
JMT Performance Engineering Tools for System Modeling

Marco Bertoli
Politecnico di Milano

Dip. di Elettr. e Informazione
Via Ponzio 34/5

Milano, Italy, 20133

bertoli@elet.polimi.it

Giuliano Casale
College of William and Mary
Dept. of Computer Science
140 McGlothlinStreet Hall

Williamsburg, VA, 231878795

casale@cs.wm.edu

Giuseppe Serazzi
Politecnico di Milano

Dip. di Elettr. e Informazione
Via Ponzio 34/5

Milano, Italy, 20133

giuseppe.serazzi@polimi.it

ABSTRACT

We present the Java Modelling Tools (JMT) suite, an integrated

framework of Java tools for performance evaluation of computer

systems using queueing models. The suite offers a rich user inter-

face that simplifies the definition of performance models by means

of wizard dialogs and of a graphical design workspace.

The performance evaluation features of JMT span a wide range

of state-of-the-art methodologies including discrete-event simula-

tion, mean value analysis of product-form networks, analytical iden-

tification of bottleneck resources in multiclass environments, and

workload characterization with fuzzy clustering. The discrete-event

simulator supports several advanced modeling features such as fi-

nite capacity regions, load-dependent service times, bursty pro-

cesses, fork-and-join nodes, and implements spectral estimation for

analysis of simulative results. The suite is open-source, released

under the GNU general public license (GPL), and it is available for

free download at http://jmt.sourceforge.net.

1. INTRODUCTION
Java Modelling Tools (JMT) is a suite of free open-source Java

applications for researching, teaching, and applying performance

evaluation methodologies based on queueing models [3, 4]. JMT

supports a wide-range of activities that are common in performance

evaluation, such as solution of capacity planning models via simu-

lation or analytical algorithms, feature extraction and pre-processing

of log traces, clustering algorithms for selection of the most sig-

nificant workloads to be modeled, determination of the optimal

load conditions, and automatic identification of performance bot-

tlenecks. The focus of JMT is particularly on queueing systems and

queueing networks models [15], in which requests travel through a

number of stations suffering queueing delays because of service

contention. Usually, the analysis focuses on estimating perfor-

mance indices such as mean throughputs and response times of re-

quests. Queueing models are wide-spread in the performance eval-

uation community because they can capture very well the trend of

performance indices of real systems including, but not limited to,

multi-tier architectures [7, 22], storage arrays [12], and communi-

cation networks [11]. A comprehensive documentation of JMT and

related case studies are available at [14].

The JMT suite started as a project of the Politecnico di Milano

- DEI in 2002 with the aim of integrating into a single portable

Java application pre-existing tools for workload characterization

and queueing analysis, namely Win Modelling Tools [18]. Later,

it evolved into a more sophisticated and integrated open-source ap-

plication that runs on Windows, Linux, and MacOS. In particular,

from April 2006 the tool has adopted a distribution and mainte-

nance model based on sourceforge.net, which has quickly boosted

the diffusion of the application through practitioners, students, and

researchers. Currently, the application has been downloaded about

ten thousand times and has a solid base of users contributing to the

JMT development forums.

A distinguishing feature of JMT is that its design has privileged

the documentation, usability and accessibility of the tool through

a rich graphical user interface, rather than exacerbating the tech-

nical detail. In particular, the tool is able to guide users through

simple wizard interfaces. Further, the parameterization of experi-

ments requires minimal interaction with the user. In this way, JMT

hides the complexity of the core algorithm implementations, thus

significantly reducing the learning curve of new users. This feature

also makes the tool of special interest for teaching purposes. How-

ever, interface simplifications do not penalize the technical level

of the tool. JMT implements state-of-the-art methods for discrete-

event simulation and analytical evaluation of queueing models as

we describe in the remainder of this paper. The integration of the

different applications that compose the tool as well as the commu-

nication between the graphical user interface and the underlying

algorithms is based on XML. This, together with the open source

development model, makes it simple to interface JMT algorithms

with external software. For instance, OPEDo (see Arns, Buchholz,

and Müller, this issue) uses the JMT analytical algorithms to opti-

mize queueing models. Furthermore, JMT can execute parametric

what-if analyses which are useful to evaluate the sensitivity of per-

formance estimates to changes in the model characteristics. Para-

metric what-if curves can be plotted by JMT to display trends of

performance indices as well as confidence intervals determined by

the simulation engine.

The remainder of the paper is as follows. In Section 2, we in-

troduce the applications that compose the suite and describe the

general architecture of the tool. Section 3 describes discrete-event

simulation of queueing models. Analytical evaluation of queueing

models and bottleneck identification methods are described in Sec-

tion 4 and Section 5, respectively. We discuss the features of JMT

for workload characterization and traffic analysis in Section 6. Fi-

nally, Section 7 summarizes the paper and outlines future work.

2. JMT SUITE ARCHITECTURE
The architecture of JMT in its current version 0.7.4 consists of

a set of loosely coupled graphical applications that communicate

using XML with a core algorithmic module composed by the sim-

ulation engine (JSIMengine) and by a library of analytical func-

tions, see Figure 1. Applications are selected through the main

JMT interface, see Figure 2. JSIMgraph and JSIMwiz are graph-

ical and wizard-based design environments for queueing models,

respectively. The two applications provide a front-end interface

for the underlying discrete-state simulation engine. The focus of

JSIMgraph and JSIMwiz is on generating XML specifications of

10

MVA

Library
JSimEngine

JMVA

Custom

Application

JSIMwiz JSIMgraph JABA JWAT

Convex

Hull

Library

Clustering

Library

XML Data Layer

Figure 1: JMT - General Architecture

simulation models, pretty-print visualization of complex networks,

automatic model debugging, and dynamical presentation of the cur-

rent simulation state and of the current estimates of performance

metrics and related confidence intervals. JSIMengine supports the

evaluation of the most important classes of queueing models that

cannot be solved with exact analytical techniques. These include,

among others, multiclass queueing networks with blocking, prior-

ities, fork-and-join elements, burstiness, and state-dependent rout-

ing schemes.

JMVA is a graphical user interfaces for the analytical evaluation

of queueing network models. The tool relies on an implementation

of the Mean Value Analysis (MVA) algorithm for closed networks

[21], together with similar algorithms described in [5] for open and

mixed networks. Compared to JSIMgraph and JSIMwiz, JMVA

relies on a much simpler description of the model based only on

the mean service demands of the different classes of requests and

on the workload intensities (arrival rates, population sizes).

JABA is an analytical tool for automatic identification of per-

formance bottlenecks in multiclass closed queueing networks. The

tool receives in input a set of service demands specifying the speed

of each server in processing requests of the different classes. Using

the geometrical approach in [8], JABA efficiently identifies under

which mixes of requests a server can become the most congested

in the network. This saves the computational costs of a long simu-

lative analysis over different mixes of requests.

The JWAT tool offers a stand-alone environment for log file anal-

ysis and preprocessing, identification of relevant workloads in mul-

ticlass performance data using clustering techniques, and primi-

tives for characterization of time-varying workloads (e.g., bursti-

ness analysis). The tool is instrumental to the derivation of the

parameters needed to define the queueing models analyzed by the

other applications of the JMT suite, such as the mean service de-

mands used in JMVA and JABA.

Finally, the JMCH application is a graphical simulator of M/M/1

and M/M/1/K queues. The simulation state is visualized both on

the queue buffer and on a Markov model representing the system.

The tool has the pedagogic purpose of showing to students the very

basic ideas underlying queueing system analysis. Because this tool

has only graphical capabilities, we do not discuss it in the rest of

the paper.

3. JSIMENGINE, JSIMGRAPH, AND JSIMWIZ

JSIMgraph is a graphical design environment for queueing net-

work models which is tightly coupled to the JSIMengine for run-

ning discrete-event simulation, see Figure 3. JSIMwiz gives the

same functionalities of JSIMgraph, but replaces the graphical frame-

work with a set of wizard that guide the user through the definition

of a queueing model as depicted in Figure 4. In the simulation of

queueing network models with JSIMgraph and JSIMwiz, stations

are represented as a composition of three objects: input section,

service section, and output section. An input section can be ei-

Figure 2: JMT - Tool Selection Interface

ther a finite buffer that receives jobs from other stations or from

one or more infinite sources that generate new jobs. The other sec-

tions specify scheduling disciplines (e.g., First-Come First-Served -

FCFS, Last-Come First-Served - LCFS) and routing schemes (e.g.,

Join the Shortest Queue - JSQ). Currently, there is support only

for non-preemptive scheduling disciplines. The simulation engines

works on the basis on a number of “distributed protocols” which

specify the interaction of different sections belonging to the same

or to different stations. For example, in a queueing model with

blocking, when a job departs from a queue, its routing section and

the input section of the destination queue decide without the help

of a centralized controller if the job can be accepted in the desti-

nation buffer. This simulation style has been implemented to allow

in future releases of JMT the migration to a multi-processor or dis-

tributed simulation environment, see [4] for additional details.

The simulator supports a variety of distributions for arrival and

service processes, including Exponential, Erlang, Hypo- and Hyper-

Exponential, Pareto, and Gamma. These are obtained as usual by

evaluating the inverted cumulative distribution function (CDF) on a

random number sampled from a uniform distribution. High-quality

pseudo-random numbers are generated using the Mersenne Twister

engine, which has low computational requirements [16]. Samples

can be also read directly from an external log file. We have also

added to the simulator the capabilities of generating samples from

correlated processes, which are important to model burstiness in

arrival or service times. In particular, we have implemented in the

simulator a support for the burstiness model of [17], we point to

Section 6 for further details. Another important feature of JSI-

Mengine is that the simulator provides native mechanisms for the

definition of load-dependent service times. Load-dependence is

useful to represent certain systems, e.g., disk drives, where the la-

tency of service can be a function of the local number of enqueued

jobs. Load-dependence is also important in hierarchical modelling

and parametric analysis [9]. In JSIMgraph and JSIMwiz the user

is given the flexibility to specify load-dependent service rates by

associating a different service distribution to a specific range of

populations in the local queue. Further, the parameters of each

distribution can be expressed as an arbitrary mathematical function

of the current population.

JSIMgraph and JSIMwiz allow the definition of a number of sta-

tions and attributes resulting in models that are not easy to evaluate

analytically and typically require simulation to be solved. First,

there is a support for fork and join nodes, in which a request is

first forked into a user-specified number of sibling tasks which are

later synchronized at the join node. These models are important

11

Figure 3: JSIMgraph - Graphical design workplace

to describe parallel systems where a request is decomposed into a

number of processing units for load-balancing reasons. The simu-

lator also supports finite capacity regions which impose constraints

on the maximum number of jobs accessing a local subnetwork of

servers. These are extremely useful to capture the behavior of per-

formance saturation effects which are imposed by admission con-

trol policies or memory constraints. Finite capacity regions can

include a single or multiple stations (see the blue area in Figure 3),

they can put limitations only on the population of selected classes

or on the aggregate number of jobs in the subnetwork, and they

can either drop incoming jobs or place them in a hidden admis-

sion buffer at the boundary of the region. Note that statistics about

the behavior of the finite capacity region can be collected by spe-

cific performance indexes, e.g., request drop rates at the bound-

ary of the region. Other important modeling features supported

by JSIMengine include support for priority classes in scheduling

disciplines (namely priority FCFS and priority LCFS), open and

closed populations, and state-dependent routing strategies which

direct jobs to stations with either the least utilization, the smallest

expected response time, the fastest mean service time, or the the

shortest queue length (i.e., JSQ load-balancing).

In the remainder of this section, we complete the presentation

of the JMT simulation capabilities by discussing some important

features related to the statistical analysis of simulation results and

to the control of simulation experiments.

3.1 Analysis of Simulation Results
JSIMengine supports the estimation of several reward measures

that describe the performance of the simulation models. These in-

clude station-level metrics such as queue length, response time over

a single or multiple visits, utilization, throughput, and drop rate for

queues with a finite buffer. There is also a support for system-level

aggregates like the total number of jobs in the simulation model or

within a finite capacity region, as well as the throughput and re-

sponse time of jobs in traversing (or cycling for closed classes) the

network. Each performance index can be estimated for a particular

job class or as an aggregated measure over all classes.

Each station in the simulation model is associated with an object

called JobInfoList that, for each performance index requested by

the user, feeds online a statistical analyzer with samples of that par-

ticular metric. Simulation results are analyzed using transient de-

tection and confidence interval estimation algorithms. These tech-

niques are executed online and are responsible to stop the simula-

tion when it is conveyed that all performance metrics can be es-

timated with sufficient accuracy. Confidence intervals are gener-

Figure 4: JSIMwiz - Wizard-guided analysis

ated using the spectral method presented in [13]. The effective-

ness of this technique depends on the stationarity of the sample

distribution. If the series of samples shows trends or pronounced

non-stationary behaviors, the estimate of its power spectrum can

be unreliable and this degrades the quality of the confidence inter-

vals generated by the spectral method. Therefore, techniques for

discriminating if a group of samples is stationary are important to

maximize accuracy, since detecting and removing non-stationary

data can greatly improve the quality of power spectrum estimates.

For this purpose, we have implemented transient detection using

the R5 heuristic [10] and the MSER-5 stationarity rule [20]. We

point to [4] for a flowchart that explains how these two techniques

have been combined in JSIMengine.

After completing the transient detection phase, the statistical an-

alyzer runs the spectral method of Heidelberger and Welch [13],

which is a stable and computationally efficient method for comput-

ing simulation confidence intervals using variable batch sizes and a

fixed amount of memory. JSIMengine runs the spectral analysis pe-

riodically until the confidence intervals are generated with enough

accuracy. Nonetheless, one run is often sufficient to estimate accu-

rately confidence intervals. The spectral analysis proceeds as fol-

lows. Given a stationary sequence of samples X(1), . . . , X(N) of

the performance measure X, the spectral analysis obtains an esti-

mate of the power spectrum p(f) at the frequency f = 0. The value

p(0)/N is an unbiased estimator of the sample variance, which can

be used to generate confidence intervals on X also if the sequence

of sample is correlated. The advantage of the technique with re-

spect to the standard variance estimator is that the latter does not

hold if the samples are correlated. However, measured of perfor-

mance metrics in queueing network models are often correlated and

this is an important motivation to use spectral analysis methods in

JSIMengine. The spectral analysis requires to compute the sample

periodogram I(n/N), 0 < n < N/2, and then generate a certain

function J(n), which is the logarithm of the mean of two consecu-

tive values of I(n/N). The most important property of J(n) is that

its functional shape is a low-order polynomial in a neighborhood of

the zero frequency, thus the value of I(0), from which we compute

the unbiased estimator of the sample variance, can be estimated by

inexpensive regression of J(n). In JSIMengine, we implemented

the regression technique using singular value decomposition and

we fit the data to a polynomial of order two. This is consistent

with [13] which shows that J(n) is often linear or quadratic in a

neighborhood of n = 0. We point to [4] for additional details on

the simulation engine and on the analysis of simulation results.

12

Figure 5: JMVA - What if analysis

3.2 Control of Simulation Experiments
JSIMengine offers several options for controlling simulation ex-

periments. Besides defining long-run simulations, the most inter-

esting features are the possibility of executing an automatic stop

as a function of the quality of confidence interval estimates and to

run parametrically a sequence of “what-if” experiments. The auto-

matic stop is based on the concept of maximum relative error of the

confidence interval [19] and stands for maximum acceptable ratio

ǫ between the half-width of the confidence interval measure α and

the estimated mean. For instance, setting ǫ = 0.07 and α = 0.05
imposes a simulation stop when the half-width of the 95% confi-

dence interval is no more than 7% of the sample mean.

JSIMgraph and JSIMwiz integrate native support for “what-if”

analyses, which are repeated execution of simulation experiments

for different values of a control parameter. Parametrical experi-

ments can be controlled by changing the value of the input traffic

rate, of the number of jobs for closed classes, of the percentage of

jobs belonging to a closed class, of the mean service times, or for

different initialization seeds of the random number generator.

4. JMVA
JMVA is a tool for computing mean performance indexes of the

class of product-form queueing network models defined in [2]. The

tool uses an efficient implementation of the Mean Value Analysis

(MVA) algorithm of Reiser and Lavenberg [21] for closed multi-

class networks. However, one can also compute by JMVA perfor-

mance indexes for models with open and mixed workload classes.

The implementation of MVA is based on the algorithms described

in [5] which support both constant-rate and load-dependent queues.

The specification of load-dependent rates uses the same approach

described for JSIMgraph and JSIMwiz.

Compared to JSIMengine, JMVA has much lower execution times

on models where the number of workload classes is not too large,

usually less than three or four classes. However, JMVA can have

a larger memory requirement than JSIMengine if the populations

of closed classes are composed by several tens or hundreds of re-

quests, because of the well-known inefficiency of the MVA algo-

rithm in this case. However, the increased speed of JMVA is an

important motivation to use this tool, especially in what-if analysis

which can be very time-consuming if simulation is used. JMVA of-

fers the same what-if analysis functionalities of JSIMengine (see

Figure 5) but, because of the properties of the MVA algorithm,

a restricted set of performance indexes can be computed. These

are mean response times, mean throughputs, utilizations, and mean

queue-lengths.

An interesting function of JMVA is the capability of importing

model files saved by the JSIMgraph/JSIMwiz; also the JSIM ap-

plication can read models saved by JMVA. This strengthens the

inter-operability of the tools of the suite. When an analytical model

saved with JMVA is opened in JSIMgraph, the graphical user inter-

face creates a graphical arrangement of the model based on auto-

matic layout techniques and arbitrarily assigns service distributions

to the stations consistently with the product-form assumptions [2]

and with the mean service demands specified in JMVA. JSIMwiz

behaves similarly to JSIMgraph, but without the need of a graphi-

cal arrangement. Instead, when a simulation model is imported in

JMVA the situation is completely different, since the features of a

simulation models are a superset of the ones support by JMVA. In

this case, the tool reports warning on properties of the model that

are incompatible with product-form assumptions and tries to gener-

ate a product-form model that is the closest possible, but not always

identical, to the input simulation model.

5. JABA
Java Asymptotic Bound Analysis (JABA) is a tool for the au-

tomatic identification of bottleneck stations in multiclass queueing

networks. To understand the application of this tool, consider the

following problem. A multi-tier system processes transactions be-

longing to several classes and, because the web server limits the

maximum number of simultaneous connections, only up to a pre-

defined number requests can be processed at a given instant. In gen-

eral, the particular mix of requests served determines the bottleneck

resource, i.e., a certain mix in which requests to pictures are the ma-

jority of the incoming traffic may overload the Web server, another

mix with several queries may place the bottleneck at the database

server, and a combination of the two may stress both servers simul-

taneously. The knowledge of the potential bottlenecks of an archi-

tecture is very important for resource provisioning, system sizing,

and performance tuning. JABA has been designed with the focus

on this type of performance analysis and optimization studies.

JABA searches potential bottlenecks in a network with arbitrarily

large number of stations and two or three workload classes. Given

a description of server speeds, i.e., mean service demand for each

class at each server, JABA determines for two class models the

group of potential bottlenecks as a function of the mix of requests

expressed as a vector ~β = (β1, β2), where β1 is the percentage

of requests of class one out of the total requests in the system and,

similarly, β2 = 1 − β1 is the fraction of requests of class two.

A graphical representation of the functional dependence on ~β is

given based on diagrams similar to Figure 6. A similar functionality

exists also for models with three workload classes, in this case the

mix vector is ~β = (β1, β2, β3) which can represented graphically

as the triangular section of the plane β1 + β2 + β3 = 1 where all

βrs, 1 ≤ r ≤ 3, are non-negative.

In addition to mapping the potential bottleneck set as a function

of the mix ~β, JABA offers a convenient interface to explore graph-

ically how this set changes as a function of the service demands

of each server. The user is provided with a two-dimensional plot

of points, each representing a server, with coordinates given by the

service demands of the two workload classes at that server. A con-

vex hull technique is used to compute the yellow polytope in Figure

7. According to the results in [8], points falling on the boundary of

the polytope are potential bottlenecks. In a well-balanced architec-

ture, all points would have similar coordinates and would concen-

trate on the same edge of the polytope; thus the number of edges of

13

Figure 6: JABA - Potential Bottleneck Identification

the polytope quantifies the level of balance of the system and the

likelihood of bottleneck shifting between resources.

In JABA, the user can also consider what-if scenarios by chang-

ing the service demands of a server and seeing graphically how the

polytope and the potential bottleneck sets are modified. This is sup-

ported by a drag-and-drop interface for the points of the polytope

in Figure 7. This can be useful to investigate the robustness of an

architecture under slight variations of the workload characteristics

as well as to investigate the sensitivity of the results if measurement

errors have affected the service demand estimates.

6. JWAT
The Java Workload Analyzer Tool (JWAT) is an application for

exploratory analysis of performance data and for generation of static

and dynamic workload characterizations that can be used within

JSIM, JABA, and JMVA models. JWAT is based on the workload

characterization methodology presented in [6]. This starts with

a static analysis phase, in which JWAT extract samples from the

original log file according to various criteria, computes the distribu-

tion and moments of the measures after a number of pre-processing

and transformation steps, and then moves to a dynamic analysis in

which time-varying properties of the trace, such as burstiness, are

assessed.

Before starting the static analysis phase, JWAT applies prelimi-

nary filtering and sampling on the raw trace to reduce, upon loading

in memory, the size of the data. Here, the user can formulate Perl5

regular expressions for specifying the columns of interests in the

trace and check the correctness of the entries. We also provide pre-

defined templates to import performance data from Apache web

server log files. After selecting the metrics of interests, the user can

apply further filtering and transformations to the data (e.g., variable

standardization, logarithmic transformation) guided by graphical

aids such as cross-correlation plots, histograms, scatter-plots, and

QQ-plot diagrams. This stage of the analysis is followed by cluster

analysis to partition the workload into representative classes. These

classes can be used directly in JSIM, JABA and JMVA models as

workload classes. For instance, the centroid of a cluster may be

considered as a representative value of the service demands of a

workload class. JWAT implements two clustering techniques: k-

means and fuzzy k-means. Both techniques require the specifica-

tion of the maximum number of clusters that JWAT can create and

of the maximum number of iterations allowed. The last parameter

controls the trade-off between clustering accuracy and computa-

Figure 7: JABA - Bottleneck Representation by Polytopes

tional costs. While k-means assigns an observation to only one

cluster, fuzzy k-means computes for each observation a stochastic

vector describing the probability of being a member of a certain

cluster. Fuzzy characterization of multiclass workload can be more

robust to outliers than traditional approaches. Clustering results

can be inspected for both k-means and fuzzy k-means using the

graphical interface, see Figure 8.

JWAT also helps in identifying the optimal number of workload

classes to be used in the cluster analysis. The optimality of a num-

ber of clusters is evaluated using different metrics for k-means and

fuzzy k-means: for k-means, JWAT seeks the maximum overall

mean square ratio (OMSR) value, which is the ratio between the

squared sums of intra-cluster and inter-cluster similarities between

samples. For fuzzy k-means, the internal consistency of each clus-

ter is evaluated using the entropy function, which quantifies the

amount of information carried by each cluster.

Dynamic modeling is still an experimental feature of the JWAT,

aimed at the generation of models that can characterize the bursti-

ness of a time series. JWAT uses the characterization proposed

in [17]. This is a compact representation where the trace is first

divided in intervals called epochs and then modeled by two param-

eters a and b that account for the percentage of epochs where the

arrival rate is observed to be greater than the mean arrival rate and

for the mean arrival rate associated with these traffic surges.

JWAT supports the computation of the parameters a and b using

the traffic analysis functions. In the current implementation, there

is support for investigating the sensitivity of a and b with respect to

the user-defined number of epochs n. For instance, the graph plot-

ted in Figure 9 shows the estimated value of b as a function of n for

a HTTP trace of a university Web server. By progressively increas-

ing the number of epochs, we see that the value of b converges to

a value close to 0.40. However, the point-wise estimation of these

value for small values of n (n < 15) suggests very different val-

ues, up to 0.60. This shows the practical advantage of sensitivity

analysis in the estimation of the parameters a and b.

7. CONCLUSION
Java Modelling Tools (JMT) is an integrated environment for

workload characterization and performance evaluation based on

queueing models. This paper has summarized the features of the

main applications that compose the suite, building intuition on the

versatility of JMT in dealing with the different aspects of the per-

formance evaluation process.

14

Figure 8: JWAT - Clustering Result Exploration

Figure 9: JWAT - Traffic Burstiness Analysis

There are several possible lines of extension of the tool. First,

we plan to integrate approximate analytical methods (e.g., Bard-

Schweitzer’s Approximate MVA [15]) to evaluate queueing net-

work models. These are considerably faster and less memory con-

suming than MVA on multiclass models. We also wish to add in the

simulator native support for processes with burstiness characterized

by Markov modulated processes. JMCH will also be extended to

include other types of stations. We will also work toward a better

integration of the different tools of the suite.

JMT is open source released under the GNU public license (GPL).

A Java installation package can be downloaded for free from the

JMT web page http://jmt.sourceforge.net. We point to the web

page for additional material including manuals, past publications,

case studies, and links to the online discussion forums.

8. REFERENCES
[1] G. Balbo and G. Serazzi. Asymptotic analysis of multiclass closed

queueing networks: Multiple bottlenecks. Performance Evaluation,
30(3):115–152, 1997.

[2] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. Open,
closed, and mixed networks of queues with different classes of
customers. Journal of the ACM, 22(2):248–260, 1975.

[3] M. Bertoli, G. Casale, and G. Serazzi. Java modelling tools: an open
source suite for queueing network modelling and workload analysis.

In Proc. of the 3rd Conf. on Quantitative Evaluation of Systems

(QEST), pages 119–120. IEEE, 2006.

[4] M. Bertoli, G. Casale, and G. Serazzi. The JMT simulator for
performance evaluation of non-product-form queueing networks. In
Proc. of the 40th Annual Simulation Symposium (ANSS), pages 3–10,
2007.

[5] S. C. Bruell and G. Balbo. Computational Algorithms for Closed

Queueing Networks. North-Holland, 1980.

[6] M. Calzarossa and G. Serazzi. Workload characterization: A survey.
Proc. of the IEEE, 81(8):1136–1150, 1993.

[7] G. Casale, N. Mi, L. Cherkasova, and E. Smirni. How to parametrize
models with bursty workloads. ACM Perf. Eval. Rev., Special Issue

on the 1st HOTMETRICS Workshop, 36(2):38–44, 2008.

[8] G. Casale and G. Serazzi. Bottlenecks identification in multiclass
queueing networks using convex polytopes. In Proc. of IEEE

MASCOTS Symposium, pages 223–230. IEEE Press, 2004.

[9] K. M. Chandy, U. Herzog, and L. Woo. Parametric analysis of
queueing networks. IBM J. Res. Dev., 19(1):36–42, 1975.

[10] G. S. Fishman. Statistical analysis for queueing simulations.
Management Science, 20, 3:363–369, 1973.

[11] M. Garetto and D. Towsley. Modeling, simulation and measurements
of queuing delay under long-tail internet traffic. In Proc. of ACM

SIGMETRICS, pages 47–57. ACM Press, 2003.

[12] P. Harrison and S. Zertal. Queueing models of raid systems with
maxima of waiting times. Performance Evaluation, 64(7-8):664–689,
2007.

[13] P. Heidelberger and P. D. Welch. A spectral method for confidence
interval generation and run length control in simulations. Comm. of

the ACM, 24(4):233–245, 1981.

[14] JMT Documentation and Case Studies:
http://jmt.sourceforge.net/Documentation.html

[15] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik.
Quantitative System Performance. Prentice-Hall, 1984.

[16] M. Matsumoto and T. Nishimura. Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random number
generator. ACM Trans. on Modeling and Comput. Simulation,
8(1):3–30, 1998.

[17] D. Menasce and V. A. F. Almeida. Capacity Planning for Web

Services: metrics, models, and methods. Prentice Hall, 2002.

[18] M. Pantano. Un’interfaccia grafica per modelli a reti di code e per la
caratterizzazione del carico. Master Thesis (in Italian), Universita’
Statale di Milano, Italy, July 1990.

[19] K. Pawlikowski. Steady-sate simulation of queueing processes: A
survey of problems and solutions. ACM Computing Surveys,
22(2):123–168, 1990.

[20] K. Preston White Jr., M. J. Cobb, and S. C. Spratt. A comparison of
five steady-state truncation heuristics for simulation. In Proc. of the
32nd Winter simulation Conference, pages 755–760. SCS, 2000.

[21] M. Reiser and S. S. Lavenberg. Mean-value analysis of closed
multichain queueing networks. Journal of the ACM, 27(2):312–322,
1980.

[22] B. Urgaonkar, G. Pacifici, P. J. Shenoy, M. Spreitzer, and A. N.
Tantawi. An analytical model for multi-tier internet services and its
applications. In Proc. of ACM SIGMETRICS, pages 291–302. ACM
Press, 2005.

15

