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Abstract We address non-preemptive non-
clairvoyant online scheduling of parallel jobs on a
Grid. We consider a Grid scheduling model with
two stages. At the first stage, jobs are allocated to
a suitable Grid site, while at the second stage, local
scheduling is independently applied to each site.
We analyze allocation strategies depending on the
type and amount of information they require. We
conduct a comprehensive performance evaluation
study using simulation and demonstrate that our
strategies perform well with respect to several
metrics that reflect both user- and system-centric
goals. Unfortunately, user run time estimates and
information on local schedules does not help to
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significantly improve the outcome of the alloca-
tion strategies. When examining the overall Grid
performance based on real data, we determined
that an appropriate distribution of job processor
requirements over the Grid has a higher perfor-
mance than an allocation of jobs based on user run
time estimates and information on local schedules.
In general, our experiments showed that rather
simple schedulers with minimal information re-
quirements can provide a good performance.

Keywords Grid computing · Online scheduling ·
Resource management · Job allocation

R. Yahyapour
IT and Media Center,
Technische Universität Dortmund,
44221 Dortmund, Germany
e-mail: ramin.yahyapour@udo.edu

U. Schwiegelshohn
Robotics Research Institute,
Technische Universität Dortmund,
44221 Dortmund, Germany
e-mail: uwe.schwiegelshohn@udo.edu

A. Hirales-Carbajal
Science Faculty,
Autonomous University of Baja California,
Ensenada, 22860 BC, México

Author's personal copy
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1 Introduction

Due to the size and dynamicity of Grids, there is
a need for an automatic and efficient process to
allocate computational jobs to available resources.
Various scheduling systems have already been
proposed and implemented in different types of
Grids [1–8]. Most academic studies either pro-
pose a completely distributed resource manage-
ment system, see, for instance, [9], or suggest a
central scheduler, see [10, 11], while real installa-
tions favour a combination of decentralized and
centralized structures, see [12]. Such combined
systems have also been proposed using a hierar-
chical multilayer resource management, see [13–
20]. The highest layer is often called a Grid-layer
scheduler that typically has a general view of job
requests while specific details on the state of the
resources remain hidden from it. A local resource
management system knows in detail the resource
state and the jobs that are actually forwarded to
it. In very large systems, additional layers may
exist in between. Therefore, an efficient resource
management system for Grids requires a suitable
combination of scheduling algorithms that sup-
port such multilayer structures.

In this paper, we conduct a comprehensive per-
formance evaluation study of a basic two layer
online Grid scheduling model. The first layer al-
locates a job to a suitable parallel machine using
a given selection criteria while the second layer
applies potentially machine dependent schedul-
ing algorithms to the allocated jobs. As Grid
resources are typically connected by wide area
networks and do not share the same management
system, job migration between different resources
requires a significant overhead and is technically
challenging. Hence, we do not consider any mul-
tisite job execution nor any job migration after a
job has been allocated to a machine; that is, an al-
located job must be executed on the assigned ma-
chine. Taking into account the recent advance of
parallel processing due to multicore architectures,
we assume rigid parallel jobs; that is, the jobs have
a given degree of parallelism and must be assigned
exclusively to the specified number of processors
or cores during their execution. While machines in
real Grids often exhibit different forms of hetero-

geneity, like different hardware, operating system
and software, we restrict ourselves to machines
with a different number of the same processors
or cores as architectures of individual cores and
their clock frequency tend to be rather similar.
Therefore, we believe that the focus in our model
is reasonable and representative for real installa-
tions and applications.

After formally presenting our Grid schedul-
ing model in Section 2, we introduce hierarchical
job scheduling algorithms and classify them in
Section 3. Next, we discuss related work in
Section 4. Experimental setups are presented
in Section 5, followed by experimental results in
Section 6. Finally, we conclude with a summary
and an outlook in Section 7.

2 Model

We address an online scheduling problem: n par-
allel jobs J1, J2, ..., Jn must be scheduled on m
parallel machines (sites) N1, N2, ..., Nm. Let mi

be the number of identical processors or cores
of machine Ni. We denote the total number of
processors belonging to machines from N1 to Nm

by m1,m = ∑m
i=1 mi. Assume without loss of gen-

erality that the machines are arranged in non-
descending order of their numbers of processors,
that is m1 ≤ m2 ≤ ... ≤ mm holds.

Each job J j is described by a tuple (r j, size j,
pj, p′

j, p′′
j ): its release date r j ≥ 0, its size 1

≤ size j ≤ mm also called its processor require-
ment or its degree of parallelism, its execu-
tion time pj, its user run time estimate p′

j, and
its system runtime prediction p′′

j . The release
date of a job is not available before the job is
submitted, and its processing time is unknown
until the job has completed its execution (non-
clairvoyant case). System-generated prediction
p′′

j can be used to generate better schedules in
some scheduling approaches like backfilling, see
Tsafrir et al. [33], even if they are often very
inaccurate.

Further, w j = pj · size j, w′
j = p′

j · size j, w′′
j =

p′′
j · size j are the work, estimated work, and pre-

dicted work of job J j, respectively. At its release
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Job Allocation Strategies with User Run Time Estimates 97

date, a job must be immediately and irrevocably
allocated to a single machine. However, we do not
demand that specific processors are immediately
assigned to a job at its release date as well; that
is, the processor allocation of a job can be delayed
until the required number of processors is actually
available.

A machine must execute a job by exclusively
allocating exactly size j processors for an uninter-
rupted period of time pj to it. As we do not allow
multisite execution and co-allocation of proces-
sors from different machines, a job J j can only run
on machine Ni if size j ≤ m j holds. We assume that
the resources involved are stable and dedicated
to Grid.

We use g j = i to denote that job J j is allocated
to machine Ni, while ni is the number of jobs
allocated to machine Ni. The completion time of
job J j of instance I in a schedule S is denoted
by c j (S, I) while the makespan of a schedule S
and instance I is Cmax(S, I) = maxJ j{c j(S, I)}. We
use C∗

max(I) to specify the optimal makespan of
instance I. Whenever it is possible without causing
ambiguity, we will omit instance I and schedule S.

For our simulation experiments, we use twenty
four metrics. However when applying a de-
tailed analysis, we restricted ourselves to three
well known performance metrics: Mean waiting
time tw = 1

n

∑n
j=1 (c j − pj − r j); mean bounded

slowdown SDb = 1
n

∑n
j=1

c j−r j

max{10,pj} ; and sum of

weighted completion times (total weighted com-
pletion time) with a specific weight selection
SWCTw = ∑n

j=1 c j · w j. They are commonly used
to express the objectives of different stakehold-
ers of Grid scheduling (end-users, local resource
providers, and Grid administrators).

To avoid the emphasis on very short jobs (e.g.,
with close to zero runtime) in the slowdown met-
ric, a commonly used threshold of 10 seconds was
applied.

Schwiegelshohn [21] suggested to use the
well known sum of weighted completion times
SWCTweight as a system-centric metric with the
weight of job J j being its resource consumption
w j = size j · pj. He showed that this metric exhibits
many properties that are similar to the properties
of the makespan objective.

Furthermore, we use tw over response (turn-
around) time TA = 1

n

∑n
j=1(c j − r j), and tw over

sum of job waiting times SWT = ∑n
j=1(c j −

pj − r j). Both metrics differ in constants regard-
less of the scheduler being used. In the first case,
the constant is the average runtime of all jobs, and,
in the second case, it is the factor 1/n. Besides
we use SWCTweight over the competitive factor,
and resource-centric metrics like utilization U =
∑n

j=1
pj·size j

Cmax·m1,m
and throughput Th = n

Cmax
. There is

a close relationship between these metrics due
to C∗

max,
∑n

j=1
pj·size j

m1,m
, and n being constants for

a given experiment; x percent reduction in Cmax

corresponds to x
100%−x

percent increase in the
utilization and throughput [21].

Note that in our evaluation of experiments, we
use the lower bound of the optimal makespan
�

C
∗
max instead of the optimal makespan with

C∗
max ≥ �

C
∗
max = max

{

max
j

(r j + pj),

∑n
j=1 w j

m

}

as we

are, in general, not able to determine the optimal
makespan. We denote our Grid machine model by
GPm. Our scheduling problem is characterized as
GPm|r j, size j|{tw, SDb , SWCTw} using the three
field notation (α|β|γ ) introduced by Graham et al.
[22]. This notation describes the fields machine
environment (α), job characteristics (β), and ob-
jective function (γ ). Finally, we use the notation
MPS (Multiple Parallel Scheduling) to refer to our
problem, while the notation PS (Parallel Schedul-
ing) describes the parallel job scheduling on a
single parallel machine.

3 Classification of Algorithms

We consider only algorithms that have no knowl-
edge about jobs other than the number of
unfinished jobs in the system, their processor
requirements and user runtime estimates.

3.1 Allocation Strategies

As already discussed, our Grid scheduling algo-
rithms can be split into a global allocation part
and a local scheduling part. Hence, we regard
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98 J.M. Ramírez-Alcaraz et al.

MPS as a two stage scheduling strategy: MPS =
MPS_Alloc + PS. At the first stage, we allocate
a suitable machine for each job using a given
selection criterion. At the second stage, the PS
algorithm is applied to each machine indepen-
dently for the jobs allocated during the previous

stage. Note that our algorithms proceed on a
job-by-job basis.

We distinguish allocation strategies depending
on the type and amount of information they re-
quire. Note that the overall processor number
and the processor numbers of the machines are

Table 1 Allocation strategies

Allocation strategy Level Description

Random 1 Randomly allocates jobs to the admissible site

MLp 1 Allocates job j to the site with least load per processor at time r j : mini=1..m

(
ni
mi

)

The motivation behind MLp is to balance the load between processors of the machines
MPL 1 Allocates job j to the site with least job processor requirements per processor at time

r j : mini=1..m

{∑
gk=i

sizek
mi

}
of each site. The intuition behind MPL is to keep all processors

as busy as possible. One advantage of MPL is its simplicity. It does not take into account
neither the job execution time nor execution time estimate

LBal_S 1 Allocates job j to the site with the least standard deviation of job processor requirements
per processor (taking into account all sites) when job j is assigned to it.

minq=1..m

√
1
m

∑m
i=1

(
PLq

i − PL
)2

, where PLq
i=1..m = 1

mi

∑
gk=i

(
sizek + sizeq

j

)
and sizeq

j

is the size of job j added to site q (see [14])
LBal_T 2 Allocates job j to the site with the least standard deviation of job execution time

requirements per processor (taking into account all sites) when job j is assigned to it

minq=1..m

√
1
m

∑m
i=1

(
Tq

i − T
)2

, where Tq
i=1..m = 1

mi

∑
gk=i

(
pk + pq

j

)
and pq

j is the time

of job j added to site q
LBal_W 2 Allocates job j to the site with the least standard deviation of job work requirements

per processor (taking into account all sites) when job j is assigned to it.

minq=1..m

√
1
m

∑m
i=1

(
Wq

i − W
)2

, where Wq
i=1..m = 1

mi

∑
gk=i

(
wk + w

q
j

)
and w

q
j is the

work of job j added to site q

MLB 2 Allocates job j to the site with least work per processor at time r j : mini=1..m

{∑
gk=i

sizek·p′
k

mi

}

of each site
MCT 3 Allocates job j to the site with earliest Grid completion time min

{
Ci

max
}
, where

Ci
max = maxgk=i(Ci

k), and Ci
k is the completion time of job Jk in the site i. This causes

some tasks to be assigned to machines that do not have the minimum completion
time for it. MCT attempts to minimize the total completion time

MWT 3 Allocates job j to the site with minimum average job waiting time mini=1..m

{∑
gk=i

tkw
ni

}

MWWT_S 3 Allocates a job j to the site with minimum average job weighted waiting time

MWWT_T mini=1..m

{∑
gk=i

tkw·weightk
ni

}
, where weightk = {

sizek, p′
k, wk

}

MWWT_W

MST 3 Allocates job j to the site with earliest start time for this job mini=1..m

{
si

j

}
. For

homogeneous platforms MST assigns each task to the machine with the minimum
expected completion time for that task (Earliest-Finish-Time)

MSWCT_W 3 Allocates a job j to the site with minimum sum of weighted (work) completion time

mini=1..m

{∑
gk=i ck · wk

}
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known. Further, we distinguish three levels of
additionally available information used for job
allocation (see Table 1).

Level 1: Once a job has been submitted only
its processor requirements become
known. There is no information on
the processing time of jobs. However,
the algorithm may use information
on the already allocated jobs to each
machine.

Level 2: We have access to the information of
Level 1 and know the job runtime es-
timate p′

j or system runtime prediction
p′′

j .
Level 3: We have access to the information of

Level 2 and to all local schedules as
well. The GRMS (Grid Resource Man-
agement and Brokering Service) has in-
formation on the local schedule of the
machines, and may consider this when
allocating a job to a machine.

We selected our heuristics to support job-by-job
allocation and to cover a wide range of informa-
tion available in the moment of the allocation.

3.2 Parallel Machine Scheduling

Once a job has been allocated to a parallel
machine, the local resource management system
(LRMS) of this machine will generate a schedule.
Different scheduling algorithms may be used by
the LRMS: Many real systems apply First-Come-
First-Serve (FCFS) algorithm that schedules jobs
in the order of their arrival times. Although this
algorithm performs reasonably well in practice, it
produces very bad results in the worst case. This
is also true for various versions of backfilling that
usually improve the performance of FCFS for real
workloads. Alternatively, list scheduling guaran-
tees a maximum deviation 2 − 1/m from the op-
timum for a parallel machine with m processors.
No better result is possible for non-clairvoyant
scheduling; see [23].

In the remaining parts of this paper, we assume
that the LRMS uses the following online parallel
scheduling algorithm: BEFF—First-Come First-

Serve policy with EASY Backfilling. It is well
known that EASY Backfilling outperforms the
FCFS algorithm for real workloads. In order to
apply EASY Backfilling, user estimated runtimes
are used.

4 Related Work

4.1 Theoretical Results

Schwiegelshohn et al. [24] showed that there is no
polynomial time algorithm that guarantees sched-
ules with a competitive bound <2 for GPm|r j,
size j|Cmax and all problem instances unless P =
N P. Therefore, the multiprocessor list scheduling
bound of 2 − 1/m for the offline case, see [25],
as well as for online submission [23], does not
apply to Grids. Even more, list scheduling cannot
guarantee a constant competitive bound for all
problem instances in the concurrent submission
case [18].

Further, the performance of Garey and Gra-
ham’s list scheduling algorithm is significantly
worse in Grids than in multiprocessors, see [24].
Schwiegelshohn et al. [24] presented an online
non-clairvoyant algorithm that guarantees to gen-
erate a schedule with completion time being
within a constant ratio 5 of the optimal solution.

Tchernykh et al. [27] analyzed adaptive admis-
sible job allocation strategies. The model covers
the main properties of Grids, for instance, ma-
chines with different sizes, and non-clairvoyant
parallel jobs. The competitive factor varies be-
tween 17 and infinity with change of the admis-
sible factor. It was shown that the algorithm is
beneficial under certain conditions and allows an
efficient implementation in real systems. Further-
more, a dynamic and adaptive approach is pre-
sented which can cope with different workloads
and Grid properties.

Tchernykh et al. [27] provided a competi-
tive analysis for the heuristic that is based on
the load balancing model of Bar-Noy, see [28].
They provided an algorithm for online clairvoyant
makespan scheduling of parallel rigid jobs in a
Grid with the competitive factor 2e + 1.
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100 J.M. Ramírez-Alcaraz et al.

More theoretical results are available for off-
line clairvoyant and non-clairvoyant problem. We
just mention main results, without details because
they are not addressed in our paper. In [29], a
related clairvoyant problem was addressed. The
authors model an offline system consisting of
N clusters with exactly m identical processors
each, and propose an algorithm with a guaran-
teed worst-case performance ratio on the global
makespan equal to 4. This problem is a version of
the MSP (Multiple Strip Packing) problem, where
jobs are considered as rectangles and must be allo-
cated without rotation on consecutive processors
[30]. This problem is strongly NP-hard.

A more general case of the non-clairvoyant
problem considering a collection of k parallel ma-
chines of different sizes and jobs that do not re-
quire more resources than available on the biggest
machine (size j ≤ mm) was considered in [18, 19].
The authors address the performance of various
2-stage algorithms with respect to the makespan
objective. They present algorithms with a compet-
itive factor of 10.

Schwiegelshohn et al. [24] presented an offline
version of the online non-clairvoyant algorithm
that guarantees a competitive factor of 3 for the
Grid scenario, when migration between machines
is allowed. Marin Bougeret et al. [31] consider the
clairvoyant version of the same problem with jobs
that do not require more resources than available
on the smallest machine. The proposed scheduling
algorithm achieves a 5/2 ratio.

4.2 Runtime Prediction Models

Users of large parallel computers are typically
required to provide runtime estimates for sub-
mitted jobs. The reasons are twofold: jobs that
violate their estimates are killed; and estimates
are used in the local machines scheduling poli-
cies like backfilling and its variants. In the paper,
we separate kill-time from the runtime prediction
and system generation predictions. The issues of
user runtime estimates have become the focus
of intensive research. Tsafrir et al. [32] analyzed
workload logs collected from parallel machines
in production use, and showed that user run-
time estimates are highly inaccurate even for a

single machine. Estimates are inherently modal,
because users tend to repeatedly use the same
runtime limits (e.g. 10 min, 1 h, and so on).
The situation becomes worse when several geo-
graphically distributed computers with unknown
characteristics are used as the user may not have
real information on application behavior on such
systems.

The user run time estimate accuracy of job J j

is calculated as the ratio of the real runtime to
the estimate pj/p′

j. System-generated prediction
accuracy is calculated as the ratio of the real
runtime to the system-generated prediction pj/p′′

j .
To avoid under prediction and over prediction
compensation during averaging, we define accord-
ing to Tsafrir et al. [33]: accuracy = 1, if p′

j = pj;
pj/p′

j, if p′
j > pj; p′

j/pj, if p′
j < pj.

The study of the impact of the user runtime
estimates accuracy on the performance of the
scheduling policies for parallel computers has
been presented in several works (see [3, 32–42]).
We mention here only few aspects of the problem
like user runtime estimation models, the accuracy
of the runtime estimates; the impact of the usage
of prediction techniques in the backfilling policies;
etc. User estimates may serve as kill times, while
system predictions can be used for scheduling.
Talby et al. [42] presented three prediction tech-
niques. The first one is based on the entire user
historical data of the workload, along with user
runtime estimates. The second one uses historical
data only, without user estimates. In the third one
neither historical information nor estimates are
available.

Historical data can improve estimates due to
the fact that users tend to repeatedly execute
the same programs. To increase accuracy of the
prediction, the following actions can be taken:
prediction correction, prediction fallback, and
propagation (see [33]).

Tsafrir et al. [33] showed that there is no dom-
inance of the specific history windows size. They
selected the last two preceding jobs (k = 2) and
showed that it results in significant improvement,
both in the accuracy of the prediction itself and in
the resulting performance of the backfilling. The
results clearly show that for the backfilling policies
recency is more important than similarity. It is
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better to use the last job by the same user than
to search for the most similar job.

Grid scheduling policies are also mainly based
on the user runtime estimates. Moreover, current
Grid resource management is based on the as-
sumption that users provide accurate estimates of
job runtimes. These estimates have a significant
impact on particular Grid resources (for instance,
advance reservation), and on overall Grid per-
formance. However, due to the heterogeneity of
computational resources in Grids, users do not
have enough information to provide how long
their jobs will run with adequate accuracy. The us-
age of job execution time prediction techniques in
Grid scheduling policies instead of user estimates
has a crucial relevance. However, predictions have
not been incorporated into resource allocation
strategies; that is, into identification of the set of
resources that best match the job requirements.

In this paper, we use the history-based system-
generated prediction models incorporated into
the job allocation policies to study their im-
pact on the overall two layer computational Grid
performance.

5 Experimental Setup

Two fundamental issues have to be addressed
for how to set up a simulation environment for
performance evaluation. On the one hand, repre-
sentative workload traces are needed to produce
dependable results. On the other hand, a good
testing environment should be set up to obtain re-
producible and comparable results. In this section,
we present most common Grid trace-based simu-

lation setups with an emphasis on the mentioned
two issues.

5.1 Grid Configuration

We consider two Grid scenarios for evaluation:
Grid1 and Grid2. In Grid1, we considered the
seven sites with total 4,442 processors as presented
in the Table 2. In Grid2, we considered nine sites
with a total of 2,194 processors (see Table 3). Re-
spective logs are used to create the Grid log. De-
tails of the log characteristics can again be found
in the Parallel Workloads Archive(PWA) [43]
and the Grid Workloads Archive(GWA) [44].

5.2 Workload

The accuracy of the evaluation highly relies upon
workloads applied. For testing the job execution
performance under a dedicated Grid environ-
ment, we use Grid workload based on real produc-
tion traces. Carefully reconstructed traces from
real supercomputers provide a very realistic job
stream for simulation-based performance evalu-
ation of Grid job scheduling algorithms. Back-
ground workload (locally generated jobs) that is
an important issue in non-dedicated Grid environ-
ment is not addressed.

Logs from PWA and GWA are used. The
premise of the integration of several logs of pro-
duction machines into a Grid log is based on the
following. Grid logs contain jobs submitted by
users of different sites; Grid execution context
could be composed by these sites. Unification
of these sites into a Grid will trigger to merge
users and their jobs. It should be mentioned that

Table 2 Grid1 characteristics

Location Procs Log

1 KTH—Swedish Royal Institute of Technology 100 KTH-SP2–1996–2.swf, 28489 jobs, 204 users
2 SDSC-SP2—San Diego Supercenter SP2 128 SDSC-SP2–1998–3.1-cln.swf, 73496 jobs, 437 users
3 HPC2N—High Performance Computing Center 240 HPC2N-2002–1.1-cln.swf, 527371 jobs, 256 users

North, Sweden
4 CTC—Cornell Theory Center 430 CTC-SP2–1996–2.1-cln.swf, 79302 jobs, 679 users
5 LANL—Los Alamos National Lab 1024 LANL-CM5–1994–3.1-cln.swf, 201387 jobs, 211 users
6 SDSC-BLUE—San Diego Supercenter Blue Gene 1152 SDSC-BLUE-2000–3.1-cln.swf, 250,440 jobs, 468 users
7 SDSC-DS—San Diego Supercenter Data Star 1368 SDSC-DS-2004–1-cln.swf, 96089 jobs, 460 users
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102 J.M. Ramírez-Alcaraz et al.

Table 3 Grid2 characteristics

Location Procs Log

1 DAS2—University of Amsterdam 64 Gwa-t-1-anon_jobs-reduced.swf, 1124772 jobs, 333 users
2 DAS2—Delft University of Technology 64
3 DAS2—Utrecht University 64
4 DAS2—Leiden University 64
5 KTH—Swedish Royal Institute of Technology 100 KTH-SP2–1996–2.swf, 28489 jobs, 204 users
6 DAS2—Vrije University Amsterdam 144 Gwa-t-1-anon_jobs-reduced.swf (cont.)
7 HPC2N—High Performance Computing Center 240 HPC2N-2002–1.1-cln.swf, 527371 jobs, 256 users

North, Sweden
8 CTC—Cornell Theory Center 430 CTC-SP2–1996–2.1-cln.swf, 79302 jobs, 679 users
9 LANL—Los Alamos National Lab 1024 LANL-CM5–1994–3.1-cln.swf, 201387 jobs, 211 users

merging several independent logs to simulate a
computational Grid workload does not guarantee
representation of the real Grid with the same
machines and users. For instance, if the site
becomes a part of the computational Grid where
bigger machines are available, users might submit
bigger jobs not represented in the original log.
Nevertheless, it is a good starting point to evaluate
Grid scheduling strategies based on real logs in the
case of the lack of publicly available Grid work-
loads. Time-zone normalization, profiled time in-
tervals normalization, and invalid jobs filtering are
considered. Several filters are applied to remove
certain jobs: job number ≤ 0; submit time < 0; run-
time ≤ 0; number of allocated processors ≤ 0; re-
quested time ≤ 0; user ID ≤ 0; status = 0, 4, 5 (0 =
job failed; 4 = partial execution, job failed; 5 =
job was cancelled, either before starting or during
run). Detailed characteristics of individual logs
can be found in the Parallel Workloads Archive
and the Grid Workloads Archive.

It is well known that the demand of jobs is
not equally distributed over the time and varies
with the time of the day and the day of the week.
Moreover, each individual log shows a different
distribution. In addition, machines of the Grids
are located in different time zones. This is a rea-
son of the mentioned normalization of the used
workloads as shifting the workloads by a certain
time interval to represent more realistic setup.
The jobs’ demand in the resulting log is now
aligned over the time intervals. We transformed
the workloads so that all traces begin at the same
weekday and at the same time of day. To this

end, we removed all jobs until the first Monday at
midnight. Note that the alignment is related to the
local time, hence the time differences correspond-
ing to the original time zones are maintained.
Note also that this modification results in a loss
of jobs within each workload.

Figures 9, 10, 11, 12, and 13 in the Appendix
show details of the traces of the Grid1 and Grid2
used in our study. Figure 9 in the Appendix shows
the number of jobs per week. Figure 10 in the
Appendix shows the mean resource consumption
per month. We can see that even the resource
consumption demand is not equally distributed
over the time in the original traces; it is more
balanced in the Grid logs. Note that the number
of jobs in Grid1 is just half of the number of
jobs in Grid2. However, resource consumption
is twice as much (Fig. 10 in the Appendix). It
gives us two different scenarios for simulation. We
have observed predominance of low parallel jobs
in both logs (Figs. 11 and 12 in the Appendix).
Maximal job sizes are 1368 and 1024 in Grid1 and
Grid2, respectively. In Grid1, most of the jobs
require at most 128 processors (95%). 1 processor
is required by 18% of jobs; 8, 16, 32, 64 processors
are required by 20%, 9%, 14%, and 8% of jobs,
respectively. The workload in Grid2 is less paral-
lel. Most of the jobs require at most 32 processors
(97%), 1 processor is required by 36% of jobs;
2, and 4 processors are required by 26% and 9%
of jobs, respectively. Figure 13 shows that users
from HPC2N (IDs 674–930) and from KTH-SP2
(IDs 931–1130) that participate in both Grids have
worst accuracy of run time estimates.
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6 Simulation Results

In this section, we analyze 14 allocation strategies
together with EASY backfilling local scheduling
algorithm.

A good scheduling algorithm should sched-
ule jobs to achieve high Grid performance while
satisfying various user demands in an equitable
fashion. Often, resource providers and users have
different, often conflicting, performance goals:
from minimizing response time to optimizing the
resources utilization. Grid resource management
involves multiple objectives and may use multi-
criteria decision support. General multi-criteria
decision methodology based on the Pareto opti-
mality can be applied. However, it is very difficult
to achieve fast solutions needed for Grid resource
management by using the Pareto dominance. The
problem is very often simplified to a single ob-
jective problem or to objectives combining. There
are various ways to model preferences, for in-
stance, they can be given explicitly by stakehold-
ers to specify an importance of every criterion or
a relative importance between criteria. Due to the
different nature of criteria, the actual difference
may have a different meaning. A 10% deviation
for sum of completion time is very different to
10% in the competitive factor etc. This can be
done by a definition of criteria weights or criteria
ranking by their importance.

In order to provide effective guidance in choos-
ing the best strategy, we performed a joint analy-
sis of several metrics according to methodology
proposed in Tsafrir et al. [33]. They introduce an
approach to multi-criteria analysis assuming equal
importance of each metric. The goal is to find a
robust and well performing strategy under all test
cases, with the expectation that it will also perform
well under other conditions, e.g., with different
Grid configurations and workloads.

The analysis is conducted as follows. First,
we evaluate the degradation in performance of
each strategy under each of three metrics. This
is done relative to the best performing strat-
egy for the metric, as follows: 100* strategy_
metric/best_metric-100. Thus, each strategy is now
characterized by three (six for two Grids) num-

bers, reflecting its relative performance degrada-
tion under the test cases. In the second step, we
average these three values (assuming equal im-
portance of each metric), and rank the strategies
for each Grid. The best strategy, with the lowest
average performance degradation, has rank 1; the
worst strategy has rank 14.

Then we calculate the average performance
degradation and ranking for Grid1 and Grid2.
We distinguish overall performance degradation
from individual performance in the two different
Grid setups. Note that we try to identify strategies
which perform reliable well in different scenarios;
that is, we try to find a compromise that considers
all of our test cases. For example, the rank of the
strategy in the average performance degradation
could not be the same for any of the metrics
individually.

6.1 Allocation Strategies

Table 6 in Appendix shows results of the compre-
hensive and extensive simulation of 14 allocation
strategies with BEFF local scheduling algorithm
over 24 metrics, all test cases, Grid1 and Grid2
scenarios average. Rounded percentages of the
performance degradations are presented for each
strategy and metric. The value zero denotes the
best strategy under the metric. Results are ob-
tained under different conditions and test cases.
Conditions in Grid1 are characterized by seven
large sites with 634 processors per site in average,
and 22,770 jobs per site in average. Conditions in
Grid2 are characterized by nine low parallel sites
with 243 processors per site in average, and 47,770
jobs per site in average.

For a more detailed analysis, Table 4 shows the
performance degradation of 14 strategies for three
considered metrics in Grid1 and Grid2 scenarios.
For the strategies that were compared, the wait-
ing times, slowdown, and total weighted comple-
tion times vary greatly. The difference between
strategies is more than 136,000% for tw, 75,000%
for SDb , and 28% for SWCTw. Such big devia-
tions show that these metrics are very sensitive to
the allocation strategies. Their careful selection is
needed in real systems.
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Table 4 Percentages of the performance degradations of
the strategies for Grid1 and Grid2

Strategy Metric

Grid tw SDb SWCTw Mean

MCT 1 1256 1284 0 847
2 4833 4001 0 2945

MLB 1 463 408 0 290
2 1799 754 0 851

LBal_S 1 11 18 0 10
2 70 17 0 29

LBal_T 1 136322 75442 28 70597
2 4205 2569 0 2258

LBal_W 1 1006 899 0 635
2 5743 3346 0 3030

MLp 1 119 71 0 63
2 153 53 0 69

MPL 1 0 0 0 0
2 0 0 0 0

Random 1 51929 41924 3 31285
2 18027 12196 0 10074

MST 1 80 91 0 57
2 252 111 0 121

MSWCT_W 1 70233 47821 2 39352
2 6515 3858 0 3458

MWWT_S 1 17303 12576 1 9960
2 9132 7550 0 5561

MWT 1 252 204 0 152
2 933 628 0 520

MWWT_T 1 8073 7382 1 5152
2 30822 27638 0 19487

MWWT_W 1 15506 12889 1 9465
2 51768 68410 0 40059

Figures 1, 2, and 3 show the ranking of the
best six strategies according to the performance
degradation for tw, SDb , and SWCTw. Figure 4
shows the mean degradations of the strategies
in Grid1 and Grid2 when considering all metrics
average. Figure 5 shows the mean performance
degradation ranking for all test cases.

As expected, MCT and MST are more efficient
than other strategies to minimize the Cmax cri-
terion for both Grids. Moreover, for these test
cases, the differences between MLB, LBal_S,
MLp, MPL, and MWT are negligible. They are
performing as good as MCT and MST.

The difference between strategies under the
sum of weighted completion times metric is less
than 0.04%. This is probably the case because in
the on-line scenario the load can be light in the
end of simulation period (after release of the last

job); hence the completion times of the last jobs
determine the makespan.

From observing Figs. 1, 2, and 3, we find that
the MPL and LBal_S allocation strategies taking
only job sizes into account perform better than
the other algorithms for waiting time, bounded
slowdown, and total weighted completion time
metrics. The difference in the relative perfor-
mance is 19% when considering all metrics
average.

The same result is observed over a wide range
of simulation parameters. More information avail-
able in the moment of allocation such as job run-
time estimates, and local schedules did not help
to construct better Grid schedules. One of the
reasons is that the user time estimates are known
to be inaccurate. The MLp and MST heuristics
also performed well for considered cases, giving
the second best results. They are 69.67% and
90.43% worse than MPL when considering all
metrics average.

Algorithms MWT and MLB are more than
300% worse than MPL when considering all
metrics average.

The use of the weighted function in allo-
cation strategies (LBal_T, LBal_W, MWWT_T,
MWWT_W, MWWT_S, MSWCT_W) with execu-
tion time p′

j and resource consumption w j as a
weight shows a decrease in performance as to be
expected for non weighted metrics. In contrast to
MPL and LBal_S, they always performed poorly,
ranking only on 9th–14th position.

Results indicate that the average relative per-
formance of the MPL and LBal_S allocation
strategies does not depend significantly on the
workload used, Grid configuration, and on the
performance metric. It turns out that MPL and
LBal_S are the best performing algorithms. Be-
sides the performance aspect, the use of MPL
and LBal_S does not requires additional manage-
ment overhead such as requesting info about local
schedules or constructing preliminary schedules
by the broker.

From Table 4 and Table 6 in the Appendix,
we can see that the results vary greatly. How-
ever, they clearly indicate that MPL and LBal_S
are able to achieve better performance than
other algorithms in almost all test cases. Note
that the advantage of these algorithms is more

Author's personal copy



Job Allocation Strategies with User Run Time Estimates 105

0

50

100

150

200

250

300

350

400

450

500

P
er

ce
nt

ag
e

M
P

L

LB
al

_S

M
S

T

M
Lp

M
W

T

M
LB

a. Grid 1 

0

200

400

600

800

1000

1200

1400

1600

1800

P
er

ce
nt

ag
e

M
P

L

LB
al

_S

M
Lp

M
S

T

M
W

T

M
LB

b. Grid 2 

Fig. 1 tw degradation ranking of best six strategies

significant when the traditional metrics are con-
sidered. When the deviation of the sizes, time
and work criteria are considered (LBals, LBalt,
LBalw), there exists a small number of oth-
ers efficient allocations. We conclude that the
MPL and LBal_S strategies are robust and sta-
ble even in significantly different conditions.
MLp and MST also provide minor performance

degradation and are able to cope with different
demands.

Obtained results help us to select the appro-
priate strategy for real life Grids that depends on
preferences of different decision makers of Grids
(end-users, local resource providers, and Grid ad-
ministrators), and an importance of every crite-
rion or a relative importance between criteria.
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Fig. 2 SDb degradation ranking of best six strategies

Author's personal copy



106 J.M. Ramírez-Alcaraz et al.

0

0.005

0.01

0.015

0.02

0.025

0.03

P
er

ce
nt

ag
e

LB
al

_S

M
P

L

M
S

T

M
LB

M
Lp

M
W

T

a. Grid 1 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

P
er

ce
nt

ag
e

M
P

L

LB
al

_S

M
S

T

M
Lp

M
LB

M
W

T

a. Grid 2

Fig. 3 SWCTw degradation ranking of best six strategies

6.2 Allocation Strategies with Historical
System-Generated Run Time Prediction

In this section, we present results of experimental
analysis of the impact of system-generated predic-
tions incorporated into MST and MWT allocation
strategies on the overall Grid performance.

First, we considered the history-based system-
generated prediction models. For each allocation
strategy, we calculate three metrics with varying
history window size from 1 to 10 for each of eight
prediction models (Table 5). Then, we evaluate
the degradation in performance of each prediction
model and each window size under each metric.
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Fig. 4 Mean degradation of allocation strategies in Grid1 and Grid2
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Fig. 5 Mean degradation ranking of all test cases

This is done relative to the ideal case with system-
generated prediction accuracy being equal to 1
(p′′

j = pj). Thus, each prediction model is now
characterized by 30 parameters, reflecting its rela-
tive performance degradation under the test cases.

We use a well-known approach where predic-
tion is calculated as the average runtime of se-
lected preceding jobs. For a newly submitted job j,
the average runtime of the preceding and already
completed jobs i of the same user is calculated as

Table 5 System-generated prediction models

Prediction model Name Description

Hrecent_k M1 k recent jobs
Hrecent_k_p′ M2 k recent jobs with the same user runtime estimate

(
p′

i = p′
j

)

Hrecent_k_size M3 k recent jobs with the same size (sizei = size j)

Hrecent_k_size& p′ M4 k recent jobs with the same p′
i = p′

j and sizei = size j

Hk M5 at most k jobs
Hk_p′ M6 at most k jobs with the same user runtime estimate

(
p′

i = p′
j

)

Hk_size M7 at most k jobs with the same size (sizei = size j)

Hk_size& p′ M8 at most k jobs with the same p′
i = p′

j and sizei = size j

C1-model M9 (Constant) The system prediction
(

p′′
j

)
is calculated by multiplying the user runtime

estimate by a constant. p′′
j = c1 · p′

j where c1 is the mean accuracy in the available log
C2-model M10 (Constant) The system prediction

(
p′′

j

)
is calculated by multiplying the user runtime

estimate by a constant. p′′
j = c2 · p′

j where c2 is a predefined constant from 0.01, 0.02,...0.99,
1 (from 1% to 100% of the user runtime estimate)

U1-model M11 (Uniform distribution) The system prediction is uniformly distributed in p′′
j = U[L1, R1] · p′

j,
where L1 = min j

{
p j/p′

j

}
, and R1 = max j

{
p j/p′

j

}
in the available log. Accurate user run

time estimate corresponds to L1 = 1 and R1 = 1
U2-model M12 (Uniform distribution) The system prediction is uniformly distributed in p′′

j = U[L2, R2] · p′
j,

where L2 is the average of the half smallest values
{

p j/p′
j

}
in the available log and R2 is

the average of the half biggest values
{

p j/p′
j

}
in the log. Accurate user run time estimate

corresponds to L2 = 1 and R2 = 1
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p′′
j = 1/k

∑k
i pi, where k is the size of the history

window which determines the set of previous jobs
used for prediction.

In the Hrecent models if k jobs that satisfy
parameters of the model are not available, the
initial user runtime estimate is used p′′

j = p′
j (see

[33]). The algorithm only uses jobs that match the
given criterion to generate a prediction (Table 5).

In the Hk group of models, at most k preceding
jobs are selected for prediction. If k jobs that sat-
isfy parameters of the model are not available, the
average runtime of the eligible preceding jobs is
calculated instead. For instance, for k = 3, if only
two jobs are available in the entire user history,
these two jobs are used to calculate the average, if
only one job i is available, p′′

j = pi.
Figures 6 and 7 show mean degradation of MST

and MWT over three metrics average varying his-
tory windows size for Grid1 and Grid2 scenarios.
Figure 8 presents mean degradation ranking of all
test cases. Results of the use of four mentioned
system-generated run-time prediction models, of
user runtime estimate, and of job runtime (as a
reference point) are presented.

For MST (Fig. 6), we observe that
Hrecent_k_p′, Hrecent_k_size& p′ show best

results in both Grids with small deviations of the
degradation performance. For MWT (Fig. 7),
there is no dominance of the specific model.
However, the large history window size (8–10)
improves results of Hrecent_k_size& p′ model
that consider the history of most similar jobs.
Results of MWT also show that there is no
improvement in the resulting performance of
the MWT.

The results of the comprehensive and exten-
sive simulation clearly indicate that it is better
to use the most similar jobs characterized by the
same user estimate and size (size& p′) as these
models dominate in all test cases. Increasing the
history window size slightly improve results. This
is probably so because using the larger window
gives more chances to find similar jobs. However,
there is no dominance of the specific windows
size. Using an average over the last one to ten
preceding jobs show worst results in all test cases.
Figure 8 indicates that there is no improvement
in the performance of the MST and MWT al-
location strategies with history-based system-
generated predictions over the strategy that uses
user run time estimates. This qualitative con-
clusion does not depend significantly on the
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Fig. 6 Mean degradation versus the history window size. MST allocation strategy
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Fig. 7 Mean degradation versus the history window size. MWT allocation strategy

workload used, and on the performance metric. It
turns out that the history-based system-generated
prediction model incorporated into the job allo-
cation policies and local scheduling algorithms
does not provide as good results for multisite

execution as for backfilling scheduling policies
in the single site. We consider system-generated
predictions that are calculated once in the re-
lease time with limited history information avail-
able. Another observation is that jobs allocated to
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Fig. 8 Mean degradation of all test cases
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the specific site could reduce an improvement of
the system-generated predictions for backfilling.
For instance, in the scenario with Grid sites of
different sizes, the good job allocation does not
create situations in which large machines are
occupied by jobs with small processor require-
ments causing highly parallel jobs to wait for their
execution (see [27]). However, jobs with small
processor requirements and execution times (user
estimates) are necessary for effective backfilling.
The distribution of jobs in a two layer hierarchi-
cal online Grid scheduling model could also limit
backfilling in the local resources. Each local site
has a reduced number of jobs comparing to a
one site Grid (one machine backfilling considered
in [26]). This is limited to our Grid scenarios:
if considering a smaller number of sites, system-
generated prediction yields better performance
results. Using a shortest job backfilled first (SJBF)
backfilling order by the local schedulers could
leads to a performance improvement [26].

We also analysed models that are based on the
premise that the previous logs are available and
can be analyzed for learning and improving the
prediction parameters (C1-model, C2-model, U1-
model, and U2-model) (Table 5). Results of Hk,
C1, C2, U1, and U2 models sometimes show com-
parable or a bit better performance, but cannot be
used to consistently obtain superior performance
than Hrecent models. Obtained results for these
models are not presented here.

7 Conclusion and Future Work

As Grids become more prevalent, techniques for
efficiently utilizing their resources become in-
creasingly significant. The problem of resource
allocation and scheduling is crucial not only to
achieve high Grid performance, but also to sat-
isfy various user demands in an equitable fash-
ion. While theoretical worst case Grid scheduling
models are beginning to emerge, fast statistical
techniques applied to real data have empirically
been shown to be effective.

In this paper, we address non-preemptive non-
clairvoyant online scheduling of parallel jobs on a
Grid. We present a detailed performance evalua-
tion of job allocations algorithms, covering aspects
like performance and robustness. Our extensive
study results in several contributions. Firstly, we
identify several levels of information available
to make scheduling decisions with respect to job
allocations. We discussed and analyzed fourteen
allocation strategies depending on the type and
amount of information they require together with
EASY backfilling local scheduling algorithm.

The selection of the appropriate strategy for
Grids depends on preferences of different deci-
sion makers of Grids (end-users, local resource
providers, and Grid administrators), and an im-
portance of every criterion or a relative im-
portance between criteria. To provide effective
guidance in choosing a good strategy we per-
formed a joint analysis of three metrics based
on the degradation in performance of each stra-
tegy under each metric.

Simulation results presented in the paper reveal
that in terms of minimizing waiting time, slow-
down, total weighted completion time, and their
degradation, average MPL and LBal_S allocation
strategies outperform the other algorithms. They
dominate in almost all test cases. We conclude
that the strategies are robust and stable even in
significantly different conditions. MLp and MST
also provide minor performance degradation and
able to cope with different demands.

We find that the information about user run
time estimate and local schedules does not help to
improve significantly allocation strategies. When
examining the overall Grid performance on the
real data, we determined that appropriate distrib-
ution of job processor requirements over the Grid
has a higher performance than an allocation of
jobs based on user run time estimates and infor-
mation on local schedules.

The end result suggests simple schedulers,
which require minimal information and little com-
putational complexity; nevertheless, they achieve
significant improvements in performance.
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