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Abstract 

We survey solution methods for the job shop scheduling problem with an emphasis 

on local search. We discuss both deterministic and randomized local search methods as 

well as the applied neighborhoods. We compare the computational performance of the 
various methods in terms of their effectiveness and efficiency on a standard set of problem 

instances. 

Key words: job shop scheduling, local search, iterative improvement, shifting bottle­

neck heuristic, simulated annealing, taboo search, genetic algorithms, constraint satisfac­
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1 Introduction 

In the job shop scheduling problem we are given a set of jobs and a set of machines. Each 

machine can handle at most one job at a time. Each job consists of a ehain of operations, 

eaeh of which needs to be proeessed during an uninterrupted time period of a given length on 

a given machine. The purpose is to find a schedule, that is, an allocation of the operations 

to time intervals on the machines, that has minimum length. 

The problem is difficult to solve to optimality. For example, a relatively small instance 

with 10 jobs, 10 machines and 100 operations due to Fisher & Thompson [1963] remained 

unsolved until 1986. Many solution methods have been proposed, ranging from simple and 

fast dispatching rules to sophistieated branch-and-bound algorithms. 

We snrvey algorithms for the job shop scheduling problem with an emphasis on local 

search. During the last decade many different types of local search algorithms for job shop 

scheduling have been developed, and some of them have proved to be very effective. 

The paper is struetured as follows. In Section 2 several models for the job shop seheduling 

problem are presented. In Section 3 the complexity of the problem and methods for its solu­

tion are reviewed. Section 4 introduces loeal seareh and Section 5 discusses representations 

and neighborhoods for the problem. Seetions 6 and 7 describe wnstructive and iterative al­

gorithms with local search, respeetively; Seetion 8 describes some other techniques. Section 9 

contains computational results, and Section 10 gives some eonclllding remarks. 
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2 The job shop scheduling problem 

The joh shop scheduling problem is formally defined as follows. Given are a set 0 of I 

operations, a set M of Tn machines, and a set :1 of n jobs. For each operation v E 0 there 

is a processing time p(v) E IN, a unique machine M(v) E M on which it requires processing, 

and a unique job J(v) E :1 such that V E J(v). Ou 0 a binary relation A is defined, which 

represents pr"€cedences between operations: if (v, w) E A, then v has to be performed before 

w. A is such that all operations v with the same value J(v) are totally ordered. 

A schedule is a function S : 0 --7 IN U {O} that for each operation v defines a start time 

H( v). A schedule S is feasible if 

'Iv EO: .5'(v) ?: 0, 

Vv,w E O,(v,w) E A: .5'(v) + p(v) :;; Sew), 

Vv,w E O,v Iw,M(v) = Mew): .5'(v) + p(v) :;; Sew) or Sew) + p(w):;; .5'(71). 

The length of a schedule S is maxvEO S( v) + p( v), i.e., the earliest time at which all operations 

are completed. The problem is to find an optimal schedule, i.e., a feasible schedule of minimum 

length. 

A feasible schedule is left-justified, if no operation can start earlier without changing 

the processing order on any machine. It is active if no operation can start earlier without 

delaying another operation. Note that at least one optimal schedule is active and that each 

active schedule is left-justified. 

An instance of the problem cau be represented by means of a disjunctive graph (; = 

(0, A, E) [Roy & Sussmann, 1964J. The vertices in 0 represent the operations, the arcs in A 

represent the given precedences between the operations, and the edges in E = {{v, w} I v, wE 

0, v I w, M (v) = M( w)} represent the machine capacity constraints. Each vertex v E 0 has 

a weight, equal to the processing time p( v). 
For each E' S; E, an orientation on E' is a function 51 : E' -+ 0 X 0 such that n( {v, 'W}) E 

{(v,w),(w,v)} for each {v,w} E E'; we write fl(E') = {fl(e) leE E'}. A partial orientation 

is an orientation on E'I E and a complete or·ientation is one on E. An orientation fl on E' 

is feasible if the digraph (0, A U fl( E')) is acyclic. It represents for each machine its machine 

order·ing, i.e., the order in which it processes its operations. Each feasible schednle S uniquely 

determines a feasible complete orientation, which is denoted by fls. 
Conversely, for each feasible complete orientation fl, there is a unique left-justified feasible 

schedule, which is denoted by .'In. For all v E 0, Sn(v) equals the length of a longest path in 

the digraph (0, AUfl( E)) upto and excluding v. The length of Sn equals the length of a longest 

path in the digraph. Finding an optimal left-justified schedule is now equivalent to finding 

a feasible complete orientation that minimizes the longest path length in the corresponding 

digraph. 

The search for such a schedule can be restricted to the set of active schedules. However, 

given a feasible complete orientation fl, it is not clear at first sight whether Sn is active: 

activeness depends on the sizes of the processing times, while left-justifiedness does not. For 

this reason one often considers the larger set of left-justified schedules. 

3 Complexity and algorithms 

We give a brief review of results on the computational complexity of job shop scheduling, of 

the lower bounds and ennmeration schemes that are used in branch-and-bound methods, and 
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of the approximative approaches that yield upper bounds on the optimum. Techniques of the 

latter type that proceed by local search are discussed in the rest of the paper. 

3.1 Complexity 

Some very special cases of the problem can be solved in polynomial time, but their immediate 

generalizations are NP-hard. The results are summarized in Table 1, where lj denotes the 

numer of operations of the jth job. Note that, due to result (4b), it is NP-hard to find a job 

shop schedule that is shorter than ~ times the optimum. 

Table 1: The complexity of job shop scheduling 

solvable in polynomial time NP-hard (in the strong sense") 

( la) m-2,alllj:S2 (lb) In - 2, all lj :S 3; In - 3, all lj :S 2 

(2a) m=2,allp(v)=1 (2b)* In = 2, all p(v):S 2; m = 3, all p(v) = 1 

(3a) n=2 (3b )" n=3 

(4a) length < :3 (4b)* length < 4 

(la) [Jackson, 1956]; (Ib) [Lenstra, Rinnooy Kan & Brucker, 1977]; (2a) [Hefetz & Adiri, 

1982J; (2b) [Lenstra & Rinnooy Kan, 1979]; (3a) [Akers, 1956; Brucker, 1988]; (3b) 

[Sotskov, 1991]; (4a,b) [Williamson, Hall, Hoogeveen, Hurkens, Lenstra & Shmoys, 1994]. 

3.2 Lower bounds 

Optimization algorithms for the problem employ some form of tree search. A node in the 

tree is usually charac.terized by a partial orientation fl on a subset E' C E. The question is 

then how to compute a lower bound on the length of any feasible schedule corresponding to 

a completion of fl. 
Nemeti [1964] and many subsequent authors obtained a lower bound by simply disregard­

ing E \ E' and computing the longest path length in the digraph (0, A u fl(E')). 
Bratley, Florian & Robillard [1973J obtained the stronger single-machine bound by relaxing 

the capacity constraints of all machines except one. Given a machine M', they propose to solve 

the job shop scheduling problem on the disjunctive graph (0, A u fl( E'), {{ v, llI} I M( v) = 

M(llI) = M'} \ E'). This is a single-machine problem, where the arcs in Au fl(E') define 

release and delivery times for the operations on M' and precedence constraints between thelll. 

Lageweg, Lenstra & Rinnooy Kan [1977J pointed out that many other lower bounds appear 

as special cases of this bound. For example, relaxing the capacity constraint of M' gives 

Nemeti's bound, and allowing preemption gives the bound used in current branch-and-bound 

codes. The bound itself is NP-hard to compute but can be found fairly efficiently [Baker & 
Su, 1974; McMahon & Florian, 1975; Lageweg, Lenstra & Rinnooy Kan, 1976; earlier, 1982J. 

It has been strengthened by Carlier & Pinson [\990J, who compute larger release and delivery 

times, and by Tiozzo [1988J and Dauzere-Peres & Lasserre [1993], who observe that the arcs 

also define delays between precedence-related operations. 

Fisher, Lageweg, Lenstra & Rinnooy Kan [1983J investigated surrogate duality relaxations, 

in which either the machine capacity constraints or the precedence constraints among the 

operations of ajob are weighted and aggregated into a single constraint. Balas [1985J described 

a first attempt to obtain bounds by polyhe.dral techniques. Applegate & Cook [1991 J review 

the valid inequalities stu(lied before and gave some new ones. The computational performance 
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of surrogate duality and polyhedral bounds reported until now is disappointing in view of what 

has been achieved for other hard problems. 

3.3 Enumeration schemes 

The traditional enumeration scheme generates all active scbedules by constnlcting them from 

front to back [Gifller & Thompson, 1960J. At each node a machine on which the earliest 

possible completion time of any unscheduled operation is achieved is determined, and all 

unscheduled operations that can start earlier than this point in time on that machine are 

selected in turn. 

Recent branch-and-bound algorithms use more flexible enumeration schemes. Carlier & 

Pinson [1989; 1990J and Applegate & Cook [1991J branch by selecting a single edge and 

orienting it in either of two ways. Brucker, Jurisch & Sievers [1994J follow Grabowski's 

'block approach'. All these authors apply the preemptive single-machine bound and a host 

of elimination rules. For details we refer to the literature. 

The celebrated 10 X 10 instance of Fisher & Thompson [1963J is within easy reach of these 

methods, but 15 X 15 instances seem to be the current limit. The main deficiency of the 

existing optimization algorithms for job shop scheduling is the weakness of the lower bounds. 

The situation is much brighter with respect to finding good upper bounds. 

3.4 Upper bounds 

Upper bounds on the optimum are usually obtained by generating a schedule and computing 

its length. An obvious first step is to apply a dispatch rule aud to schedule the operations 

according to some priority funetion. Haupt [1989J surveys such rules. They tend to exhibit 

an erratic behaviour; the procedure 'bidir' proposed by Dell'Amico & Trubian [199:3J is one 

of the safer alternatives. The next step is then to try to improve the schedule by SOIlle sort 

of local search. 

An entirely different approach is taken by Sevast'janov [1994J. Using Steinitz' vector sum 

theorem, he develops polynom.ial-time algorithms for finding an upper bound with an absolute 

error that is independent of the number of jobs. Shmoys., Stein & Wein [1994J improve on his 

results. 

4 Local search 

Local search is based on the idea that a given solution may be improved by making small 

changes. Solutions are changed over and again, and better and better solutions are found. 

We need the following notions. There is a set F of feasible solutions. Two functions are 

defined on F. The cost function is a mapping c: F -+ JR, which in most cases is closely related 

to the function that is to be optimized. The neighborhood junction is a mapping N : F -+ 2F, 

which defines for each solution x E F a neighborhood N(x) <;; F. Each solution in N(x) is 

called a neigbbor of x. Roughly speaking, the execution of a local search algorithm defines a 

walk in F such that each solution visited is a neighbor of the previously visited one. 

A solution x E F is called a local minimum with respect to a neighborhood function N if 

c(x) :S c(y) for all y E N(x). The basic algorithm to find a local minimum is called ite/'ative 

improvement. Starting at SOIlle initial feasible solution, its neighborhood is searched for a 
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solution of lower cost. If such a solution is found, the algorithm is continued from there; 

otherwise, a local minimum has been found. 

The quality of the local minimum depends on the initial solution, on the neighborhood 

function, and on the method of searching the neighborhoods. An initial solution may be 

obtained by generating it randomly or by applying a heuristic rule. The ehoice of a good 

neighborhood is often difficult. There is a clear trade· off between small and large neighbor­

hoods: if the number of neighbors is larger, the probability of fineling a good neighbor may 

be higher, but looking for it takes more time. There are several alternatives for searehing the 

neighborhood: one may take the first neighbor found of lower cost (}ir'st imp1'Ovement), or 

take the best neighbor in the entire neighborhood (best improvement), or take the best of a 

sample of neighbors, provided it is an improving one. 

Often, one problem remains. The local optima obtained may be of poor quality. Therefore, 

several variants of iterative improvement have been proposed. The main variants can be 

divided into threshold algorithms, taboo search algorithms, and genetic algorithms. 

In thr'Cshold algorithms, a neighbor of a given solution becomes the new cnffent solution, if 

the cost differenee between the current schedule and its neighbor is below a certain threshold. 

One distinguishes three kinds of threshold algorithms. 

In dassieal iterative impl'Ovement the thresholds are 0, so that only true improvements 

are accepted. In threshold accepting [Dueck & Scheuer, 1990] the thresholds are nonnega­

tive. They are large in the beginning of the algorithm's execution and gradually decrease 

to become 0 in the end. General rules to determine appropriate thresholds are lacking. In 

simulated annealing [Kirkpatrick, Gelatt & Vecchi, 1983; Cerny, 1985] the thresholds are pos­

itive and stochastic. Their values equal -TIn u, where T is a control parameter (often called 

'temperature'), whose value gradually decreases in the course of the algorithm's execution 

according to a 'cooling schedule', and u is drawn from a uniform distribution on (0,1]. Eaeh 

time a neighbor is compared with the eurrent solutiou, u is drawn again. Under certain mild 

conditions simulated annealing is guaranteed to find an optimal solution asymptotically. 

In taboo search one selects from a subset of permissible neighbors of the current solution a 

solution of minimum cost. In basic taboo seareh a neighbor is permissible if it is not on the 

'taboo list' or satisfies a certain 'aspiration criterion'. The taboo list is recalculated at each 

iteration. It is often implicitly defined in terms of forbidden moves from the current solution 

to a neighbor. The aspiration criterion expresses possibilities to overrule the taboo-status of 

a neighbor. For details see Glover [1989; 1990] or Glover, Taillard & De Werra [1993]. 

Genetic algorithms [Holland, 1975] are based on an extended notion of neighborhood 

function. A hyper-neighborhood function is a mapping Nh : FS -+ 2F with s :0: 2, which 

defines for each s-tuple x = (XI,"" x,) E F' a set Nh(X) ~ F of neighboring solutions. 

Each solution in Nh(x) is called a hyper-neighbor of x. At each iteration a set of solutions, 

often ealled 'population', is given. From this population several subsets of size s consisting of 

'parents' are selected, and for each such subset some hyper-neighbors, called 'off-spring', are 

determined by operations called 'reeombination' and 'mutation'. This set of hyper-neighbors 

and the current population are then combined and reduced to a uew population by selecting 

a subset of solutions. 

Several solution methods have been proposed that use local search in combination with 

other techniques like partial enumeration and backtracking. Such hybrid methods for job 

shop scheduling are dealt with below with an emphasis on nested forms oflocal search. Here, 

loeal search is applied at several levels with elifferent neighborhoods. In this way the search 

can explore different regions of the. solution space. 



5 Solution representations and neighborhood functions 

A crucial ingre<iie,nt of a local search algorithm is the defillition of a neighborhood function in 

combination with a solution representation, Below, several basic representations and neigh­

borhood functions are introduced for the job shop scheduling problem. For most threshold and 

taboo search algorithms, only leJt-justified or active schedules are represented. This is done 

by specifying the start times of the operations or, equivalently, the corresponding machine 

orderings of the operations. Other representations are used too, especially in combination 

with genetic algorithms. 

To be able to define the neighborhood functions, we need some extra notions. Given an 

instance and an operation v, jp(v) and j8(V) denote the immediate predecessor and successor 

of v in the precedence relation A, provided they exist. Given a feasible schedule Saud an 

operation v, 7nps(v) and 7n8s(v) denote the immediate predecessor and successor of v in 

the orientation ns , provided they exist. If the schedule S is clear from context, we delete 

the snperscript S. Furthermore, jp2 (v) denotes jp(jp( v)), provided it exists, and a similar 

notation is used for j8, mps aud m8s. Two operations v and ware adjacent when S( v )+p(v) = 

S( w). A block is a maximal sequence of size at least one, consisting of adjacent operations 

that are processed on the same machine and belong to a longest path. An operation of a 

block is intemal if it is neither the first nor the last operation of that block. 

Several neighborhood functions have been proposed in the literature. Most of these are 

not defined on a schedule S itself but on the corresponding orientation ns. If ns is changed 

into another feasible orientation n', Sn' is the corresponding neighbor of S. In this way 

neighbors of a given schedule are always left-justified. 

The following properties [Balas, 1969; Matsuo, Suh & Sullivan, 1988; Nowicki & Smutnicki, 

1993] are helpful in obtaining reasonable neighborhood functions. 

I. Given a feasible orientation, reversing an oriented edge on a longest patb in the corre­

sponding digraph results again in a feasible orientation. 

2. If reversing an oriented edge of a feasible orientation n that is not on a longest path 

results in a feasible orientation n', then SrI' is at least as long as Sn. 
3. Given a feasible orientation!1, reversing an oriented edge (v,w) between two internal 

operations of a block results in a feasible schedule at least as long as Sn. 
4. Give,n is a feasible orientation n. If v is the first and w the second operation of the first 

block of a longest path and w is internal, then reversing (v, w) results in a feasible sche,dule, 

at least as long as Sn. The same is true if w is the last and v the second last operation of the 

last block of a longest path and v is internal. 

In view of these properties, the simplest neighborhood functions are based on the reversal 

of exactly one edge of a given orientation. Van Laarhoven, Aarts & Lenstra [1992] propose 

a neighborhood function NI which obtains a neighbor by reversing two adjacent operations 

of a block. Matsuo, Suh & Sullivan [1988] use a neighborhood function Nla with the same 

reversals, except those involving two internal operations. Nowicki and Smutnicki [1993]u5e 

a neighborhood function NIb, excluding from Nla the reversal of the first two operations of 

the first block when the second one, is internal and the reversal of the last two operations of 

the last block when the first is internal. For NIb, neither a schedule with one block only nor 

one, with blocks of size one only has a neighbor; note that sl1ch schedules are optimal. 

Dell'Amico & Trubian [1993] propose several neighborhood functions that may reverse 

more than one edge. Their neighborhood function N2 obtains for any two operations v and 

w = 7n8(V) on a longest path a neighboring orientation by permuting mp(v), v and 111, or 
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by permuting v, '" and mB("'), such that v and", are reversed and a feasible orientation 

results. Their neighborhood function N 2a excludes from N2 the solutions for which both v 

and", = ms( v) are internal. Their neighborhood function N3 considers blocks of size at least 

two: a neighbor is obtained by positioning an operation v immediately in front of or after the 

other operations of its block, provided that the resulting orientation is feasible; otherwise, 'Ii 

is moved to the left or the right as long as the orientation remains feasihle. 

Adams, Balas & Zawack [1988] propose a neighhorhood function N4 which may completely 

change one machine ordering. For every machine M' with an operation on a longest path, a 

neighhor is ohtained hy replacing the orientation on M' hy any other feasihle orientation. 

The following neighhorhood functions obtain a neighbor by changing several machine 

orderings at the same time. Relatively small modifications are made by the neighborhood 

function Ns of Matsuo, Suh & Sullivan [1988], which reorients at most three edges simul­

taneously. A neighhor is obtained hy reversing two adjacent operations v and '" = ms( v) 

of a hlock (except when they are hoth internal) and in addition hy reversing jp'( "') and 

mp(jp'(uI)) for some t ~ 1 and hy reversing js(v) and msUs(v)). The latter reversals are 

executed only if certain additional conditions are satisfied; see their paper for details. Aarts, 

Van Laarhoven, Lenstra & Ulder [1994] use a variant N s., where t ::; I. 

Applegate & Cook [1991] propose a neighhorhood function N6 which drastically changes 

the given orientation. Their neighborhood contains all feasible orientations that can he oh­

tained by simultaneously replacin" the orientation on m - t machines hy any other feasihle 

orientation. Here, t is a small ~umher depending on m. 

Storer, Wu & Vaccari [1992] use completely different representations of schedules. These 

are hased on a modified version of the Gifller-Thompson algorithm (see Section a.:3). Suppose 

that at a certain point the earliest possihle completion time of any unscheduled operation 

is equal to C and is achieved by operation v, and that T is the earliest possible start time 

on machine M(v). Then all unscheduled operations on M(v) that can start no later than 

T + o( C - T) are candidates for the next position on M (v). Here, 0 is a priori chosen in [0,1) 

(in experiments 0, 0.05 or 0.1); if 0 approaches 1 all active schedules can he generated, while 

" = 0 gives only so-called non-delay schedules. Two representations are defined. 

The representation R7 represents a schedule hy modified processing times for the oper­

ations. Using these, the modified Gifller-Thompson algorithm with the shortest processing 

time rule as selection rule uniquely determines a feasihle orientation fl, and Sn, computed 

with the original processing times, is the corresponding schedule. The neighhorhood func­

tion N7 now ohtains a neighhor hy increasing the processing times hy amounts of time that 

are independently drawn from a uniform distrihution on (-0,0). Here, 0 is a priori cho­

sen (in experiments 10, 20 or 50). The representation R8 represents a schedule by dividing 

the scheduling horizon into several (in experiments 5, 10 or 20) time windows and assigning 

one of a given set of dispatch rules to each window. The modified Gifller-Thompson algo­

rithm determines a schedule hy applying the dispatch rule of the corresponding window. The 

neighborhood function Ns changes the dispatch rule for a window of a given schedule. 

Genetic algorithms use two types of representations: the natural one, which is also used for 

most threshold and taboo search algorithms, and a more artificial one, using binary strings. 

For the former type of representation Yamada & Nakano [1992] propose a hyper-neigh­

horhood function Nhl which, given two schedules Sand S', determines a neighhor using the 

Gifller-Thompson algorithm. When this algorithm has to choose from two or more operations, 

it takes, for a small E > 0, the operation that is first in S with probability I;', the operation 

that is first in S' with prohability 12", and a random operation from the other availahle 
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operations with probability f. 

Aarts, Van Laarhoven, Lenstra & Ulder [1994] propose a hyper-neighborhood function 

Nh2' Given two schedules Sand S', Nh2 determines a neighbor by repeating the following 
- -

step In;nJ tiIn€s: choose a randOlll arc (w,v) of Sf and change S hy reversing arc (-u,w), 

provided it belongs to a longest path of S. 

The latter type of representation encodes a schedule or its orientation into a string over 

a finite - usually binary - alphabet. Such representations facilitate the application of hyper­

neighborhood func.tions involving operations like 'crossover' and 'mutation'; see Goldberg 

[1989, -PI'. 166-175]. There are a number of drawbacks, however. A schedule or orientation 

may have several representatives, or none. Conversely, a string does not have to represent a 

schedule, and if it does, it may be nontrivial to calculate the corresponding schedule. Although 

attempts have been made to circumvent these difficulties, the hyper-neighborhood functions 

that operate on strings often have no meaningful effect in the context of the underlying 

problem. We will consider genetic algorithms using string representations in less detail. 

6 Constructive algorithms with local search 

In this section we discuss the shifting bottleneck procedure and its variants. These algorithms 

construct a complete schedule and apply local search to partial schedules on the way. A 

partial schedule is characterized by a partial orientation n on a subset E' E E. Its length is 

defined as the longest path length in the digraph (O,A u n(E')). 
The basic idea of the algorithms described here is as follows. The algorithm goes through 

In stages. At each stage, it orients all edges between operations on a specific machine. In this 

way, at the beginning of any stage all edges related to some machines have been oriented, 

while the edges related to the other machines are not yet oriented. Furthermore, at the end of 

each stage, it applies iterative best improvement to the current partial schedule using neigh­

borhood function N4 , which revises the orientation on a machine scheduled before. Orienting 

or reorienting the edges related to one machine in an optimal way requires the solution of a 

single-machine problem, where the partial schedule defines release and delivery times and de­

layed precedence constraints. The algorithms discussed hereafter mainly differ by the order in 

which the m machines are considered, by the implementation of iterative best improvement, 

and by the single-machine algorithm used. 

The original shifting bottleneck procedure SBI of Adams, Balas & Zawack [1988] orients 

at each stage the edges related to the bottleneck machine. This is the unscheduled machine 

for which the solution value to the corresponding single-machine problem is maximum; the 

delays between precedence-related operations are not taken into account. After scheduling 

a machine, iterative best improvement is applied during three cycles. In each cycle each 

scheduled machine is reconsidered once. The first cycle handles the machines in the order in 

which they were sequenced. After a cycle is completed, the machines are reordered according 

to decreasing solution values to the single-machine problems in the last cycle. When all of 

the machines have been scheduled, the cycles continue as long as improvements are found. 

Furthermore, after a phase of iterative best improvelnent, the orientations on several llla­

chines that have no operations on a longest path are deleted, and then these machines are 

rescheduled one by one. 

Applegate & Cook [1991] use almost the same algorithm. The main difference is that at 
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each stage iterative improvement cycles continue until no further improvements are found. 

Dauzere-Peres & Lasserre [1993J were the first to take the delays between precedence­

related operations into account. They develop a heuristic for the single-machine problem 

with delayed precedences and incorporate it into a shifting bottleneck variant. 

Balas, Lenstra & Vazacopoulos [1994J develop an algorithm to solve the single-machine 

problem with delayed precedences to optimality, and use it to determine the bottleneck ma­

chine in their shifting bottleneck procedure SB:l. Their local search strategy differs from the 

one of Adams, Balas & Zawack [1988J in some minor details; for instance, the number of 

cycles is limited to six. Again, after scheduling a new machine, they first apply iterative im­

provement, then delete the orientations on several non-critical machines, and reschedule these 

machines one by one. They also propose an extension SB4, which takes the best solution of 

SB:l and a variant of SB3 that reverses the order of the two reoptimizations procedures: first 

reschedule some non-critical machines, then apply regnlar iterative improvement. SB4 needs 

roughly twice the computation time of SB3 but finds several better schedules. 

The shifting bottleneck procedure and its variants have been incorporated into other al­

gorithms. Most of these employ some form of partial enumeration. Dorndorf & Pesch [1994J 

embed a variant in a genetic algorithm; see Section 7.3. 

Adams, Balas & Zawack [1988J develop an algorithm SBU, which applies SBI to the 

nodes of a partial enumeration tre.e. A node corresponds to a subset of machines that have 

been scheduled in a certain way. In each of its descendants one more machine is scheduled. 

The schedule is obtained by first solving the single-machine problem, with release and deliv­

ery times defined by the parent node, and then applying iterative improvement as in SBI. 

Descendants are created only for a few machines with highest solution values to the single­

machine problem. A penalty function is used to limit the size of the tree. For details about 

the branching rule, the penalty function and the search strategy we refer the reader to the 

original paper. 

Applegate & Cook [1991J develop an algorithm Bottle-t, which employs partial enumera­

tion in a different way. Bottle-t applies their shifting bottleneck variant described above as 

long as more than t machine are left unscheduled. For the last t machines it branches by 

selecting each remaining unscheduled machine in turn. The values t = 4, 5 and 6 were tested. 

7 Iterative algorithms with local search 

The algorithms presented in this section start from one or more given feasible schedules and 

manipulate these in an attempt to find better schedules. They can naturally be divided into 

threshold algorithms, taboo search algorithms, and genetic algorithms. 

7.1 Threshold algorithms 

The basic threshold algorithms are iterative improvement, threshold accepting, and simulated 

annealing. We also consider some closely related variants. Unless stated otherwise, a schedule 

is represented in the ordinary way by the starting times or the orientation. 

Itemti1le impro1lement is the simplest threshold algorithm. Aarts, Van Laarhoven, Lenstra 

& Ulder [1994J test iterative improvement with the neighborhood functions N1 and Nsa . To 

obtain a fair comparison with other algorithms they apply a multi-start strategy, i.e., they 
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run the algorithm with several randomly generated start solutions until a limit on the total 

funning tilue is reached, and take the hest solution found over all individual runs. 

The algorithm Shuffle of Applegate & Cook [1991] uses the neighborhood function N6. At 

each iteration, the schedule on a small number of heuristically selected machines remains fixed, 

and the schedule on the remaining machines is optimally revised by their branch-and-bound 

algorithm 'edge finder'. As initial solution they take the result of Bottle-5. 

Storer, Wu & Vaccari [1992] propose a variant of iterative improvement, called PSIO, 

with representation R7 and neighborhood function N7. Given a solution, a fixed number of 

neighbors (in experiments 100 or 200) is determined, the best one of which becomes the new 

solution. They also test a standard iterative first improvement algorithm, called HSLIO, with 

representation Rs and neighborhood function Ns . Neighbors are generated randomly and the 

algorithm stops after a fixed number of iterations (in experiments 1000 or 2000). 

TllI"eshold accepting has only been implemented by Aarts, Van Laarhoven, Lenstra & 

Ulder [1994]. Their algorithm TAluses the neighborhood function N1 • Threshold values are 

determined empirically. 

Simulated annealing has been tested by several authors. Van Laarhoven, Aarts & Lenstra 

[1992] use the neighborhood function NI. Aarts, Van Laarhoven, Lenstra & Ulder [1994] use 

NI (algorithm SAl) and NSa (algorithm SA2). 

Matsuo, Suh & Sullivan's [1988] 'controlled search simulated annealing' algorithm CSSA is 

a bi-Ievel variant, which also inc.orporates standard iterative improvement. Given a schedule 

S, a neighbor S' is selected using the neighborhood function Ns . S' is accepted or rejected by 

the simulated annealing criterion. In the latter case, S' is subjected to iterative improvement 

using Ns again, and if the resulting local optimum improves on S, it is accepted as the new 

solution. Their method also differs from most other implementations of simulated annealing 

in that the acceptance probability for a schedule that is inferior to the current schedule is 

independent of the difference in schedule length. 

7.2 Taboo search algorithms 

The taboo search algorithm TSI of Taillard [1994] uses the neighborhood function N1 . After 

an arc (v, w) has been reversed, the reversal of wand its machine successor is put on the 

taboo list. Every 15 iterations a new length of the taboo list is randomly selected from 

a range between 8 and 14. The length of a neighbor is estimated in such a way that the 

estimate equals the. length of the new schedule when both operations involved are still on a 

longest path, and that it is a lower bound otherwise. Then, from the permissible neighbors 

the schedule of minimum estimated leugth is selected as the uew schedule. 

The algorithm TS2 of Barnes & Cbambers [1994] also uses N1 . Their taboo list has a 

fixed length. If no permissible moves exist, the list is emptied. The length of each neighbor 

is calculated exactly, not estimated. A start solution is obtained by taking the best from the 

active aud non-delay schedules obtained by applying seven dispatch rules. 

The algorithm TS:3 of Dell'Amico & Trubian [1993] uses the union of the neighborhoods 

generated by N2a aud N3 • The items ou the taboo list are forbidden reorientations of arcs. 

Depending on the type of neighbor, one or more such items are. on the list. The leugth of 

the list depends on the fact whether the current schednle is shorter than the previous one 

and the best one, or not. Furthermore, the minimal and maximal allowable lengths of the 

list are chauged after a given number of iterations. When all neighbors are taboo and do not 

satisfy the aspiration criterion, a random neighbor is chosen as the next schedule. A start 
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solution is obtained by a procedure called 'bidir', which applies list scheduling simultaneously 

from the beginning and the end of the schedule, i.e., an operation is available when all of its 

predecessors or all its successors have been scheduled. 

Nowicki & Smutnicki [1993] introduce an algorithm TSAB that combines taboo search 

with a backtracking scheme. In the taboo search part of their algorithm, the neighborhood 

function is a variant of N1b , which only allows reorientations of arcs ou a single longest path. 

The items on the taboo list are forbidden reorientations of arcs. The length of the list is fixed 

to 8. If no permissible neighbor exists, the following is done. If there is one neighbor only, 

which as a consequence is taboo, this one becomes the new schedule. Otherwise, the oldest 

items on the list are removed one by one until there is one non-taboo neighbor, and this one 

is chosen. A start solution is obtained by generating an active schedule using the shortest 

processing time rule or an insertion algorithill. 

The hacktracking scheme forces the taboo search to restart from promising situations 

encountered before. Suppose that at a certain point a new best schedule S is found. Let 

R(S) be the set of feasible arc reversals in S, let T be the new taboo list, including the 

inverse of the reversal needed to obtain S, and let r be the reversal that will be made in the 

next iteration. Then, if IR(S)I2: 2, the triple (S,R(S)\ {r},T) is stored on a list. Tills list 

has a maximum length of 5; if it is full, the oldest triple is deleted before a new one is stored. 

Each time the taboo search algorithm stops (by reaching a maximum number of iterations 

without improving the best schedule), tbe backtracking scheme initiates a new round of taboo 

search starting from the schedule, the set of reversals and the taboo list of the last stored 

triple. When the set of reversals has one element only, the triple is deleted from the list; 

otherwise, it is replaced by the same triple with the reversal that will be made in the next 

iteration excluded. Note that during this new round new triples can be added to the list. 

7_3 Genetic algorithms 

The genetic algorithm GAl of Yamada & Nakano [1992] determines for every chosen pair 

of schedules of the current population, two hyper-neighbors by using Nh1 . From these four 

schedules two are selected for the next population: first the best schedule is chosen, and next 

the best un selected hyper-neighbor is chosen. 

Aarts, Van Laarhoven, Lenstra & Ulder [1994] propose a genetic algorithm that incorpo­

rates iterative first improvement. In each iteration there is a population of solutions that are 

locally optimal with respect to either Nl (algorithm GLS1) or NSa (algorithm GLS2). The 

popUlation is doubled in size by applying Nh2 to randomly selected pairs of schedules of the 

population. Each hyper-neighbor is subjected to iterative first improvement, using Nl or N 5., 

and the extended population of local optima is reduced to its original size by choosing the 

best schedules. Then a next iteration is started. Start solutions are generated randomly, and 

iterative first improvement is applied to them before the genetic algorithm is started. 

In the work of Davis [1985], Falkenauer & Bouffouix [1991] and Della Croce, Tadei & Volta 

[1994] a string represents for each machine a preference list, which defines a preferable order­

ing of its operations. From such a list a schedule is calculated. Davis [1985] and Falkenauer 

& Bouffouix [1991] restrict themselves to non-delay schedules; Della Croce, Tadei & Volta 

[1994] are able to represent other schedules as well. Falkenauer & Bouffouix [1991] and Della 

Croce, Tadei & Volta [1994] use the linear order crossover as hyper-neighborhood function. 

See the original papers for details. 
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Nakano & Yamada [1991J consider problem instances with exactly one operation for each 

job-machine pair. For each machine and each pair of jobs, they represent the order in which 

that machine executes those jobs by one bit. Thus, a schedule is represented by a string of 

mn(~-I) bits. Since such a string may not represent a feasible orientation, they propo;e a 

method for finding a feasible string that is close to a given infeasible one. Two hyper-neighbors 

are obtained by cutting two strings at the same point and exchanging their left parts. 

Dorndorf & Pesch [1994J propose a 'priority rule based genetic algorithm' P-GA, which 

uses the Giffier-Thompson algorithm. They use a string (PI, ... ,PI-I), where Pi is a dispatch 

rule that resolves conflicts in the ith iteration of the algorithm. Two hyper-neighbors are 

obtained by cutting two strings at the same point and exchanging their left parts. These 

authors also propose a second genetic algorithm, called SB-GA, which uses a srufting bot­

tleneck procedure (see Section 6). A solution is represented by a sequence of the machines. 

A corresponding schedule is generated by a variant of SBI: each time it has to select an 

unoriented machine, it chooses the first un oriented machine in this sequence. The hyper­

neighborhood function used is the cycle crossover; see Goldberg [1989, p. l7.5J. In contrast to 

SBI, reoptimization is applied only when less than six machines are left unscheduled. 

8 Other techniques 

8.1 Constraint satisfaction 

Constraint satistisfaction algorithms consider the decision variant of the job shop scheduling 

problem: given an overall deadline, does there exist a feasible schedule meeting the deadline? 

Most algorithms of this type apply tree search and construct a schedule by assigning start 

times to the operations one by one. A consistency checking process relllQVeS inconsistent 

start times of not yet assigned operations. If it appears that a partial schedule cannot be 

completed to a feasible one, a dead end is encountered, and the procedure has to undo several 

assignments. Variable and value ordering heuristics determine the selection of a next operation 

and its start time. The algorithm stops when a feasible schedule meeting the deadline has 

been found or been proved not to exist. Note that it is also possible to establish lower bounds 

on the optimum with this technique. 

Sadeh [1991J developed an algorithm of this type, but its performance was poor. Nuijten, 

Aarts, Van Erp Taalman Kip & Van Hee [1993J improved it by designing new variable and 

value orderings and extensive consistency checking techniques. The resulting algorithm im­

proved upon Sadeh's method in terms of both solution quality and speed, but still could not 

compete with the best job shop scheduling algorithms. The authors therefore modified their 

algorithm such that, when a dead end occurs, it restarts the search from the beginning, and 

they also randomized the selection of a next operation and its start time. Their 'randomized 

constraint satisfaction' algorithm RCS performs quite well. 

8.2 Neural networks 

Foo & Takefuji [1988a,bJ describe a solution approach based on the deterministic neural 

network model with a symmetrically interconnected network, introduced by Hopfield & Tank 

[1985J. The job shop scheduling problem is represented by a 2-dimensionalmatrix of neurons. 

Zhou, Cherkassky, Baldwin, & Olson [1991J develop a neural network algorithm which uses 

a linear cost function instead of a quadratic one. For each operation there is one neuron in 
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the network, and also the number of interconnections is linear in the number of operations. 

The algorithm improves the results of Faa & Takefuji both in terms of solution quality and 

network complexity. Altogether, applications of neural networks to the job shop scheduling 

problem are at an initial stage, and the reported computational results are poor up to now. 

9 Computational results 

The computational merits of job shop scheduling algorithms have often been measured by their 

performance on the notorious 10 X 10 instance FTIO of Fisher & Thompson [1963]. Applegate 

& Cook [1991] found that several instances of Lawrence [1984] (LA21, LA24, LA2.5, LA27, 

LA29, LA38, LA40) pose a more difficult computational challenge. We have included the 

available computational results for these instances and, in addition, for two relatively easy 

instances (LA2, LAI9) and for all remaining 15 X 15 instances of Lawrence (LA36, LA37, 

LA39). Each of these 13 instances has exactly one operation for each job-machine pair. 

Tables 2 and 3 present the wmputational results for most algorithms discusse.d in Sec­

tions 6, 7 and 8, as far as these are available from the literature. Table 2 gives the schedule 

lengths obtained and Table 3 the corresponding running times. 

In Table 2 the values UB and LB are the best known upper and lower bounds for the 

corresponding instances. For each method mentioned, a superscript b followed by a number 

x indicates that the results reported are the best ones obtained after x runs of the algorithm. 

If a superscript In occurs, the results reported are Ineans over several runs. A superscript 1 

indicates that the results reported are obtained by a single run. A hyphen denotes that no 

result is available. Furthermore, for each method and for each instance, we computed the 

relative error, i.e., the percentage that the best solution value found is above LB. For each 

algorithm, the values MRE and SRE are the mean relative error and the standard deviation 

of the relative error. Note that UB has already an MRE of 0.40. 

Table 3 gives the CPU-times for the corresponding results of Table 2. If the result in 

Table 2 is a mean over several runs, the average CPU-time of a single run is given; if it is 

a best result over several runs, the total CPU-time is given. The value SCT is the sum of 

CPU-times over all instances; it was estimated if not all individual CPU-times were available. 

Also the wmputer used is mentioned. For each algorithm, the value CISCT is a computer­

independent sum of CPU-times, computed using the work of Dongarra [1993]. 

Figure 1 shows for each algorithm the mean relative error and the corresponding computer­

independent sum of CPU-times. Note that the time-axis has a logarithmic scale. 

The shifting bottleneck procedure SBI of Adams, Balas & Zawack [1988] is fast but gives 

poor results. The variants SB3 and SB4 of Balas, Lenstra, & Vazacopoulos [1994], which 

take the delayed precedences into acwunt, clearly give better results. The algorithm SBU of 

Adams, Balas & Zawack [1988], which uses partial enumeration, also improves upon SBI. Ap­

plegate & Cook [1991] obtain reasonable results with their algorithms Bottle-5 and Bottle-6. 

Note that the values given in Tables 2 and 3 do not correspond to those presented in their 

paper. We computed our values using the enumeration scheme described in their paper; their 

values were obtained using a different scheme [Applegate & Cook, 1993]. The results suggest 

that the straight shifting hottleneck procedure (as in SBI, SB3 and 5B4) benefits from some 

form of partial enumeration (as in SBlI and Bottle-t). 

Among threshold algor·ithms the best results are obtained by the simulated annealing 
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Table 2: Performance comparison of various algorithms: schedule lengths for 13 instances 

Authors Algorithm FTlO LA2 LA19 LA21 LA24 LA25 LA27 LA29 LA36 LA37 LA38 LA39 LA40 MRE SRE 
UB 930 655 842 1046 935 977 1236 1160 1268 1397 1196 1233 1222 0.40 l.00 
LB 930 655 842 1040 93·5 977 1235 1120 1268 1397 1184 1233 1222 

AdamsBZ SBI' 101·5 720 875 1172 1000 1048 1325 1294 13·51 1485 1280 1321 1326 8.41 2.98 
BalasLV SB3 1 981 667 902 1111 976 1012 1272 1227 1319 1425 1318 1278 1266 5.11 2.87 
BalasLV SB4 1 940 667 878 1071 976 1012 1272 1227 1319 142·5 1294 1278 1262 4.07 2.57 
AdamsBZ SBII l 930 669 860 1084 976 1017 1291 1239 1305 1423 1255 1273 1269 3.85 2.54 
AppleCook Bottle-41 938 667 863 1094 983 1029 1307 1220 1326 1444 1299 1301 1295 4.98 2.52 
AppleCook Bottle-51 938 662 847 1084 983 1001 1288 1220 1316 1444 1299 1291 1295 4.24 2.81 
AppleCook Bottle-61 938 - 842 1084 9·58 1001 1286 1218 1299 1442 1268 1279 12.5.5 3.51 2.42 
AppleCook Shuffle 1 , 938 655 842 1055 971 997 1280 1219 1295 1437 1294 1268 1276 3.25 2.93 
AppleCook Shuffle2 1 938 6.55 842 1046 965 992 1269 1191 1275 1422 1267 1257 1238 2.14 2.23 
StorerWV PS10 1 976 - - - - - - - - - - - -

StorerWV HSL10 1 1006 - - - - - - - - - - - -

AartsVLU TA1 m5 1003 693 925 1104 1014 1075 1289 1262 138.5 1469 1323 1305 1295 7.93 2.64 
VLaarAL SAm' 985 663 8·53 1067 966 1004 1273 1226 1300 1442 1227 1258 1247 3.32 2.20 
VLaarAL SA" 951 655 848 1063 952 992 1269 1218 1293 1433 1215 1248 1234 2.26 2.11 
AartsVLU SAl m5 969 669 855 1083 962 1003 1282 1233 1307 1440 1235 1258 1256 3.59 2.14 

~ ... AartsVLU SAl 1•t -
oo - - - 1053 935 983 1249 1185 - - 1208 - 1225 1.07 1.55 

AartsVLU SA2m5 977 658 854 1078 960 1019 1275 1225 1308 1451 1243 1263 1254 3.63 2.16 

MatsuoSS CSSA I 946 655 842 1071 973 991 1274 1196 1292 1435 1231 1251 1235 2.40 l.86 
Taillard TS1" 930 - - 1047 - - 1240 1170 - - 1202 - -

BamesC TS2 1 935 655 843 1053 946 988 1256 1194 1278 1418 1211 1237 1239 1.45 l.68 
Dell'AT TS3m5 935 6.55 846 10.57 943 980 1252 1194 1289 1423 1210 12·54 123.5 1.56 l.66 
DeWAT TS3b5 935 655 842 1048 941 979 1242 1182 1278 1409 1203 1242 1233 1.01 1.42 

NowickiS TSAB I 930 655 842 1055 948 988 1259 1164 1275 1422 1209 1235 1234 1.19 1.12 
NowickiS TSABb3 930 65.5 842 1047 939 977 1236 1160 1268 1407 1196 1233 1229 0.54 0.98 

YamadaN GAI'"'" 930 - - - - - - - - - - - -

AartsVLU GLS1 m5 978 668 863 1084 970 1016 1303 1290 1324 1449 1285 1279 1273 5.14 3.40 

AartsVLU GLS2 m5 982 659 859 1085 981 1010 1300 1260 1310 1450 1283 1279 1260 4.69 2.99 
AartsVLU GLS2l.t-oo - - - 1055 938 985 1265 1217 - - 1248 - 1233 

DellaTV GA2m3 965 - - 1113 - - - - 1330 - - - -

DellaTV GA2b3 946 - - 1097 - - - - 1305 - - - -

NakanoY GA3 1 965 - - - - - - - - - - - -

DornPesch P_GA I 960 681 880 1139 1014 1014 1378 1336 1373 1498 1296 1351 1321 8.23 4.24 

DomPesch SB-GA( 40)m2 938 666 863 1074 960 1008 1272 1204 1317 1484 1251 1282 1274 3.74 l.84 

DomPesch SB-GA(60)m2 - - 848 1074 957 1007 1269 1210 1317 1446 1241 1277 1252 3.49 l.82 

NuijtAVV _ _RCS" 930 655 
-'-'-'-- . 

843 1069 942 981 128.5 1231 1292 1411 1278 1238 1247 2.41 3.16 
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Author 

AdamsBZ 

BalasLV 

BalasLV 

AdamsBZ 

AppleCook 

AppleCook 

AppleCook 

AppleCook 

AppleCook 

StorerWV 

StorerWV 

AartsVLU 

VLaarAL 

VLaarAL 

AartsVLU 

AartsVLU 

AartsVLU 

MatsuoSS 

Taillard 

BarnesC 

Dell'AT 

Dell'AT 

NowiekiS 

NowickiS 

YamadaN 

AartsVLU 

AartsVLU 

AartsVLU 

DellaTV 

DellaTV 

NakanoY 

DornPeseh 

DornPeseh 

DornPeseh 

NuijtAVV 

Method FTlO 

SBI' 10.10 

SB3 ' 5.82 

SB4 ' 11.17 

SBII' 8.51 

Bottle-4 ' 6.8 

Bottle-5 ' 7.1 

Bottle-6 ' 7.6 

Shuffiel ' 24.7 

Shuffie2' 24.7 

PSIO ' 
HSLIO' 

TAl m5 99.4 
SAm5 779 

SA bS 3895 

SAl m5 99.4 
SAll.t-oo -

SA2m5 99.4 

CSSA ' 987 

TSI" 

TS2 ' 15.8 

TS3m5 155.8 

TS3bS 779.0 

TSAB ' 30 

TSABb3 

GAI"uU 36·10' 

GLSl m5 99.4 

GLS2m5 99.4 
GLS2' ,t-oo -
GA2m3 628 

GA2b3 1884 

GA3 ' 
P-GA ' 932.6 

SB-GA(40)m' 106.7 

SB-GA(60)m2 -

RCS'· 1279 

Table 3: Performance comparison of various algorithms: computation times for 13 instances 

LA2 LA19 LA21 LA24 LA25 LA27 LA29 LA36 LA37 LA38 LA39 LA40 SCT computer CISCT 

1.69 7.40 2.19 25.5 27.9 45.5 48.0 46.9 61.4 57.7 71.8 76.7 482.8 VAX 780/11 6.0· 10' 

0.90 4.33 10.92 10.82 13.00 19.42 21.10 27.80 26.25 29.63 25.40 26.23 221.6 Spare 330 5.5 . 10' 

1.43 8.80 19.88 19.82 22.70 37.90 39.00 55.83 53.28 59.26 50.63 .52.41 432.1 Spare 330 1.1 . 103 

12.5 240 362 434 430 837 892 735 837 1079 669 899 10742 VAX 780/11 1.3 . 103 

1.3 10 .. 5 17 .. 5 25.9 21.6 31.4 31.5 22.6 13.7 46.5 41.7 22.4 293.4 Spare st'n ELC 7.3·10' 

7.8 64.8 46.4 62.7 48.5 92.1 91.4 152.9 56.4 95.7 134.3 23.7 883.8 Spare st'n ELC 2.2· 103 

- 201.5 300.7 200.0 100.4 666.5 280.4 320.7 561.7 181.6 191.9 154.1 317·5 Spare st'n ELC 7.9.103 

7.9 72.7 954.8 421.4 74.2 97.6 94.6 170.9 64.0 103.7 178.1 42.6 2307 Spare st'n ELC .5.8·10" 

7.9 72.7 87478 65422 98.2 604.2 1.53·58 3348 1577 17799 6745 1·50.1 198685 Spare sl'n ELC 5.0 . 105 

- - - - - - - - - - - -

- - - - - - - - - - - -

18.6 93.8 243.4 234.8 254.8 492.0 471.0 602.2 636.2 63·5.6 592.2 596.8 4971 VAX 8650 3.5· 103 

117 830 1991 2098 2133 4535 4408 5346 5287 5480 5766 5373 44143 VAX 785 8.4.103 

585 41·50 9955 10490 10665 2267·5 22040 26730 26435 27400 28830 26865 22071.5 VAX 785 4.2.104 

18.6 93.8 243.4 234.8 254.8 492.0 471.0 602.2 636.2 635.6 ·592.2 596.8 4971 VAX 8650 3.5.103 

- - - - - 4.104 VAX 8650 3.104 

18.6 93.8 243.4 234.8 254.8 492.0 471.0 602.2 636.2 635.6 592.2 596.8 4971 VAX 8650 3 .. 5 . 103 

3.03 115 205 199 180 286 267 624 577 672 660 603 ·5378 VAX 780/11 6.7 ·10' 

- - - - - - - -
28.9 217.1 173.5 27.7 176.1 248.2 195.6 221.4 232.0 180.9 258.7 89.5 2065 IBM RS 6000 2.5· 104 

18.8 103.8 198.8 181.8 191.7 254.2 281.3 238.4 242.2 256.6 237.8 236.6 2598 PC 386 1.3.103 

94.0 519.0 994.0 909.0 958.5 1271 1407 1192 1211 1283 1189 1183 12989 PC 386 6.5· 103 

8 60 21 184 155 66 493 623 443 165 325 322 289·5 AT 386 DX 1.4.103 

868.5 AT 386 DX 4.3 . 103 

- - - - - - - - - - - - Spare st'n 2 

18.6 93.8 243.4 234.8 254.8 492.0 471.0 602.2 636.2 635.6 592.2 596.8 4971 VAX 8650 3 .. 5 . 103 

18.6 93.8 243.4 234.8 254.8 492.0 471.0 602.2 636.2 635.6 592.2 596.8 4971 VAX 8650 3.5· 103 

- - - - - 4.104 VAX 8650 3.104 

- - 1062 - - - - 1880 - - - - PC 486/25 

- - 3186 - - - - 5640 - - - - PC 486/25 

- - - - - - - - - - - -

108 191 352 352 350 565 570 524 520 525 525 526 6041 DEC station 3100 9.7.103 

16.4 77.4 134.8 137.3 134.2 242.5 241.0 335.6 350.5 33·5.7 327.2 348.0 2787 DEC station 3100 4.5 . 103 

- 161.3 292.8 289.0 228.9 446.2 453.1 688.1 665.9 665.9 687.5 698.4 5523 DEC station 3100 8.8 . 103 

64 1176 ~~610 5167 .5781 3336 6691 3860 5747 .5059 4208 49291 Spare st'n ELC 1.2 . 10' 
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Figure 1: Relation between mean relative error and computer independent sum of CPU-times 
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algorithm of Aarts, Van Laarhoven, Lenstra & Ulder [1994J and the iterative improvement 

algorithm Shuflle of Applegate & Cook [1991J. 

Regarding itemtive impr'ovcment, Aarts, Van Laarhoven, Lenstra & Uhler [1994J report 

that their mnlti-start algorithm is inferior to threshold accepting and simulated annealing. 

Applegate & Cook's Shuflle algorithm works well, due to a neighborhood function that 

allows major changes in the schedule. We used our own outcomes of Bottle-5 as start solutions. 

The number t of machines to fix was chosen such that edge finder could rapidly fill in the 

remainder of the schedule. We set t=1 for the instances FTI0, LA2 and LAI9, t=2 for LA21, 

LA24 and LA24, and t=5 for the other instances. The results for these values of t are reported 

under Shufllel. We also carried out some more time consuming runs with t=1 for FTIO and 

LA2-LA24, t=3 for LA29, LA36 and LA37, and t=4 for LA27, LA38, LA39 and LA40. The 

outcomes, reported under Shuflle2, are good but expensive. 

Storer, Wu, & Vaccari [1992J give very few computational results for their variants of 

iterative improvement. Their results for the instance FTIO are poor. It seems that their 

search strategy or their neighborhood function is not powerful enough. 

The threshold accepting algorithm of Aarts, Vau Laarhoven, Lenstra & Ulder [1994J com­

petes with their simulated annealing algorithm in case simulated annealing finds an optimal 

schedule. Otherwise, threshold accepting is outperformed by simulated annealing. Almost all 

instances in our table belong to the latter category. 

The simulated annealing algorithm of Van Laarhoven, Aarts & Lenstra [1992J produces 

reasonable results. Five runs on FTIO with a standard setting of the cooling parameters 

produced an average schedule length of 985.8, with a minimum of 951; a much slower cooling 

schedule yields solution values of 930 (twice), 934,935 and 938. Reasonable results are also 

obtained by the simulated annealing algorithm of Aarts, Van Laarhoven, Lenstra & Ulder 

[1994J with a standard cooling schedule, but an extremely slow cooling schedule gives very 

good results. To compute MRE and SRE for the latter cooling schedule, we estimated the 

values for the missing entries. It is remarkable that their algorithm with the standard cooling 

schedule has a similar behaviour for the neighborhood functions N J (SAl) and NSa (SA2). 

Good results are obtained by the simulated annealing variant CSSA of Matsuo, Suh, & 
Sullivan [1988J. In comparison to other approximative approaches, simulated annealing may 

require large running times, but it yields consistently good solutions with a modest amount 

of human implementation effort and relatively little insight into the combinatorial structure 

of the problem type under consideration. 

The advent of taboo search has changed the picture. Methods of this type produce excellent 

solutions in reasonable times, although these benefits come at the expense of a non-trivial 

amount of testing and tuning. Although few data are available, Taillard's [1994J algorithm 

TSI seems to perform extremely well. Also very good results are obtained by algorithm TS2 

of Barnes & Chambers [1991J. Dell'Amico & Trubian's [1993J algorithm TS:1 obtained even 

better results. Apparently, their complicated neighborhood function is very effective. The 

algorithm TSAB of Nowicki & Smutnicki [1993J, which applies taboo search and traces its 

way back to promising but rejected changes, is the current champion for job shop scheduling. 

For our 13 instances it achieves a mean relative error of only 0.54 %. 

For many genetic algor'ithms no results for our 1:1 instances are available. Sometimes, 

only the result for FTIO is giveu. Yamada & Nakauo [1992J found a schedule of length 9:10 

four times among 600 trials. They also tested their algorithm GA 1 on four 20-job 20-machine 

instances, but their outcomes are on average 5.9 % above the best known npper bounds 

[Wennink, 1994J. The results obtained by Aarts, Van Laarhoven, Lenstra & Uhler [1994J are 
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not very strong. Their algorithm GLS2 (using neighborhood function N sa ) performs slightly 

better than GLS1 (using NIl. 
As for genetic algorithms using string representations, the results obtained by Della Croce, 

Tadei, & Volta's [1994) algorithm GA2 and by Nakano & Yamada's [1991) algorithm GA:l 

are poor. The algorithm P-GA of Dorndorf & Pesch [1994) is even worse. Their algorithm 

SB-GA, which incorporates a shifting bottleneck variant, produces reasonable results. Values 

are reported for runs with population sizes of 40 and 60. 

The constmint satisfaction algorithm of Nuijten, Aarts, Van Erp Taalman Kip & Van Hee 

[1993) produces good results but needs a lot of time. For the neuml network approaches no 

computational results are available that allow a proper comparison with other techniques. 

10 Conclusion 

10.1 Review 

Current optimization algorithms for job shop scheduling can handle problem instances no 

harder than the 15 X 15 instances of Lawrence in reasonable alllounts of running titne. If one 

wants to obtain approximate solutions to larger instances, one has to resort to local search. 

From the local search algorithms discussed in this survey, taboo search seems to work best. 

For the 13 instances investigated, the algorithm of Nowicki & Smutnicki, which combines 

taboo search with backtraeking, outperforms the other loeal seareh algorithms developed so 

far. Also the implementations of taboo seareh by Dell'Amico & Trubian and of simulated 

annealing by Aarts, Van Laarhoven, Lenstra, & Ulder perform very well, but the latter only 

if large running times are allowed. 

The various shifting bottleneck procedures produce schedules of moderate quality. Better 

results are obtained in combination with some type of local search or backtracking. 

Genetic algorithms have a poor performance until now. Often the neighborhood function 

applied in combination with the schedule representation ehosen does not generate meaningful 

changes and it is hard to find improvements. Only when some kind of standard local search 

is embedded at a second level, the computational results are satisfactory. 

10.2 Preview 

There is still considerable room for improving local search approaches to the job shop schedul­

ing problem. As shown in Figure 1, none of the existing algorithms achieves an average error 

of less than 2% within 100 seconds. And our benchmark instances are still small ones. 

We have observed that many approaches operate at two levels, with, for instance, schedule 

construction, partial enumeration or local search with big ehanges at the top level, and loeal 

seareh with smaller ehanges at the bottom level. Sueh hybrid approaehes are in need of a 

more systematie investigation. The type of baektraeking proposed by Nowicki & Smutnieki is 

a promising teehnique and ean be combined with almost any loeal seareh algorithm without 

diffieulties. It might also be interesting to design a three-level approaeh with neighborhoods 

of smaller size towards the bottom. 

The flexibility of local seareh and the results reported here provide a promising basis for 

the applieation of local seareh to more general scheduling problems. An example of practi­

cal interest is the multiprocessor job shop, where each production stage has a set of parallel 
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machines rather than a single one. Finding a schedule involves assigment as well as sequencing 

decisions. This is a difficult problem, for which no effective solution methods exist. 

Applying local search to large instances of scheduling problems requires the design of data 

structures that allow fast incremental computations of, for example, longest paths. Johnson 

[1990] has shown that sophisticated data structures play an important role in the application 

of local search to large traveling salesman problems. 

Our survey has been predominantly of a computational nature. There are several related 

theoretical questions about the complexity of local search. A central concept in this respect 

is PLS-completeness [Johnson, Papadimitriou, & Yannakakis, 1988]. Many of the neighbour­

hood functions defined in Section 5 define a PLS-problem, which may be PLS-complete. There 

are also complexity issues regarding the parallel execution of local search. For example, for 

some of the neighborhood functions it may be possible to verify local optimality in polylog 

parallel time. 
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