
Research Article

Job Scheduling in Cloud Computing Using a Modified Harris
Hawks Optimization and Simulated Annealing Algorithm

Ibrahim Attiya ,1,2 Mohamed Abd Elaziz ,2,3 and Shengwu Xiong 1

1School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
2Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
3School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China

Correspondence should be addressed to Shengwu Xiong; xiongsw@whut.edu.cn

Received 11 November 2019; Accepted 13 February 2020; Published 11 March 2020

Academic Editor: José Alfredo Hernández-Pérez

Copyright © 2020 IbrahimAttiya et al.0is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, cloud computing technology has attracted extensive attention from both academia and industry.0e popularity of
cloud computing was originated from its ability to deliver global IT services such as core infrastructure, platforms, and ap-
plications to cloud customers over the web. Furthermore, it promises on-demand services with new forms of the pricing package.
However, cloud job scheduling is still NP-complete and became more complicated due to some factors such as resource
dynamicity and on-demand consumer application requirements. To fill this gap, this paper presents a modified Harris hawks
optimization (HHO) algorithm based on the simulated annealing (SA) for scheduling jobs in the cloud environment. In the
proposed HHOSA approach, SA is employed as a local search algorithm to improve the rate of convergence and quality of solution
generated by the standard HHO algorithm.0e performance of the HHOSAmethod is compared with that of state-of-the-art job
scheduling algorithms, by having them all implemented on the CloudSim toolkit. Both standard and synthetic workloads are
employed to analyze the performance of the proposed HHOSA algorithm. 0e obtained results demonstrate that HHOSA can
achieve significant reductions in makespan of the job scheduling problem as compared to the standard HHO and other existing
scheduling algorithms. Moreover, it converges faster when the search space becomes larger which makes it appropriate for large-
scale scheduling problems.

1. Introduction

Scientific computing is a promising field of study that is
usually associated with large-scale computer modeling and
simulation and most often requires a massive amount of
computing resources [1]. For instance, scientific applications
in various domains such as computational materials science,
high energy physics, molecular modeling, earth sciences, and
environmental computing involve the production of massive
datasets from simulations or large-scale experiments. Hence,
analyzing and disseminating these datasets among re-
searchers/scientists located over a wide geographic area
requires high power of computing that goes beyond the
capabilities of a single machine. 0erefore, given the ever-
growing data produced by scientific applications and the
complexities of the applications themselves, it becomes

prohibitively slow to deploy and execute such applications
on traditional computing paradigms.

To cope with the complexities and ever-increasing
computational demand of those large-scale scientific ap-
plications, the concept of cloud computing is introduced. It
provides elastic and flexible resources of computing (e.g.,
CPU, storage, memory, and networks) which can be rapidly
provisioned and released with minimal management effort
or service provider interaction [2]. 0ese cloud services can
be automatically as well as easily scaled up or down and
delivered to the end customers based on a pay-per-use
payment model. 0e major services offered by cloud pro-
viders can be classified as infrastructure as a service (IaaS),
platform as a service (PaaS), and software as a service (SaaS).
At the bottom of the cloud computing stack is the IaaS
model. In this model, fundamental resources of the

Hindawi
Computational Intelligence and Neuroscience
Volume 2020, Article ID 3504642, 17 pages
https://doi.org/10.1155/2020/3504642

mailto:xiongsw@whut.edu.cn
https://orcid.org/0000-0003-3313-2299
https://orcid.org/0000-0002-7682-6269
https://orcid.org/0000-0002-4006-7029
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/3504642

computing such as CPU, storage, memory, and bandwidth
are offered.0e next layer in the stack is PaaS. PaaS provides a
high-level integrated environment to build, test, deploy, and
host developer-created or -acquired applications. 0e SaaS is
allocated at the top of the stack, and it is a software delivery
model in which applications or services are provided over the
Internet so that end users can access them through a web
browser. 0is model allows users to utilize online software
instead of the locally installed one. SaaS has now become a
popular delivery model for service apps such as web mail,
Google Docs, and social networking applications.

0ere is a consensus in the researcher community and IT
industries that the growth in cloud computing will far exceed
that of other computing paradigms [3]. 0is is due to the
following reasons: First, the cloud offers a practical solution
to solve the issue of resource lack and greatly reduces the
expenses of purchasing and maintaining the physical re-
sources [4, 5]. Second, it provides virtually infinite resources
at different prices to properly serve different application
requirements, in a dynamic and elastic way. As a result, the
emphasis of computing has recently been pushed onto cloud
platforms. On the contrary, with the growing adoption of
cloud services (especially the IaaS model) by several insti-
tutions, there has been a huge amount of computing tasks
that are implemented in the cloud computing (CC) envi-
ronment. Since the computing resources are heterogeneous
and geographically distributed, there are compromises in
terms of communication cost, system integration, and
system performance. 0us, in order to efficiently execute the
cloud user requests and utilize the distributed resources in
an appropriate way, a scheduling policy needs to be in place.

Indeed, many algorithms have been introduced to tackle
the job scheduling problem in a CC environment. In the
early stage, various heuristics were developed to address job
scheduling problems which produce optimal schedule so-
lutions for small-sized problems [6]. However, the quality of
solutions generated by these heuristic strategies deteriorates
severely as the problem scale and the number of objectives to
be optimized increase. In addition, the solutions produced
by these heuristic techniques depend largely on certain
underlining rules, and they are generated at high operating
cost [7]. In contrast, metaheuristic techniques have proven
to be effective, robust, and efficient in solving a wide variety
of real-world complex optimization problems. 0is can be
attributed to their ability to employ a set of candidate so-
lutions for the purpose of traversing the solution space,
rather than using a single candidate solution as with heu-
ristic techniques. 0is feature of metaheuristic algorithms
makes them outperform other optimization methods. Some
of the most popular metaheuristic techniques that have been
introduced to solve the cloud job scheduling problem in-
clude genetic algorithm (GA) [8], particle swarm optimi-
zation (PSO) [9], ant colony optimization (ACO) [10], tabu
search [11], BAT algorithm [12], simulated annealing (SA)
algorithm [13], symbiotic organisms search (SOS) [14], and
cuckoo search (CS) algorithm [15]. Although some of these
algorithms have shown promising improvements in finding
the global optimal solution for the job scheduling problem in
the cloud, they are all suffering from premature convergence

and difficulty to overcome local minima especially when
faced with a large solution space [16].0ese limitations often
lead to suboptimal job scheduling solutions which affect the
system performance and also violate quality of service (QoS)
guarantees. 0is indicates that there is an urgent need for
new adaptive and efficient algorithms to find the global
optimal solution for the cloud job scheduling problem.

Recently, Heidari et al. [17] proposed a population-
based, nature-inspired optimization technique called the
Harris hawks optimizer (HHO), which mimics the social
behavior of Harris’ hawks in nature. It is mainly inspired by
the cooperative behavior and chasing strategy of Harris
hawks. 0e exploration and exploitation phases of the HHO
are modeled by exploring a prey, performing a surprise
pounce, and then attacking the intended prey. 0e Harris
hawks optimizer can demonstrate a variety of attacking
strategies according to the dynamic nature of circumstances
and escaping behaviors of the prey. Local optima avoidance
and smooth transition from exploration to exploitation are
among the major advantages of the HHO algorithm.
According to these behaviors, the HHO has been applied to
several global optimization and real-world engineering
problems, including image segmentation [18, 19], feature
selection [20], spatial assessment of landslide susceptibility
[21], parameter estimation of photovoltaic cells [22], image
denoising [23], and others [24–29]. However, the HHO
suffers from some limitations that affect its performance
such that its exploration ability is weaker than its exploi-
tation ability, and this leads to degradation of the perfor-
mance of convergence and the quality of the solution. In
addition, there is plenty of room to investigate the potential
improvements in terms of speed of convergence and quality
of solutions generated by the HHO.

A promising research direction, which hybridizes one or
more heuristics/metaheuristics to leverage the strengths of
these algorithms while reducing their impediments, has
attracted tremendous attention from researchers in various
research domains. In this study, an integrated version of the
HHO algorithm with simulated annealing (HHOSA) was
proposed as an attempt to improve the rate of convergence
and local search of HHO. To the best of our knowledge, no
research study found in the literature tries to investigate the
above-mentioned improvements with the performance of
HHO while tackling the job scheduling problem. Hence, the
main motivation of our study is to propose the hybrid
HHOSA approach for optimization of job scheduling in
cloud computing.

0e major contributions of this paper can be summa-
rized as follows:

(1) Design and implementation of a hybrid version of
HHO and SA for optimum job scheduling in cloud
computing

(2) Empirical analysis of the convergence trend for 15
different job scheduling instances using HHOSA and
other evaluated algorithms

(3) Performance comparison of HHOSA against the
original HHO and other popular metaheuristics in

2 Computational Intelligence and Neuroscience

terms of makespan and performance improvement
rate (%)

0e remainder of this paper is structured as follows:
Section 2 presents a review of related works on existing job
scheduling algorithms. Section 3 formulates the job
scheduling problem and presents the original HHO and SA
algorithms. Design of the proposed HHOSA algorithm and
its description are introduced in Section 4. Performance
evaluation and discussion of the achieved results are pro-
vided in Section 5. Finally, conclusions and outlines for
potential future works are given in Section 6.

2. Related Works

Recently, there has been a significant amount of interest in
using metaheuristics (MHs) for solving different problems
in several domains.0eMHmethods have many advantages
such as flexibility and simplicity. 0erefore, they can used to
solve a different number of optimization problems that
cannot be solved by traditional methods. In addition, they
are easy to implement. According to these advantages,
several studies established that the MH methods provide
good results for the task scheduling problems in cloud
computing than other traditional methods [16, 30]. 0e
authors in [31, 32] provided a comprehensive review of
various metaheuristics that have been developed for solving
the task scheduling problem in cloud computing.

Guo et al. [33] presented a task scheduling approach
depending on a modified PSO algorithm which aims to
minimize the processing cost of user tasks through em-
bedding crossover and mutation operators within the PSO
procedure. 0e results showed that the modified PSO
provides a good performance especially with a large-scale
dataset. Similarly, Khalili and Babamir [34] developed a
modified version of PSO by using different techniques to
update its inertia weight. 0en, this version was applied in a
cloud environment to reduce the makespan of the workload
scheduling. Alla et al. [35] provided two hybrid PSO versions
which depend on dynamic dispatch queues (TSDQ) for task
scheduling.0e first approach combined the fuzzy logic with
PSO (TSDQ-FLPSO), while the second approach combined
simulated annealing with PSO (TSDQ-SAPSO). 0e results
of TSDQ-FLPSO outperform those of the other methods
including the TSDQ-SAPSO. Other works related to the
application of PSO to task scheduling in cloud computing
have been reported in the literature [36–38].

Genetic algorithm (GA) has also been applied to solve
the task scheduling problem. For example, Rekha and
Dakshayini [39] introduced the GA to find a suitable so-
lution for the task allocation which seeks to reduce task
completion time. 0e results of the GA are assessed by
comparing it with the simple allocation methods in terms of
throughput and makespan. 0e results illustrated that the
GA outperforms other compared algorithms. 0e authors in
[40] presented a modified version of the GA using a heu-
ristic-based HEFT to find a suitable solution for the static
task scheduling in the cloud. Akbari et al. [41] developed new
operators to enhance the quality of the GA and used this

model to enhance the results of task scheduling. In [42], the
authors provided a modified GA called MGGS, which is a
combination of the GA and greedy strategy. 0e MGGS is
compared with other approaches, and the experimental
results established its ability to find a suitable solution for the
task scheduling problem. Besides, a modified version of the
GA is proposed in [43] which combines the GA with PSO.
0e developed method, called GA-PSO, is provided to solve
the task scheduling so as tominimize themakespan and cost.
Additionally, a hybrid genetic-particle swarm optimization
(HGPSO) method [44] is proposed to solve the task
scheduling issue. In the HGPSO, the user tasks are for-
warded to a queue manager, and then the priority is
computed and proper resources are allocated.0is algorithm
focuses on optimizing parameters of QoS. Moreover, there
are several hybrid techniques in which the PSO and GA are
combined and utilized to handle the task scheduling in cloud
computing [45–47]. Other works combining the GA and
fuzzy theory have been proposed in [48]. 0e proposed
approach, called FUGE, aims to perform proper cloud task
scheduling considering the execution cost and time. 0e
performance of FUGE is compared with that of other task
scheduling approaches, and the results illustrate its efficiency
using different measures such as execution time, the average
degree of imbalance, and execution cost.

Moreover, the ant colony optimization (ACO) has be-
come one of the most popular task scheduling methods
[49–53]. Keshk et al. [54] proposed a task scheduling al-
gorithm based on the ACO technique in the cloud com-
puting environment. 0e modified version, called
MACOLB, aims at minimizing the makespan time while
balancing the system load. Also, the firefly algorithm (FA)
has been applied to enhance the results of the job scheduling
such as in [55]. 0e FA is proposed as a local search method
to improve the imperialist competitive algorithm (ICA), and
this leads to enhancing the makespan. Esa and Yousif [56]
proposed the FA to minimize the execution time of jobs,
compared the results with those of the first-come first-served
(FCFS) algorithm, and found the FA outperforms the FCFS
algorithm. For more details about using the FA, refer
[57–59]. In addition, the salp swarm algorithmwas proposed
to improve the placement of the virtual machine in cloud
computing as in [60]. Braun et al. [61] introduced a com-
parison between eleven algorithms for mapping/assigning/
scheduling independent tasks onto heterogeneous distrib-
uted computing systems. 0ese methods include opportu-
nistic load balancing (OLB), minimum execution time
(MET), minimum completion time (MCT), min-min, max-
min, duplex, SA, GA, tabu, and A∗ heuristic. In addition,
the operators of SA are combined with the operators of the
GA, and this version is called genetic simulated annealing
(GSA). In this algorithm (i.e., GSA), the mutation and
crossover are similar to the GA, while the selection process is
performed by using the cooling and temperature of SA.

Furthermore, the symbiotic organisms search (SOS) has
attracted much attention recently as an alternative approach
to solve task scheduling. In [62], a discrete version of the SOS
(DSOS) is proposed to find the optimal scheduling of tasks in
cloud computing.0e comparison results illustrated that the

Computational Intelligence and Neuroscience 3

DSOS is more competitive and performs better than both
SAPSO and PSO. Moreover, it converges faster in the case of
large instances. 0e work in [63] presents a modified version
of the SOS based on the SA procedure to solve the task
scheduling issue in cloud computing. 0e developed model,
called SASOS, is compared with the original SOS, and the
results showed the high performance of the SASOS in terms
of makespan, convergence rate, and the degree of imbalance.
Abdullahi et al. [6] proposed amultiobjective large-scale task
scheduling technique based on improving the SOS using
chaotic maps and chaotic local search (CLS) strategy. 0e
aim of using the chaotic map is to construct the initial
solutions and replace the random sequence to improve the
diversity. In contrast, the CLS strategy is used to update the
Pareto fronts. 0e proposed CMOS algorithm produced
significant results when compared with other methods,
including ECMSMOO [64], EMS-C [65], and BOGA [66].
0ese algorithms aim to achieve balancing between the
makespan and the cost without any computational over-
head.0e experimental results demonstrate that the CMSOS
has potentials to enhance the QoS delivery.

To sum up, according to the previous studies, the above-
mentioned MH methods provide high ability to find a
suitable solution for job scheduling in cloud computing.
However, this performance still needs much improvement
with a focus on finding suitable operators to balance between
the exploration and the exploitation.

3. Background

3.1.ModelandProblemFormulation. 0e IaaS cloud is a very
common model from the perspective of resource manage-
ment; thus, scheduling in such systems has gained great
attention especially from the research community [67]. 0e
IaaS cloud model provides computing resources as virtual
resources that are made accessible to consumers through the
Internet [68, 69]. Indeed, virtualization is one of the primary
enablers for cloud computing. With virtualization tech-
nology, all physical resources in the cloud environment are
represented as virtual machines (VMs) [70]. Hence, cloud
providers must supply their customers with infinite vir-
tualized resources in accordance with the service level
agreement (SLA) [71] and must decide the best resource
configuration to be utilized according to their profitability
principles.

In our problem description, there is a general framework
that focuses on the interaction between the cloud infor-
mation service (CIS), the cloud broker, and the VMs [72].
When user requests are submitted to the cloud, these re-
quests are forwarded to the cloud broker who maintains its
characteristics and resource requirements. 0e cloud broker
will then consult the CIS to determine the services required
to process the received requests from the consumer and then
map the job requests on the detected services. For the sake of
clarity, suppose there is a set of independent jobs
J � J1, J2, . . . , Jn{ } that are submitted by the cloud con-
sumers to be processed.0e processing requirements of a job

are referred to as job length and are measured in million
instructions (MI). 0e cloud broker is then responsible for
assigning those jobs onto the set of VMs available within the
cloud data center to meet the users’ demands. Let VM �

VM1,VM2, . . . ,VMm{ } denote the set of VMs. Each VMj is a
set of computing entities with limited capabilities (e.g., CPU
power, memory space, storage capacity, and network band-
width) [73]. It is assumed that VMs are heterogeneous and
their CPU capabilities (measured in MIPS (millions of in-
structions per second)) are used to estimate the execution
time of user requests. 0is indicates that a job executed on
different VMs will encounter different execution cost. Our
aim is to schedule a set of submitted jobs on available VMs to
achieve higher utilization of resources with minimal make-
span. We formulate our scheduling problem based on the
“expected time to compute” (ETC) model [74]. 0e ETC is
defined as the expected execution time of all jobs to compute
on each VM obtained by using the ETCmatrix as in equation
(1). 0is means that based on the specifications of the VMs
and submitted jobs, the cloud broker computes an n ×m ETC
matrix, where n is the total number of user jobs and m is the
total number of available VMs.0e element ETCi,j represents
the expected time for VMj to process the job Ji.

ETCi,j �

ETC1,1 ETC1,2 . . . ETC1,m

ETC2,1 ETC2,2 . . . ETC2,m

.

ETCn,1 ETCn,2 . . . ETCn,m

, (1)

ETCi,j �
Job.Lengthi
VM.Powerj

, (2)

where ETCi,j refers to the expected execution time of the ith

job on the jth VM, Job.Lengthi is the length of the job i in
terms of MI, and VM.Powerj is the computing capacity of
VMj in terms of MIPS.

0e main purpose of job scheduling is to find an optimal
mapping of jobs to resources that optimize one or more
objectives. In addition, the most common objective noticed
in the reviewed literature is the minimization of job com-
pletion times, also known as makespan [75].0us, the aim of
this study is to reduce the makespan of job scheduling, by
finding the best allocation of virtual resources to jobs on the
IaaS cloud.

For any schedule X, the makespan (MKS) is the maxi-
mum completion time and is calculated as follows:

MKS(X) � max
j∈1,2,...,m

∑n
i�1

ETCi,j, (3)

where m and n are the number of machines and jobs, re-
spectively. ETCi,j is defined in equation (2). 0en, the
scheduling problem is formulated mathematically as

Obj: f(X) � minMKS(X) � min max
j∈1,2,...,m

∑n
i�1

ETCi,j. (4)

4 Computational Intelligence and Neuroscience

3.2. Simulated Annealing Algorithm. 0e simulated
annealing (SA) algorithm is considered one of the most
popular single-solution-based optimization algorithms that
emulate the process of annealing in metallurgy [76, 77]. 0e
SA begins by setting an initial value for a random solution X
and determining another solution Y from its neighborhood.
0e next step in SA is to compute the fitness value for X and
Y and set X � Y if F(Y)≤F(X).

However, SA has the ability to replace the solution X by
Y even when the fitness of Y is not better than the fitness of
X. 0is depends on the probability (Prob) that is defined in
the following equation:

Prob � e−ΔE/kT,

ΔE � F(X) − F(Y),
(5)

where k and T are the Boltzmann constant and the value for
the temperature, respectively. If Prob> rand, then X � Y;
otherwise, X will not change. 0e next step is to update the
value of the temperature T as defined in the following
equation:

T � β × T, (6)

where β ∈ [0, 1] represents a random value.0e final steps of
the SA algorithm are given in Algorithm 1.

3.3. Harris Hawks Optimizer. 0e Harris hawks optimizer
(HHO) is a new metaheuristic algorithm developed to solve
global optimization problems [17]. In general, the HHO
simulates the behaviors of the hawks in nature during the
process of searching and catching their prey. Similar to other
MH methods, the HHO performs the search process during
two stages (i.e., exploration and exploitation) based on
different strategies, as given in Figure 1. 0ese stages will be
explained in more detail in the following sections.

3.3.1. Exploration Phase. At this stage, the HHO has the
ability to update the position of the current hawk
(Xi, i � 1, 2, . . . , N) (where N indicates the total number of
hawks) depending on either a random position of another
hawk (Xr) or the average of the positions (XAvg) for all
hawks. 0e selection process has the same probability to
switch between the two processes, and this is formulated as
in the following equation:

Xi(t + 1) �
Xr(t) − r1 Xr(t) − 2r2X(t)

∣∣∣∣ ∣∣∣∣, q≥ 0.5,
Xb(t) −XAvg(t)() − ω, q< 0.5,

(7)

where ω � r3(LB + r4(UB − LB)) and XAvg is formulated as

XAvg(t) �
1

N
∑N
i�1

Xi(t). (8)

In general, the main goal of this stage is to broadly
distribute the hawks across the search space. In the following
section, we will discuss how hawks change their status from
exploration to exploitation.

3.3.2. Changing from Exploration to Exploitation. In this
stage, the hawks transfer to exploitation based on their
energies E which are formulated as

E � 2E0 1 −
t

tmax

(), (9)

where E0 ∈ [−1, 1] represents a random value and tmax and t
represent the total number of iterations and the current
iteration.

3.3.3. Exploitation Phase. 0e exploitation stage of the HHO
is formulated using several strategies and a few random
parameters used to switch between these strategies [17].
0ese strategies are formularized as follows: (1) soft besiege,
(2) hard besiege, (3) soft besiege with progressive rapid
dives, and (4) hard besiege with progressive rapid dives.

(i) Soft besiege: in this phase, the hawks move around
the best one, and this is formulated by using the
following equations:

X(t + 1) � ΔX(t) − E J ×Xb(t) −X(t)
∣∣∣∣ ∣∣∣∣,

J � 2 1 − r5(), (10)

ΔX(t) � Xb(t) −X(t). (11)

(ii) Hard besiege: in this phase, the hawks update their
position based on the distance between them and the
best hawk as given in the following equation:

X(t + 1) � Xb(t) − E ×|ΔX(t)|. (12)

(iii) Soft besiege with progressive rapid dives: at this
stage, it is supposed that the hawks have the ability
to choose the following actions. 0is can be cap-
tured from the following equation:

Y � Xb(t) − E J ×Xb(t) −X(t)
∣∣∣∣ ∣∣∣∣. (13)

0e Levy flight (LF) operator is used to calculate the
rapid dives during this stage, and this is formulated as

Z � Y + S × LF(D), (14)

where S represents a random vector with size 1 ×D and
D is the dimension of the given problem. In addition,
the LF operator is defined as

LF(x) � 0.01 ×
u × σ

v|1/β
∣∣∣∣ ,

σ �
Γ(1 + β) × sin(πβ/2)

Γ((1 + β)/2) × β × 2((β−1)/2)
()1/β

,

(15)

where u and v represent random parameters of the LF
operator and β � 1.5.

Computational Intelligence and Neuroscience 5

0e HHO aims to select the best from Y and Z as
defined in equations (13) and (14), and this is for-
mulated as

X(t + 1) �
Y, if F(Y)<F(X(t)),
Z, if F(Z)<F(X(t)).

{ (16)

(iv) Hard besiege with progressive rapid dives: in this
stage, the hawks finish the exploitation phase with a

hard besiege, and this is performed using the fol-
lowing equation:

X(t + 1) �
Y′, if F Y′()<F(X(t)),
Z′, if F Z′()<F(X(t)),

 (17)

where Z′ and Y′ are computed as in the following
equations:

Y′ � Xb(t) − E J ×Xb(t) −XAvg(t)
∣∣∣∣∣ ∣∣∣∣∣,

Z′ � Y′ + S × LF(D).
(18)

For clarity, the previous strategies are performed
depending on the energy of the hawks E and a random
number r. For example, considering |E| � 1.5 means that the
operators of the exploration phase are used to update the
position of the hawk. When E � 0.7 and r � 0.6, the soft
besiege strategy will be used. In case of E � 0.3 and r � 0.6,
the hawks’ position will be updated using the operators of
the hard besiege strategy. In contrast, when E � 0.7 and
r � 0.3, the hawks’ position will be updated using the soft
besiege with progressive rapid dives strategy. Otherwise, the
hard besiege with progressive rapid dives strategy will be
used to update the current hawk.

0e final steps of the HHO algorithm are illustrated in
Algorithm 2.

4. Proposed Algorithm

In this section, an alternative approach for job scheduling in
cloud computing is developed which depends on the
modified HHO using the operators of SA. 0e main ob-
jective of using SA is to employ its operators as local op-
erators to improve the performance of the HHO.0e steps of
the developed method are given in Algorithm 3.

Input: value of the initial temperature (T0), dimension of the solution n, and total number of iterations tmax

Generate the initial solution x
Assess the quality x by calculating its fitness value F(x)
Set the best solution xb � x and F(xb) � F(x)
Set t � 1 and T � T0

while t< tmax do

Find the neighbor solution Y for the solution X
Calculate the fitness value F(Y) for Y
if F(Y)<F(Xi) then
Xi � Y

else
Compute the difference between the fitness value of X and Y as δ � F(Xi) − F(Y)
if (Prob≤ r5) then
xi � Y

Update the value of temperature T using equation (6)
if F(Xb)>F(X) then
Xb � X
Set t � t + 1

Output: the best solution xb

ALGORITHM 1: SA method.

Exploratio
n

Perching based on

random locatio
ns

Hard besie
ge with

progressiv
e ra

pid dives

So� besie
ge with

progressiv
e ra

pid dives

r <
 0.5

q ≥ 0.5

|E
| ≥

 1

|E
| ≥

 0
.5

|E
| <

 0
.5

|E| = 1

q < 0.5

E

Perching based on the

positions of other haw
ks

Exploitation

H
ard besiege

So�
 besiege

r ≥
 0.5

Figure 1: Stages of the HHO [17].

6 Computational Intelligence and Neuroscience

In general, the developed HHOSA method starts by
determining its parameters in terms of the number of indi-
viduals N in the population X, the number of jobs n, the
number of virtual machines m, and the total number of it-
erations tmax. 0e next step is to generate random solutions X
with the dimensionN × n. Each solution xi ∈ X has n values
belonging to the interval [1, m].0ereafter, the quality of each

solution is assessed by computing the fitness value (F) that is
defined in equation (4). 0en, xb is determined. Finally, the
individuals’ setXwill be updated according to the operators of
the HHOSA method. 0e process of updating X is iterated
until the terminal criteria are reached. A description with
more details for each step of the proposed approach will be
illustrated in the following sections.

Input: size of the population N and maximum number of iterations tmax

Generate initial population xi(i � 1, 2, . . . , N)
while (terminal condition is not met) do

Compute fitness values
Find the best solution Xb

for i � 1: N do
Use equation (9) to update E
if (|E|≥ 1) then

Compute new position for Xi using equation (7)
if (|E|< 1) then
if (r< 0.5 and |E|≥ 0.5) then

Compute new value for xi using equation (16)
else if (r< 0.5 and |E|< 0.5) then

Compute new value for xi using equation (17)
else if (r≥ 0.5 and |E|< 0.5) then

Compute new value for xi using equation (12)
else if (r≥ 0.5 and |E|≥ 0.5) then

Compute new value for xi using equation (10)
Return Xb

ALGORITHM 2: Steps of the HHO algorithm [17].

(1) Input: number of solutions N, number of jobs n, maximum number of iterations tmax, and number of machines m
(2) Set the initial value for the parameters of the HHO
(3) Construct a random integer solution X with size N × n (as described in the initial stage)
(4) t � 1
(5) repeat
(6) Compute the quality (Fi) of each solution xi, i � 1, . . . , N
(7) Determine the best solution xb which has the best fitness function Fb
(8) for i � 1: N do
(9) Compute the probability Pri using equation (20) and rpr using equation (21)
(10) if Pri ≤ rpr then
(11) Find the neighbor solution Y for the solution xi
(12) Calculate the fitness value F(Y) for Y
(13) if F(Y)<F(xi) then
(14) xi � Y
(15) else

(16) Compute the difference between the fitness value of xi and Y as δ � F(xi) − F(Y)
(17) if (Prob≤ r5) then
(18) xi � Y
(19) Update the value of temperature T using equation (6)
(20) else
(21) Compute the energy E using equation (9)
(22) Update xi using operators of the HHO as in Algorithm 2
(23) t � t + 1
(24) Until t> tmax

(25) Return the best solution xb

ALGORITHM 3: HHOSA scheduler for job scheduling in cloud computing.

Computational Intelligence and Neuroscience 7

4.1. Initial Stage. At this stage, a set of random integer
solutions is generated which represents a solution for the job
scheduling. 0is process focuses on identifying the di-
mension of the solutions that is given by the number of jobs
n, as well as the lower lb and upper ub boundaries of the
search space, which are determined in our job scheduling
model by 1 and m, respectively. 0erefore, the process of
generating xi ∈ X(i � 1, 2, . . . , N) is given by the following
equation:

xij � Rod lbij + rnd × ubij − lbij()(), j � 1, 2, . . . , n,

(19)
where each value of xi belongs to an integer value in the
interval [1, m] (i.e., xij ∈ [1, m]). Meanwhile, the Rod
function is applied to round the value to the nearest whole
number. rnd represents a random number belonging to [0,
1].

For more clarity, consider there are eight jobs and four
machines, and the generated values for the current solution
are given in xi as xi � 4 1 4 4 2 3 1 3[]. In this rep-
resentation, the first value in xi is 4, and this indicates that
the first job will be allocated on the fourth machine. 0us, it
can be said that the first, third, and fourth jobs are allocated
on the fourth machine, while the second and seventh jobs
will be allocated on the first machine. Meanwhile, the sixth
and eighth jobs will be allocated on the third machine,
whereas the second machine will only execute the fifth job.

4.2. Updating Stage. 0is stage begins by computing the
fitness value for each solution and determining xb which has
the best fitness value Fb until the current iteration t. 0en,
the operators of either SA or HHOwill be used to update the
current solution, and this depends on the probability (Pri) of
the current solution xi that is computed as

Pri �
Fi∑Ni�1 Fi. (20)

0e operators of the HHOwill be used when the value of
Pri > rpr; otherwise, the operators of SA will be used. Since
the value of rpr has a larger effect on the updating process, we
made it automatically adjusted as in the following equation:

rpr � LPri + rand × UPri
− LPri(), (21)

where LPri and UPri
are the minimum and maximum

probability values for the i-th solution, respectively. When
the HHO is used, the energy of escaping E will be updated
using equation (9). According to the value of E, the HHO
will go through the exploration phase (when |E|> 1) or
exploitation phase (when |E|< 1). 0e value of xi will be
updated using equation (7) in the case of the exploration
phase. Otherwise, xi will be updated using one strategy from
those applied in the exploitation phase which are repre-
sented by equations (10)–(17).0e selection strategy is based
on the value of the random number r and the value of |E|
(which assumes its value may be in the interval [0.5, 1] or less
than 0.5). Meanwhile, if the current solution is updated
using the SA (i.e., Pri ≤ rpr), then a new neighboring solution

Y to xi will be generated and its fitness value FY will be
computed. In the case of FY <Fxi, then xi � Y; otherwise, the
difference between Fxi and FY is computed (i.e.,
δ � F(xi) − F(Y)) and the value of Prob will be checked (as
defined in equation (5)). If its value is less than r5 ∈ [0, 1],
then xi � Y; otherwise, the value of the current solution will
not change.

0e next step after updating all the solutions using either
HHO or SA is to check the termination conditions; if they
are reached, then running the HHOSA is stopped and the
best solution is returned; otherwise, the updating stage is
repeated again.

5. Experimental Results and Analysis

In this section, we present and discuss various experimental
tests in order to assess the performance of our developed
method. In Section 5.1, we introduce a detailed description
of the simulation environment and datasets employed in our
experiments. Section 5.2 explains the metrics used for
evaluating the performance of our HHOSA algorithm and
other scheduling algorithms in the experiments. Finally,
Section 5.3 summarizes the results achieved and provides
some concluding remarks.

5.1. Experimental Environment and Datasets. 0is section
describes the experimental environment, datasets, and ex-
perimental parameters. To evaluate the effectiveness of the
developed HHOSA approach, the performance evaluations
and comparison with other scheduling algorithms were
performed on the CloudSim simulator. 0e CloudSim
toolkit [78] is a high-performance open-source framework
for modeling and simulation of the CC environment. It
provides support for modeling of cloud system components
such as data centers, hosts, virtual machines (VMs), cloud
service brokers, and resource provisioning strategies. 0e
experiments were conducted on a desktop computer with
Intel Core i5-2430M CPU @ 2.40GHz with 4GB RAM
running Ubuntu 14.04 and using CloudSim toolkit 3.0.3.
Table 1 presents the configuration details for the employed
simulation environment. All the experiments are performed
by using 25 VMs, hosted on 2 host machines within a data
center. 0e processing capacity of VMs is considered in
terms of MIPS.

For experiments, both synthetic workload and standard
workload traces are utilized for evaluating the effectiveness
of the proposed HHO technique. 0e synthetic workload is
generated using a uniform distribution, which exhibits an
equal amount of small-, medium-, and large-sized jobs. We
have considered that each job submitted to the cloud system
may need different processing time, and its processing re-
quirement is also measured in MI. Table 2 summarizes the
synthetic workload used.

Besides the synthetic workload, the standard parallel
workloads that consist of NASA Ames iPSC/860 and
HPC2N (High-Performance Computing Center North) are
used for performance evaluation. NASAAmes iPSC/860 and
HPC2N set log are among the most well-known and widely

8 Computational Intelligence and Neuroscience

used benchmarks for performance evaluation in distributed
systems. Jobs are supposed to be independent, and they are
not preemptive. More information about the logs used in our
experiments is shown in Table 3.

For the purpose of comparison, each experiment was
performed 30 times. 0e specific parameter settings of the
selected metaheuristic (MH) methods are presented in
Table 4.

5.2. EvaluationMetrics. 0e following metrics are employed
to evaluate the performance of the HHOSA method de-
veloped in this paper against other job scheduling techniques
in the literature.

5.2.1. Makespan. It is one of the most commonly used
criteria for measuring scheduling efficiency in cloud com-
puting. It can be defined as the finishing time of the latest
completed job. Smaller makespan values demonstrate that
the cloud broker is mapping jobs to the appropriate VMs.
Makespan can be defined according to equation (3).

5.2.2. Performance Improvement Rate (PIR). It is utilized to
measure the percentage of the improvement in the per-
formance of each method with regard to other compared
methods as presented in equation (22). 0is provides an
insight into the performance of the presented HHOSA
against the state-of-the-art approaches in the literature. 0e
PIR is defined as follows:

PIR(%) �
S − S′()
S′
∗ 100, (22)

where S′ and S are the fitness values obtained by the pro-
posed algorithm and the compared one from the related
literature, respectively.

5.3. Result Analysis and Discussion. 0is section introduces
the result analysis and discussion of experimentation of the
proposed HHOSA job scheduling strategy. To objectively
evaluate the performance of the HHOSA strategy, we have
validated it over five well-known metaheuristic algorithms,
namely, particle swarm optimization (PSO) [79], salp swarm
algorithm (SSA) [80], moth-flame optimization (MFO) [81],
firefly algorithm (FA) [82], and Harris hawks optimizer
(HHO) [17].

To display the performance of HHOSA against SSA,
MFO, PSO, FA, and HHO, we plotted graphs of solution’s
quality (i.e., makespan) versus the number of iterations for
the three datasets, as shown in Figures 2–16. From the
convergence curves of the synthetic workload shown in
Figures 2–6, HHOSA converges faster than other algorithms
for 200, 400, 600, 800, and 1000 cloudlets. Besides, for NASA
Ames iPSC/860, HHOSA converges at a faster rate than
PSO, SSA, MFO, FA, and HHO for 500, 1000, 1500, 2000,
and 2500 cloudlets, as depicted in Figures 7–11. Moreover,
for the HPC2N real workload, HHOSA converges faster
than other algorithms when the jobs vary from 500 to 2500,
as shown in Figures 12–16. 0is indicates that the presented
HHOSA generates better quality solutions and converges at

Table 1: Experimental parameter settings.

Cloud entity Parameters Values

Data center
No. of data centers 1

No. of hosts 2

Host

Storage 1 TB
RAM 16GB

Bandwidth 10Gb/s
Policy type Time shared

VM

No. of VMs 25
MIPS 100 to 5000
RAM 0.5GB

Bandwidth 1Gb/s
Size 10GB
VMM Xen

No. of CPUs 1
Policy type Time shared

Table 2: Synthetic workload settings.

Parameters Values

No. of cloudlets (jobs) 200 to 1000
Length 1000 to 20000 MI
File size 300 to 600MB

Table 3: Description of the real parallel workloads used in per-
formance evaluations.

Log Duration CPUs Jobs Users File

NASA
iPSC

Oct
1993–Dec

1993
128 18,239 69

NASA-iPSC-
1993-3.1-
cln.swf

HPC2N
Jul 2002–Jan

2006
240 202,871 257

HPC2N-2002-
2.2-cln.swf

Table 4: Parameter settings of each MH method evaluated.

Algorithm Parameter Value

PSO
Swarm size 100

Cognitive coefficient c1 1.49
Social coefficient c2 1.49

FA

Swarm size 100
α 0.5
β 0.2
c 1

SSA
Swarm size 100
c1, c2, and c3 [0, 1]

MFO
Swarm size 100

b 1
a −1⟶ 0–2

HHO
Swarm size 100

E0 [−1, 1]

HHOSA
Swarm size 100

E0 [−1, 1]
β 0.85

Computational Intelligence and Neuroscience 9

50

100

150

200

A
ve

ra
ge

 o
f

m
ak

es
p

an

PSO

FA

SSA

MFO

HHO

HHOSA

400 600 800 1000200

No. of iterations

Figure 2: Convergence trend for synthetic workload (200 jobs).

No. of iterations

10
2

A
ve

ra
ge

 o
f

m
ak

es
p

an

200 400 600 800 1000

PSO

FA

SSA

MFO

HHO

HHOSA

Figure 3: Convergence trend for synthetic workload (400 jobs).

103

A
ve

ra
ge

 o
f

m
ak

es
p

an

No. of iterations

200 400 600 800 1000

PSO

FA

SSA

MFO

HHO

HHOSA

Figure 4: Convergence trend for synthetic workload (600 jobs).

No. of iterations

200 400 600 800 1000

103

A
ve

ra
ge

 o
f

m
ak

es
p

an

PSO

FA

SSA

MFO

HHO

HHOSA

Figure 5: Convergence trend for synthetic workload (800 jobs).

200 400 600 800 1000
No. of iterations

103

A
ve

ra
ge

 o
f

m
ak

es
p

an

PSO

FA

SSA

MFO

HHO

HHOSA

Figure 6: Convergence trend for synthetic workload (1000 jobs).

200 400 600 800 1000
No. of iterations

50

100

150

200

250

300
350

A
ve

ra
ge

 o
f

m
ak

es
p

an

PSO

FA

SSA

MFO

HHO

HHOSA

Figure 7: Convergence trend for real workload NASA iPSC (500
jobs).

10 Computational Intelligence and Neuroscience

200 400 600 800 1000

No. of iterations

102

103

A
ve

ra
ge

 o
f

m
ak

es
p

an

PSO

FA

SSA

MFO

HHO

HHOSA

Figure 8: Convergence trend for real workload NASA iPSC (1000
jobs).

200 400 600 800 1000

No. of iterations

103

A
ve

ra
ge

 o
f

m
ak

es
p

an

PSO

FA

SSA

MFO

HHO

HHOSA

Figure 9: Convergence trend for real workload NASA iPSC (1500
jobs).

200 400 600 800 1000

No. of iterations

103

A
ve

ra
ge

 o
f

m
ak

es
p

an

PSO

FA

SSA

MFO

HHO

HHOSA

Figure 10: Convergence trend for real workload NASA iPSC (2000
jobs).

200 400 600 800 1000

No. of iterations

103

A
ve

ra
ge

 o
f

m
ak

es
p

an

PSO

FA

SSA

MFO

HHO

HHOSA

Figure 11: Convergence trend for real workload NASA iPSC (2500
jobs).

200 400 600 800 1000

No. of iterations

104

A
ve

ra
ge

 o
f

m
ak

es
p

an

PSO

FA

SSA

MFO

HHO

HHOSA

Figure 12: Convergence trend for real workload HPC2N (500
jobs).

200 400 600 800 1000

No. of iterations

105

A
ve

ra
ge

 o
f

m
ak

es
p

an

PSO

FA

SSA

MFO

HHO

HHOSA

Figure 13: Convergence trend for real workload HPC2N (1000
jobs).

Computational Intelligence and Neuroscience 11

a faster rate than other compared algorithms across all the
workload instances.

To evaluate the algorithms, the performances of each
algorithm were compared in terms of makespan. 0e values
obtained for this performance metric are as reported in
Tables 5–7.0e results given in Tables 5–7 state that HHOSA
usually can find better average makespan than other eval-
uated scheduling algorithms, namely, PSO, SSA, MFO, FA,
and HHO. 0is means that the HHOSA takes less time to
execute the submitted jobs and outperforms all the other
scheduling algorithms in all the test cases. More specifically,
the results demonstrate that the HHO is the second best. We
also find that MFO performs a little better than SSA in most
of the cases; both of them fall behind the HHO algorithm.
Moreover, in almost all the test cases, FA is ranked far below
SSA and PSO falls behind FA. 0is reveals that the average
values of makespan using HHOSA are more competitive
with those of the other evaluated scheduling methods.

0e PIR(%) based on makespan of the HHOSA ap-
proach as it relates to the PSO, SSA, MFO, FA, and HHO
algorithms is presented in Tables 8–10. For the synthetic
workload, the results in Table 8 show that the HHOSA
algorithm produces 92.51%–96.75%, 74.76%–85.15%,
66.10%–82.08%, 61.87%–76.81%, and 18.89%–23.87%
makespan time improvements over the PSO, FA, SSA, MFO,
and HHO algorithms, respectively. For the execution of
NASA iPSC real workload (shown in Table 9), HHOSA
shows 85.36%–93.24%, 66.99%–77.01%, 66.93%–74.69%,
65.31%–74.31%, and 15.05%–24.70% makespan time im-
provements over the PSO, FA, SSA, MFO, and HHO al-
gorithms, respectively. In addition, the HHOSA algorithm
gives 88.30%–94.09%, 79.83%–82.47%, 76.36%–80.83%,
75.44%–77.75%, and 13.55%–20.85% makespan time im-
provements over the PSO, FA, SSA, MFO, and HHO ap-
proaches for the HPC2N real workload shown in Table 10.
0at is to say, the performance of HHOSA is much better
than that of the other methods.

5.4. Influence of the HHOSA Parameters. In this section, the
performance of HHOSA is evaluated through changing the
values of its parameters, where the value of population size is
set to 50 and 150 while fixing the value of β � 0.85. On the
contrary, β is set to 0.35, 0.50, and 0.95 while fixing the
population size to 100. 0e influence of changing the pa-
rameters of HHOSA using three instances (one from each
dataset) is given in Table 11. From these results, we can
notice the following: (1) By analyzing the influence of
changing the value of swarm size Pop, it is seen the per-
formance of HHOSA is improved when Pop is increased
from 100 to 150, and this can be observed from the best,
average, and worst values of makespan. In contrast,
makespan for the swarm size equal to 50 becomes worse than
that of swarm size equal to 100. (2) It can be found that when
β � 0.35, the performance of HHOSA is better than that
when β � 0.85 as shown from the best makespan value at
HPC2N, as well as the best and worst makespan values at
NASA iPSC. Also, in the case of β � 0.5 and 0.95, the
HHOSA provides better makespan values in four cases

200 400 600 800 1000

No. of iterations

105

A
ve

ra
ge

 o
f

m
ak

es
p

an

PSO

FA

SSA

MFO

HHO

HHOSA

Figure 14: Convergence trend for real workload HPC2N (1500
jobs).

105

A
ve

ra
ge

 o
f

m
ak

es
p

an

200 400 600 800 1000

No. of iterations

PSO

FA

SSA

MFO

HHO

HHOSA

Figure 15: Convergence trend for real workload HPC2N (2000
jobs).

200 400 600 800 1000

No. of iterations

105

A
ve

ra
ge

 o
f

m
ak

es
p

an

PSO

FA

SSA

MFO

HHO

HHOSA

Figure 16: Convergence trend for real workload HPC2N (2500
jobs).

12 Computational Intelligence and Neuroscience

compared with the β � 0.85 case as given in the table. From
these results, it can be concluded that the performance of the
proposed HHOSA at β � 0.85 and Pop � 100 is better than
that at other values.

To summarize, the results herein obtained reveal that the
developed HHOSA method can achieve near-optimal per-
formance and outperforms the other scheduling algorithms.
More precisely, it performs better in terms of minimizing the

Table 5: Best values of makespan for the HHOSA algorithm and compared algorithms.

Instances PSO FA SSA MFO HHO HHOSA

Synthetic

200 59.64 56.49 47.86 48.39 38.10 33.12
400 125.52 112.26 108.40 99.34 79.25 65.40
600 190.63 176.91 162.81 158.01 113.51 97.74
800 238.09 234.49 226.58 216.99 145.30 128.24
1000 305.77 295.40 276.70 273.49 182.61 161.67

NASA iPSC

500 82.56 74.94 67.67 66.84 54.64 44.94
1000 171.04 156.75 146.40 140.84 107.12 91.08
1500 258.61 241.37 234.42 230.50 157.69 139.14
2000 349.12 338.03 322.88 307.89 201.81 188.14
2500 451.38 432.00 416.74 400.70 261.21 238.47

HPC2N

500 8946.52 8760.62 8001.93 8053.29 5572.43 4890.72
1000 20793.74 19682.11 18496.02 18095.98 12253.81 10648.83
1500 33361.63 31727.51 29824.93 29295.83 19732.12 17206.45
2000 48135.05 45749.89 43808.80 42632.18 28076.55 25031.56
2500 62713.88 60024.49 58845.85 58104.48 36228.46 32769.49

Table 6: Average values of makespan for the HHOSA algorithm and compared algorithms.

Instances PSO FA SSA MFO HHO HHOSA

Synthetic

200 65.62 59.56 56.61 55.17 42.13 34.08
400 133.78 122.41 121.51 115.72 84.22 67.99
600 200.39 186.68 180.46 179.55 123.57 102.96
800 261.08 247.77 242.60 236.93 161.93 135.62
1000 325.96 311.34 306.18 297.32 199.92 168.16

NASA iPSC

500 90.68 78.36 78.33 77.57 58.51 46.93
1000 181.61 165.28 163.53 163.90 117.04 95.04
1500 275.67 257.90 253.43 253.96 177.10 145.70
2000 369.50 352.45 346.74 342.04 234.68 199.35
2500 470.77 446.78 442.03 433.85 291.10 253.03

HPC2N

500 9856.44 9247.51 8955.87 8909.51 6116.11 5078.28
1000 21755.53 20489.89 19965.24 19800.62 13591.03 11245.99
1500 34697.98 32882.46 32586.68 31774.13 21383.15 18020.64
2000 49706.00 47499.34 46803.83 46919.56 30552.34 26397.05
2500 65999.23 62867.26 62437.16 61628.58 39698.23 34960.06

Table 7: Worst values of makespan for the HHOSA algorithm and compared algorithms.

Instances PSO FA SSA MFO HHO HHOSA

Synthetic

200 70.01 65.16 67.63 62.35 47.85 36.84
400 139.31 131.25 131.74 137.68 91.24 74.56
600 208.36 199.44 195.70 200.54 137.98 111.43
800 270.97 258.75 261.55 261.78 176.48 147.32
1000 343.91 320.15 332.00 334.82 228.45 177.86

NASA iPSC

500 96.88 87.83 89.68 87.57 64.94 49.09
1000 194.88 175.43 178.62 187.98 137.02 103.91
1500 290.92 274.93 266.68 290.62 199.25 161.69
2000 389.26 365.76 370.27 372.62 276.77 209.73
2500 497.98 469.99 475.52 470.00 337.07 270.55

HPC2N

500 10437.89 9729.10 9978.12 10015.48 6935.65 5338.96
1000 22614.70 21187.87 21164.00 21352.51 14824.45 12335.51
1500 35691.54 33880.20 34633.10 35055.64 23411.63 19072.55
2000 51169.14 49156.43 49927.90 50376.81 35356.93 28300.92
2500 68804.23 66036.35 65412.07 68422.54 44466.31 37691.71

Computational Intelligence and Neuroscience 13

makespan while maximizing the utilization of resources.
0is allows us to infer that the hybrid HHOSA approach is
an effective and efficient strategy for scheduling of jobs on
IaaS cloud computing.

6. Conclusions

0is paper proposes an alternative method for job sched-
uling in cloud computing. 0e proposed approach depends
on improving the performance of the Harris hawks opti-
mizer (HHO) using the simulated annealing algorithm. 0e
proposed HHOSA algorithm has established its perfor-
mance since it utilizes several operators which have high
ability during the searching process to balance between the
exploitation and the exploration.0is leads to enhancing the

convergence rate towards the optimal solution as well as the
quality of the final output. Motivated from these im-
provements, this study proposes the HHOSA approach for
addressing the problem of cloud job scheduling. To assess
the performance of our method, a set of experimental series
are performed using a wide range of instances ranging from
200 to 1000 cloudlets for synthetic workload and up to 2500
cloudlets in case of standard workload traces. Besides, it is
validated over five well-known metaheuristics including
MFO, SSA, FA, PSO, and the traditional HHO. 0e simu-
lation results provide evidence about the high quality of the
developed approach over all the other methods. According
to the high performance obtained by the developed HHOSA
algorithm, it can be extended in the future to handle other
optimization issues in the cloud computing paradigm such

Table 8: PIR(%) on makespan for synthetic workload.

200 400 600 800 1000

PIR (%) over PSO 92.55 96.75 94.62 92.51 93.84
PIR (%) over FA 74.76 80.03 81.31 82.69 85.15
PIR (%) over SSA 66.10 78.71 75.27 78.88 82.08
PIR (%) over MFO 61.87 70.19 74.38 74.70 76.81
PIR (%) over HHO 23.62 23.87 20.01 19.40 18.89

Table 9: PIR(%) on makespan for real workload NASA iPSC.

500 1000 1500 2000 2500

PIR (%) over PSO 93.24 91.08 89.20 85.36 86.05
PIR (%) over FA 66.99 73.90 77.01 76.81 76.57
PIR (%) over SSA 66.93 72.06 73.94 73.94 74.69
PIR (%) over MFO 65.31 72.45 74.31 71.58 71.46
PIR (%) over HHO 24.70 23.15 21.55 17.73 15.05

Table 10: PIR(%) on makespan real workload HPC2N.

500 1000 1500 2000 2500

PIR (%) over PSO 94.09 93.45 92.55 88.30 88.78
PIR (%) over FA 82.10 82.20 82.47 79.94 79.83
PIR (%) over SSA 76.36 77.53 80.83 77.31 78.60
PIR (%) over MFO 75.44 76.07 76.32 77.75 76.28
PIR (%) over HHO 20.44 20.85 18.66 15.74 13.55

Table 11: Influence of the variant value of the parameters.

Instance Makespan
β � 0.85,
Pop � 100

Pop β

50 150 0.35 0.55 0.95

HPC2N (500 jobs)
Best 4890.72 4945.263 4866.144 4881.952 4912.909 4946.269

Average 5078.28 5200.724 5063.752 5094.164 5130.123 5162.682
Worst 5338.96 5579.552 5317.88 5377.362 5350.381 5832.608

NASA iPSC (1000 jobs)
Best 91.08 91.16535 90.84299 90.40409 90.64667 90.79272

Average 95.04 97.02455 94.96202 96.01011 96.03121 95.43977
Worst 103.91 104.1675 101.4676 101.8874 101.7581 101.617

Synthetic (1000 jobs)
Best 161.67 162.9857 158.7836 162.6296 159.7758 161.2992

Average 168.16 172.9459 164.9955 169.4086 167.829 168.612
Worst 177.86 185.5133 173.191 184.2198 180.6842 177.6314

14 Computational Intelligence and Neuroscience

as workflow scheduling and energy consumption. In addi-
tion, it is expected that HHOSA will be applied to other
optimization problems in various research directions such as
fog computing, Internet of things (IoT), feature selection,
and image segmentation.

Data Availability

0e data used to support the findings of this study are
available from the authors upon request.

Conflicts of Interest

0e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

0is work was in part supported by the National Key Re-
search and Development Program of China (Grant no.
2017YFB1402203), the Defense Industrial Technology De-
velopment Program (Grant no. 201910GC01), and the Hubei
Provincial Key S&T Innovation Program (Grant no.
2019AAA024).

References

[1] P. Jakovits and S. N. Srirama, “Adapting scientific applications
to cloud by using distributed computing frameworks,” in
Proceedings of the 2013 13th IEEE/ACM International Sym-
posium on Cluster, Cloud, and Grid Computing, pp. 164–167,
IEEE, Delft, Netherlands, May 2013.

[2] P. Mell and T. Grance, “0e NIST definition of cloud com-
puting,” Technical report, National Institute of Standards and
Technology, Gaithersburg, MD, USA, 2011.

[3] L. Heilig, E. Lalla-Ruiz, S. Voß, and R. Buyya, “Metaheuristics
in cloud computing,” Software: Practice and Experience,
vol. 48, no. 10, pp. 1729–1733, 2018.

[4] D.-K. Kang, S.-H. Kim, C.-H. Youn, and M. Chen, “Cost
adaptive workflow scheduling in cloud computing,” in Pro-
ceedings of the 8th International Conference on Ubiquitous
Information Management and Communication—ICUIMC’14,
pp. 1–8, ACM Press, New York, NY, USA, January 2014.

[5] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing:
state-of-the-art and research challenges,” Journal of Internet
Services and Applications, vol. 1, no. 1, pp. 7–18, 2010.

[6] M. Abdullahi, M. A. Ngadi, S. I. Dishing, S. Muhammad
Abdulhamid, and B. Isma’eel Ahmad, “An efficient symbiotic
organisms search algorithm with chaotic optimization
strategy for multi-objective task scheduling problems in cloud
computing environment,” Journal of Network and Computer
Applications, vol. 133, pp. 60–74, 2019.

[7] J. Yu, R. Buyya, and K. Ramamohanarao, “Workflow
scheduling algorithms for grid computing,” in Metaheuristics
for Scheduling in Distributed Computing Environments,
F. Xhafa and A. Abraham, Eds., pp. 173–214, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[8] C. Zhao, S. Zhang, Q. Liu, J. Xie, and J. Hu, “Independent
tasks scheduling based on genetic algorithm in cloud com-
puting,” in Proceedings of the 2009 5th International Con-
ference on Wireless Communications, Networking and Mobile
Computing, pp. 1–4, Beijing, China, September 2009.

[9] S. Pandey, L.Wu, S.M. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow appli-
cations in cloud computing environments,” in Proceedings of
the 2010 24th IEEE International Conference on Advanced
Information Networking and Applications, pp. 400–407, Perth,
Australia, April 2010.

[10] Z. Jia, J. Yan, J. Y. T. Leung, K. Li, and H. Chen, “Ant colony
optimization algorithm for scheduling jobs with fuzzy pro-
cessing time on parallel batch machines with different ca-
pacities,” Applied Soft Computing, vol. 75, pp. 548–561, 2019.

[11] F. Xhafa, J. Carretero, E. Alba, and B. Dorronsoro, “Design
and evaluation of tabu search method for job scheduling in
distributed environments,” in Proceedings of the 2008 IEEE
International Symposium on Parallel and Distributed Pro-
cessing, pp. 1–8, Sydney, Australia, December 2008.

[12] S. Sagnika, S. Bilgaiyan, and B. S. P. Mishra, “Workflow
scheduling in cloud computing environment using bat al-
gorithm,” in Proceedings of First International Conference on
Smart System, Innovations and Computing, A. K. Somani,
S. Srivastava, A. Mundra, and S. Rawat, Eds., pp. 149–163,
Springer Singapore, Singapore, 2018.

[13] R. Nallakuma, D. N. Sengottaiyan, and K. S. Sruthi Priya, “A
survey on scheduling and the attributes of task scheduling in
the cloud,” IJARCCE, vol. 3, pp. 8167–8171, 2014.

[14] R. Rajathy, B. Taraswinee, and S. Suganya, “A novel method of
using symbiotic organism search algorithm in solving secu-
rity-constrained ecotnomic dispatch,” in Proceedings of the
2015 International Conference on Circuits, Power and Com-
puting Technologies [ICCPCT-2015], pp. 1–8, Nagercoil, India,
March 2015.

[15] S. Burnwal and S. Deb, “Scheduling optimization of flexible
manufacturing system using cuckoo search-based approach,”
Je International Journal of Advanced Manufacturing Tech-
nology, vol. 64, no. 5–8, pp. 951–959, 2013.

[16] C.-W. Tsai and J. J. P. C. Rodrigues, “Metaheuristic scheduling
for cloud: a survey,” IEEE Systems Journal, vol. 8, no. 1,
pp. 279–291, 2014.

[17] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and
H. Chen, “Harris hawks optimization: algorithm and appli-
cations,” Future Generation Computer Systems, vol. 97,
pp. 849–872, 2019.

[18] X. Bao, H. Jia, and C. Lang, “A novel hybrid harris hawks
optimization for color image multilevel thresholding seg-
mentation,” IEEE Access, vol. 7, pp. 76529–76546, 2019.

[19] H. Jia, C. Lang, D. Oliva, W. Song, and X. Peng, “Dynamic
harris hawks optimization with mutation mechanism for
satellite image segmentation,” Remote Sensing, vol. 11, no. 12,
p. 1421, 2019.

[20] J. Too, A. R. Abdullah, and N. Mohd Saad, “A new quadratic
binary harris hawk optimization for feature selection,” Elec-
tronics, vol. 8, no. 10, p. 1130, 2019.

[21] D. T. Bui, H. Moayedi, B. Kalantar et al., “A novel swarm
intelligence—harris hawks optimization for spatial assess-
ment of landslide susceptibility,” Sensors, vol. 19, no. 16,
p. 3590, 2019.

[22] H. Chen, S. Jiao, M. Wang, A. A. Heidari, and X. Zhao,
“Parameters identification of photovoltaic cells and modules
using diversification-enriched harris hawks optimization with
chaotic drifts,” Journal of Cleaner Production, vol. 244, Article
ID 118778, 2020.

[23] N. A. Golilarz, H. Gao, and H. Demirel, “Satellite image de-
noising with harris hawks meta heuristic optimization algo-
rithm and improved adaptive generalized gaussian

Computational Intelligence and Neuroscience 15

distribution threshold function,” IEEE Access, vol. 7,
pp. 57459–57468, 2019.

[24] S. H. A. Aleem, A. F. Zobaa, M. E. Balci, and S. M. Ismael,
“Harmonic overloading minimization of frequency-dependent
components in harmonics polluted distribution systems using
harris hawks optimization algorithm,” IEEE Access, vol. 7,
pp. 100824–100837, 2019.

[25] H. A. Babikir, M. A. Elaziz, A. H. Elsheikh et al., “Noise
prediction of axial piston pump based on different valve
materials using a modified artificial neural network model,”
Alexandria Engineering Journal, vol. 58, no. 3, pp. 1077–1087,
2019.

[26] M. R. Elkadeem, M. A. Elaziz, Z. Ullah, S. Wang, and
S. W. Sharshir, “Optimal planning of renewable energy-in-
tegrated distribution system considering uncertainties,” IEEE
Access, vol. 7, pp. 164887–164907, 2019.

[27] A. A. Ewees and M. A. Elaziz, “Performance analysis of
chaotic multi-verse harris hawks optimization: a case study on
solving engineering problems,” Engineering Applications of
Artificial Intelligence, vol. 88, Article ID 103370, 2020.

[28] A. Taher, A. H. Shehabeldeena, M. Abd Elaziz, and J. Zhou,
“Modeling of friction stir welding process using adaptive
neuro-fuzzy inference system integrated with harris hawks
optimizer,” Journal of Materials Research and Technology,
vol. 8, no. 6, pp. 5882–5892, 2019.

[29] A. R. Yıldız, B. S. Yıldız, S. M. Sait, S. Bureerat, and
N. Pholdee, “A new hybrid harris hawks-Nelder-Mead op-
timization algorithm for solving design and manufacturing
problems,” Materials Testing, vol. 61, pp. 735–743, 2019.

[30] F. Ramezani, J. Lu, J. Taheri, and F. K. Hussain, “Evolutionary
algorithm-based multi-objective task scheduling optimization
model in cloud environments,” World Wide Web, vol. 18,
no. 6, pp. 1737–1757, 2015.

[31] A. Arunarani, D. Manjula, and V. Sugumaran, “Task
scheduling techniques in cloud computing: a literature sur-
vey,” Future Generation Computer Systems, vol. 91, pp. 407–
415, 2019.

[32] M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh, “A
comprehensive survey for scheduling techniques in cloud
computing,” Journal of Network and Computer Applications,
vol. 143, pp. 1–33, 2019.

[33] L. Guo, S. Zhao, S. Shen, and C. Jiang, “Task scheduling
optimization in cloud computing based on heuristic algo-
rithm,” Journal of Networks, vol. 7, no. 3, pp. 547–553, 2012.

[34] A. Khalili and S. M. Babamir, “Makespan improvement of
pso-based dynamic scheduling in cloud environment,” in
Proceedings of the 2015 23rd Iranian Conference on Electrical
Engineering, pp. 613–618, IEEE, Tehran, Iran, May 2015.

[35] H. B. Alla, S. B. Alla, A. Touhafi, and A. Ezzati, “A novel task
scheduling approach based on dynamic queues and hybrid
meta-heuristic algorithms for cloud computing environ-
ment,” Cluster Computing, vol. 21, no. 4, pp. 1797–1820, 2018.

[36] A. Al-Maamari and F. A. Omara, “Task scheduling using pso
algorithm in cloud computing environments,” International
Journal of Grid and Distributed Computing, vol. 8, no. 5,
pp. 245–256, 2015.

[37] H. S. Al-Olimat, M. Alam, R. Green, and J. K. Lee, “Cloudlet
scheduling with particle swarm optimization,” in Proceedings
of the 2015 Fifth International Conference on Communication
Systems and Network Technologies, pp. 991–995, IEEE,
Gwalior, India, April 2015.

[38] A. S. A. Beegom and M. S. Rajasree, “Integer-pso: a discrete
pso algorithm for task scheduling in cloud computing

systems,” Evolutionary Intelligence, vol. 12, no. 2, pp. 227–239,

2019.
[39] P. Rekha and M. Dakshayini, “Efficient task allocation ap-

proach using genetic algorithm for cloud environment,”

Cluster Computing, vol. 22, no. 4, pp. 1241–1251, 2019.
[40] B. Keshanchi, A. Souri, and N. J. Navimipour, “An improved

genetic algorithm for task scheduling in the cloud environ-

ments using the priority queues: formal verification, simu-

lation, and statistical testing,” Journal of Systems and Software,

vol. 124, pp. 1–21, 2017.
[41] M. Akbari, H. Rashidi, and S. H. Alizadeh, “An enhanced

genetic algorithm with new operators for task scheduling in

heterogeneous computing systems,” Engineering Applications

of Artificial Intelligence, vol. 61, pp. 35–46, 2017.
[42] Z. Zhou, F. Li, H. Zhu, H. Xie, J. H. Abawajy, and

M. U. Chowdhury, “An improved genetic algorithm using

greedy strategy toward task scheduling optimization in cloud

environments,” Neural Computing and Applications, vol. 32,

no. 6, pp. 1531–1541, 2019.
[43] A. M. Manasrah and H. Ba Ali, “Workflow scheduling using

hybrid ga-pso algorithm in cloud computing,” Wireless

Communications and Mobile Computing, vol. 2018, Article ID

1934784, 16 pages, 2018.
[44] A. S. Kumar and M. Venkatesan, “Task scheduling in a cloud

computing environment using hgpso algorithm,” Cluster

Computing, vol. 22, no. S1, pp. 2179–2185, 2019.
[45] V. A. Chalack, S. N. Razavi, and S. J. Gudakahriz, “Resource

allocation in cloud environment using approaches based

particle swarm optimization,” International Journal of

Computer Applications Technology and Research, vol. 6, no. 2,

pp. 87–90, 2017.
[46] S. Singh and I. Chana, “Q-aware: quality of service based

cloud resource provisioning,” Computers & Electrical Engi-

neering, vol. 47, pp. 138–160, 2015.
[47] V. Sontakke, P. Patil, S. Waghamare et al., “Dynamic resource

allocation strategy for cloud computing using virtual machine

environment,” International Journal of Engineering Science,

vol. 6, no. 5, pp. 4804–4806, 2016.
[48] M. Shojafar, S. Javanmardi, S. Abolfazli, and N. Cordeschi,

“Fuge: a joint meta-heuristic approach to cloud job scheduling

algorithm using fuzzy theory and a genetic method,” Cluster

Computing, vol. 18, no. 2, pp. 829–844, 2015.
[49] A. A. A. Ari, I. Damakoa, C. Titouna, N. Labraoui, and

A. Gueroui, “Efficient and scalable aco-based task scheduling

for green cloud computing environment,” in Proceedings of

the IEEE International Conference on Smart Cloud, pp. 66–71,

New York, NY, USA, November 2017.
[50] Y. Dai, Y. Lou, and X. Lu, “A task scheduling algorithm based

on genetic algorithm and ant colony optimization algorithm

with multi-qos constraints in cloud computing,” in Pro-

ceedings of the 2015 7th International Conference on Intelligent

Human-Machine Systems and Cybernetics, vol. 2, pp. 428–431,

IEEE, Hangzhou, China, August 2015.
[51] L. Ding, P. Fan, and B. Wen, “A task scheduling algorithm for

heterogeneous systems using aco,” in Proceedings of the In-

ternational Symposium on Instrumentation andMeasurement,

Sensor Network and Automation, pp. 749–751, Toronto,

Canada, December 2013.
[52] M. Kaur andM. Agnihotri, “Performance evaluation of hybrid

gaaco for task scheduling in cloud computing,” in Proceedings

of the International Conference on Contemporary Computing

and Informatics, pp. 168–172, Greater Noida, India, June 2017.

16 Computational Intelligence and Neuroscience

[53] P. C. Pendharkar, “An ant colony optimization heuristic for
constrained task allocation problem,” Journal of Computa-
tional Science, vol. 7, pp. 37–47, 2015.

[54] A. E. Keshk, A. B. El-Sisi, and M. A. Tawfeek, “Cloud task
scheduling for load balancing based on intelligent strategy,”
International Journal of Intelligent Systems and Applications,
vol. 6, no. 5, pp. 25–36, 2014.

[55] S. M. G. Kashikolaei, A. A. R. Hosseinabadi, B. Saemi,
M. B. Shareh, A. K. Sangaiah, and G.-B. Bian, “An en-
hancement of task scheduling in cloud computing based on
imperialist competitive algorithm and firefly algorithm,” Je
Journal of Supercomputing, pp. 1–28, 2019.

[56] D. I. Esa and A. Yousif, “Scheduling jobs on cloud computing
using firefly algorithm,” International Journal of Grid and
Distributed Computing, vol. 9, no. 7, pp. 149–158, 2016.

[57] R. Eswari and S. Nickolas, “Effective task scheduling for
heterogeneous distributed systems using firefly algorithm,”
International Journal of Computational Science and Engi-
neering, vol. 11, no. 2, pp. 132–142, 2015.

[58] F. Fanian, V. K. Bardsiri, and M. Shokouhifar, “A new task
scheduling algorithm using firefly and simulated annealing
algorithms in cloud computing,” International Journal of
Advanced Computer Science and Applications, vol. 9, no. 2,
2018.

[59] T. Mandal and S. Acharyya, “Optimal task scheduling in cloud
computing environment: meta heuristic approaches,” in
Proceedings of the 2015 2nd International Conference on
Electrical Information and Communication Technologies
(EICT), pp. 24–28, IEEE, Khulna, Bangladesh, December
2015.

[60] S. S. Alresheedi, S. Lu, M. A. Elaziz, and A. A. Ewees, “Im-
proved multiobjective salp swarm optimization for virtual
machine placement in cloud computing,” Human-centric
Computing and Information Sciences, vol. 9, no. 1, p. 15, 2019.

[61] T. D. Braun, H. J. Siegel, N. Beck et al., “A comparison of
eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems,”
Journal of Parallel and Distributed Computing, vol. 61, no. 6,
pp. 810–837, 2001.

[62] M. Abdullahi, M. A. Ngadi, and S. Muhammad Abdulhami,
“Symbiotic organism search optimization based task sched-
uling in cloud computing environment,” Future Generation
Computer Systems, vol. 56, pp. 640–650, 2016.

[63] M. Abdullahi and M. A. Ngadi, “Hybrid symbiotic organisms
search optimization algorithm for scheduling of tasks on
cloud computing environment,” PLoS One, vol. 11, no. 6,
Article ID e0158229, 2016.

[64] G. Yao, Y. Ding, Y. Jin, and K. Hao, “Endocrine-based co-
evolutionary multi-swarm for multi-objective workflow
scheduling in a cloud system,” Soft Computing, vol. 21, no. 15,
pp. 4309–4322, 2017.

[65] Z. Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary multi-
objective workflow scheduling in cloud,” IEEE Transactions
on Parallel and Distributed Systems, vol. 27, no. 5,
pp. 1344–1357, 2016.

[66] L. Zhang, K. Li, C. Li, and K. Li, “Bi-objective workflow
scheduling of the energy consumption and reliability in
heterogeneous computing systems,” Information Sciences,
vol. 379, pp. 241–256, 2017.

[67] L. F. Bittencourt, A. Goldman, E. R. M. Madeira, N. L. S. da
Fonseca, and R. Sakellariou, “Scheduling in distributed sys-
tems: a cloud computing perspective,” Computer Science
Review, vol. 30, pp. 31–54, 2018.

[68] S. K. Panda and P. K. Jana, “Uncertainty-based QoS min-min
algorithm for heterogeneous multi-cloud environment,”
Arabian Journal for Science and Engineering, vol. 41, no. 8,
pp. 3003–3025, 2016.

[69] S. K. Panda and P. K. Jana, “Normalization-based task
scheduling algorithms for heterogeneous multi-cloud envi-
ronment,” Information Systems Frontiers, vol. 20, no. 2,
pp. 373–399, 2018.

[70] S. K. Panda and P. K. Jana, “Efficient task scheduling algo-
rithms for heterogeneous multi-cloud environment,” Je
Journal of Supercomputing, vol. 71, no. 4, pp. 1505–1533, 2015.

[71] S. K. Panda and P. K. Jana, “Sla-based task scheduling al-
gorithms for heterogeneous multi-cloud environment,” Je
Journal of Supercomputing, vol. 73, no. 6, pp. 2730–2762, 2017.

[72] D. Gabi, A. S. Ismail, A. Zainal, Z. Zakaria, and A. Al-Kha-
sawneh, “Cloud scalable multi-objective task scheduling al-
gorithm for cloud computing using cat swarm optimization
and simulated annealing,” in Proceedings of the 2017 8th
International Conference on Information Technology (ICIT),
pp. 1007–1012, Amman, Jordan, May 2017.

[73] I. Attiya and X. Zhang, “D-choices scheduling: a randomized
load balancing algorithm for scheduling in the cloud,” Journal
of Computational and Jeoretical Nanoscience, vol. 14, no. 9,
pp. 4183–4190, 2017.

[74] J. Jin Xu, A. Y. S. Lam, and V. O. K. Li, “Chemical reaction
optimization for task scheduling in grid computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 22,
no. 10, pp. 1624–1631, 2011.

[75] S.-S. Kim, J.-H. Byeon, H. Yu, and H. Liu, “Biogeography-
based optimization for optimal job scheduling in cloud
computing,” Applied Mathematics and Computation, vol. 247,
pp. 266–280, 2014.

[76] D. Bertsimas and J. Tsitsiklis, “Simulated annealing,” Statis-
tical Science, vol. 8, no. 1, pp. 10–15, 1993.

[77] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, no. 4598,
pp. 671–680, 1983.

[78] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose,
and R. Buyya, “Cloudsim: a toolkit for modeling and simu-
lation of cloud computing environments and evaluation of
resource provisioning algorithms,” Software: Practice and
Experience, vol. 41, no. 1, pp. 23–50, 2011.

[79] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of the ICNN’95—International Conference on
Neural Networks, vol. 4, pp. 1942–1948, Perth, Australia,
November 1995.

[80] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris,
and S. M. Mirjalili, “Salp swarm algorithm: a bio-inspired
optimizer for engineering design problems,” Advances in
Engineering Software, vol. 114, pp. 163–191, 2017.

[81] S. Mirjalili, “Moth-flame optimization algorithm: a novel
nature-inspired heuristic paradigm,” Knowledge-Based Sys-
tems, vol. 89, pp. 228–249, 2015.

[82] X.-S. Yang, “Firefly algorithms for multimodal optimization,”
in Stochastic Algorithms: Foundations and Applications,
O. Watanabe and T. Zeugmann, Eds., pp. 169–178, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

Computational Intelligence and Neuroscience 17

