementary Table IV). The association

with Jmjd3 decreased steadily in the H3K4me3 peaks with

lower tag counts (Figure 2B). The correlation was much

weaker when pre-stimulation H3K4me3 levels were consid-

ered (data not shown). Importantly, not all strongly positive

H3K4me3 genes were bound by Jmjd3 (Figure 2A;

Supplementary Table IV) and Jmjd3 seemed to bind prefer-

entially to TSSs with upregulated H3K4me3 levels: out of the

173 genes with X2-fold increase in H3K4me3, 106 genes

(61%) were bound by Jmjd3. Some specific examples are

shown in Figure 2C and Supplementary Figures 5 and 6.

We next measured the correlation between the levels of

Jmjd3 and those of H3K4me3 after LPS stimulation. Figure 2D

shows a box plot of the number of overlapping tags in Jmjd3

peaks and the total tag counts of the associated H3K4me3

cluster. It seems that the intensity of the Jmjd3 ChIP signal is

positively correlated with H3K4me3 ChIP intensity after LPS

treatment, indicating that Jmjd3 binds to active genes in a

manner somehow proportional to the intensity of gene activ-

ity. As the distribution of H3K4me3 and Jmjd3 often overlaps

and because newly synthesized Jmjd3 is transiently incorpo-

rated in H3K4 HMT complexes (De Santa et al, 2007), a

simple possibility is that Jmjd3 is preferentially recruited to

sites of active H3K4me3 deposition or turnover by association

with H3K4 histone methyltransferases. Indeed, some of the

genes showing the highest levels of Jmjd3 recruitment were

those undergoing massive H3K4me3 increase after stimula-

tion (e.g. Ccl5, Nos2, Cd40) (Figure 2C; Supplementary Figure

6; Supplementary Table IV).

To assess the correlation between Jmjd3 recruitment and

gene activity in a more direct manner, we generated genomic

maps of total Pol_II in unstimulated, 2 and 4 h LPS-stimulated

primary macrophages. About 9 million uniquely aligned

sequencing reads were obtained in unstimulated macro-

phages, whereas more than 12 million reads were obtained

in stimulated macrophages at both time points. Pol_II tran-

scriptional activity was indicated by the detection of Pol_II

signals within the internal regions of several inducible genes

including Nos2, Ccl5 and Irf1 (Supplementary Figure 7).

Using a high stringency cutoff (FDR¼ 0.1%), we found a

total of 55 600 Pol_II peaks in the unstimulated macrophage

library and 57 201 and 57 514 peaks in the 2- and 4 h-stimu-

lated libraries, respectively. In each library 470% of the

peaks were located ±10 kb of known TSSs, as compared

with 26% association with random peaks in simulation

experiments. Moreover, 499% of the peaks were associated

with gene regions (±100 kb of a gene) whereas less than 1%

of Pol_II peaks were found in gene deserts.

Out of the 17389 genes associated with Pol_II, 3992 genes

(23%) showed more than a two-fold increase in the total tag

count within the corresponding Pol_II peaks at 2h after LPS

simulation and 1510 of them (1510/3992; 38%) were also

bound by Jmjd3. Reciprocally, when the 3339 genes bound

by Jmjd3 were considered, 73% of them (2438) showed an

increase in Pol_II activity at 2h after LPS (425% increase in

Jmjd3 controls gene expression in macrophages
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the total tag count in their peaks), thus indicating that Jmjd3

binding is biased towards a subset of genes whose transcription

is induced or increased by LPS. To measure the correlation

between transcriptional activity and Jmjd3 binding in a quan-

titative manner, we first grouped genes in bins of decreasing

Pol_II tag count and then we calculated the percentage of genes

in each bin that are bound by Jmjd3. Seventy-eight per cent of

the genes with the highest total Pol_II tag counts at 2h after

LPS stimulation were Jmjd3 targets (Figure 2E). The associa-

tion with Jmjd3 decreased steadily in genes with lower tag

counts. The correlation was much weaker with the pre-stimu-

lation Pol_II library, and slightly weaker with the 4h LPS-

stimulated library (data not shown). Overall, these data

indicate that Jmjd3 is preferentially recruited to sites of high

and inducible Pol_II occupancy and gene activity.

H3K27me3 status at Jmjd3 target genes

The only known substrate of Jmjd3 is H3K27me3, and the

simplest prediction consistent with its reported biochemical

activity as a H3K27 demethylase is that Jmjd3 is recruited to

genes associated with basal H3K27me3 levels to reduce them

and enable or enhance transcriptional activation.

To test this prediction we generated H3K27me3 genomic

maps in unstimulated and LPS-stimulated macrophages; 9.7

million and 14 million uniquely aligned sequences were

obtained from the anti-H3K27me3 ChIP in untreated and

LPS-treated cells, corresponding to 59 684 and 89 093 peaks,

respectively, at an FDR of 0.1% (Supplementary Tables V and

VI). Similarly to other systems, H3K27me3 peaks were in fact

often part of broad regions (previously defined as broad local

enrichment, BLOCs) (Pauler et al, 2009) of average size of

21.2 and 27.8 kb (in untreated and LPS-treated macrophages,

respectively) (Supplementary Table VII and Supplementary

data). The percentage of H3K27me3 peaks contained within

the 5733 BLOCs identified was 72.3 and 66.6% in untreated

and LPS-treated macrophages, respectively. The behaviour of

peaks within and outside these broad regions was however

comparable (see Supplementary data) and therefore we will

Figure 2 Jmjd3 association with transcriptionally active and inducible genes. (A) Jmjd3 association with H3K4me3-positive genes. Jmjd3
peaks and H3K4me3 peaks (in unstimulated and LPS-stimulated macrophages) at a representative region of chr 11 are shown. (B) Correlation
between H3K4me3 levels and Jmjd3 binding in LPS-stimulated macrophages. H3K4me3 peaks were grouped in bins of decreasing total tag
count from left to right. The y axis indicates the per cent of H3K4me3 peaks overlapping Jmjd3 peaks. (C) Association between Jmjd3 and
H3K4me3 at representative genes. (D) Correlation between intensity of Jmjd3 binding and high levels of H3K4me3. (E) Correlation between
Pol_II level and Jmjd3 binding at 2 h after LPS stimulation. Genes were grouped in bins of decreasing Pol_II intensity from left to right. The
y axis shows the per cent of active, RNA Pol_II-positive genes that are associated with Jmjd3.

Jmjd3 controls gene expression in macrophages
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refer to peaks rather than BLOCs in the following section of

the manuscript. Jmjd3 target genes were in the majority of

cases (2963/3339; 88%) not associated with any H3K27me3

peak within±1 kb already before LPS stimulation and there-

fore before induction of Jmjd3 (Figure 3A; Supplementary

Table VII). At a few genes with multiple TSSs with differential

H3K27me3 association, Jmjd3 seemed to be selectively

recruited at the H3K27me3-negative TSS (Supplementary

Table VIII). Therefore, Jmjd3 recruitment to target genes

does not rely on pre-existing H3K27me3, and at most recruit-

ment sites Jmjd3 will not encounter H3K27me3. Considering

all (genic and extragenic) Jmjd3 peaks, only a minority of

them (511/4398; 11.6%) was associated with a neighbouring

(±500 bp) H3K27me3 peak (Supplementary Table VIII).

Of these peaks, only 83 (16.3%) decreased by more than

two-fold after a 4 h LPS stimulation. This value is similar to

the frequency of a two-fold reduction of H3K27me3 peaks

observed elsewhere in the genome after LPS treatment

(17.6%, corresponding to 10 385 out of a total of 59173

peaks). Figure 3B shows the comparison of intensity changes

between overall H3K27me3 peaks (shown in red) and peaks

overlapping with Jmjd3 (in blue). The change of H3K27me3

patterns on stimulation is extremely similar in the

two groups.

Taken together, these data show that there is no statisti-

cally significant increase in the probability of H3K27me3

reduction at peaks lying close to Jmjd3 as compared with

the distant ones.

However, some H3K27me3 peaks underwent a rapid re-

duction following LPS stimulation, and a fraction of these

peaks were Jmjd3-associated. Therefore, we sought to under-

stand the molecular basis of this reduction and whether it

was due to enzymatic demethylation. Reduced H3K27me3

signals at these peaks after LPS may reflect enzymatic

demethylation, histone exchange or nucleosome loss. To

discriminate among these possibilities, we analysed two

Jmjd3-associated genes among those showing the highest

stimulus-induced reduction, Nos2 and Upp1 (Figure 3C;

Supplementary Figure 6). In both cases, H3K27me3 down-

regulation perfectly mirrored the reduction in the total H3

levels that accompanied gene induction (Figure 3D, upper

and middle panels). In fact, when H3K27me3 ChIP data were

normalized to total H3, no difference was found in untreated

and treated cells (Figure 3D, bottom panel), suggesting that

nucleosome loss rather than enzymatic demethylation is the

mechanism underlying the observed reductions of

H3K27me3. Similar data were observed with all the other

genes analysed (data not shown). Therefore, nucleosome

depletion at inducible genes is a widespread occurrence in

LPS-stimulated macrophages, possibly because of the exten-

sive nucleosome displacement linked to massive Pol_II elon-

gation (Supplementary Figure 7); conversely, we could not

get evidence supporting the occurrence of H3K27me3

demethylation in the first 4 h after LPS treatment. The

Jmjd3-mediated H3K27me3 demethylation, we previously

reported at the Bmp2 gene, in fact occurs with much slower

Figure 3 Jmjd3 binding and H3K27me3. (A) Lack of basal H3K27me3 at Jmjd3-bound genes. Jmjd3 and H3K27me3 ChIP-Seq profiles at two
representative regions of chr5 and chr11. (B) Reduction in H3K27me3 is statistically similar at Jmjd3-bound and non-bound regions. The x axis
indicates fold changes in H3K27me3 levels in response to LPS stimulation. The y axis shows the fraction of H3K27me3 peaks. (C) Reduction in
H3K27me3 at Nos2 and Upp1 after LPS stimulation. The H3K27me3 peak downregulated after LPS is indicated by a shaded box. (D) Reduction
in H3K27me3 at Upp1 and Nos2 in LPS-stimulated macrophages reflects nucleosome loss. ChIP–qPCRs were carried out with antibodies
against H3K27me3 or total H3. H3K27me3/H3 ratios were calculated by dividing H3K27me3 signals by the signal obtained with the anti-H3
antibody. The data refer to one representative experiment out of four with qualitatively similar results.
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kinetics (De Santa et al, 2007). We surmise that the slow rate

of the H3K27me3 demethylation reaction, which in vitro

requires a high enzyme-to-substrate ratio and a long incuba-

tion time (Agger et al, 2007; De Santa et al, 2007; Lan et al,

2007; Lee et al, 2007), combined with the short duration of

the encounter with Jmjd3, makes Jmjd3-mediated H3K27me3

demethylation in the very first hours after LPS extremely

unlikely. The few kinetic studies published insofar for JmjC-

catalysed histone demethylation reactions are compatible

with this interpretation, as they reported very slow substrate

turnover rates (0.01min�1) (Culhane and Cole, 2007).

Finally, it should be noticed that increased H3K27 methy-

lation (appearance of new peaks or BLOCs and increased

intensity of the pre-existing ones) was more common than its

loss or reduction (Figure 3B; Supplementary Table VII). This

increase in H3K27 methylation was however strictly gene

specific and occurred without any global change in

H3K27me3 and Ezh2 levels, which remain both constant

after LPS stimulation (De Santa et al, 2007).

Overall, these data suggest that in this system and in this

window of time Jmjd3 regulates transcription independently

of H3K27me3 demethylation. This possibility is consistent

both with the previous observation that most genes down-

regulated in macrophages depleted of Jmjd3 by retroviral

RNA interference were not obvious or reported polycomb

targets (De Santa et al, 2007), and with the demethylation-

independent control of selected target genes during neural

commitment (Burgold et al, 2008).

Jmjd3 contribution to the transcriptional program

of activated macrophages

To determine the functional impact of Jmjd3 absence on the

gene expression program triggered by LPS stimulation, we

derived macrophages from the foetal livers (14.5 dpc) of

Jmjd3 knockout mice generated by gene trapping (which

will be described elsewhere). Macrophages obtained from

these mice lacked Jmjd3 mRNA and protein (Figure 4A).

Judging from a western blot analysis, the bulk H3K27me3/2/

1 and H3K4me3/2/1 levels were not grossly affected by

the absence of Jmjd3 (Figure 4B). Moreover, macrophage

differentiation and responsiveness to LPS activation was

unperturbed, as indicated by the macrophage markers tested

(Figure 4C).

Microarray analyses (Affymetrix 1.0 ST arrays) were per-

formed in triplicate using RNA from biological replicates of

LPSþ IFNg-treated (4 h) wt or Jmjd3�/� foetal liver-derived

macrophages. Using as cutoff a fold change (FC) of 2, only 33

genes were differentially expressed in Jmjd3�/� cells, of

which 20.5% were direct Jmjd3 targets. Considering a FC of

1.5 the expression of 237 genes was affected, whereas 478

genes were influenced by Jmjd3 deletion when a threshold of

1.4 was applied (Figure 5A; Supplementary Table IX). The

percentage of direct Jmjd3 targets remained comparable at all

thresholds. The ratio of direct versus indirect targets is similar

to that previously shown for other coregulators: for instance

only 10% of genes that are differentially expressed on deple-

tion of polycomb proteins are their direct targets (Bracken

et al, 2006). Data were validated by quantitative RT–PCR on a

panel of 20 genes (Figure 5B and data not shown), indicating

a high reliability of the results of the microarray. Overall, the

fact that the reduction in the selected threshold resulted in

large increases in the amount of affected genes, whereas the

percentage of direct Jmjd3 targets remained comparable

suggests that at most genes only small transcriptional effects

are brought about by Jmjd3, consistent with the idea that

similarly to other transcriptional coregulators of the JmjC

family, Jmjd3 tunes the transcriptional output without being

absolutely necessary for the expression of any gene.

We next focused on a set of differentially expressed genes,

namely Ccl5 (FC -2,7), Il12b (FC -2,3), Cxcl11 (FC -1,63) and

Ccl9 (FC -1,48) to analyse in more detail the impact of Jmjd3

deletion on their transcription and the correlation between

transcriptional changes and alterations in H3K27me3 and

H3K4me3 levels. In the case of Il12b, Jmjd3 binding was

detected just upstream of a recently mapped inducible DNAse

hypersensitive site (Zhou et al, 2007), whereas the other

genes showed signals associated with their TSS. The reduc-

tion in mRNA levels (Figure 5B) correlated well with a

reduction in elongating RNA Pol_II detected across these

genes both at 2 and 4 h poststimulation, as measured by

the analysis of nascent (unspliced) chromatin-associated

transcripts (Figure 5C). Analysis of Pol_II recruitment to the

TSSs of the same genes using ChIP showed a comparable

reduction in signals in knockout cells (Figure 5D), although

early Pol_II recruitment to Ccl5 was apparently unaffected

(data not shown). Therefore, it seems that absence of Jmjd3

results in a defective recruitment of Pol_II followed by a

reduction in the amount of Pol_II molecules elongating across

target genes. Although the functional relationship and simi-

larities between Jmjd3 and its paralog Utx are unclear at

present, it is worth noticing that in Drosophila melanogaster

Utx colocalizes with the elongating form of RNA_Pol II, thus

suggesting an active role in ongoing transcription (Smith

et al, 2008).

Analysis of H3K27me3 at the same genes showed that this

histone modification is absent at their promoters and sur-

rounding regions (Figures 3A and 5E). Most importantly,

Jmjd3 deletion did not result in any increase whatsoever in

the H3K27me3 signals, indicating that Jmjd3 does not act to

prevent an increase in H3K27me3 after stimulation

(Figure 5E). This was confirmed for several others Jmjd3

target genes (Supplementary Figure 9). We also checked the

behaviour of H3K27me3 at Nos2 and Upp1, which are Jmjd3

targets associated with high H3K27me3 levels that rapidly

decrease after stimulation (see Figure 3). Consistent with the

previous observation that this reduction in H3K27me3 is due

to nucleosome loss rather than demethylation, Jmjd3 deletion

did not cause any detectable change in the profiles of

H3K27me3 at these genes (Supplementary Figure 9).

Finally, H3K4me3 signals at target genes were largely un-

affected by Jmjd3 deletion (Supplementary Figure 10). Taken

together, these data show that the transcriptional effects of

Jmjd3 depletion on target genes in macrophages in the early

phases of LPS stimulation are independent from measurable

effects on H3K27me3.

An interesting outcome of this genome-wide analysis is

that most genes bound by Jmjd3 do not show obvious

transcriptional changes in Jmjd3�/� macrophages. A simple

possibility is that functional redundancy provided by other

coregulators may prevent the occurrence of transcriptional

defects. An alternative (not mutually exclusive) possibility is

that the small magnitude of transcriptional changes coupled

with the stability of the mature mRNA may mask the tran-

scriptional changes occurring as a consequence of Jmjd3
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deletion. Indeed, it has been shown that stabilization of

inducible mRNAs by inflammatory cytokines is a major

determinant of final mRNA levels, often overriding the con-

sequences of transcriptional changes (Hao and Baltimore,

2009). We therefore analysed Pol_II recruitment and nascent

transcripts at a panel of validated Jmjd3 target genes (Il6,

Oasl1, Ptgs2, Nos2, CD83, Gbp6, Arid5a, Ifit1) that do not

seem to be significantly affected by Jmjd3 deletion in the

microarray analysis. We found that at a subset of these genes

(Il6, Oasl1, Nos2 and Ptgs2) Pol_II recruitment was reduced in

Jmjd3 knockout cells (Figure 6A); for Il6 and Oasl1 we

confirmed this effect at the level of nascent transcripts

(Figure 6B). However, at the other genes tested, Jmjd3

deletion was devoid of any consequences on Pol_II

(Figure 6A), thus indicating either that Jmjd3 does not exert

any role in their activation or that the system is equipped

with mechanisms providing functional redundancy.

Therefore, in some cases small transcriptional impairments

because of the absence of Jmjd3 may not be apparent at the

mRNA level, most likely because of the effects of mRNA

stabilization.

Discussion

Jmjd3-mediated transcriptional control in LPS-activated

macrophages

In this study we analysed the contribution of Jmjd3 to the

gene expression program of LPS-activated mouse macro-

phages. The main findings of this study are the following:

(i) Jmjd3 showed a widespread association with the TSSs of

active (Pol_II- and H3K4me3-positive) and inducible genes;

(ii) most Jmjd3 target genes were unaffected by its absence;

(iii) a few hundred genes underwent mild (less than two-fold)

changes in their mRNA levels in Jmjd3�/� macrophages,

whereas only a handful of genes such as Il12b and Ccl5

showed a stronger dependence on Jmjd3 for full activation;

(iv) no gene was completely dependent on Jmjd3 for

induction or expression; (v) transcriptional effects of Jmjd3

seemed to be largely or entirely independent of H3K27me3

demethylation.

The counterintuitive combination of a widespread distri-

bution and limited transcriptional effects is common

to several transcriptional coregulators (and particularly

Figure 4 Analysis of histone methylation and differentiation in Jmjd3�/� macrophages. Macrophages derived from the foetal livers of Jmjd3�/�

mice were analysed for Jmjd3 protein and mRNA expression (A) and histone methylation at H3K4 and H3K27 (B). Differentiation and
activation markers in Jmjd3�/� macrophages are shown in (C). Upper panel: mRNA levels of macrophages-restricted LysM and Fms genes.
Lower panel: FACS analysis of the macrophage markers CD11b and F4/80, and the activation marker CD86 before and after LPS stimulation.
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histone-modifying enzymes) associated with the TSSs of

protein-coding genes, and specifically components of the

MLL/SET H3K4 HMT complexes and polycomb group (PcG)

proteins. In budding yeast, deletion of Set1 (the only H3K4

HMT in the genome of Saccharomyces cerevisiae) caused very

limited effects on transcription, with only 20 genes affected

by more than 1.5-fold (Miller et al, 2001), in spite of its

widespread association with the TSS of active genes (Ng et al,

2003). Menin, a component of a subset of MLL complexes

(Yokoyama et al, 2004) is broadly associated with the TSSs of

active genes; however, in all cell types analysed its depletion

did not cause significant changes in transcript levels

(Scacheri et al, 2006). Depletion of the MLL and SETcomplex

component Ash2L, which is required for the conversion of

H3K4me2 to the trimethylated state, was shown to cause only

a mild reduction in splicing rates without any detectable

impact on Pol_II recruitment and transcript levels (Sims

et al, 2007).

The same behaviour was reported for PcG proteins, which

are broadly associated with silent or repressed genes.

Depletion of the H3K27 HMT Ezh2 in human fibroblasts

altered by more than 1.2-fold the expression of about 350

genes, of which about 10% were direct targets. Most of the

1000 genes bound by Ezh2, however, were not even margin-

ally affected at the transcriptional level (Bracken et al, 2006).

Apart from the intrinsic tendency of several coregulators to

bring about small transcriptional changes, in the specific

system and response we investigated an additional factor,

namely mRNA stabilization, likely contributes to reduce the

extent of detectable effects of coregulator depletion on mRNA

levels: as it has been recently shown, mRNA stabilization in

response to inflammatory cytokines is a major determinant of

final transcript levels, in some cases overriding or masking

changes in transcription rates (Hao and Baltimore, 2009).

Given these premises, what may be the biological impact

of a transcriptional regulator such as Jmjd3 that brings about

mainly modest transcriptional effects? It is tempting to spec-

ulate that in analogy to other coregulators, Jmjd3 may have a

final impact on the system that reflects the combination of a

fairly large amount of simultaneous small changes, rather

than a limited number of effects of high intensity (like those

observed with several sequence-specific transcription

factors). A similar concept has been proposed to account

for the biological effects of microRNAs, which in most cases

change mRNA and protein levels of dozens or hundreds of

targets by no more than 10–20% (Baek et al, 2008).

Although a few hundreds of genes are affected only

modestly (less than two-fold) by Jmjd3 deletion, a handful

of genes show a higher dependence on Jmjd3 for their

expression, as exemplified by Ccl5 and IL12b (which mediate

recruitment and Th1 polarization of T lymphocytes, respec-

tively). Overall, the list of genes whose expression is directly

or indirectly affected by Jmjd3 deletion includes several

known players of the inflammatory and immune response

such as chemokines (Ccl3, Ccl4, Ccl5, Ccl9, Cxcl11), cytokines

(e. g. Il12b, Il6) and antimicrobial molecules (e. g. the GTPase

Figure 5 Jmjd3 contribution to gene expression in LPS-activated macrophages. (A) Summary of the microarray results, indicating the number
of genes that are differentially expressed in wt versus Jmjd3�/� macrophages at various thresholds and their binding to Jmjd3. The position of
selected Jmjd3 targets on the heat plot is indicated. (B) mRNA levels for selected differentially expressed Jmjd3 target genes was quantified by
qPCR. (C) Analysis of nascent transcripts for the same genes was carried out using two primer sets for each gene (represented as small
rectangles numbered 1 and 2 in the gene diagrams). Data are expressed relative to the nascent transcripts of the housekeeping nucleolin gene.
RNA Pol_II ChIP (D) and H3K27me3 ChIP (E) in wt and Jmjd3�/� macrophages. H3K27me3 levels at HoxA11 are shown as a positive ChIP
control and used as reference.
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Igtp); however, it is clear that defining the biological impact

of Jmjd3 on the response to microbes (and inflammatory

responses in general) will require detailed in vivo analyses in

mutant mice.

Stability of the H3K27me3 mark in activated

macrophages

Although the long-standing dogma that histone methylation

is a non-reversible modification has been broken down by the

identification of HDMs (Shi et al, 2004; Tsukada et al, 2006),

biochemical studies support the concept that the turnover of

this modification is overall rather slow (Byvoet et al, 1972).

Moreover, in some specific case it was shown that histone

methylation is extremely stable: for instance, on nuclear

somatic transfer into oocytes, H3K9me3 in the donor nucleus

is not erased over several days (Santos et al, 2003).

For some of the 27 JmjC family proteins encoded in the

human genome, the concept that methylated lysines in

histone tails are the relevant substrates linking these enzymes

to their biological effects is supported by several pieces of

evidence: the ability to demethylate histone amino-terminal

peptides, isolated histones and in some cases assembled

nucleosomes in vitro and in vivo; the incorporation in

multi-protein complexes mediating chromatin modifications

and transitions; and increased gene- and site-specific histone

lysine methylation after depletion of individual JmjC proteins

(Klose and Zhang, 2007; Shi and Whetstine, 2007; Cloos et al,

2008). In the case of rbr-2, the Caenorhabditis elegans

ortholog of the H3K4me3 demethylase Jarid1a/Rbp2, mutant

worms expressing a protein lacking the JmjC domain showed

increased levels of H3K4me3, suggesting a global role for rbr-

2 in balancing the effects of the cognate H3K4 HMTs

(Christensen et al, 2007). Similarly, in yeast the H3K4

methyltransferase Set1 and the JmjC protein Jhd1 act as an

antagonistic pair regulating global levels of H3K4me3/2

(Seward et al, 2007).

However, the possibility that non-histone substrates and/

or non-enzymatic activities (such as structural functions in

multi-molecular complexes) of HMTs and HDMs may mediate

several biological actions of these enzymes is also slowly

emerging (Huang and Berger, 2008). For instance, the methy-

lation state of selected lysine residues in p53 is controlled by

the H3K4me2/1-specific demethylase LSD1 (Huang et al,

2007). It is clear that though the definitive identification of

Figure 6 RNA_Pol II and nascent transcript analyses show transcriptional effects of Jmjd3 that are not apparent at the mRNA level. (A) Pol_II
ChIP was carried out at a panel of validated Jmjd3 target genes. P-values are indicated when statistical significance is reached. (B) Nascent
transcript analysis at the IL-6 and Oasl1 genes. Two primer sets corresponding to the 50 and 30 of each gene were used, as indicated by black
rectangles (#1 and #2).
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the whole complement of substrates of each JmjC protein will

represent a complex and long-lasting endeavour, the assump-

tion that histones represent the only substrate on which they

act is restrictive and likely to be overall incorrect.

Overall, our data show that H3K27 trimethylation is a

stable histone modification in the first hours after LPS

activation of macrophages, which is consistent with its

main role in the enforcement of differentiation and main-

tenance of cell type-specific gene expression programs.

Specifically, changes in H3K27me3 peaks in the first 4 h

after LPS stimulation occurred in both directions, increments

being more common than decrements. When considering

broad regions of H3K27me3 enrichment, only 3 of them

showed a reduction higher than two-fold in response to

stimulation, whereas 113 increased by more than two-fold.

Although increased H3K27me3 may reflect gene repression

and silencing associated with LPS-triggered terminal differ-

entiation, understanding the nature of decrements and the

involvement of Jmjd3 in their occurrence requires a careful

analysis. More than 10 000 H3K27me3 peaks (out of a total of

almost 60 000 detected genome wide) underwent a two-fold

(or more) reduction after LPS stimulation. Considering the

group of the 511 H3K27me3 peaks associated with Jmjd3, 83

of them showed a more than two-fold decrease. The respec-

tive percentage of H3K27me3 decrease in the two groups was

17.6 and 16.3%, indicating that contiguity of H3K27me3

peaks to Jmjd3 peaks does not increase the chances that

H3K27me3 is erased. What is even more important is to

determine whether the detected decrements in H3K27me3

peaks reflected true enzymatic demethylation events. In all

cases we investigated, H3K27me3 reduction was entirely

accounted for by nucleosome depletion associated with

strong transcriptional induction. Consistent with this inter-

pretation, H3K27me3 reduction at the Jmjd3-associated genes

we investigated was entirely unaffected by Jmjd3 deletion.

Therefore, currently we do not have any direct evidence that

enzymatic H3K27me3 demethylation occurs in this early

window of time. These observations strongly suggest that

the early transcriptional program unfolding in the first hours

after microbial stimulation occurs independently of

H3K27me3 demethylation, although more data are required

to make this conclusion definitive.

In this context, Jmjd3 is recruited to active TSSs and in the

majority of cases it does not have the chance to encounter

H3K27me3. Moreover, the genes most affected by its deletion

(e.g. Ccl5) are H3K27me3 negative and do not show any

increase in H3K27me3 in Jmjd3 ko cells. Overall, given the

previous demonstration that Jmjd3 can demethylate

H3K27me3, the most parsimonious interpretation of the

results described in this study is that though in some specific

contexts (such as developmental transitions requiring the

derepression of H3K27me3 genes) (Agger et al, 2007;

Jepsen et al, 2007; Burgold et al, 2008; Miller et al, 2008;

Sen et al, 2008) Jmjd3 may act by erasing the H3K27me3

mark, in activated macrophages (in which Jmjd3 induction is

rapid and transient) it exerts actions that are largely indepen-

dent of H3K27me3 demethylation. At present, we have

identified only a single gene (Bmp2) undergoing a Jmjd3-

dependent reduction in H3K27me3 demethylation (De Santa

et al, 2007), but it is important to notice that in this case the

kinetics of the demethylation reaction was relatively slow

(between 4 and 8 h after stimulus).

Whether the enzymatic activity of Jmjd3 is required to

participate in the control of inflammatory gene expression is

still an open question that remains to be experimentally

addressed using suitable approaches. Although it is possible

to reconstitute Jmjd3�/� macrophages with wt and catalyti-

cally inactive Jmjd3 using viral vectors (data not shown), we

have been unable until now to reproduce the physiological,

highly regulated temporal profile of its expression; moreover,

levels of expression achieved this way are much higher than

the endogenous ones, thus making such experiments not

reliable.

Conclusions

The data shown here show that, in addition to its described

roles in development and tissue renewal, Jmjd3 participates

in the inflammatory transcriptional response induced by LPS

stimulation in macrophages. Overall, Jmjd3 effects on the

transcriptional output (which in this system are largely

independent of H3K27me3 demethylation) are rather wide-

spread but in most cases of low intensity, suggesting that its

main role is to make fine adjustments to the transcription

rates of several genes rather than to provide an essential

contribution to their induction.

Materials and methods

Cell culture
Bone marrow cells isolated from female Fvb mice were plated in
10 cm plates in 5ml of BM-medium (high glucose DMEM
supplemented with 20% low-endotoxin foetal bovine serum, 30%
L929-conditioned medium, 1% glutamine, 1% Pen/Strep, 0.5%
sodium pyruvate, 0.1% b-mercaptoethanol). Cultures were fed with
2.5ml of fresh medium every 2 days. Stimulations were carried out
at day 7.

Jmjd3 knockout macrophages were obtained by differentiating
foetal liver-derived cells obtained from E14.5 embryos (in a mixed
129SvEv-C57BL/6 background). Cells were first plated on bacterial
(non-coated) plates for 2 days and then transferred to standard cell
culture plates for additional 5–6 days before stimulation. Knockout
mice will be described elsewhere. LPS from Escherichia coli serotype
055:B5 (Sigma) was used at 10 ng/ml; gIFN (R&D) was used at
10UI/ml.

Chromatin immunoprecipitation
The ChIP-Seq libraries generated in this study are shown in
Supplementary Table X. For the Jmjd3 ChIP-Seq experiment
5�108 macrophages were stimulated for 2 h with LPSþ gIFN.
Fixation with formaldehyde and sonication was carried out as
described earlier (De Santa et al, 2007). The lysate was divided in
five 3ml aliquots for further processing. For all the other
sequencing experiments, lysates (3ml) were generated from
1�108 cells.

Each 1�108 aliquot was immunoprecipitated with 10mg of the
following antibodies: antiH3K4me3 (Abcam Ab8580), anti-
H3K27me3 (Upstate Biotechnology #07–449), anti-Pol_II (anti-
Rbp1, Santa Cruz Biotechnology, sc-899). The anti-Jmjd3 antibody
was raised in rabbits against the C-terminus of the mouse protein
and affinity purified. Antibodies were pre-bound overnight to 100 ml
of G protein-coupled paramagnetic beads (Dynabeads) in PBS/BSA
0.5%. Beads were then added to lysates (the pre-clearing step was
omitted) and incubation was let to proceed overnight. Beads were
washed six times in a modified RIPA buffer (50mM Hepes pH 7.6,
500mM LiCl, 1mM EDTA, 1% NP-40, 0.7% Na-deoxycholate) and
once in TE containing 50mM NaCl. DNA was eluted in TE
containing 2% SDS and crosslinks reversed by incubation overnight
at 651C. DNA was then purified by Qiaquick columns (Qiagen) and
quantified using PicoGreen (Invitrogen). Yields were B300ng/108

cells (H3K4me3), B10 ng/108 cells (H3K27me3 and Pol_II),
B2.5 ng/108 cells (Jmjd3). Primers used for validation by ChIP–
qPCR are in Supplementary Table XI.
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Preparation of ChIP DNA libraries, sequencing
and computational analysis
ChIP DNA was prepared for Solexa 1G sequencing by simulta-
neously blunting, repairing and phosphorylating ends using a
mixture of T4 DNA polymerase, DNA polymerase I and T4 kinase
according to manufacturer’s instruction (Illumina). The DNA was
adenylated at 30 end and recovered by Qiaquick PCR purification kit
(Qiagen) according to the manufacturer’s recommendations.
Adaptors for Genome Analyzer were added by ligation and the
ligated fragments were subjected to limited cycles (17 cycles) of
PCR amplification and amplified fragments were gel purified by
Qiagen columns. The purified DNA was quantified by picogreen
(Invitrogen) and diluted to a working concentration of 10 nM.
Cluster generation was performed and loaded into individual lanes
of flow cell; 36 cycles of base incorporation were carried out on the
Illumina 1G analyzer. We routinely generated over 10 million
uniquely mapped tags for each ChIP sample and location of each
ChIP fragment was inferred by extending 200bp from the tag
mapping location and regions covered by multiple overlapping ChIP
fragments were considered as putative binding sites.

The ELAND program provided with the 1G analyzer software
package was used to map 36 bp reads to mouse genome (mm8)
allowing at most two mismatches. Only reads mapped uniquely in
the genome were used for further analysis. The tag mapping
coordinates were extended 200 bp to the 30 direction to obtain ChIP
DNA fragment locations on the mm8 genome. Thus a genome-wide
intensity profile was obtained. The peak finding algorithm
described in Chen et al (2008) was applied to this intensity profile
to determine the reliable binding regions. Only peaks above a
minimum intensity threshold were selected based on a computa-
tionally estimated FDR of 0.1%. Furthermore, FC of intensity
against negative control library (anti-GFP) was used to filter out the
high-intensity peaks in genomic regions with unusually high tag
accumulation, such as satellite repeat regions.

The FDR for a library was determined by a Monte Carlo
simulation, in which 200 bp fragments randomly (with a uniform
distribution) extracted from the mm8 genome were used to estimate
the numbers of random peaks with different intensity values. The
number of random fragments is equal to the sequencing depth of
the library. The FDR at an intensity p is estimated as the Rp/Op

where Rp and Op are the number of random and real peaks,
respectively, with Intensities Xp. The minimum intensity that
satisfies the FDR criterion is selected as the lower cutoff for calling
confident peaks.

To filter the peaks in ChIP DNA library against the negative
control library (anti-GFP), the ratio of peak intensities in the ChIP
DNA and control libraries was compared, and only peaks with an
intensity FC X5 were kept. The peak intensities were normalized
with respect to sequencing depth in the comparison. Let IChIP(x)
Icontrol(x) represent the intensity of a peak centred at genomic locus
x in the ChIP DNA and control libraries, respectively. Then the FC

for this peak is given by

FCðxÞ ¼
IChIPðxÞ þ d

IcontrolðxÞ þ d
�
Ncontrol

NChIP

;

where NChIP and Ncontrol are, respectively, the sequencing depths of
the ChIP DNA and negative control libraries, and d represents the
Dirichlet prior which is set to 1 here. The FC cutoff of 5.0 is
relatively stringent.

ChIP_sequencing data were deposited in the GEO public
repository (http://www.ncbi.nlm.nih.gov/geo/) and can be re-
trieved using the accession number GSE17631.

Quantitative RT–PCR and nascent transcript analysis
RNAwas extracted from macrophages using Trizol (Invitrogen) and
reverse transcribed with random hexamers. For isolation of nascent
transcripts, cells were lysed in HB buffer (10% glycerol, 60mM KCl,
15mM NaCl, 1.5mM HEPES pH 7.9, 0.5mM EDTA) containing
0.3M sucrose and 0.8% NP40. Nuclei were then pelleted through a
0.9M sucrose cushion in HB and resuspended in 100ml of NRB
(75mM NaCl, 20mM Tris–HCl pH 7.5, 0.5mM EDTA, 50% glycerol,
100mg/ml yeast tRNA) and lysed by addition of 750ml of NLB (0.3M
NaCl, 20mM HEPES pH 7.6, 0.2mM EDTA, 7.5mM MgCl2, 1M
urea, 1% NP-40, 100mg/ml yeast tRNA). Chromatin was then
pelleted in microfuge at 41C and nascent transcripts extracted in
Trizol. As control of the lack of genomic DNA contamination, qPCR
was also carried out on RNA that was not reverse transcribed. The
sequences of the primers used are in Supplementary Table XII.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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