EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Job shop scheduling by local search

Citation for published version (APA):
Vaessens, R. J. M., Aarts, E. H. L., & Lenstra, J. K. (1994). Job shop scheduling by local search. (Computing
science notes; Vol. 9415). Eindhoven University of Technology.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Aug. 2022

https://research.tue.nl/en/publications/29054c85-143f-4936-bae8-f14589c9ac67

Eindhoven University of Technology

Department of Mathematics and Computing Science

Job Shop Scheduling by Local Search

by

R.JM. Vaessens, E.-H.L. Aarts, J.K. Lensira
94/15

Computing Science Note 94/15
Eindhoven, March 1994

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.

Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.

Copies of these notes are available from the
author.

Copies can be ordered from:

Mrs. M. Philips

Eindhoven University of Technology

Department of Mathematics and Computing Science
P.O. Box 513

5600 MB EINDHOVEN

The Netherlands

ISSN 0926-4515

All rights reserved
editors: prof.dr M.Rem
prof.dr. K.M.van Hee.

Job Shop Scheduling by Local Search

R.J.M. Vaessens !
E.H.L. Aarts 2!
J.K. Lenstra '3

February 28, 1994

1. Eindhoven University of Technology, Department of Mathematics and Computing Science,
P.O. Box 513, 5600 MB Eindhoven
2. Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven
3. CWI, P.O. Box 94079, 1090 GB Amsterdam

Abstract

We survey solution methods for the job shop scheduling problem with an emphasis
on local search. We discuss both deterministic and randomized local search methods as
well as the applied neighborhoods. We compare the computational performance of the
various methods in terms of their effectiveness and efficiency on a standard set of problem
instances.

Key words: job shop scheduling, local search, iterative improvement, shifting bottle-
neck heuristic, simulated annealing, taboo search, genetic algorithms, constraint satisfac-
tion.

1 Introduction

In the job shop scheduling problem we are given a set of jobs and a set of machines. Each
machine can handle at most one job at a time. Each job consists of a chain of operations,
each of which needs to be processed during an uninterrupted time period of a given length on
a given machine. The purpose is to find a schedule, that is, an allocation of the operations
to time intervals on the machines, that has minimum length.

The problem is difficult to solve to aptimality. For example, a relatively small instance
with 10 jobs, 10 machines and 100 operations due to Fisher & Thompson [1963] remained
unsolved until 1986. Many solution methods have been proposed, ranging from simple and
fast dispatching rules to sophisticated branch-and-bound algorithms.

We survey algorithms for the job shop scheduling problem with an emphasis on local
search. During the last decade many different types of local search algorithms for job shop
scheduling have been developed, and some of them have proved to be very effective.

The paper is structured as follows. In Section 2 several models for the job shop scheduling
problem are presented. In Section 3 the complexity of the problem and methods for its solu-
tion are reviewed. Section 4 introduces local search and Section 5 discusses representations
and neighborhoods for the problem. Sections 6 and 7 describe constructive and iterative al-
gorithms with local search, respectively; Section & describes some other techniques. Section 9
contains computational results, and Section 10 gives some concluding remarks.

2 The job shop scheduling problem

The job shop scheduling problem is formally defined as follows. Given are a set O of [
operations, a set M of m machines, and a set 7 of n jobs. For each operation v € O there
is a processing time p(v) € IN, a unique machine M(v) € M on which it requires processing,
and a unique job J(v) € J such that v € J(v). On O a binary relation A is defined, which
represents precedences between operations: if (v,w) € A, then v has to be performed before
w. A is such that all operations » with the same value J(v) are totally ordered.

A schedule is a function § : O — IN U {0} that for each operation v defines a start time
S(v). A schedule § is feasible if

Yve(: S(v) = 0,
Yo,w e O,(v,w) € A: S(v) + p(v) < S(w),
Vo,we O,v# w,Mv)= M(w): S(v)+p(v) < S{(w)or S(w)+ p(w) < S(v).

The length of a schedule S is max,eo S(v)+p(v), i.e., the earliest time at which all operations
are completed. The problem is to find an optimal schedule, i.e., a feasible schedule of minimum
length.

A feasible schedule is left-justified, if no operation can start earlier without changing
the processing order on any wachine. It is active if no operation can start earlier without
delaying another operation. Note that at least one optimal schedule is active and that each
active schedule is left-justified.

An instance of the problem can be represented by means of a disjunctive graph G =
(0, A, EY [Roy & Sussmann, 1964]. The vertices in O represent the operations, the arcs in 4
represent the given precedences between the operations, and the edges in £ = {{v, w}|v,w €
O,v # w, M(v) = M(w}} represent the machine capacity constraints. Fach vertex v € O has
a weight, equal to the processing time p(v).

For each E' C E, an orientation on E’ is a function 2 : B/ — O x O such that Q({v,w}) €
{{v,w),{w,v)} for each {v,w} € E'; we write Q(E') = {{}e) | e € E'}. A partial orientation
is an orientation on £’ # E and a complele orientation is one on E. An orientation on £’
is feasible if the digraph (O, AU Q{E'}} is acyclic. It represents for each machine its machine
ordering, i.e., the order in which it processes its operations. Each feasible schedule .5 uniquely
determines a feasible complete orientation, which is denoted by 5.

Conversely, for each feasible complete orientation €2, there is a unique left-justified feasible
schedule, which is denoted by S,. For all v € O, Sq(v) equals the length of a longest path in
the digraph (O, AUQ(E)) upto and excluding v. The length of g equals the length of a longest
path in the digraph. Finding an optimal left-justified schedule is now equivalent to finding
a feasible complete orientation that minimizes the longest path length in the corresponding
digraph.

The search for such a schedule can be restricted to the set of active schedules. However,
given a feasible complete orientation €, it is not clear at first sight whether S is active:
activeness depends on the sizes of the processing times, while left-justifiedness does not. For
this reason one often considers the larger set of left-justified schedules.

3 Complexity and algorithms

We give a brief review of results on the computational complexity of job shop scheduling, of
the lower bounds and enumeration schemes that are used in branch-and-bound methods, and

of the approximative approaches that yield upper bounds on the optimum. Techniques of the
latter type that proceed by local search are discussed in the rest of the paper.

3.1 Complexity

Some very special cases of the problem can be solved in polynomial time, but their immediate
generalizations are ¥P-hard. The results are summarized in Table 1, where I; denotes the
numer of operations of the jth job. Note that, due to result (4b), it is NP-hard to find a job
shop schedule that is shorter than 2 times the optimum.

Table 1: The complexity of job shop scheduling

solvable in polynomial time | AF-hard (in the strong sense*)

(la) m=2,alll; <2 (1b} m=2,all; <33m=3,all [; <2
(2a) m=2,allp(v)=1 |(2b)* m=2,all p(v)<2;m=3,all p(v)=1
(3a) n=2 (3b) n=3

(4a) length <3 (4b)* length <4

(1a} [Jackson, 1956]; (1b} [Lenstra, Rinnooy Kan & Brucker, 1977]; (2a) [Hefetz & Adiri,
1982]; (2b) [Lenstra & Rinnooy Kan, 1979]; (3a) [Akers, 1956; Brucker, 1988]; (3h)
[Sotskov, 1991]; (4a,b) [Williamson, Hall, Hoogeveen, Hurkens, Lenstra & Shmoys, 1994].

3.2 Lower bounds

Optimization algorithms for the problem employ some form of tree search. A node in the
tree is usually characterized by a partial orientation) on a subset £/ C £. The question is
then how to compute a lower bound on the length of any feasible schedule corresponding to
a completion of €2.

Németi [1964] and many subsequent authors obtained a lower hound by simply disregard-
ing £\ E’ and computing the longest path length in the digraph (O, AU Q(E’)).

Bratley, Florian & Robillard [1973] obtained the stronger single-machine bound by relaxing
the capacity constraints of all machines except one. (Giiven a machine M, they propose to solve
the job shop scheduling problem on the disjunctive graph (O, AU QE"), {{v,w} | M(v) =
M(w)=M'}\ E'). This is a single-machine problem, where the arcs in A U Q(E’) define
release and delivery times for the operations on M’ and precedence constraints between them.
Lageweg, Lenstra & Rinnooy Kan [1977] pointed out that many other lower bounds appear
as special cases of this bound. For example, relaxing the capacity constraint of M’ gives
Németi’s bound, and allowing preemption gives the bound used in current branch-and-bound
codes. The bound itself is NP-hard to compute but can be found fairly efficiently [Baker &
Su, 1974; McMahon & Florian, 1975; Lageweg, Lenstra & Rinnooy Kan, 1976; Carlier, 1982].
It has been strengthened by Carlier & Pinson [1990], who compute larger release and delivery
times, and by Tiozzo [1988] and Dauzére-Peres & Lasserre [1993], who observe that the arcs
also define delays between precedence-related operations.

Fisher, Lageweg, Lenstra & Rinnooy Kan [1983] investigated surrogate duality relaxations,
in which either the machine capacity constraints or the precedence constraints among the
operations of a job are weighted and aggregated into a single constraint. Balas [1985] described
a first attempt to obtain bounds by polyhedral techniques. Applegate & Cook [1991] review
the valid inequalities studied before and gave some new ones. The computational performance

of surrogate duality and polyhedral bounds reported until now is disappointing in view of what
has been achieved for other hard problems.

3.3 Enumeration schemes

The traditional enumeration scheme generates all active schedules by constructing them from
front to back [Gifler & Thompson, 1960]. At each node a machine on which the earliest
possible completion time of any unscheduled operation is achieved is determined, and all
unscheduled operations that can start earlier than this point in time on that machine are
selected in turn.

Recent branch-and-bound algorithms use more flexible enumeration schemes. Carlier &
Pinson [1989; 1990] and Applegate & Cook {1991] branch by selecting a single edge and
orienting it in either of two ways. Brucker, Jurisch & Sievers [1994] follow Grabowski’s
‘block approach’. All these authors apply the preemptive single-machine bound and a host
of elimination rules. For details we refer to the literature.

The celebrated 10 x 10 instance of Fisher & Thompson [1963] is within easy reach of these
methods, but 15 x 15 instances seem to be the current limit. The main deficiency of the
existing optimization algorithms for job shop scheduling is the weakness of the lower bounds.
The situation is much brighter with respect to finding good upper bounds.

3.4 Upper bounds

Upper bounds on the optimuin are usually obtained by generating a schedule and computing
its length. An obvious first step is to apply a dispatch rule and to schedule the operations
according to some priority function. Haupt [1989] surveys such rules. They tend to exhibit
an erratic behaviour; the procedure ‘bidir’ proposed by Dell’Amico & Trubian [1993] is one
of the safer alternatives. The next step is then to try to improve the schedule by some sorg
of local search.

An entirely different approach is taken by Sevast’janov [1994]. Using Steinitz’ vector sum
theorem, he develops polynomial-time algorithms for finding an upper bound with an absolute
error that is independent of the number of jobs. Shmoys, Stein & Wein [1994] improve on his
results.

4 Local search

Local search is based on the idea that a given solution may be improved by making small
changes. Solutions are changed over and again, and better and better solutions are found.

We need the following notions. There is a set F' of feasible solutions. Two functions are
defined on F. The cost functionis a mapping ¢ : F' — R, which in most cases is closely related
to the function that is to be optimized. The neighborhood function is a mapping N : F — 2
which defines for each solution & € F a neighborhood N(z) € F. Each solution in N(z) is
called a neighbor of z. Roughly speaking, the execution of a local search algorithm defines a
walk in # such that each solution visited is a neighbor of the previously visited one.

A solution z € F is called a local minimum with respect to a neighborhood function N if
c(z) < e(y) for all y € N(z). The basic algorithm to find a local minimum is called dterative
improvement. Starting at some initial feasible solution, its neighborhood is searched for a

solution of lower cost. If such a solution is found, the algorithm is continued from there;
otherwise, a local minimum has been found.

The quality of the local minimum depends on the initial solution, on the neighborhood
function, and on the method of searching the neighborhoods. An initial solution may be
obtained by generating it randomly or by applying a heuristic rule. The choice of a good
neighborhood is often difficult. There is a clear trade-off between small and large neighbor-
hoods: if the number of neighbors is larger, the probability of finding a good neighbor may
be higher, but looking for it takes more time. There are several alternatives for searching the
neighborhood: one may take the first neighbor found of lower cost (first improvement), or
take the best neighbor in the entire neighborhood (best improvement), or take the best of a
sample of neighbors, provided it is an improving one.

Often, one probiem remains. The local optima obtained may be of poor quality. Therefore,
several variants of iterative improvement have been proposed. The main variants can be
divided into threshold algorithms, taboo search algorithms, and genetic algorithms.

In threshold algorithms, a neighbor of a given solution becomes the new current solution, if
the cost difference between the current schedule and its neighbor is below a certain threshold.
One distinguishes three kinds of threshold algorithms.

In classical iterative improvement the thresholds are 0, so that only true improvements
are accepted. In threshold aecepting [Dueck & Scheuer, 1990] the thresholds are nonnega-
tive. They are large in the beginning of the algorithm’s execution and gradually decrease
to become 0 in the end. General rules to determine appropriate thresholds are lacking. In
simulated annealing [Kirkpatrick, Gelatt & Vecchi, 1983; Cerny, 1985] the thresholds are pos-
itive and stochastic. Their values equal —7 In #, where T is a control parameter {often called
‘temperature’), whose value gradually decreases in the course of the algorithm’s execution
according to a ‘cooling schedule’, and « is drawn from a uniform distribution on (0,1]. Each
time a neighbor is compared with the current solution, u is drawn again. Under certain mild
conditions simulated annealing is guaranteed to find an optimal solution asymptotically.

In taboo search one selects from a subset of permissible neighbors of the current solution a
solution of minimum cost. In basic taboo search a neighbor is permissible if it is not on the
‘taboo list” or satisfles a certain ‘aspiration criterion’. The taboo list is recalculated at each
iteration. It is often implicitly defined in terms of forbidden moves from the current solution
to a neighbor. The aspiration criterion expresses possibilities to overrule the taboo-status of
a neighbor. For details see Glover [1989; 1990] or Glover, Taillard & De Werra [1993).

Genetic algorithms [Holland, 1975] are based on an extended notion of neighborhood
function. A hyper-neighborhood function is a mapping Ny, : F* — 2¥ with s > 2, which
defines for each s-tuple x = (z1,...,25) € F* a set Ny(x) € F of neighboring solutions.
Each solution in Ny, (x) is called a hyper-neighbor of x. At each iteration a set of solutions,
often called ‘population’, is given. From this population several subsets of size s consisting of
‘parents’ are selected, and for each such subset some hyper-neighbors, called ‘off-spring’, are
determined by operations called ‘recombination’ and ‘mutation’. This set of hyper-neighbors
and the current population are then combined and reduced to a new population by selecting
a subset of solutions.

Several solution methods have been proposed that use local search in combination with
other techniques like partial enumeration and backtracking. Such hybrid methods for job
shop scheduling are dealt with below with an emphasis on nested forms of local search. Here,
local search is applied at several levels with different neighborhoods. In this way the search
can explore different regions of the solution space.

[]

5 Solution representations and neighborhood functions

A crucial ingredient of a local search algorithm is the definition of a neighborhood function in
combination with a solution representation. Below, several basic representations and neigh-
borhood functions are introduced for the job shop scheduling problem. For most threshold and
taboo search algorithms, only left-justified or active schedules are represented. This is done
by specifying the start times of the operations or, equivalently, the corresponding machine
orderings of the operations. Other representations are used too, especially in combination
with genetic algorithms.

To be able to define the neighborhood functions, we need some extra notions. Given an
instance and an operation v, jp(v) and js(v) denote the immediate predecessor and successor
of v in the precedence relation A, provided they exist. Given a feasible schedule S and an
operasion v, mps{v) and msg({v) denote the immediate predecessor and successor of v in
the orientation Qg, provided they exist. If the schedule 5 is clear from context, we delete
the superscript S. Furthermore, jp?(v) denotes jp(ip(v)), provided it exists, and a similar
notation is used for js, mpgs and msg. Two operations v and w are adjacent when S(v)+p(v) =
S{w). A block is a maximal sequence of size at least one, consisting of adjacent operations
that are processed on the same machine and belong to a longest path. An operation of a
block is internal if it is neither the first nor the last operation of that block.

Several neighborhood functions have been proposed in the literature. Most of these are
not defined on a schedule S itself but on the corresponding orientation Qg. If Qg is changed
into another feasible orientation (', Sy is the corresponding neighbor of S. In this way
neighbors of a given schedule are always left-justified.

The following properties [Balas, 1969; Matsuo, Suh & Sullivan, 1988; Nowicki & Smutnicki,
1993] are helpful in obtaining reasonable neighborhood functions.

1. Given a feasible orientation, reversing an oriented edge on a longest path in the corre-
sponding digraph results again in a feasible orientation.

2. If reversing an oriented edge of a feasible orientation € that is not on a longest path
results in a feasible orientation ', then Sg is at least as long as Sq.

3. Given a feasible orientation , reversing an oriented edge (v, w) between two internal
operations of a block results in a feasible schedule at least as long as Sg.

4. Given is a feasible orientation . If v is the first and w the second operation of the first
block of a longest path and w is internal, then reversing (v, w) results in a feasible schedule
at least as long as Sg. The same is true if w is the last and @ the second last operation of the
last block of a longest path and v is internal.

In view of these properties, the simplest neighborhood functions are based on the reversal
of exactly one edge of a given orientation. Van Laarhoven, Aarts & Lenstra [1992] propose
a neighborhood function ¥y which obtains a neighbor by reversing two adjacent operations
of a block. Matsuo, Suh & Sullivan [1988] use a neighborhood function Ni, with the same
reversals, except those involving two internal operations. Nowicki and Smutnicki [1993] use
a neighborhood function Ay, excluding from Ny, the reversal of the first two operations of
the first block when the second one is internal and the reversal of the last two operations of
the last block when the first is internal. For Ny, neither a schedule with one block only nor
one with blocks of size one only has a neighbor; note that such schedules are optimal.

Dell’Amico & Trubian [1993] propose several neighborhood functions that may reverse
more than one edge. Their neighborhood function N, obtains for any two operations v and
w = ms(v) on a longest path a neighboring orientation by permuting mp(v), v and w, or

by permuting v, w and ms(w), such that v and w are reversed and a feasible orientation
results, Their neighborhood function N;, excludes from N, the solutions for which both v
and w = ms(v) are internal. Their neighborhood function N3 considers blocks of size at least
two: a neighbor is obtained by positioning an operation v immediately in front of or after the
other operations of its block, provided that the resulting orientation is feasible; otherwise, v
is moved to the left or the right as long as the orientation remains feasible.

Adams, Balas & Zawack [1988] propose a neighborhood function ¥4 which may completely
change one machine ordering. For every machine M’ with an operation on a longest path, a
neighbor is obtained by replacing the orientation on M’ by any other feasible orientation.

The following neighborhood functions obtain a neighbor by changing several machine
orderings at the same time. Relatively small modifications are made by the neighborhood
function Ng of Matsuo, Suh & Sullivan [1988], which reorients at most three edges simul-
taneously. A neighbor is obtained by reversing two adjacent operations v and w = ms(v)
of a block (except when they are both internal} and in addition by reversing jp'(w) and
mp(ip*(w)) for some £ > 1 and by reversing js(v) and ms(53(v)). The latter reversals are
executed only if certain additional conditions are satisfied; see their paper for details. Aarts,
Van Laarhoven, Lenstra & Ulder [1994] use a variant Ns,, where t < 1.

Applegate & Cook [1991] propose a neighborhood function Ng which drastically changes
the given orientation. Their neighborhood contains all feasible orientations that can be ob-
tained by simultaneously replacing the orientation on m — ¢ machines by any other feasible
orientation. Here, ¢t is a small number depending on m.

Storer, Wu & Vaccari [1992] use completely different representations of schedules. These
are based on a modified version of the Giffler-Thompson algorithm (see Section 3.3). Suppose
that at a certain point the earliest possible completion time of any unscheduled operation
is equal to €' and is achieved by operation v, and that T is the earliest possible start time
on machine M(v). Then all unscheduled operations on M({») that can start no later than
T +38(C —T) are candidates for the next position on M(v). Here, é is a priori chosen in [0,1}
(in experiments 0, 0.05 or 0.1); if § approaches 1 all active schedules can be generated, while
d = 0 gives only so-called non-delay schedules. Two representations are defined.

The representation Ry represents a schedule by modified processing times for the oper-
ations. Using these, the modified Giffler-Thompson algorithm with the shortest processing
time rule as selection rule uniquely determines a feasible orientation €, and Sgq, computed
with the original processing times, is the corresponding schedule. The neighborhood func-
tion N7 now obtains a neighbor by increasing the processing times by amounts of time that
are independently drawn from a uniform distribution on (—@,6). Here, ¢ is a priori cho-
sen (in experiments 10, 20 or 50). The representation Rg represents a schedule by dividing
the scheduling horizon into several (in experiments 5, 10 or 20) time windows and assigning
one of a given set of dispatch rules to each window. The modified Gifler-Thompson algo-
rithm determines a schedule by applying the dispatch rule of the corresponding window. The
neighborhood function Nz changes the dispatch rule for 2 window of a given schedule.

Genetic algorithms use two types of representations: the natural one, which is also used for
most threshold and taboo search algorithms, and a more artificial one, using binary strings.

For the former type of representation Yamada & Nakano [1992] propose a hyper-neigh-
borhood function Ny which, given two schedules S and 57, determines a neighbor using the
Gifler-Thompson algorithm. When this algorithin has to choose from two or more operations,
it takes, for a small ¢ > 0, the operation that is first in & with probability 1;‘, the operation
that is first in S’ with probability].%‘, and a random operation from the other available

operations with probability .

Aarts, Van Laarhoven, Lenstra & Ulder [1994] propose a hyper-neighborhood function
Nyz. Given two schedules § and §', Ny, determines a neighbor by repeating the following
step |™*] times: choose a random arc (w,v) of S’ and change S by reversing arc (v, w),
provided it belongs to a longest path of 5.

The latter type of representation encodes a schedule or its orientation into a string over
a finite - usually binary - alphabet. Such representations facilitate the application of hyper-
neighborhood functions involving operations like ‘crossover’ and ‘mmtation’; see Goldberg
[1989, pp. 166-175]. There are a number of drawbacks, however. A schedule or orientation
may have several representatives, or none. Conversely, a string does not have to represent a
schedule, and if it does, it may be nontrivial to calculate the corresponding schedule. Although
attempts have been made to circumvent these difficulties, the hyper-neighborhood functions
that operate on strings often have no meaningful effect in the context of the underlying
problem. We will cousider genetic algorithms using string representations in less detail.

6 Constructive algorithms with local search

In this section we discuss the shifting bottleneck procedure and its variants. These algorithms
construct a complete schedule and apply local search to partial schedules on the way. A
partial schedule is characterized by a partial orientation © on a subset E' € E. Its length is
defined as the longest path length in the digraph (O, A U Q(E")).

The basic idea of the algorithmms described here is as follows. The algorithm goes through
m stages. At each stage, it orients all edges between operations on a specific machine. In this
way, at the beginning of any stage all edges related to some machines have been oriented,
while the edges related to the other machines are not yet oriented. Furthermore, at the end of
each stage, it applies iterative best improvement to the current partial schedule using neigh-
borhood function N4, which revises the orientation on a machine scheduled before. Orienting
or reorienting the edges related to one machine in an optimal way requires the solution of a
single-machine problem, where the partial schedule defines release and delivery times and de-
layed precedence constraints. The algorithms discussed hereafter mainly differ by the order in
which the m machines are considered, by the implementation of iterative best improvement,
and by the single-machine algorithin used.

The original shifting bottleneck procedure SBI of Adams, Balas & Zawack [1988] orients
at each stage the edges related to the bottleneck machine. This is the unscheduled machine
for which the solution value to the corresponding single-machine problem is maximum; the
delays between precedence-related operations are not taken into account. After scheduling
a machine, iterative best improvement is applied during three cycles. In each cycle each
scheduled machine is reconsidered once. The first ¢ycle handles the machines in the order in
which they were sequenced. After a cycle is completed, the machines are reordered according
to decreasing solution values to the single-machine problems in the last cycle. When all of
the machines have been scheduled, the cycles continue as long as improvements are found.
Furthermore, after a phase of iterative best improvement, the orientations on several ma-
chines that have no operations on a longest path are deleted, and then these machines are
rescheduled one by one.

Applegate & Cook [1991] use almost the same algorithm. The main difference is that at

each stage iterative improvement cycles continue until no further improvements are found.

Danzére-Peres & Lasserre [1993] were the first to take the delays between precedence-
related operations into account. They develop a heuristic for the single-machine problem
with delayed precedences and incorporate it into a shifting bottleneck variant.

Balas, Lenstra & Vazacopoulos [1994] develop an algorithm to solve the single-machine
problem with delayed precedences to optimality, and use it to determine the bottleneck ma-
chine in their shifting bottleneck procedure SB3. Their local search strategy differs from the
one of Adams, Balas & Zawack [1988] in some minor details; for instance, the number of
cycles is limited to six. Again, after scheduling a new machine, they first apply iterative im-
provement, then delete the orientations on several non-critical machines, and reschedule these
machines one by one. They also propose an extension SB4, which takes the best solution of
SB3 and a variant of SB3 that reverses the order of the two reoptimizations procedures: first
reschedule some non-critical machines, then apply regular iterative improvement. 5B4 needs
roughly twice the computation time of 5B3 but finds several better schedules.

The shifting bottleneck procedure and its variants have been incorporated into other al-
gorithms. Most of these employ some form of partial enumeration. Dorndorf & Pesch [1994]
embed a variant in a genetic algorithm; see Section 7.3.

Adams, Balas & Zawack [1988] develop an algorithm SBII, which applies SBI to the
nodes of a partial ennmeration tree. A node corresponds to a subset of machines that have
been scheduled in a certain way. In each of its descendants one more machine is scheduled.
The schedule is obtained by first solving the single-machine problem, with release and deliv-
ery times defined by the parent node, and then applying iterative improvement as in SBI.
Descendants are created only for a few machines with highest solution values to the single-
machine problem. A penalty function is used to limit the size of the tree. For details about
the branching rule, the penalty function and the search strategy we refer the reader to the
original paper.

Applegate & Cook [1991] develop an algorithm Bottle-¢, which employs partial enumera-
tion in a different way. Bottle-{ applies their shifting bottleneck variant described above as
long as more than ¢ machine are left unscheduled. For the last ¢ machines it branches by
selecting each remaining unscheduled machine in turn. The values £ = 4, 5 and 6 were tested.

7 TIterative algorithms with local search

The algorithius presented in this section start from one or more given feasible schedules and
manipulate these in an attempt to find better schedules. They can naturally be divided into
threshold algorithms, taboo search algorithms, and genetic algorithms.

7.1 Threshold algorithms

The basic threshold algorithms are iterative immprovement, threshold accepting, and simulated
annealing. We also consider some closely related variants. Unless stated otherwise, a schedule
is represented in the ordinary way by the starting times or the orientation.

lterative improvement is the simplest threshold algorithin. Aarts, Van Laarhoven, Lenstra
& Ulder [1994] test iterative improvement with the neighborhood functions Ny and Ns,. To
obtain a fair comparison with other algorithins they apply a multi-start strategy, i.e., they

run the algorithin with several randomly generated start solutions until a limit on the total
running time is reached, and take the best solution found over all individual runs.

The algorithm Shuffle of Applegate & Cook [1991] uses the neighborhood function Ng. At
each iteration, the schedule on a small number of heuristically selected machines remains fixed,
and the schedule on the remaining wachines is optimally revised by their branch-and-hound
algorithm ‘edge finder’. As initial solution they take the result of Bottle-5.

Storer, Wu & Vaccari [1992] propose a variant of iterative improvement, called PS10,
with representation R; and neighborhood fanction Ny. Given a solution, a fixed number of
neighbors (in experiments 100 or 200) is determined, the best one of which becomes the new
solution. They also test a standard iterative first improvement algorithm, called HSL10, with
representation Rs and neighborhood function ¥3. Neighbors are generated randomly and the
algorithm stops after a fixed number of iterations (in experiments 1000 or 2000).

Threshold accepting has only been implemented by Aarts, Van Laarhoven, Lenstra &
Ulder [1994]. Their algorithm TA1 uses the neighborhood function N,. Threshold values are
determined empirically.

Simulated annealing has been tested by several authors. Van Laarhoven, Aarts & Lenstra
[1992] use the neighborhood function Ny. Aarts, Van Laarhoven, Lenstra & Ulder [1994] use
Ny (algorithm SA1) and N, (algorithm SA2}.

Matsuo, Suh & Sullivan’s [1988] ‘controlled search simulated annealing’ algorithm CSSA is
a bi-level variant, which also incorporates standard iterative improvement. Given a schedule
S, a neighbor 5 is selected using the neighborhood function Ns. §” is accepted or rejected by
the simulated annealing criterion. In the latter case, 5/ is subjected to iterative improvement
using Ns again, and if the resulting local optimum improves on .5, it is accepted as the new
solution. Their method also differs from most other implementations of simulated annealing
in that the acceptance probability for a schedule that is inferior to the current schedule is
independent of the difference in schedule length.

7.2 Taboo search algorithms

The taboo search algorithm TS1 of Taillard [1994] uses the neighborhood function Ny. After
an arc (v, w) has been reversed, the reversal of w and its machine successor is put on the
taboo list. Every 15 iterations a new length of the taboo list is randomly selected from
a range between 8 and 14. The length of a neighbor is estimated in such a way that the
estimate equals the length of the new schedule when both operations involved are still on a
longest path, and that it is a lower bound otherwise. Then, from the permissible neighbors
the schedule of minimum estimated length is selected as the new schedule.

The algorithm TS2 of Barnes & Chambers [1994] also uses Ny. Their taboo list has a
fixed length. If no permissible moves exist, the list is emptied. The length of each neighbor
is calculated exactly, not estimated. A start solution is obtained by taking the best from the
active and non-delay schedules obtained by applying seven dispatch rules.

The algorithm TS3 of Dell’Amico & Trubian [1993] uses the union of the neighborhoods
generated by N, and N3;. The items on the taboo list are forbidden reorientations of arcs.
Depending on the type of neighbor, one or more such items are on the list. The length of
the list depends on the fact whether the current schedule is shorter than the previous one
and the best one, or not. Furthermore, the minimal and maximal allowable lengths of the
list are changed after a given number of iterations. When all neighbors are taboo and do not
satisfy the aspiration criterion, a random neighbor is chosen as the next schedule. A start

10

solution is obtained by a procedure called ‘bidir’, which applies list scheduling simultaneousty
from the beginning and the end of the schedule, i.e., an operation is available when all of its
predecessors or all its successors have been scheduled.

Nowicki & Smutnicki [1993] introduce an algorithm TSAB that combines taboo search
with a backtracking scheme. In the taboo search part of their algorithm, the neighborhood
function is a variant of Ny, which only allows reorientations of arcs on a single longest path.
The items on the taboo list are forbidden reorientations of arcs. The length of the list is fixed
to 8. If no permissible neighbor exists, the following is done. If there is one neighbor only,
which as a consequence is tahoo, this one becomes the new schedule. Qtherwise, the oldest
items on the list are removed one by one until there is one non-taboo neighbor, and this one
is chosen. A start solution is obtained by generating an active schedule using the shortest
processing time rule or an insertion algorithm.

The backtracking scheme forces the taboo search to restart from promising situnations
encountered before. Suppose that at a certain point a new best schedule 5 is found. Let
R(S) be the set of feasible arc reversals in 5, let T bhe the new taboo list, including the
inverse of the reversal needed to ohtain 5, and let r be the reversal that will be made in the
next iteration. Then, if |[R(S)| > 2, the triple (5, R(5)\ {r},T) is stored on a list. This list
has a maximum length of 5; if it is full, the oldest triple is deleted before a new oune is stored.
Each time the taboo search algorithm stops (by reaching a maximum number of iterations
without improving the best schedule), the backtracking scheme initiates a new round of taboo
search starting from the schedule, the set of reversals and the taboo list of the last stored
triple. When the set of reversals has one element only, the triple is deleted from the list;
otherwise, it is replaced by the same triple with the reversal that will be made in the next
iteration excluded. Note that during this new round new triples can be added to the list.

7.3 Genetic algorithms

The genetic algorithm GA1 of Yamada & Nakano [1992] determines for every chosen pair
of schedules of the current population, two hyper-neighbors by using Nj,;. From these four
schedules two are selected for the next population: first the best schedule is chosen, and next
the best unselected hyper-neighbor is chosen.

Aarts, Van Laarhoven, Lenstra & Ulder [1894] propose a genetic algorithm that incorpo-
rates iterative first improvement. In each iteration there is a population of solutions that are
locally optimal with respect to either N (algorithin GLS1) or Ns, (algorithm GLS2). The
population is doubled in size by applying Np» to randomly selected pairs of schedules of the
population. Fach hyper-neighbor is subjected to iterative first improvement, using Ny or N,
and the extended population of local optima is reduced to its original size by choosing the
best schedules. Then a next iteration is started. Start solutions are generated randomly, and
iterative first improvement is applied to them before the genetic algorithim is started.

In the work of Davis [1985], Falkenauer & Bouffouix [1991] and Della Croce, Tadei & Volta
[1994] a string represents for each machine a preference list, which defines a preferable order-
ing of its operations. From such a list a schedule is calculated. Davis [1985] and Falkenauer
& Bouffouix [1991] restrict themselves to non-delay schedules; Della Croce, Tadei & Volta
[1994] are able to represent other schedules as well. Falkenauer & Bouffouix [1991] and Della
Croce, Tadei & Volta [1994] use the linear order crossover as hyper-neighborhood function.
See the original papers for details.

11

Nakano & Yamada [1991] consider problem instances with exactly one operation for each
Job-machine pair. For each machine and each pair of jobs, they represent the order in which
that machine executes those jobs by one bit. Thus, a schedule is represented by a string of
Mg;]l bits. Since such a string may not represent a feasible orientation, they propose a
method for finding a feasible string that is close to a given infeasible one. Two hyper-neighbors
are obtained by cutting two strings at the same point and exchanging their left parts.

Dorndorf & Pesch [1994] propose a ‘priority rule based genetic algorithm’ P-GA, which
uses the Giffler-Thompson algorithm. They use a string (pq,...,2—1), where p; is a dispatch
rule that resolves conflicts in the ¢th iteration of the algorithm. Two hyper-neighbors are
obtained by cutting two strings at the same point and exchanging their left parts. These
authors also propose a second genetic algorithm, called SB-GA, which uses a shifting bot-
tleneck procedure (see Section 6). A solution is represented by a sequence of the machines.
A corresponding schedunle is generated by a variant of SBI: each time it has to select an
unoriented machine, it chooses the first unoriented machine in this sequence. The hyper-
neighborhood function used is the cycle crossover; see Goldberg [1989, p. 175]. In contrast to
SBI, reoptimization is applied only when less than six machines are left unscheduled.

8 Other techniques

8.1 Constraint satisfaction

Counstraint satistisfaction algorithms consider the decision variant of the job shop scheduling
problem: given an overall deadline, does there exist a feasible schedule meeting the deadline?
Most algorithms of this type apply tree search and construct a schedule by assigning start
times to the operations one by one. A consistency checking process removes inconsistent
start times of not yet assigned operations. If it appears that a partial schedule cannot be
completed to a feasible one, a dead end 1s encountered, and the procedure has to undo several
assignments. Variable and value ordering heuristics determine the selection of a next operation
and its start time. The algorithm stops when a feasible schedule meeting the deadline has
been found or been proved not to exist. Note that it is also possible to establish lower bounds
on the optimum with this technique.

Sadeh [1991] developed an algorithm of this type, but its performance was poor. Nuijten,
Aarts, Van Erp Taalman Kip & Van Hee [1993] improved it by designing new variable and
value orderings and extensive consistency checking technigues. The resulting algorithm im-
proved upon Sadeh’s method in terms of both solution quality and speed, but still could not
compete with the hest job shop scheduling algorithms. The authors therefore modified their
algorithm such that, when a dead end occurs, it restarts the search from the beginning, and
they also randomized the selection of a next operation and its start time. Their ‘randomized
constraint satisfaction’ algorithm RCS performs quite well.

8.2 Neural networks

Foo & Takefuji [1988a,b] describe a solution approach based on the deterministic neural
network model with a syminetrically interconnected network, introduced by Hopfield & Tank
[1985]. The job shop scheduling problem is represented by a 2-dimensional matrix of neurons.
Zhou, Cherkassky, Baldwin, & Olson [1991] develop a neural network algorithm which uses
a linear cost function instead of a quadratic one. For each operation there is one neuron in

12

the network, and also the number of interconnections is linear in the number of operations.
The algorithm unproves the results of Foo & Takefuji both in terms of solution quality and
network complexity. Altogether, applications of neural networks to the job shop scheduling
problem are at an initial stage, and the reported computational results are poor upto now.

9 Computational results

The computational merits of job shop scheduling algorithms have often been measured by their
performance on the notorious 10 x 10 instance FT 10 of Fisher & Thompson [1963]. Applegate
& Cook [1991] found that severa] instances of Lawrence [1984] (LA21, LA24, LA25, LA27,
LA29, LA38, LA40) pose a more difficult computational challenge. We have included the
available computational results for these instances and, in addition, for two relatively easy
instances (LA2, LA19) and for all remaining 15 x 15 instances of Lawrence (LLA36, LA37,
LA39). Each of these 13 instances has exactly one operation for each job-machine pair.

Tables 2 and 3 present the computational results for most algorithms discussed in Sec-
tions 6, 7 and 8, as far as these are available from the literature. Table 2 gives the schedule
lengths obtained and Table 3 the corresponding running times.

In Table 2 the values UB and LB are the best known upper and lower bounds for the
corresponding instances. For each method mentioned, a superscript b followed by a number
z indicates that the results reported are the best ones obtained after z runs of the algorithm.
If a superscript m occurs, the results reported are means over several runs. A superscript 1
indicates that the results reported are obtained by a single run. A hyphen denotes that no
result is available. Furthermore, for each method and for each instance, we computed the
relative error, i.e., the percentage that the best solution value found is above LB. For each
algorithm, the values MRE and SRE are the mean relative error and the standard deviation
of the relative error. Note that UB has already an MRE of 0.40.

Table 3 gives the CPU-times for the corresponding results of Table 2. If the result in
Table 2 is a mean over several runs, the average CPU-time of a single run is given; if it is
a best result over several runs, the total CPU-time is given. The value SCT is the sum of
CPU-times over all instances; it was estimated if not all individual CPU-times were available.
Also the computer used is mentioned. For each algorithm, the value CISCT is a computer-
independent sum of CPU-times, computed using the work of Dongarra [1993].

Figure 1 shows for each algorithin the mean relative error and the corresponding computer-
independent sum of CPU-times. Note that the time-axis has a logarithmic scale.

The shifting bottleneck procedure SBI of Adams, Balas & Zawack [1988] is fast but gives
poor results. The variants SB3 and SB4 of Balas, Lenstra, & Vazacopoulos [1994], which
take the delayed precedences into account, clearly give better results. The algorithm SBII of
Adams, Balas & Zawack [1988], which uses partial enumeration, also improves upon SBI. Ap-
plegate & Cook [1991] obtain reasonable results with their algorithms Bottle-5 and Bottle-6.
Note that the values given in Tables 2 and 3 do not correspond to those presented in their
paper. We computed our values using the enumeration scheme described in their paper; their
values were obtained using a different scheme [Applegate & Cook, 1993]. The results suggest
that the straight shifting bottleneck procedure (as in SBI, SB3 and 5B4) benefits from some
form of partial enumeration (as in SBII and Bottle-t).

Among threshold algorithms the best results are obtained by the simulated annealing

13

71

Table 2: Performance comparison of various algorithms: schedule lengths for 13 instances

Authors Algorithm FT10 [LA2 [LA19 [LA21 [LA24 [LA25 | LA27 | LA20 | LA36 | LA37 | LA38 | LA39 | LA40 | MRE [SRE
UB 0930 | 655 | 842 | 1046 | 035 | 0977 | 1236 | 1160 | 1268 | 1397 | 1196 | 1233 | 1222 | 0.40 | 1.00
LB 930 | 655 | 842 | 1040 | 935 [977 | 1235 | 1120 1268 | 1397 | 1184 | 1233 | 1222

AdamsBZ | SBI! 1015 | 720 | 875 | 1172 [1000 | 1048 | 1325 | 1294 | 1351 | 1485 | 1280] 1321] 1326 | 8.41 | 2.98
BalasLV SBat 981 | 667 | 902 | 1111 | 976 | 1012 | 1272 | 1227 | 1319 | 1425 | 1318 | 1278 | 1266 | 5.11 | 2.87
BalasLV SB4! 940 | 667 | 878 | 1071 | 976 | 1012 | 1272 | 1227 | 1319 | 1425 | 1204 | 1278 | 1262 | 4.07 | 2.57
AdamsBZ | SBII 030 | 669 | 860 | 1084 | 976 | 1017 | 1291 | 1239 | 1305 | 1423 | 1255 | 1273 | 1260 | 3.85 | 2.54
AppleCook | Bottle-4* 938 | 667 | 863 | 1094 | 983 | 1020 1307 | 1220 | 1326 | 1444 | 1299 | 1301 | 1295 { 4.98 | 2.52
AppleCock | Bottle-5! 938 | 662 | 847 ; 1084 | 983 | 1001 | 1288 | 1220 | 1316 | 1444 | 1299 | 1201 | 1295 | 4.24 | 2.81
AppleCook | Bottle-6! 938 -] 842 1084 | 958 7 1001 | 1286 | 1218) 1299 | 1442 | 1268 | 1279 | 1255 | 3.51 | 2.42
AppleCook | Shufflel! 938 | 655 | 842 | 1065 | 971 | 997 | 1280 | 1219 | 1295 | 1437 | 1294 | 1268 [1276 | 8.25 | 2.93
AppleCook | Shuffle2! 938 | 655 | 842 | 1046 | 965 | 992 | 1269 | 1191 | 1275 | 1422 | 1267 | 1257 | 1238 | 2.14 | 2.23
StorerWy | PS101 976 - - - - - - . - - . - -

StorertWV | HSL10! 1006 . - - - - - - - - - - .

AartsVLU | TAI™S 1003 | 693 | 925 | 1104 | 1014 | 1075 | 1289 | 1262 | 1385 | 1469 | 1323 | 1305 | 1295 | 7.93 | 2.64
VLaarAL | SA™® 985 | 663 | 853 | 1067 | 966 | 1004 | 1273 | 1226 | 1300 | 1442 | 1297 | 1258 | 1247 | 3.32{ 2.20
VLiaarAL | SA® 951 | 655 | 848 | 1063 | 952) 092 | 1269 | 1218 | 1293 | 1433 | 1215 | 1248 | 1234 | 2.26 | 2.11
AartsVLU | SA1™S 969 | 669 | 855 | 1083 | 962 | 1003 | 1282 | 1233 { 1307 | 1440 | 1235 | 1258 | 1256 | 3.59 | 2.14
AartsVLU | SA1li— - - - | 1053 | 935 | 983 1249 | 1185 - - | 1208 - | 1225 | 1.07 ¢ 1.55
AartsVLU | SA2mS 977 | 658 | 854 1 1078 | 960 | 1019 | 1275 | 1225 | 1308 | 145t | 1243 | 1263 | 1254 | 363 | 2.16
MatsuoSS | CSSA! 046 | 655 | 842 | 1071 | 973 [991 | 1274 | 1196 | 1292 | 1435 | 12311 1251 | 1235 | 240 | 1.86
Taillard TS1% 930 - | 1047 X - [T1240 | 1170 - 1 1202 - -

BarnesC TS2! 935 | 655 | 843 | 1053 | 946 | 988 | 1256 | 1194 | 1278 | 1418 | 1211 | 1237 | 1239 | 1.45| 1.68
Dell’AT TS3™S 935 | 655 | 846 | 1057 | 943 | 980 | 1252 | 1194 | 1289 | 1423 | 1210 | 1254 | 1235 | 1.56 | 1.66
Dell’AT TS3%5 935 | 655 | 842 | 1048 [941 979 | 1242 | 1182 | 1278 | 1409 | 1203 | 1242 | 1233 { 1.01 | 1.42
NowickiS | TSAB! 930 | 655 | 842 | 1055 | 948 | 988 | 1259 | 1164 ; 1275 | 1422 | 1209 | 1235 | 1234 | 1.19 ! 1.12
NowickiS | TSAB® 930 | 655 | 842 | 1047 | 939 | 977 | 1236 | 1160 | 1268 | 1407 | 1196 | 1233 | 1229 | 0.54 | 0.98
YamadalN G A 14600 930 - - - - - - - - - - - -

AartsVLU | GLS1™S 978 | 668 | 863 [1084 | 970 | 1016 | 1303 | 1290 | 1324 | 1449 | 1285 | 1279 [1273 | 5.14 | 3.40
AartsVLU | GLS§2™5 982 | 659 | 859 | 1085 { 981 | 1010 | 1300 ¢ 1260 | 1310 | 1450 | 1283 | 1279 1260 | 4.69 | 2.99
AartsVLU | GLS2it—0o - - S| 1055 | 938 | 985 | 1265 | 1217 - - | 1248 - | 1233

DellaTV GAgm3 965 - S| 1113 - - - - | 1330 - - - -

DellaTV GA2P 946 - -1 o1097 - - - - | 1305 - - - -

NakanoY GA3! 965 - - - - - - - - - - - -

DornPesch | P-GA! 960 | 681 | 880 | 1139 | 1014 | 1014 | 1378 | 1336 | 1373 | 1498 | 1296 | 1351 | 1321 | 8.23 | 4.24
DornPesch | SB-GA(40)™2 | 938 | 666 | 863 | 1074 | 960 | 1008 | 1272 | 1204 | 1317 | 1484 | 1251 | 1282 | 1274 | 3.74 | 1.84
DornPesch | SB-GA(60)™? - | 848 1 1074 | 957 | 1007 | 1269 | 1210 | 1317 | 1446 | 1241 | 1277 | 1252 | 3.49 | 1.82
NuijtAVY | RCS™ 930 | 655 | 843 [1069 942 981 | 1285 | 1231 | 1292 | 1411 | 1278 | 1238 | 1247 | 2.41 | 3.16

Table 3: Performance comparison of various algorithms: computation times for 13 instances

Author Method FT10 | LA2 | LA19 | LA21 | LA24 | LA25 | LA27 | LA29 | LA36 | LA37 | LA38 | LA39 | LA40 SCT | computer CISCT
AdamsBZ [SBI* 10.10 | 1.69 | 7.40 2.19 25.5 27.9 45.5 48.0 46.9 61.4 7.7 71.8 76.7 482.8 | VAX 780/11 6.0- 10!
BalasLV SB3! 582 | 0.80 | 4.33 | 10.92 | 10.82 | 13.00 | 19.42 | 21.10 | 27.80 | 26.25 | 29.63 | 25.40 | 26.23 221.6 | Sparc 330 5.5-10%
BalasLVy SB4! 11.17 | 1.43 | 880 | 19.88 | 19.82 | 22.70 | 37.90 | 39.00 | 55.83 | 53.28 | 59.26 | 50.63 | 52.41 432.1 | Sparc 330 1.1-10%
AdamsBZ SBII! 851 | 12,5 240 362 434 430 837 802 735 837 1079 669 8056 10742 | VAX 780/11 1.3-10°
AppleCook | Bottle-4! 6.8 1.3 | 105 17.5 25.9 21.6 314 31.5 22.6 13.7 46.5 41.7 22.4 293.4 | Sparc st'n ELC 7.3-10%
AppleCook | Bottle-A! 7.1 7.8 64.8 46.4 62.7 48.5 92.1 914} 152.9 56.4 05.7 | 134.3 23.7 883.8 | Sparc st'n ELC 2.2-10%
AppleCook | Bottle-6! 7.6 - | 201.5 | 300.7 | 200.0 | 100.4 | 666.5 | 280.4 | 320.7 | 561.7 | 181.6 | 191.9 | 154.1 3175 | Sparc st'n ELC 7.9.10°%
AppleCook | Shuffiel! 247 | 79| 727 | 954.8 | 4214 74.2 97.6 94.6 | 170.9 64.0 | 103.7 | 178.1 42 6 2307 | Sparc st’'n ELC 5.8-10°
AppleCook | Shuffle2! 247 | 7.9 727 | 87478 | 65422 98.2) 604.2) 15358) 3348 | 1577 | 17799 | 6745 | 150.1 | 198685 | Sparc st'n ELC 5.0-10°
StorerWV | PS10! - - - - - - - - - - - -

StorerWV | HSL1Q! - - - - - - - - - - - -

AartsVLU | TA1™S 994 | 18.6 03.8 | 243.4 | 2348} 254.8 | 492.0 | 471.0 | 602.2 | 636.2 | 635.6 | 592.2 | 596.8 4971 | VAX 8650 35103
VLaarAL SA™S 779 | 117 830 | 1991 | 2098 | 2133] 4535 | 4408 | 5346 | 5287 | 5480 [5766 | 5373 | 44143 | VAX 785 8.4-10°
VLaarAL SAPS 3805 | 585 | 4150 | 9955 | 10490 | 10665 | 22675 | 22040 | 26730 | 26435 | 27400 | 28830 | 26865 | 2207156 | VAX 785 4.2.10%
AartsVLU | SA1™S 994 | 186 | 93.8| 243.4 | 2348 | 254.8 | 402.0 | 471.0 | 602.2 | 636.2 | 635.6 | 592.2 | 596.8 4971 | VAX 8650 3.5-108
AartsVLU | SA1LI—= - - - - - - 4.10% | VAX 8650 3.10°
AartsVLU | SA2™® 9%3.4 | 18.6 938 | 243.4 | 234.8 | 254.8 | 492.0 | 471.0 | 602.2 | 636.2 | 635.6 | 592.2 | 596.8 4971 | VAX 8650 3.5-10°%
MatsuoSS | CSSA! 987 | 3.03 115 205 199 180 286 267 624 57T 672 660 603 5378 | VAX 780/11 6.7-10°
Taillard TS1% - - - - - - - -

BarnesC TS2! 15.8 | 28.9 | 217.1 | 173.5 2771 176.1 | 248.2 | 1956 | 221.4 | 232.0 | 180.9 | 258.7 89.5 2065 | IBM RS 6000 2.5- 104
Dell’AT TS3ms 155.8 | 18.8 | 103.8 | 1988 | 181.8 | 191.7 | 254.2 | 281.3 | 2384 | 242.2 | 256.6 i 237.8 | 236.6 2598 | PC 386 1.3-108
Dell’AT TS3% 779.0 | 94.0 | 519.0 | 994.0 | 909.0 | 958.5 [1271 | 1407 | 1192 | 1211 | 1283 | 1189 | 1183 | 12989 | PC 386 8.5-103
NowickiS TSAB! 30 8 60 21 184 155 66 403 623 443 165 325 322 28905 | AT 386 DX 1.4-103
NowickiS | TSAB®® 8685 | AT 386 DX 4.3-10°
YamadaN | GA1%°0¢ 36-10° - - - - - - - - - - - - Sparc st'n 2

AartsVLU | GLS1™5 994 | 186 | 93.8 | 2434 | 234.8 | 254.8 | 492.0 | 471.0 | 602.2 | 636.2 | 635.6 | 592.2 | 596.8 4971 | VAX 8650 3.5.10°%
AartsVLU | GLS2™8 99.4 | 186 | 93.8 | 2434 | 2348 | 254.8 | 492.0 | 471.0 | 602.2 | 636.2 | 635.6 | 592.2 | 596.8 4971 | VAX 8650 3.5-103
AartsVLU | GLS2bt—ee - - - - - - 4104 | VAX 8650 3.104
DellaTV GA2™M3 628 - - | 1062 - - - - | 1880 - - - - PC 486/25

DellaTV GA2!8 1884 - - | 3186 - - - - | 5640 - - - - PC 486/25

NakanoY GAS - - - - - - - - - - - -

DornPesch | P-GAl 932.6 108 191 352 352 350 565 570 524 520 h2b 525 526 6041 | DEC station 3100 | 9.7 -103
DornPesch | SB-GA(40)™? | 106.7 | 16.4 | 77.4 | 134.8 | 137.3 | 134.2 | 242.5 | 241.0 | 3356 | 350.5 | 335.7 | 327.2 | 348.0 2787 | DEC station 3100 { 4.5.103
DornPesch | SB-GA(60)™? - -1 161.3 | 292.8 | 289.0 | 228.9 | 446.2 | 453.1 | 688.1 | 665.9 | 665.9 | 687.5 | 698.4 5523 | DEC station 3100 | 8.8 103
NuijtAVV | RCS™ 1279 64 | 1176 | 4313 | 2610 | 5167 | 5781 | 3336 | 6691 | 3860 | 5747 | 5059 | 4208 | 49291 | Sparc st’'n ELC 1.2.10

MRE (%)
9 4
.SBI!
P-GA!
8 TAL™S
7]
6 J
SB3! .GLS1™®
54 -Bottle-41
LGL§2™
.Bottle-5!
A .SB41
| ' 1 ¥ 1 LY
G fszg SB-CIA(40)"2
Bottle-6' ° :SAl
. _SAmS
3] Shuffel!
SB-GA(60)™
Erelal ‘65
LSSAl SAbs.RCS
: Shuffle2!
2 1
m5
TS53 TS2!
' 1
1] TSAB TS3b5 SA e
.TSAB®
0 j b B J E r j ! 2
10° 10! 102 103 104 10° 104 CISCT (sec)

Figure 1: Relation between mean relative error and computer independent sum of CPU-times

16

algorithm of Aarts, Van Laarhoven, Lenstra & Ulder [1994] and the iterative improvement
algorithm Shuffle of Applegate & Cook [1991].

Regarding iterative tmprovement, Aarts, Van Laarhoven, Lenstra & Ulder {1994] report
that their multi-start algorithm is inferior to threshold accepting and simulated annealing.

Applegate & Cook’s Shuffle algorithmm works well, due to a neighborhood function that
allows major changes in the schedule. We used our own outcomes of Bottle-5 as start solutions.
The number ¢ of machines to fix was chosen such that edge finder could rapidly fill in the
remainder of the schedule. We set t=1 for the instances FT10, LA2 and LA19, t=2 for LA21,
LA24 and LA24, and t=5 for the other instances. The results for these values of ¢ are reported
under Shufflel. We also carried out some more time consuming runs with {=1 for FT10 and
LA2-LA24, {=3 for LA29, LA36 and LA37, and =4 for LA27, LA38, LA39 and LA40. The
outcomes, reported under Shuflle2, are good but expensive.

Storer, Wu, & Vaccari [1992] give very few computational results for their variants of
iterative improvement. Their results for the instance FT10 are poor. It seems that their
search strategy or their neighborhood function is not powerful enough.

The threshold accepting algorithm of Aarts, Van Laarhoven, Lenstra & Ulder [1994] com-
petes with their simulated annealing algorithm in case simulated annealing finds an optimal
schedule. Otherwise, threshold accepting is outperformed by simulated annealing. Almost alt
instances in our table belong to the latter category.

The simulated annealing algorithm of Van Laarhoven, Aarts & Lenstra {1992] produces
reasonable results. Five runs on FT10 with a standard setting of the cooling parameters
produced an average schedule length of 985.8, with a minimum of 951; a much slower cooling
schedule yields solution values of 930 (twice), 934, 935 and 938. Reasonable results are also
obtained by the simulated annealing algorithm of Aarts, Van Laarhoven, Lenstra & Ulder
{1994] with a standard cooling schedule, but an extremely slow cooling schedule gives very
good results. To compute MRE and SRE for the latter cooling schedule, we estimated the
values for the missing entries. It is remarkable that their algorithm with the standard ccoling
schedule has a similar behaviour for the neighborhood functions Ny (SA1) and Nj, (SA2).
Good results are obtained by the simulated annealing variant CSSA of Matsuo, Suh, &
Sullivan [1988]. In comparison to other approximative approaches, simulated annealing may
require large running times, but it yields consistently good solutions with a modest amount
of human implementation effort and relatively little insight into the combinatorial structure
of the problem type under consideration.

The advent of taboo search has changed the picture. Methods of this type produce excellent
solutions in reasonable times, although these benefits come at the expense of a non-trivial
amount of testing and tuning. Although few data are available, Taillard’s [1994] algorithm
T51 seems to perform extremely well. Also very good results are obtained by algorithm TS2
of Barnes & Chambers [1991]. Dell’Amico & Trubian’s [1993] algorithm TS3 obtained even
better results. Apparently, their complicated neighborhood function is very effective. The
algorithm TSAB of Nowicki & Smutnicki {1993], which applies taboo search and traces its
way back to promising but rejected changes, is the current champion for job shop scheduling.
For our 13 instances it achieves a mean relative error of only 0.54 %.

For many genetic elgorithms no results for our 13 instances are avallable. Sometimes,
only the result for FT10 is given. Yamada & Nakano {1992] found a schedule of length 930
four times among 600 trials. They also tested their algorithm GAl on four 20-job 20-machine
instances, but their outcomes are on average 5.9 % above the best known upper bounds
[Wennink, 1994]. The results obtained by Aarts, Van Laarhoven, Lenstra & Ulder [1994] are

17

not very strong. Their algorithm GLS2 (using neighborhood function Ns,) performs slightly
better than GLS1 (using Nq).

As for genetic algorithms using string representations, the results obtained by Della Croce,
Tadei, & Volta’s [1994] algorithm GA2 and by Nakano & Yamada’s [1991] algorithin GA3
are poor. The algorithin P-GA of Dorndorf & Pesch [1994] is even worse. Their algorithm
SB-GA, which incorporates a shifting hottleneck variant, produces reasonable results. Values
are reported for runs with population sizes of 40 and 60.

The constraint satisfaction algorithm of Nuijten, Aarts, Van Erp Taalman Kip & Van Hee
[1993] produces good results but needs a lot of time. For the neural network approaches no
computational results are available that allow a proper comparison with other techniques.

10 Conclusion

10.1 Review

Current optimization algorithms for job shop scheduling can handle problem instances no
harder than the 15 x 15 instances of Lawrence in reasonable amounts of running time. If one
wants to obtain approximate solutions to larger instances, one has to resort to local search.

From the local search algorithms discussed in this survey, taboo search seems to work best.
For the 13 instances investigated, the algorithm of Nowicki & Smutnicki, which combines
taboo search with backtracking, outperforms the other local search algorithms developed so
far. Also the implementations of taboo search by Dell’Amico & Trubian and of simulated
annealing by Aarts, Van Laarhoven, Lenstra, & Ulder perform very well, but the latter only
if large running times are allowed.

The various shifting bottleneck procedures produce schedules of moderate quality. Better
results are obtained in combination with some type of local search or backtracking.

Genetic algorithms have a poor performance until now. Often the neighborhood function
applied in combination with the schedule representation chosen does not generate meaningful
changes and it is hard to find improvements. Only when some kind of standard local search
is embedded at a second level, the computational results are satisfactory.

10.2 Preview

There is still considerable room for improving local search approaches to the job shop schedul-
ing problem. As shown in Figure 1, none of the existing algorithms achieves an average error
of less than 2% within 100 seconds. And our benchmark instances are still small ones.

We have observed that many approaches operate at two levels, with, for instance, schedule
construction, partial enumeration or local search with big changes at the top level, and local
search with smaller changes at the bottom level. Such hybrid approaches are in need of a
more systematic investigation. The type of backtracking proposed by Nowicki & Smutnicki is
a promising technique and can be combined with almost any local search algorithm without
difficulties. It might also be interesting to design a three-level approach with neighborhoods
of smaller size towards the bottom.

The flexibility of local search and the results reported here provide a promising basis for
the application of local search to more general scheduling problems. An example of practi-
cal interest is the multiprocessor job shop, where each production stage has a set of parallel

18

machines rather than a single one. Finding a schedule involves assigment as well as sequencing
decisions. This is a difficult problem, for which no effective solution methods exist.

Applying local search to large instances of scheduling problems requires the design of data
structures that allow fast incremental computations of, for example, longest paths. Johnson
[1990] has shown that sophisticated data structures play an important role in the application
of local search to large traveling salesman problems.

Our survey has been predominantly of a compntational nature. There are several related
theoretical questions about the complexity of local search. A central concept in this respect
is PLS-completeness [Johnson, Papadimitriou, & Yannakakis, 1988]. Many of the neighbour-
hood functions defined in Section 5 define a PLS-problem, which may be PLS-complete. There
are also complexity issues regarding the parallel execution of local search. For example, for
some of the neighborhood functions it may be possible to verify local optimality in polylog
parallel time.

References

E.H.L. Aarrs, P.J.M. vAN LaarRHOVEN, J.K. LENsTRA, N.L.J. ULDER (1994), A computational
study of local search algorithms for job shop scheduling, ORSA J. Compul., to appear.
J. Apams, E. Bavas, D. Zawack (1988}, The shifting bottleneck procedure for job shop scheduling,
Management Sei. 84, 391-401.
S.B. AKERS (1956), A graphical approach to production scheduling problems, Oper. Res. 4, 244-245.
D. ApPLEGATE, W. CooK (1991), A computational study of the job-shop scheduling problem, GRSA
J. Comput. 3, 149-158.
D. APPLEGATE, W. CooK (1993), Personal communication.
K.R. BAKER, Z.-S. Su {1974}, Sequencing with due-dates and early start times to minimize maxi-
mum tardiness, Naval Res. Logist. Quart, 21, 171-176.
E. BaLas (1969), Machine sequencing via disjunctive graphs: an implicit enumeration algorithm,
Oper. Res. 17, 941-957.
E. Baras (1985), On the facial structure of scheduling polyhedra, Math. Programming Stud. 24, 179-
218,
E. Bavras, J.K. LENSTRA, A. VazacorouLos (1994), One machine scheduling with delayed prece-
dence constraints, Management Sci., to appear.
J.W. Barngs, J.B. CHAMBERS (1994), Solving the job shop scheduling problem using tabu search,
HE Trans., to appear.
P. BRATLEY, M. FLoRIAN, P. ROBILLARD (1973), On sequencing with earliest starts and due dates
with application to computing bounds for the {n/m/G/Fy.,) problem, Naval Res. Logist. Quart.
20, 57-67.
P. BRUCKER {1988), An efficient algorithm for the job-shop problem with two jobs, Computing 40,
353-350.
P. BRUCKER, B. JuriscH, B. SIEVERS (1994), A branch & bound algorithm for the job-shop sched-
uling problem, Discrele Appl. Math. to appear.
. CaARLIER (1982), The one-machine sequencing problem, Furopean J. Oper. Res. 11, 42-47.
. CARLIER, E. Pinson (1989), An algorithm for solving the job-shop problem, Management Sci. 35,
164-176.
. CARLIER, E. PiNson (1990), A practical use of Jackson’s preemptive schedule for solving the job-
shop problem, Ann. Oper. Res. 26, 269-287.
V. CERNY (19835), Thermodynamical approach to the traveling salesman problem, J. Optim. Theory
Appl. 45, 41-51.
. Davis (1985), Job shop scheduling with genetic algorithms. J.J. GREFENSTETTE (ed.) (1985),
Proceedings of an Iniernalional Conference on Genetic Algerithms and Their Applications, Carne-

L

[

=

19

gie-Mellon University, Pittsburgh, Pennsylvania, 136-140.

S. DavzERE-PERES, J.-B. LASSERRE {1993}, A modified shifting bottleneck procedure for job-shop
scheduling, Int. J. Prod. Res. 31, 923-932.

F. DELLA Crock, R. Tapel, G. VoLTa (1994), A genetic algorithm for the job shop problem, Com-
pul. Oper. Res., to appear.

M. DELL’AMIcO, M. TruBian (1993), Applying tabu search to the job-shop scheduling problerm,
Ann. Oper. Res. 41, 231-252.

J.J. DoNGaRRA (1993), Performance of various computers using standard linear equations seftware,
Report C5-89-85, Computer Science Department, University of Tennessee, Knoxville, Tennessee.

U. DornDORF, E. PEscH (1994), Evolution based learning in a job shop scheduling environment,
Compul. Oper. Res., to appear.

(. DUECK, T. SCHEUER (1990), Threshold accepting; a general purpose optimization algorithm, J.
Comput. Phys. 90, 161-175.

E. FALKENAUER, 5. Bourrourx (1991), A genetic algorithm for job shop, Proceedings of the 1991
IEEE Internationtal Conference on Robotics and Aulomalion, IEEE Computer Society Press, Los
Alamitos, California, 824-829.

M.L. FISHER, B.J. LacEwWEG, J.K. LENnsTRA, A.H.GG. RiNNooY KaN (1983), Surrogate duality re-
laxation for job shop scheduling, Discrele Appl. Matk. 5, 65-75.

H. FisuEr, G.L. THoMmPsoN (1963), Probabilistic learning cormbinations of local job-shop schedul-
ing rules. J.F. Mure, G.L. THoMPsoN (eds.) (1963}, Industrial Scheduling, Prentice Hall,
Englewood Cliffs, New Jersey, 225-251.

Y.P.S. Foo, Y. TaKerun (1988a), Stochastic neural networks for solving job-shop scheduling: part
1. Problem representation, IEEE International Conference on Neural Networks, IEEE San Diego
section & IEEE TAB Neural Network Committee, San Diego, California, 275-282.

Y .P.S. Foo, Y. TAkeruaI (1988b), Stochastic neural networks for solving job-shop scheduling: part
2. Architecture and simulations, IEEE International Conference on Neural Networks, IEEE San
Diego section & IEEE TAB Neural Network Committee, San Diego, California, 283-290.

B. GIFFLER, G.L. THoMmPsoN (1960), Algorithms for solving production scheduling problems, Oper.
Res. 8, 487-503.

F. GLover (1989), Tabu Search - Part [, ORSA J. Comput. I, 190-206.

F. GLoVER {1990), Tabu Search - Part II, ORSA J. Compul. 2, 4-32.

F. GLovEr, E. TAILLARD, D. DB WERRA (1993), A user’s guide to tabu search, Ann. Oper. Res.
41, 3-28.

D.E. GoLDBERG (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addi-
son-Wesley, Reading, Massachusetts,

R. HauprT (198%), A survey of priority rule-based scheduling, OR Spektrum 11, 3-16.

N. HEreTZ, I. ADIRI (1982), An efficient optimal algorithm for the two-machines unit-time jobshop
schedule-length problem, Math. Oper. Res. 7, 354-360.

J.0. HoLLanp (1975), Adaplation in Natural and Artificial Systems, The University of Michigan
Press, Ann Arbor, Michigan.

J.J. HopFIELD, D.W. TaNK (1985), Nenral computation of decisions in optimization problems, Biol.
Cybernetl. 55, 141-152.

J.R. Jackson (1956}, An extension of Johnson’s results on job lot scheduling, Naval Res. Logist.
Quart. 3, 201-203.

D.S. Jonnson (1990), Data structures for traveling salesmen, J.R. GILBERT, R. KaRLssoN (eds.)
{(1990), SWATI0, 2nd Scandinavian Workshop on Algorithm Theory, Springer, Berlin, 287-305.

D.S. JounsoN, C.H. PAPADIMITRIOU, M. YANNAKAKIS (1988), How easy is local search?, J. Com-
pul. System Sei. 37, 79-100.

S. KIrkPATRICK, C.D. GELATT, Jr., M.P. VEccHI (1983), Optimization by simulated annealing,
Science 220, 671-680.

B.J. LAGEWEG, J.K. LENsTRA, A . H.G. RiNNooy Kan (1976), Minimizing maximum lateness on
one machine: computational experience and some applications, Statisi. Neerlandica 30, 25-41.

B.J. LAcEwEg, J.K. LENsTRA, A.H.(G. Rinnooy Kan (1977), Job-shop scheduling by implicit

20

enumeration, Managemeni Sci. 24, 441-450.

S. LAWRENGE (1984), Resource constrained project scheduling: an ezperimenial investigation of heu-
ristic scheduling lechniques (Supplement), Graduate School of Industrial Administration, Carne-
gie-Mellon University, Pittsburgh, Pennsylvania.

J.K. LENsTRA, A H.G. Rinnooy Kan (1979), Computational complexity of discrete optimization
problems, Ann, Discrete Math. 4, 121-140.

J.K. LENsTRA, A.H.G. RINNoOY KaN, P. BRUCKER (1977), Complexity of machine scheduling
problems, Ann. Discrete Math. 1, 343-362.

H. MaTsuo, C.J. Sun, R.5. SuLLivan (1988), A controlled search simulated annealing method for
the general jobshop scheduling problem, Working paper 03-04-88, Graduate School of Business,
University of Texas, Austin.

G.B. McMaHoN, M. FLorIaN (1975), On scheduling with ready times and due dates to minimize
maximum lateness, Oper. Res. 23, 475-482.

R. Naxkano, T. YaMmapa (1991), Conventional genetic algorithm for job shop problems, R.K.
BELEw, L.B. BooKER (eds.} (1991), Proceedings of the Fourth International Conference on
Genetic Algorithms, San Diego, California, 474-479.

L. NEMETI (1964), Das Reihenfolgeproblem in der Fertigungsprogrammierung und Linearplanung mit
logischen Bedingungen, Mathematica (Cluj} 6, 87-99.

E. Nowickr, C. SMUTNICKI (1993), A fast taboo scarch algorithm for the job shop problem, Preprint
8/93, Institute of Engineering Cybernetics, Technical University of Wroctaw.

W.P.M. NUuTEN, E.H.L. AarTs, D.A.A. vaN ErP Taarman Kip, K.M. vaN HEE (1993), Job
shop scheduling by consiraini salisfaction, Computing Science Note 93/39, Department of Math-
ematics and Computing Science, Eindhoven University of Technology, Eindhoven.

B. Roy, B. SussMaNN (1964), Les problémes d’ordonnancement avec constrainls disjonciives, Note
DS No. ¢ bis, SEMA, Montrouge.

N. SADEH (1991), Look-ahead Techniques for Micro-opportunistic Job Shop Scheduling, Ph.D). thesis,
School of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania.

S5.V. SevasT’sanov (1994), Scheduling problems and vectors summing algorithms: a survey, Discrete
Appl. Muath., to appear.

D.B. Sumoys, C. STEIN, J. WEIN (1994), Improved approximation algorithms for shop scheduling
problems, ORSA J. Comput., to appear.

Y.N. Sorskov (1991}, The complexity of shop-scheduling problems with two or three jobs, Furopean
J. Oper. Res. 53, 326-336.

R.H. STorER, S.D. Wu, R. Vaccarl (1992), New search spaces for sequencing problems with ap-
plication to job shop scheduling, Management Sci. 38, 1495-1509.

E. TAILLARD (1994), Parallel taboo seach technique for the jobshop scheduling problem, ORSA J.
Cemput., to appear.

F. Tiozzo (1988), Building a decision support system for operation scheduling in a large indusirial
departmeni: a preliminary algorithmic study, Internal report, Department of Mathematics and
Informatics, University of Udine, Ttaly.

P.J.M. VaN LaarHoven, E.H.L. Aarrs, J.K. LENSTRA (1992), Job shop scheduling by simulated
annealing, Oper. Res. 40, 113-125.

M. WENNINK (1994), Personal cormnmunication.

D.P. WiLLiamsoN, L.A. HaLL, J.A. HooGEVEEN, (C.A.J. HUrkKENs, J.K. LEnNsTRa, D.B.
SHMoYs (1994), Short shop schedules, COSOR Memorandurm 94-06, Departroent of Mathematics
and Computing Science, Eindhoven University of Technology, Eindhoven.

T. YamaDpa, R. Nakano (1992}, A genetic algorithm applicable to large-scale job-shop problems, R.
MANNER, B. MANDERICK (eds.) (1992), Parallel Problem Solving from Nature, 2, North-Holland,
Amsterdam, 281-290.

D.N. Znou, V. CHERKASSKY, T.R. BarpwiN, D.E. OrsoN (1991), A neural network approach to
job-shop scheduling, {EEE Trans. Neural Networks 2, 175-179.

21

Computing Science Notes

In this series appeared:

91/01 D. Alstein

51/02 R.P. Nederpelt
H.C M. de Swart

91/03 J.P. Katoen
L.AM. Schoenmakers

91/04 E. v.d. Sluis
AF. v.d. Stappen

91/05 D. de Reus
91/06 K.M. van Hee

91/07 E.Poll

851/08 H. Schepers
91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
1. v.d. Woude

91/11 R.C. Backhouse
P.J. de Briin
G Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.JJM. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if...,then...", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.
SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49,

Terminology and Paradigms for Fault Tolerance, p. 25.
Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p. 25.

91/17

91/18

91/19

91120

91721

91722

01723

91724

91/25

91726

91727

91/28

91/29

91/30

91/31

91/32

91/33

91/34

A.TM. Aerts
P.M.E. de Bra
K.M. van Hee

Rik van Geldrop

Erik Poll

AE. Eiben
R.V. Schuwer

J. Coenen
W.-P, de Roever
J.Zwiers

G. Wolf

K.M. van Hee
L.J. Somers
M. Voorhoeve

ATM., Aerts
D. de Reus

P. Zhou

J. Hooman
R. Kuiper
P. de Bra
G.J. Houben
J. Paredaens

F. de Boer
C. Palamidessi

F. de Boer

H. Ten Eikelder
R. van Geldrop

J.CM. Baeten
F.W. Vaandrager
H. ten Eikelder
P. Struik

W. v.d. Aalst

J. Coenen

Transforming Functional Database Schemes to Relational
Representations, p. 21.
Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24,

Correctness of Acceptor Schemes for Regular Languages,
p. 3L

An Algebra for Process Creation, p. 29.
Some algorithms to decide the equivalence of recursive
types, D. 26.

Techniques for designing efficient parallel programs, p.
14,

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

91/35

92/01

92/02

92/03

92/04

92/05

92/06

92/07

92/08

92/09
92/10

92/11

92/12
92/13
92/14

92/15

92/16

92/17

92/18

92/1%

92120

F.S. de Boer
J.W. Klop

C. Palamidessi
J. Coenen

1. Zwiers

W.-P. de Roever

J. Coenen
J. Hooman

J.C.M. Baeten
J.A. Bergstra

J.P.H W.v.d.Eijnde

JP.H. W.v.d.Eijnde

J.C.M. Baeten
J.A. Bergstra

RP. Nederpelt

R.P. Nederpelt
F. Kamareddine

R.C. Backhouse
P.M.FP. Rambags

R.C. Backhouse
1.5.C.P.v.d.Woude

F. Kamareddine
F. Kamareddine
J.C.M. Baeten

F. Kamareddine

R.R. Seljée

W.M.P. van der Aalst

R.Nederpelt
F. Kamareddine

J.C.M.Baeten
J.A Bergstra
S.A.Smolka

F.Kamareddine

Asynchronous communication in process algebra, p. 20.

A notec on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.
Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29,

Set theory and nominalisation, Part 1, p.26.
Set theory and nominalisation, Part II, p.22.
The total order assumption, p. 10.

A system at the cross-roads of funciional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unifted approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

92/21

02722

92/23

92724

92/25

92/26

92/27

93/01

93/02

93/03

93/04

93/05

93/06
93/07

93/08

93/05

93/10

93/11

93/12

93/13

F.Kamareddine

R. Nederpelt
F.Kamareddine

F Kamareddine
E.Klein

M.Codish
D.Dams

Eyal Yardeni
E.Poll

T.H. W .Beelen
W.J.J.Stut

P.A.C.Verkoulen

B. Watson
G. Zwaan

R. van Geldrop

T. Verhoeff
T. Verhoeff
E.H.L. Aarts
JHM. Korst
P.J. Zwietering

J.C.M. Baeten
C. Verhoef

JI.P. Veltkamp
P.D. Moetland

J. Verhoosel

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,

p. 33.

A Programming Logic for Fw, p. 15.

A modelling method using MOVIE and SimCon/ExSpect,
p. 15.

A taxonomy of keyword pattern matching algorithms,

p. S0.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner’s Dilemma, p. 17
Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29
Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real-
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV:. Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

93/14

93/15

93/16

93/17

93/18

93/19
93720

93721

93722
93/23
93724
93725

93/26
93727
937128

93/29

93/30

93/31

93/32

J.C.M. Baeten
J.A. Bergstra

J.C.M. Baeten
J.A. Bergstra
R.N. Bol

H. Schepers
J. Hooman

D. Alstein
P. van der Stok

C. Verhoef

G-I, Houben
F.S. de Boer
M. Codish

D. Dams

G. Filé

M. Bruynooghe
E. Poll

E. de Kogel

E. Poll and Paula Severi

H. Schepers and R. Gerth

W.M.P. van der Aalst
T. Kloks and D. Kratsch

F. Kamareddine and
R. Nederpelt

R. Post and P. De Bra
J. Deogun

T. Kloks

D. Kratsch

H. Miiller

W. Kérver

H. ten Eikelder and
H. van Geldrop

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program-
ming, p. 15.

Freeness Analysis for Logic Programs - And Correct-
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.
Relational Algebra and Equational Proofs, p. 23.
Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real-
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25,
Finding all minimal separators of a graph, p. 11.

A Semantics for a fine A-calculus with de Bruijn indices,
p. 49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. 11.

Derivation of delay insensitive and speed independent
CMOS circuits, using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

93/33

93/34

93/35

93/36

93/37

93/38

93/39

93/40

93/41

93/42

93/43

93/44

93/45

93/46

93/47

93/48

L. Loyens and J. Moonen

J.C.M. Baeten and
LA, Bergstra

W. Ferrer and
P. Severi

J.C.M. Baeten and
J.A. Bergstra

J. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

C. Verhoef

W.P.M. Nuijten

E.HL. Aarts

D.AA. van Erp Taalman Kip
K.M. van Hee

PD.V. van der Stok
MM.M.P.J. Claessen

D. Alstein

A. Bijlsma
P.M.P. Rambags
B.W. Watson
B.W. Watson
E.J. Luit
J.M.M. Martin
T. Kloks

D. Kratsch

J. Spinrad

W. v.d. Aalst
P. De Bra
G.J. Houben
Y. Komatzky

R. Gerth

ILIAS, a sequential language for parallel matrix
computations, p. 20.

Real Time Process Algebra with Infinitesimals, p.39.
Abstract Reduction and Topology, p. 28.
Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A peneral conservative extension theorem in process
algebra, p. 17,

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,
p. 11.

Automatic Verification of Regular Protocols in P/T Nets,
p. 23.

A taxomomy of finite automata construction algorithms,
p. 87.

A taxonomy of finite automata minimization algorithms,
p. 23. '

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19,

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

94/01

94/02

94/03

94/04

94/05

94/06

94/07

94/08

94/09

94/10

94/11

94/12

94/13

94/14

P. America

M. van der Kammen
R.P. Nederpelt

0.S. van Roosmalen
H.CM. de Swart

F. Kamareddine
R.P. Nederpelt

L.B. Hartman
K.M. van Hee

J.C.M. Baeten
J.A. Bergstra

P. Zhou
J. Hooman

T. Basten
T. Kunz
J. Black
M. Coffin
D. Taylor

K.R. Apt
R. Bol

0.S. van Roosmalen
J.C.M. Baeten

J.A. Bergstra

T. verhoeff

J. Peleska

C. Huizing

C. Petersohn

T. Kloks

D. Kratsch

H. Miiller

R. Seljée

W. Peremans

The object-oriented paradigm, p. 28.

Canonical typing and Il-conversion, p. 51.
Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class
Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

The testing Paradigm Applied to Network Structure,

p. 3L

A Comparison of Ward & Mellor’s Transformation

Schema with State- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in
Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

	Abstract
	1. Introduction
	2. The job shop scheduling problem
	3. Complexity and algorithms
	3.1 Complexity
	3.2 Lower bounds
	3.3 Enumeration schemes
	3.4 Upper bounds
	4. Local search
	5. Solution representations and neighborhood functions
	6. Constructive algorithms with local search
	7. Iterative algorithms with local search
	7.1 Threshold algorithms
	7.2 Taboo search algorithms
	7.3 Genetic algorithms
	8. Other techniques
	8.1 Constraint satisfaction
	8.2 Neural networks
	9. Computational results
	10. Conclusion
	10.1 Review
	10.2 Preview
	References

