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jModelTest is a new program for the statistical selection of models of nucleotide substitution based on ‘‘Phyml’’
(Guindon and Gascuel 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum
likelihood. Syst Biol. 52:696–704.). It implements 5 different selection strategies, including ‘‘hierarchical and dynamical
likelihood ratio tests,’’ the ‘‘Akaike information criterion,’’ the ‘‘Bayesian information criterion,’’ and a ‘‘decision-
theoretic performance-based’’ approach. This program also calculates the relative importance and model-averaged
estimates of substitution parameters, including a model-averaged estimate of the phylogeny. jModelTest is written in
Java and runs under Mac OSX, Windows, and Unix systems with a Java Runtime Environment installed. The program,
including documentation, can be freely downloaded from the software section at http://darwin.uvigo.es.

Introduction

Models of nucleotide substitution allow for the calcu-
lation of probabilities of change between nucleotides along
the branches of a phylogenetic tree. The use of a particular
substitution model may change the outcome of the phyloge-
netic analysis (e.g., Buckley 2002; Buckley and Cunningham
2002; Lemmon and Moriarty 2004), and statistical model se-
lection has become an essential step for the estimation of
phylogenies from DNA sequence alignments. In-depth re-
views about model selection in phylogenetics are available
elsewhere (Johnson and Omland 2003; Posada and Buckley
2004; Sullivan and Joyce 2005). Indeed, the performance of
different model selection strategies has been the subject of
active research (Posada 2001; Posada and Crandall 2001;
Pol 2004; Abdo et al. 2005; Alfaro and Huelsenbeck 2006).

Several programs already exist for the statistical selec-
tion of models of nucleotide substitution (e.g., Nylander
2004; Keane et al. 2006). Among these, Modeltest (Posada
and Crandall 1998) has been one of the most popular. This
note describes a new program called jModelTest that super-
sedes Modeltest in several aspects. jModelTest allows for
the definition of restricted sets of candidate models (table 1),
implements customizable ‘‘hierarchical likelihood ratio
tests’’ (hLRTs) (Frati et al. 1997; Huelsenbeck and Crandall
1997; Sullivan et al. 1997) and ‘‘dynamic likelihood ratio
tests’’ (dLRTs) (Posada and Crandall 2001), provides a rank
of models according to the ‘‘Akaike Information Criterion’’
(AIC) (Akaike 1973), to the ‘‘Bayesian Information Criterion’’
(BIC) (Schwarz 1978) or to a ‘‘decision-theoretic perfor-
mance-based’’ approach (DT) (Minin et al. 2003) (table 2),
calculates the relative importance of every parameter, and
computes model-averaged estimates of these, including
a model-averaged estimate of the tree topology (Posada and
Buckley 2004).

Model Selection with jModelTest

jModelTest is essentially a front-end to a computational
pipeline that takes advantage of existing programs for

running different tasks. Basically, this pipeline (fig. 1) in-
cludes:

� ‘‘ReadSeq’’ (Gilbert 2007): for conversion among
different DNA sequence alignment formats.

� ‘‘Phyml’’ (Guindon and Gascuel 2003): for the likeli-
hood calculations, including estimates of model param-
eters and trees.

� ‘‘Ted’’ (D. Posada): to compute Euclidean distances
between trees for performance-based model selection.

� ‘‘Consense’’ (from the PHYLIP package) (Felsenstein
2005): to calculate weighted and strict consensus trees
representing model-averaged phylogenies.

Likelihood Calculations

Likelihood calculations, including model parameters
and tree estimates, are carried out with Phyml (Guindon
and Gascuel 2003). The tree topology used in these calcu-
lations can be the same across models (fixed) or optimized
for each one. Fixed tree topologies can be estimated with the
BIONJ algorithm (Gascuel 1997) upon JC distances (Jukes
and Cantor 1969) or user-defined. Alternatively, a BIONJ or
an ML tree can be estimated under each model. In all cases,
branch lengths are estimated and counted as parameters.

Custom Set of Models

Currently, there are 11 different nucleotide substitu-
tion schemes implemented in jModelTest, which combined
with equal or unequal base frequencies (þF), a proportion
of invariable sites (þI), and rate variation among sites
(þG), result in 88 distinct models (table 1). The program
offers the possibility of defining to a reasonable extent
which models are included in the candidate set.

Sequential Likelihood Ratio Tests

A series of likelihood ratio tests (LRTs) can be imple-
mented under a particular hierarchy (hLRTs), in which the
user can specify their order, and whether parameters
are added (forward selection) or removed (backward selec-
tion). Alternatively, the order of the LRTs can be set dy-
namically (dLRTs) (Posada and Crandall 2001), by
comparing the current model with the one that is one
hypothesis away and provides the largest increase (under
forward selection) or smallest decrease (under backward
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selection) in likelihood. The hLRTs and dLRTs will
be available only if the likelihood scores were calculated
upon a fixed topology, due to the nesting requirement of
the v2 approximation.

Information Criteria

The program implements 3 different information cri-
teria: the AIC (Akaike 1973), the BIC (Schwarz 1978),
and a performance-based approach based on decision the-
ory (DT) (Minin et al. 2003). Under the AIC framework,
there is also the possibility of using a corrected version
for small samples (AICc) (Sugiura 1978; Hurvich and
Tsai 1989), instead of the standard AIC. In this case, sam-
ple size has to be specified, which by default is approx-
imated as the number of sites in the alignment (note that
the sample size of an alignment is presently an unknown
quantity).

Model Selection Uncertainty

The AIC, BIC, and DT methods assign a score to each
model in the candidate set, therefore providing an objective
function to rank them. Using the differences in scores, the pro-
gram can calculate a measure of model support called AIC
or BIC weights (Burnham and Anderson 2003). For the DT
scores, this calculation is not as straightforward, and right
nowaverygrossapproachisusedinstead,wheretheDTweights
aretherescaledreciprocalDTscores.Confidenceintervals(CIs)
can be defined according to the cumulative weights, including
a specified fraction of the models. When the CI includes only
partially a given model, this model is included (yes/no) in the
CI with a probability equal to the fraction included.

Parameter Importance and Model-Averaged Estimates

The program can also calculate the relative impor-
tance of every parameter of the substitution model and

Table 1
Substitution Models Available in jModelTest

Modela–c Free Parameters Base Frequencies Substitution Rates Substitution Code

JC k Equal AC 5 AG 5 AT 5 CG 5 CT 5 GT 000000
F81 k þ 3 Unequal AC 5 AG 5 AT 5 CG 5 CT 5 GT 000000
K80 k þ 1 Equal AC 5 AT 5 CG 5 GT, AG 5 CT 010010
HKY k þ 4 Unequal AC 5 AT 5 CG 5 GT, AG 5 CT 010010
TrNe k þ 2 Equal AC 5 AT 5 CG 5 GT, AG, CT 010020
TrN k þ 5 Unequal AC 5 AT 5 CG 5 GT, AG, CT 010020
TPM1 k þ 2 Equal AC 5 GT, AT 5 CG, AG 5 CT 012210
TPM1u k þ 5 Unequal AC 5 GT, AT 5 CG, AG 5 CT 012210
TPM2 k þ 2 Equal AC 5 AT, CG 5 GT, AG 5 CT 010212
TPM2u k þ 5 Unequal AC 5 AT, CG 5 GT, AG 5 CT 010212
TPM3 k þ 2 Equal AC 5 CG, AT 5 GT, AG 5 CT 012012
TPM3u k þ 5 Unequal AC 5 CG, AT 5 GT, AG 5 CT 012012
TIM1e k þ 3 Equal AC 5 GT, AT 5 CG, AG, CT 012230
TIM1 k þ 6 Unequal AC 5 GT, AT 5 CG, AG, CT 012230
TIM2e k þ 3 Equal AC 5 AT, CG 5 GT, AG, CT 010232
TIM2 k þ 6 Unequal AC 5 AT, CG 5 GT, AG, CT 010232
TIM3e k þ 3 Equal AC 5 CG, AT 5 GT, AG, CT 012032
TIM3 k þ 6 Unequal AC 5 CG, AT 5 GT, AG, CT 012032
TVMe k þ 4 Equal AC, AT, CG, GT, AG 5 CT 012314
TVM k þ 7 Unequal AC, AT, CG, GT, AG 5 CT 012314
SYM k þ 5 Equal AC, AG, AT, CG, CT, GT 012345
GTR k þ 8 Unequal AC, AG, AT, CG, CT, GT 012345

NOTE.—The same number of branch lengths (k) needs to be estimated for every model.
a JC (Jukes and Cantor 1969), F81 (Felsenstein 1981), K80 (Kimura 1980), HKY (Hasegawa et al. 1985), TrN (Tamura and Nei 1993), TPM (‘‘3-parameter model,’’ 5

K81) (Kimura 1981), TIM (‘‘transitional model’’) (Posada 2003), TVM (‘‘transversional model’’) (Posada 2003), SYM (Zharkikh 1994), and GTR (Tavaré 1986).
b Any of these can include invariable sites (þI), rate variation among sites (þG), or both (þIþG).
c 5 equal frequencies; 5 unequal frequencies.

Table 2
Model Selection Strategies Implemented in jModelTest

Hierarchical
Likelihood
Ratio Tests

Dynamical
Likelihood
Ratio Tests

Akaike
Information

Criterion

Bayesian
Information

Criterion

Performance-
Based

Selection

Abbreviation hLRTs dLRTs AIC BIC DT
Base tree Fixed Fixed Fixed, optimized Fixed, optimized Fixed, optimized
Nesting requirement Yes Yes No No No
Simultaneous comparison No No Yes Yes Yes
Selection uncertainty No No Yes Yes Yesa

Parameter importance No No Yes Yes Yesa

Model averaging No No Yes Yes Yesa

a DT weights are simply the rescaled reciprocal DT scores. This is a gross implementation very likely to change.
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model-averaged estimates of these, using all the models in
the candidate set, or a fraction included in a particular CI
(see Posada and Buckley 2004).

Model-Averaged Phylogenies

jModelTest is able to compute an average estimate of
the tree topology by building a consensus of the maximum
likelihood (ML) trees for every model in the candidate set,
weighting them with their model weights (AIC, BIC, or
DT) (fig. 2). Indeed, this option is only available when
the tree topology has been optimized for every model.
The consensus tree is constructed using the Consense pro-
gram from the PHYLIP package (Felsenstein 2005).

Software Platform and Availability

jModelTest is written in Java and can be started in any
operating system with a Java Runtime Environment (see
http://www.java.com). However, jModelTest uses other pro-
grams for different tasks, and these have been compiled for
Mac OSX, Windows XP, and Linux. The package, including
installation instructions, documentation, executables, and ex-
ample data, is distributed free of charge for academic use
from the software section at http://darwin.uvigo.es.

Conclusions

Model selection is an important issue in statistical phy-
logenetics, around which some questions still remain open
(Kelchner and Thomas 2007). jModelTest addresses some

of these, providing an increased flexibility for the user to
explore the data and the role of the substitution model
on the estimation of phylogenetic trees.

FIG. 1.—jModelTest pipeline. Alignments are loaded using the ReadSeq library (Gilbert 2007). Likelihood calculations, including estimates of
model parameters and trees, are carried out with Phyml (Guindon and Gascuel 2003). A custom program called Ted (D. Posada) is used to compute
Euclidean distances between trees for performance-based model selection (DT), whereas Consense (Felsenstein 2005) is used to calculate weighted and
strict consensus trees representing model-averaged phylogenies.

FIG. 2.—Model-averaged tree of HIV-1 pol sequences. The topology
shown is the consensus of 88 ML tree topologies, one for every model,
weighted according to the AIC weights. The numbers on the branches
represent uncertainty due to model selection. In this case, clades (AJ), (AJC),
and (HG) are supported by the best and fourth best AIC models (GTR þ G,
AIC weight 5 0.83; TIM3 þ G, AIC weight 5 0.01; respectively) and
others, but not by the second or third best AIC models (GTR þ I þ G, AIC
weight 5 0.15; GTR þ I, AIC weight 5 0.01; respectively).

Model Selection with jModelTest 1255

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/25/7/1253/1045159 by guest on 20 August 2022

http://www.java.com
http://darwin.uvigo.es


Acknowledgments

I want to thank a number of users of Modeltest that had
made numerous comments and suggestions through the
years. Special thanks to Stephane Guindon for his generous
help with Phyml and to John Huelsenbeck for suggesting
the stochastic calculation of CIs. I want to acknowledge
Sudhir Kumar for inviting me to present the latest advances
in Modeltest at the 2006 SMBE annual meeting, which
finally prompted the completion of jModelTest.

Literature Cited

Abdo Z, Minin VN, Joyce P, Sullivan J. 2005. Accounting for
uncertainty in the tree topology has little effect on the
decision-theoretic approach to model selection in phylogeny
estimation. Mol Biol Evol. 22:691–703.

Akaike H. 1973. Information theory and an extension of the
maximum likelihood principle. In: Petrov BN, Csaki F,
editors. Second International Symposium on Information
Theory. Budapest (Hungary): Akademiai Kiado. p. 267–281.

Alfaro ME, Huelsenbeck JP. 2006. Comparative performance of
Bayesian and AIC-based measures of phylogenetic model
uncertainty. Syst Biol. 55:89–96.

Buckley TR. 2002. Model misspecification and probabilistic tests
of topology: evidence from empirical data sets. Syst Biol.
51:509–523.

Buckley TR, Cunningham CW. 2002. The effects of nucleotide
substitution model assumptions on estimates of nonparametric
bootstrap support. Mol Biol Evol. 19:394–405.

Burnham KP, Anderson DR. 2003. Model selection and multi-
model inference. a practical information-theoretic approach.
New York: Springer.

Felsenstein J. 1981. Evolutionary trees from DNA sequences:
a maximum likelihood approach. J Mol Evol. 17:368–376.

Felsenstein J. 2005. PHYLIP (phylogeny inference package).
Seattle (WA): Department of Genome Sciences. University of
Washington.

Frati F, Simon C, Sullivan J, Swofford DL. 1997. Evolution of
the mitochondrial cytochrome oxidase II gene in Collembola.
J Mol Evol. 44:145–158.

Gascuel O. 1997. BIONJ: an improved version of the NJ
algorithm based on a simple model of sequence data. Mol
Biol Evol. 14:685–695.

Gilbert D. 2007. ReadSeq. Bloomington (IN): Indiana University.
Guindon S, Gascuel O. 2003. A simple, fast, and accurate

algorithm to estimate large phylogenies by maximum likeli-
hood. Syst Biol. 52:696–704.

Hasegawa M, Kishino K, Yano T. 1985. Dating the human-ape
splitting by a molecular clock of mitochondrial DNA. J Mol
Evol. 22:160–174.

Huelsenbeck JP, Crandall KA. 1997. Phylogeny estimation and
hypothesis testing using maximum likelihood. Annu Rev Ecol
Syst. 28:437–466.

Hurvich CM, Tsai C-L. 1989. Regression and time series model
selection in small samples. Biometrika. 76:297–307.

Johnson JB, Omland KS. 2003. Model selection in ecology and
evolution. Trends Ecol Evol. 19:101–108.

Jukes TH, Cantor CR. 1969. Evolution of protein molecules. In:
Munro HM, editor. Mammalian protein metabolism. New
York: Academic Press. p. 21–132.

Keane TM, Creevey CJ, Pentony MM, Naughton TJ,
McLnerney JO. 2006. Assessment of methods for amino acid

matrix selection and their use on empirical data shows that ad
hoc assumptions for choice of matrix are not justified. BMC
Evol Biol. 6:29.

Kelchner SA, Thomas MA. 2007. Model use in phylogenetics:
nine key questions. Trends Ecol Evol. 22:87–94.

Kimura M. 1980. A simple method for estimating evolutionary
rate of base substitutions through comparative studies of
nucleotide sequences. J Mol Evol. 16:111–120.

Kimura M. 1981. Estimation of evolutionary distances between
homologous nucleotide sequences. Proc Natl Acad Sci USA.
78:454–458.

Lemmon AR, Moriarty EC. 2004. The importance of proper
model assumption in Bayesian phylogenetics. Syst Biol.
53:265–277.

Minin V, Abdo Z, Joyce P, Sullivan J. 2003. Performance-based
selection of likelihood models for phylogeny estimation. Syst
Biol. 52:674–683.

Nylander JA. 2004. MrAIC [Internet]. [cited 2008 April 23].
Available from: http://www.abc.se/;nylander/. program dis-
tributed by the author

Pol D. 2004. Empirical problems of the hierarchical likelihood
ratio test for model selection. Syst Biol. 53:949–962.

Posada D. 2001. The effect of branch length variation on the
selection of models of molecular evolution. J Mol Evol.
52:434–444.

Posada D. 2003. Using Modeltest and PAUP* to select a model
of nucleotide substitution. In: Baxevanis AD, Davison DB,
Page RDM, Petsko GA, Stein LD, Stormo GD, editors.
Current Protocols in Bioinformatics. New York: John Wiley
& Sons. p. 6.5.1–6.5.14.

Posada D, Buckley TR. 2004. Model selection and model
averaging in phylogenetics: advantages of Akaike information
criterion and Bayesian approaches over likelihood ratio tests.
Syst Biol. 53:793–808.

Posada D, Crandall KA. 1998. Modeltest: testing the model of
DNA substitution. Bioinformatics. 14:817–818.

Posada D, Crandall KA. 2001. Selecting the best-fit model of
nucleotide substitution. Syst Biol. 50:580–601.

Schwarz G. 1978. Estimating the dimension of a model. Ann
Stat. 6:461–464.

Sugiura N. 1978. Further analysis of the data by Akaike’s
information criterion and the finite corrections. Commun Stat
Theory Methods. A7:13–26.

Sullivan J, Joyce P. 2005. Model selection in phylogenetics.
Annu Rev Ecol Evol Syst. 36:445–466.

Sullivan J, Markert JA, Kilpatrick CW. 1997. Phylogeography
and molecular systematics of the Peromyscus aztecus species
group (Rodentia: Muridae) inferred using parsimony and
likelihood. Syst Biol. 46:426–440.

Tamura K, Nei M. 1993. Estimation of the number of
nucleotide substitutions in the control region of mitochon-
drial DNA in humans and chimpanzees. Mol Biol Evol.
10:512–526.
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