

Job shop scheduling by local search

Citation for published version (APA):
Vaessens, R. J. M., Aarts, E. H. L., & Lenstra, J. K. (1994). Job shop scheduling by local search. (Computing
science notes; Vol. 9415). Eindhoven University of Technology.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Aug. 2022

https://research.tue.nl/en/publications/29054c85-143f-4936-bae8-f14589c9ac67

Eindhoven University of Technology

Department of Mathematics and Computing Science

Job Shop Scheduling by Local Search

by

RJ.M. Vaessens, E.H.L. Aarts, 1.K. Lenstra

94/15

Computing Science Note 94/15
Eindhoven, March 1994

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Job Shop Scheduling by Local Search

R . .J.M. Vaessens 1

E.H.L. Aarts 2,1

.J.K. Lenstra 1,3

February 28, 1994

1. Eindhoven University of Technology~ Department of Mathematics and Computing Science,

P.O. Box 513, 5600 MB Eindhoven
2. Philips Research Laboratmies, P.O. Box 80000, 5600 JA Eindhoven

3. CWI, P.O. Box 94079, 1090 GB Amsterdam

Abstract

We survey solution methods for the job shop scheduling problem with an emphasis

on local search. We discuss both deterministic and randomized local search methods as

well as the applied neighborhoods. We compare the computational performance of the
various methods in terms of their effectiveness and efficiency on a standard set of problem

instances.

Key words: job shop scheduling, local search, iterative improvement, shifting bottle­

neck heuristic, simulated annealing, taboo search, genetic algorithms, constraint satisfac­

tion.

1 Introduction

In the job shop scheduling problem we are given a set of jobs and a set of machines. Each

machine can handle at most one job at a time. Each job consists of a ehain of operations,

eaeh of which needs to be proeessed during an uninterrupted time period of a given length on

a given machine. The purpose is to find a schedule, that is, an allocation of the operations

to time intervals on the machines, that has minimum length.

The problem is difficult to solve to optimality. For example, a relatively small instance

with 10 jobs, 10 machines and 100 operations due to Fisher & Thompson [1963] remained

unsolved until 1986. Many solution methods have been proposed, ranging from simple and

fast dispatching rules to sophistieated branch-and-bound algorithms.

We snrvey algorithms for the job shop scheduling problem with an emphasis on local

search. During the last decade many different types of local search algorithms for job shop

scheduling have been developed, and some of them have proved to be very effective.

The paper is struetured as follows. In Section 2 several models for the job shop seheduling

problem are presented. In Section 3 the complexity of the problem and methods for its solu­

tion are reviewed. Section 4 introduces loeal seareh and Section 5 discusses representations

and neighborhoods for the problem. Seetions 6 and 7 describe wnstructive and iterative al­

gorithms with local search, respeetively; Seetion 8 describes some other techniques. Section 9

contains computational results, and Section 10 gives some eonclllding remarks.

1

2 The job shop scheduling problem

The joh shop scheduling problem is formally defined as follows. Given are a set 0 of I

operations, a set M of Tn machines, and a set :1 of n jobs. For each operation v E 0 there

is a processing time p(v) E IN, a unique machine M(v) E M on which it requires processing,

and a unique job J(v) E :1 such that V E J(v). Ou 0 a binary relation A is defined, which

represents pr"€cedences between operations: if (v, w) E A, then v has to be performed before

w. A is such that all operations v with the same value J(v) are totally ordered.

A schedule is a function S : 0 --7 IN U {O} that for each operation v defines a start time

H(v). A schedule S is feasible if

'Iv EO: .5'(v) ?: 0,

Vv,w E O,(v,w) E A: .5'(v) + p(v) :;; Sew),

Vv,w E O,v Iw,M(v) = Mew): .5'(v) + p(v) :;; Sew) or Sew) + p(w):;; .5'(71).

The length of a schedule S is maxvEO S(v) + p(v), i.e., the earliest time at which all operations

are completed. The problem is to find an optimal schedule, i.e., a feasible schedule of minimum

length.

A feasible schedule is left-justified, if no operation can start earlier without changing

the processing order on any machine. It is active if no operation can start earlier without

delaying another operation. Note that at least one optimal schedule is active and that each

active schedule is left-justified.

An instance of the problem cau be represented by means of a disjunctive graph (; =

(0, A, E) [Roy & Sussmann, 1964J. The vertices in 0 represent the operations, the arcs in A

represent the given precedences between the operations, and the edges in E = {{v, w} I v, wE

0, v I w, M (v) = M(w)} represent the machine capacity constraints. Each vertex v E 0 has

a weight, equal to the processing time p(v).
For each E' S; E, an orientation on E' is a function 51 : E' -+ 0 X 0 such that n({v, 'W}) E

{(v,w),(w,v)} for each {v,w} E E'; we write fl(E') = {fl(e) leE E'}. A partial orientation

is an orientation on E'I E and a complete or·ientation is one on E. An orientation fl on E'

is feasible if the digraph (0, A U fl(E')) is acyclic. It represents for each machine its machine

order·ing, i.e., the order in which it processes its operations. Each feasible schednle S uniquely

determines a feasible complete orientation, which is denoted by fls.
Conversely, for each feasible complete orientation fl, there is a unique left-justified feasible

schedule, which is denoted by .'In. For all v E 0, Sn(v) equals the length of a longest path in

the digraph (0, AUfl(E)) upto and excluding v. The length of Sn equals the length of a longest

path in the digraph. Finding an optimal left-justified schedule is now equivalent to finding

a feasible complete orientation that minimizes the longest path length in the corresponding

digraph.

The search for such a schedule can be restricted to the set of active schedules. However,

given a feasible complete orientation fl, it is not clear at first sight whether Sn is active:

activeness depends on the sizes of the processing times, while left-justifiedness does not. For

this reason one often considers the larger set of left-justified schedules.

3 Complexity and algorithms

We give a brief review of results on the computational complexity of job shop scheduling, of

the lower bounds and ennmeration schemes that are used in branch-and-bound methods, and

2

of the approximative approaches that yield upper bounds on the optimum. Techniques of the

latter type that proceed by local search are discussed in the rest of the paper.

3.1 Complexity

Some very special cases of the problem can be solved in polynomial time, but their immediate

generalizations are NP-hard. The results are summarized in Table 1, where lj denotes the

numer of operations of the jth job. Note that, due to result (4b), it is NP-hard to find a job

shop schedule that is shorter than ~ times the optimum.

Table 1: The complexity of job shop scheduling

solvable in polynomial time NP-hard (in the strong sense")

(la) m-2,alllj:S2 (lb) In - 2, all lj :S 3; In - 3, all lj :S 2

(2a) m=2,allp(v)=1 (2b)* In = 2, all p(v):S 2; m = 3, all p(v) = 1

(3a) n=2 (3b)" n=3

(4a) length < :3 (4b)* length < 4

(la) [Jackson, 1956]; (Ib) [Lenstra, Rinnooy Kan & Brucker, 1977]; (2a) [Hefetz & Adiri,

1982J; (2b) [Lenstra & Rinnooy Kan, 1979]; (3a) [Akers, 1956; Brucker, 1988]; (3b)

[Sotskov, 1991]; (4a,b) [Williamson, Hall, Hoogeveen, Hurkens, Lenstra & Shmoys, 1994].

3.2 Lower bounds

Optimization algorithms for the problem employ some form of tree search. A node in the

tree is usually charac.terized by a partial orientation fl on a subset E' C E. The question is

then how to compute a lower bound on the length of any feasible schedule corresponding to

a completion of fl.
Nemeti [1964] and many subsequent authors obtained a lower bound by simply disregard­

ing E \ E' and computing the longest path length in the digraph (0, A u fl(E')).
Bratley, Florian & Robillard [1973J obtained the stronger single-machine bound by relaxing

the capacity constraints of all machines except one. Given a machine M', they propose to solve

the job shop scheduling problem on the disjunctive graph (0, A u fl(E'), {{ v, llI} I M(v) =

M(llI) = M'} \ E'). This is a single-machine problem, where the arcs in Au fl(E') define

release and delivery times for the operations on M' and precedence constraints between thelll.

Lageweg, Lenstra & Rinnooy Kan [1977J pointed out that many other lower bounds appear

as special cases of this bound. For example, relaxing the capacity constraint of M' gives

Nemeti's bound, and allowing preemption gives the bound used in current branch-and-bound

codes. The bound itself is NP-hard to compute but can be found fairly efficiently [Baker &
Su, 1974; McMahon & Florian, 1975; Lageweg, Lenstra & Rinnooy Kan, 1976; earlier, 1982J.

It has been strengthened by Carlier & Pinson [\990J, who compute larger release and delivery

times, and by Tiozzo [1988J and Dauzere-Peres & Lasserre [1993], who observe that the arcs

also define delays between precedence-related operations.

Fisher, Lageweg, Lenstra & Rinnooy Kan [1983J investigated surrogate duality relaxations,

in which either the machine capacity constraints or the precedence constraints among the

operations of ajob are weighted and aggregated into a single constraint. Balas [1985J described

a first attempt to obtain bounds by polyhe.dral techniques. Applegate & Cook [1991 J review

the valid inequalities stu(lied before and gave some new ones. The computational performance

3

of surrogate duality and polyhedral bounds reported until now is disappointing in view of what

has been achieved for other hard problems.

3.3 Enumeration schemes

The traditional enumeration scheme generates all active scbedules by constnlcting them from

front to back [Gifller & Thompson, 1960J. At each node a machine on which the earliest

possible completion time of any unscheduled operation is achieved is determined, and all

unscheduled operations that can start earlier than this point in time on that machine are

selected in turn.

Recent branch-and-bound algorithms use more flexible enumeration schemes. Carlier &

Pinson [1989; 1990J and Applegate & Cook [1991J branch by selecting a single edge and

orienting it in either of two ways. Brucker, Jurisch & Sievers [1994J follow Grabowski's

'block approach'. All these authors apply the preemptive single-machine bound and a host

of elimination rules. For details we refer to the literature.

The celebrated 10 X 10 instance of Fisher & Thompson [1963J is within easy reach of these

methods, but 15 X 15 instances seem to be the current limit. The main deficiency of the

existing optimization algorithms for job shop scheduling is the weakness of the lower bounds.

The situation is much brighter with respect to finding good upper bounds.

3.4 Upper bounds

Upper bounds on the optimum are usually obtained by generating a schedule and computing

its length. An obvious first step is to apply a dispatch rule aud to schedule the operations

according to some priority funetion. Haupt [1989J surveys such rules. They tend to exhibit

an erratic behaviour; the procedure 'bidir' proposed by Dell'Amico & Trubian [199:3J is one

of the safer alternatives. The next step is then to try to improve the schedule by SOIlle sort

of local search.

An entirely different approach is taken by Sevast'janov [1994J. Using Steinitz' vector sum

theorem, he develops polynom.ial-time algorithms for finding an upper bound with an absolute

error that is independent of the number of jobs. Shmoys., Stein & Wein [1994J improve on his

results.

4 Local search

Local search is based on the idea that a given solution may be improved by making small

changes. Solutions are changed over and again, and better and better solutions are found.

We need the following notions. There is a set F of feasible solutions. Two functions are

defined on F. The cost function is a mapping c: F -+ JR, which in most cases is closely related

to the function that is to be optimized. The neighborhood junction is a mapping N : F -+ 2F,

which defines for each solution x E F a neighborhood N(x) <;; F. Each solution in N(x) is

called a neigbbor of x. Roughly speaking, the execution of a local search algorithm defines a

walk in F such that each solution visited is a neighbor of the previously visited one.

A solution x E F is called a local minimum with respect to a neighborhood function N if

c(x) :S c(y) for all y E N(x). The basic algorithm to find a local minimum is called ite/'ative

improvement. Starting at SOIlle initial feasible solution, its neighborhood is searched for a

4

solution of lower cost. If such a solution is found, the algorithm is continued from there;

otherwise, a local minimum has been found.

The quality of the local minimum depends on the initial solution, on the neighborhood

function, and on the method of searching the neighborhoods. An initial solution may be

obtained by generating it randomly or by applying a heuristic rule. The ehoice of a good

neighborhood is often difficult. There is a clear trade· off between small and large neighbor­

hoods: if the number of neighbors is larger, the probability of fineling a good neighbor may

be higher, but looking for it takes more time. There are several alternatives for searehing the

neighborhood: one may take the first neighbor found of lower cost (}ir'st imp1'Ovement), or

take the best neighbor in the entire neighborhood (best improvement), or take the best of a

sample of neighbors, provided it is an improving one.

Often, one problem remains. The local optima obtained may be of poor quality. Therefore,

several variants of iterative improvement have been proposed. The main variants can be

divided into threshold algorithms, taboo search algorithms, and genetic algorithms.

In thr'Cshold algorithms, a neighbor of a given solution becomes the new cnffent solution, if

the cost differenee between the current schedule and its neighbor is below a certain threshold.

One distinguishes three kinds of threshold algorithms.

In dassieal iterative impl'Ovement the thresholds are 0, so that only true improvements

are accepted. In threshold accepting [Dueck & Scheuer, 1990] the thresholds are nonnega­

tive. They are large in the beginning of the algorithm's execution and gradually decrease

to become 0 in the end. General rules to determine appropriate thresholds are lacking. In

simulated annealing [Kirkpatrick, Gelatt & Vecchi, 1983; Cerny, 1985] the thresholds are pos­

itive and stochastic. Their values equal -TIn u, where T is a control parameter (often called

'temperature'), whose value gradually decreases in the course of the algorithm's execution

according to a 'cooling schedule', and u is drawn from a uniform distribution on (0,1]. Eaeh

time a neighbor is compared with the eurrent solutiou, u is drawn again. Under certain mild

conditions simulated annealing is guaranteed to find an optimal solution asymptotically.

In taboo search one selects from a subset of permissible neighbors of the current solution a

solution of minimum cost. In basic taboo seareh a neighbor is permissible if it is not on the

'taboo list' or satisfies a certain 'aspiration criterion'. The taboo list is recalculated at each

iteration. It is often implicitly defined in terms of forbidden moves from the current solution

to a neighbor. The aspiration criterion expresses possibilities to overrule the taboo-status of

a neighbor. For details see Glover [1989; 1990] or Glover, Taillard & De Werra [1993].

Genetic algorithms [Holland, 1975] are based on an extended notion of neighborhood

function. A hyper-neighborhood function is a mapping Nh : FS -+ 2F with s :0: 2, which

defines for each s-tuple x = (XI,"" x,) E F' a set Nh(X) ~ F of neighboring solutions.

Each solution in Nh(x) is called a hyper-neighbor of x. At each iteration a set of solutions,

often ealled 'population', is given. From this population several subsets of size s consisting of

'parents' are selected, and for each such subset some hyper-neighbors, called 'off-spring', are

determined by operations called 'reeombination' and 'mutation'. This set of hyper-neighbors

and the current population are then combined and reduced to a uew population by selecting

a subset of solutions.

Several solution methods have been proposed that use local search in combination with

other techniques like partial enumeration and backtracking. Such hybrid methods for job

shop scheduling are dealt with below with an emphasis on nested forms oflocal search. Here,

loeal search is applied at several levels with elifferent neighborhoods. In this way the search

can explore different regions of the. solution space.

5 Solution representations and neighborhood functions

A crucial ingre<iie,nt of a local search algorithm is the defillition of a neighborhood function in

combination with a solution representation, Below, several basic representations and neigh­

borhood functions are introduced for the job shop scheduling problem. For most threshold and

taboo search algorithms, only leJt-justified or active schedules are represented. This is done

by specifying the start times of the operations or, equivalently, the corresponding machine

orderings of the operations. Other representations are used too, especially in combination

with genetic algorithms.

To be able to define the neighborhood functions, we need some extra notions. Given an

instance and an operation v, jp(v) and j8(V) denote the immediate predecessor and successor

of v in the precedence relation A, provided they exist. Given a feasible schedule Saud an

operation v, 7nps(v) and 7n8s(v) denote the immediate predecessor and successor of v in

the orientation ns , provided they exist. If the schedule S is clear from context, we delete

the snperscript S. Furthermore, jp2 (v) denotes jp(jp(v)), provided it exists, and a similar

notation is used for j8, mps aud m8s. Two operations v and ware adjacent when S(v)+p(v) =

S(w). A block is a maximal sequence of size at least one, consisting of adjacent operations

that are processed on the same machine and belong to a longest path. An operation of a

block is intemal if it is neither the first nor the last operation of that block.

Several neighborhood functions have been proposed in the literature. Most of these are

not defined on a schedule S itself but on the corresponding orientation ns. If ns is changed

into another feasible orientation n', Sn' is the corresponding neighbor of S. In this way

neighbors of a given schedule are always left-justified.

The following properties [Balas, 1969; Matsuo, Suh & Sullivan, 1988; Nowicki & Smutnicki,

1993] are helpful in obtaining reasonable neighborhood functions.

I. Given a feasible orientation, reversing an oriented edge on a longest patb in the corre­

sponding digraph results again in a feasible orientation.

2. If reversing an oriented edge of a feasible orientation n that is not on a longest path

results in a feasible orientation n', then SrI' is at least as long as Sn.
3. Given a feasible orientation!1, reversing an oriented edge (v,w) between two internal

operations of a block results in a feasible schedule at least as long as Sn.
4. Give,n is a feasible orientation n. If v is the first and w the second operation of the first

block of a longest path and w is internal, then reversing (v, w) results in a feasible sche,dule,

at least as long as Sn. The same is true if w is the last and v the second last operation of the

last block of a longest path and v is internal.

In view of these properties, the simplest neighborhood functions are based on the reversal

of exactly one edge of a given orientation. Van Laarhoven, Aarts & Lenstra [1992] propose

a neighborhood function NI which obtains a neighbor by reversing two adjacent operations

of a block. Matsuo, Suh & Sullivan [1988] use a neighborhood function Nla with the same

reversals, except those involving two internal operations. Nowicki and Smutnicki [1993]u5e

a neighborhood function NIb, excluding from Nla the reversal of the first two operations of

the first block when the second one, is internal and the reversal of the last two operations of

the last block when the first is internal. For NIb, neither a schedule with one block only nor

one, with blocks of size one only has a neighbor; note that sl1ch schedules are optimal.

Dell'Amico & Trubian [1993] propose several neighborhood functions that may reverse

more than one edge. Their neighborhood function N2 obtains for any two operations v and

w = 7n8(V) on a longest path a neighboring orientation by permuting mp(v), v and 111, or

6

by permuting v, '" and mB("'), such that v and", are reversed and a feasible orientation

results. Their neighborhood function N 2a excludes from N2 the solutions for which both v

and", = ms(v) are internal. Their neighborhood function N3 considers blocks of size at least

two: a neighbor is obtained by positioning an operation v immediately in front of or after the

other operations of its block, provided that the resulting orientation is feasible; otherwise, 'Ii

is moved to the left or the right as long as the orientation remains feasihle.

Adams, Balas & Zawack [1988] propose a neighhorhood function N4 which may completely

change one machine ordering. For every machine M' with an operation on a longest path, a

neighhor is ohtained hy replacing the orientation on M' hy any other feasihle orientation.

The following neighhorhood functions obtain a neighbor by changing several machine

orderings at the same time. Relatively small modifications are made by the neighborhood

function Ns of Matsuo, Suh & Sullivan [1988], which reorients at most three edges simul­

taneously. A neighhor is obtained hy reversing two adjacent operations v and '" = ms(v)

of a hlock (except when they are hoth internal) and in addition hy reversing jp'("') and

mp(jp'(uI)) for some t ~ 1 and hy reversing js(v) and msUs(v)). The latter reversals are

executed only if certain additional conditions are satisfied; see their paper for details. Aarts,

Van Laarhoven, Lenstra & Ulder [1994] use a variant N s., where t ::; I.

Applegate & Cook [1991] propose a neighhorhood function N6 which drastically changes

the given orientation. Their neighborhood contains all feasible orientations that can he oh­

tained by simultaneously replacin" the orientation on m - t machines hy any other feasihle

orientation. Here, t is a small ~umher depending on m.

Storer, Wu & Vaccari [1992] use completely different representations of schedules. These

are hased on a modified version of the Gifller-Thompson algorithm (see Section a.:3). Suppose

that at a certain point the earliest possihle completion time of any unscheduled operation

is equal to C and is achieved by operation v, and that T is the earliest possible start time

on machine M(v). Then all unscheduled operations on M(v) that can start no later than

T + o(C - T) are candidates for the next position on M (v). Here, 0 is a priori chosen in [0,1)

(in experiments 0, 0.05 or 0.1); if 0 approaches 1 all active schedules can he generated, while

" = 0 gives only so-called non-delay schedules. Two representations are defined.

The representation R7 represents a schedule hy modified processing times for the oper­

ations. Using these, the modified Gifller-Thompson algorithm with the shortest processing

time rule as selection rule uniquely determines a feasihle orientation fl, and Sn, computed

with the original processing times, is the corresponding schedule. The neighhorhood func­

tion N7 now ohtains a neighhor hy increasing the processing times hy amounts of time that

are independently drawn from a uniform distrihution on (-0,0). Here, 0 is a priori cho­

sen (in experiments 10, 20 or 50). The representation R8 represents a schedule by dividing

the scheduling horizon into several (in experiments 5, 10 or 20) time windows and assigning

one of a given set of dispatch rules to each window. The modified Gifller-Thompson algo­

rithm determines a schedule hy applying the dispatch rule of the corresponding window. The

neighborhood function Ns changes the dispatch rule for a window of a given schedule.

Genetic algorithms use two types of representations: the natural one, which is also used for

most threshold and taboo search algorithms, and a more artificial one, using binary strings.

For the former type of representation Yamada & Nakano [1992] propose a hyper-neigh­

horhood function Nhl which, given two schedules Sand S', determines a neighhor using the

Gifller-Thompson algorithm. When this algorithm has to choose from two or more operations,

it takes, for a small E > 0, the operation that is first in S with probability I;', the operation

that is first in S' with prohability 12", and a random operation from the other availahle

7

operations with probability f.

Aarts, Van Laarhoven, Lenstra & Ulder [1994] propose a hyper-neighborhood function

Nh2' Given two schedules Sand S', Nh2 determines a neighbor by repeating the following
- -

step In;nJ tiIn€s: choose a randOlll arc (w,v) of Sf and change S hy reversing arc (-u,w),

provided it belongs to a longest path of S.

The latter type of representation encodes a schedule or its orientation into a string over

a finite - usually binary - alphabet. Such representations facilitate the application of hyper­

neighborhood func.tions involving operations like 'crossover' and 'mutation'; see Goldberg

[1989, -PI'. 166-175]. There are a number of drawbacks, however. A schedule or orientation

may have several representatives, or none. Conversely, a string does not have to represent a

schedule, and if it does, it may be nontrivial to calculate the corresponding schedule. Although

attempts have been made to circumvent these difficulties, the hyper-neighborhood functions

that operate on strings often have no meaningful effect in the context of the underlying

problem. We will consider genetic algorithms using string representations in less detail.

6 Constructive algorithms with local search

In this section we discuss the shifting bottleneck procedure and its variants. These algorithms

construct a complete schedule and apply local search to partial schedules on the way. A

partial schedule is characterized by a partial orientation n on a subset E' E E. Its length is

defined as the longest path length in the digraph (O,A u n(E')).
The basic idea of the algorithms described here is as follows. The algorithm goes through

In stages. At each stage, it orients all edges between operations on a specific machine. In this

way, at the beginning of any stage all edges related to some machines have been oriented,

while the edges related to the other machines are not yet oriented. Furthermore, at the end of

each stage, it applies iterative best improvement to the current partial schedule using neigh­

borhood function N4 , which revises the orientation on a machine scheduled before. Orienting

or reorienting the edges related to one machine in an optimal way requires the solution of a

single-machine problem, where the partial schedule defines release and delivery times and de­

layed precedence constraints. The algorithms discussed hereafter mainly differ by the order in

which the m machines are considered, by the implementation of iterative best improvement,

and by the single-machine algorithm used.

The original shifting bottleneck procedure SBI of Adams, Balas & Zawack [1988] orients

at each stage the edges related to the bottleneck machine. This is the unscheduled machine

for which the solution value to the corresponding single-machine problem is maximum; the

delays between precedence-related operations are not taken into account. After scheduling

a machine, iterative best improvement is applied during three cycles. In each cycle each

scheduled machine is reconsidered once. The first cycle handles the machines in the order in

which they were sequenced. After a cycle is completed, the machines are reordered according

to decreasing solution values to the single-machine problems in the last cycle. When all of

the machines have been scheduled, the cycles continue as long as improvements are found.

Furthermore, after a phase of iterative best improvelnent, the orientations on several llla­

chines that have no operations on a longest path are deleted, and then these machines are

rescheduled one by one.

Applegate & Cook [1991] use almost the same algorithm. The main difference is that at

8

each stage iterative improvement cycles continue until no further improvements are found.

Dauzere-Peres & Lasserre [1993J were the first to take the delays between precedence­

related operations into account. They develop a heuristic for the single-machine problem

with delayed precedences and incorporate it into a shifting bottleneck variant.

Balas, Lenstra & Vazacopoulos [1994J develop an algorithm to solve the single-machine

problem with delayed precedences to optimality, and use it to determine the bottleneck ma­

chine in their shifting bottleneck procedure SB:l. Their local search strategy differs from the

one of Adams, Balas & Zawack [1988J in some minor details; for instance, the number of

cycles is limited to six. Again, after scheduling a new machine, they first apply iterative im­

provement, then delete the orientations on several non-critical machines, and reschedule these

machines one by one. They also propose an extension SB4, which takes the best solution of

SB:l and a variant of SB3 that reverses the order of the two reoptimizations procedures: first

reschedule some non-critical machines, then apply regnlar iterative improvement. SB4 needs

roughly twice the computation time of SB3 but finds several better schedules.

The shifting bottleneck procedure and its variants have been incorporated into other al­

gorithms. Most of these employ some form of partial enumeration. Dorndorf & Pesch [1994J

embed a variant in a genetic algorithm; see Section 7.3.

Adams, Balas & Zawack [1988J develop an algorithm SBU, which applies SBI to the

nodes of a partial enumeration tre.e. A node corresponds to a subset of machines that have

been scheduled in a certain way. In each of its descendants one more machine is scheduled.

The schedule is obtained by first solving the single-machine problem, with release and deliv­

ery times defined by the parent node, and then applying iterative improvement as in SBI.

Descendants are created only for a few machines with highest solution values to the single­

machine problem. A penalty function is used to limit the size of the tree. For details about

the branching rule, the penalty function and the search strategy we refer the reader to the

original paper.

Applegate & Cook [1991J develop an algorithm Bottle-t, which employs partial enumera­

tion in a different way. Bottle-t applies their shifting bottleneck variant described above as

long as more than t machine are left unscheduled. For the last t machines it branches by

selecting each remaining unscheduled machine in turn. The values t = 4, 5 and 6 were tested.

7 Iterative algorithms with local search

The algorithms presented in this section start from one or more given feasible schedules and

manipulate these in an attempt to find better schedules. They can naturally be divided into

threshold algorithms, taboo search algorithms, and genetic algorithms.

7.1 Threshold algorithms

The basic threshold algorithms are iterative improvement, threshold accepting, and simulated

annealing. We also consider some closely related variants. Unless stated otherwise, a schedule

is represented in the ordinary way by the starting times or the orientation.

Itemti1le impro1lement is the simplest threshold algorithm. Aarts, Van Laarhoven, Lenstra

& Ulder [1994J test iterative improvement with the neighborhood functions N1 and Nsa . To

obtain a fair comparison with other algorithms they apply a multi-start strategy, i.e., they

9

run the algorithm with several randomly generated start solutions until a limit on the total

funning tilue is reached, and take the hest solution found over all individual runs.

The algorithm Shuffle of Applegate & Cook [1991] uses the neighborhood function N6. At

each iteration, the schedule on a small number of heuristically selected machines remains fixed,

and the schedule on the remaining machines is optimally revised by their branch-and-bound

algorithm 'edge finder'. As initial solution they take the result of Bottle-5.

Storer, Wu & Vaccari [1992] propose a variant of iterative improvement, called PSIO,

with representation R7 and neighborhood function N7. Given a solution, a fixed number of

neighbors (in experiments 100 or 200) is determined, the best one of which becomes the new

solution. They also test a standard iterative first improvement algorithm, called HSLIO, with

representation Rs and neighborhood function Ns . Neighbors are generated randomly and the

algorithm stops after a fixed number of iterations (in experiments 1000 or 2000).

TllI"eshold accepting has only been implemented by Aarts, Van Laarhoven, Lenstra &

Ulder [1994]. Their algorithm TAluses the neighborhood function N1 • Threshold values are

determined empirically.

Simulated annealing has been tested by several authors. Van Laarhoven, Aarts & Lenstra

[1992] use the neighborhood function NI. Aarts, Van Laarhoven, Lenstra & Ulder [1994] use

NI (algorithm SAl) and NSa (algorithm SA2).

Matsuo, Suh & Sullivan's [1988] 'controlled search simulated annealing' algorithm CSSA is

a bi-Ievel variant, which also inc.orporates standard iterative improvement. Given a schedule

S, a neighbor S' is selected using the neighborhood function Ns . S' is accepted or rejected by

the simulated annealing criterion. In the latter case, S' is subjected to iterative improvement

using Ns again, and if the resulting local optimum improves on S, it is accepted as the new

solution. Their method also differs from most other implementations of simulated annealing

in that the acceptance probability for a schedule that is inferior to the current schedule is

independent of the difference in schedule length.

7.2 Taboo search algorithms

The taboo search algorithm TSI of Taillard [1994] uses the neighborhood function N1 . After

an arc (v, w) has been reversed, the reversal of wand its machine successor is put on the

taboo list. Every 15 iterations a new length of the taboo list is randomly selected from

a range between 8 and 14. The length of a neighbor is estimated in such a way that the

estimate equals the. length of the new schedule when both operations involved are still on a

longest path, and that it is a lower bound otherwise. Then, from the permissible neighbors

the schedule of minimum estimated leugth is selected as the uew schedule.

The algorithm TS2 of Barnes & Cbambers [1994] also uses N1 . Their taboo list has a

fixed length. If no permissible moves exist, the list is emptied. The length of each neighbor

is calculated exactly, not estimated. A start solution is obtained by taking the best from the

active aud non-delay schedules obtained by applying seven dispatch rules.

The algorithm TS:3 of Dell'Amico & Trubian [1993] uses the union of the neighborhoods

generated by N2a aud N3 • The items ou the taboo list are forbidden reorientations of arcs.

Depending on the type of neighbor, one or more such items are. on the list. The leugth of

the list depends on the fact whether the current schednle is shorter than the previous one

and the best one, or not. Furthermore, the minimal and maximal allowable lengths of the

list are chauged after a given number of iterations. When all neighbors are taboo and do not

satisfy the aspiration criterion, a random neighbor is chosen as the next schedule. A start

10

solution is obtained by a procedure called 'bidir', which applies list scheduling simultaneously

from the beginning and the end of the schedule, i.e., an operation is available when all of its

predecessors or all its successors have been scheduled.

Nowicki & Smutnicki [1993] introduce an algorithm TSAB that combines taboo search

with a backtracking scheme. In the taboo search part of their algorithm, the neighborhood

function is a variant of N1b , which only allows reorientations of arcs ou a single longest path.

The items on the taboo list are forbidden reorientations of arcs. The length of the list is fixed

to 8. If no permissible neighbor exists, the following is done. If there is one neighbor only,

which as a consequence is taboo, this one becomes the new schedule. Otherwise, the oldest

items on the list are removed one by one until there is one non-taboo neighbor, and this one

is chosen. A start solution is obtained by generating an active schedule using the shortest

processing time rule or an insertion algorithill.

The hacktracking scheme forces the taboo search to restart from promising situations

encountered before. Suppose that at a certain point a new best schedule S is found. Let

R(S) be the set of feasible arc reversals in S, let T be the new taboo list, including the

inverse of the reversal needed to obtain S, and let r be the reversal that will be made in the

next iteration. Then, if IR(S)I2: 2, the triple (S,R(S)\ {r},T) is stored on a list. Tills list

has a maximum length of 5; if it is full, the oldest triple is deleted before a new one is stored.

Each time the taboo search algorithm stops (by reaching a maximum number of iterations

without improving the best schedule), tbe backtracking scheme initiates a new round of taboo

search starting from the schedule, the set of reversals and the taboo list of the last stored

triple. When the set of reversals has one element only, the triple is deleted from the list;

otherwise, it is replaced by the same triple with the reversal that will be made in the next

iteration excluded. Note that during this new round new triples can be added to the list.

7_3 Genetic algorithms

The genetic algorithm GAl of Yamada & Nakano [1992] determines for every chosen pair

of schedules of the current population, two hyper-neighbors by using Nh1 . From these four

schedules two are selected for the next population: first the best schedule is chosen, and next

the best un selected hyper-neighbor is chosen.

Aarts, Van Laarhoven, Lenstra & Ulder [1994] propose a genetic algorithm that incorpo­

rates iterative first improvement. In each iteration there is a population of solutions that are

locally optimal with respect to either Nl (algorithm GLS1) or NSa (algorithm GLS2). The

popUlation is doubled in size by applying Nh2 to randomly selected pairs of schedules of the

population. Each hyper-neighbor is subjected to iterative first improvement, using Nl or N 5.,

and the extended population of local optima is reduced to its original size by choosing the

best schedules. Then a next iteration is started. Start solutions are generated randomly, and

iterative first improvement is applied to them before the genetic algorithm is started.

In the work of Davis [1985], Falkenauer & Bouffouix [1991] and Della Croce, Tadei & Volta

[1994] a string represents for each machine a preference list, which defines a preferable order­

ing of its operations. From such a list a schedule is calculated. Davis [1985] and Falkenauer

& Bouffouix [1991] restrict themselves to non-delay schedules; Della Croce, Tadei & Volta

[1994] are able to represent other schedules as well. Falkenauer & Bouffouix [1991] and Della

Croce, Tadei & Volta [1994] use the linear order crossover as hyper-neighborhood function.

See the original papers for details.

11

Nakano & Yamada [1991J consider problem instances with exactly one operation for each

job-machine pair. For each machine and each pair of jobs, they represent the order in which

that machine executes those jobs by one bit. Thus, a schedule is represented by a string of

mn(~-I) bits. Since such a string may not represent a feasible orientation, they propo;e a

method for finding a feasible string that is close to a given infeasible one. Two hyper-neighbors

are obtained by cutting two strings at the same point and exchanging their left parts.

Dorndorf & Pesch [1994J propose a 'priority rule based genetic algorithm' P-GA, which

uses the Giffier-Thompson algorithm. They use a string (PI, ... ,PI-I), where Pi is a dispatch

rule that resolves conflicts in the ith iteration of the algorithm. Two hyper-neighbors are

obtained by cutting two strings at the same point and exchanging their left parts. These

authors also propose a second genetic algorithm, called SB-GA, which uses a srufting bot­

tleneck procedure (see Section 6). A solution is represented by a sequence of the machines.

A corresponding schedule is generated by a variant of SBI: each time it has to select an

unoriented machine, it chooses the first un oriented machine in this sequence. The hyper­

neighborhood function used is the cycle crossover; see Goldberg [1989, p. l7.5J. In contrast to

SBI, reoptimization is applied only when less than six machines are left unscheduled.

8 Other techniques

8.1 Constraint satisfaction

Constraint satistisfaction algorithms consider the decision variant of the job shop scheduling

problem: given an overall deadline, does there exist a feasible schedule meeting the deadline?

Most algorithms of this type apply tree search and construct a schedule by assigning start

times to the operations one by one. A consistency checking process relllQVeS inconsistent

start times of not yet assigned operations. If it appears that a partial schedule cannot be

completed to a feasible one, a dead end is encountered, and the procedure has to undo several

assignments. Variable and value ordering heuristics determine the selection of a next operation

and its start time. The algorithm stops when a feasible schedule meeting the deadline has

been found or been proved not to exist. Note that it is also possible to establish lower bounds

on the optimum with this technique.

Sadeh [1991J developed an algorithm of this type, but its performance was poor. Nuijten,

Aarts, Van Erp Taalman Kip & Van Hee [1993J improved it by designing new variable and

value orderings and extensive consistency checking techniques. The resulting algorithm im­

proved upon Sadeh's method in terms of both solution quality and speed, but still could not

compete with the best job shop scheduling algorithms. The authors therefore modified their

algorithm such that, when a dead end occurs, it restarts the search from the beginning, and

they also randomized the selection of a next operation and its start time. Their 'randomized

constraint satisfaction' algorithm RCS performs quite well.

8.2 Neural networks

Foo & Takefuji [1988a,bJ describe a solution approach based on the deterministic neural

network model with a symmetrically interconnected network, introduced by Hopfield & Tank

[1985J. The job shop scheduling problem is represented by a 2-dimensionalmatrix of neurons.

Zhou, Cherkassky, Baldwin, & Olson [1991J develop a neural network algorithm which uses

a linear cost function instead of a quadratic one. For each operation there is one neuron in

12

the network, and also the number of interconnections is linear in the number of operations.

The algorithm improves the results of Faa & Takefuji both in terms of solution quality and

network complexity. Altogether, applications of neural networks to the job shop scheduling

problem are at an initial stage, and the reported computational results are poor up to now.

9 Computational results

The computational merits of job shop scheduling algorithms have often been measured by their

performance on the notorious 10 X 10 instance FTIO of Fisher & Thompson [1963]. Applegate

& Cook [1991] found that several instances of Lawrence [1984] (LA21, LA24, LA2.5, LA27,

LA29, LA38, LA40) pose a more difficult computational challenge. We have included the

available computational results for these instances and, in addition, for two relatively easy

instances (LA2, LAI9) and for all remaining 15 X 15 instances of Lawrence (LA36, LA37,

LA39). Each of these 13 instances has exactly one operation for each job-machine pair.

Tables 2 and 3 present the wmputational results for most algorithms discusse.d in Sec­

tions 6, 7 and 8, as far as these are available from the literature. Table 2 gives the schedule

lengths obtained and Table 3 the corresponding running times.

In Table 2 the values UB and LB are the best known upper and lower bounds for the

corresponding instances. For each method mentioned, a superscript b followed by a number

x indicates that the results reported are the best ones obtained after x runs of the algorithm.

If a superscript In occurs, the results reported are Ineans over several runs. A superscript 1

indicates that the results reported are obtained by a single run. A hyphen denotes that no

result is available. Furthermore, for each method and for each instance, we computed the

relative error, i.e., the percentage that the best solution value found is above LB. For each

algorithm, the values MRE and SRE are the mean relative error and the standard deviation

of the relative error. Note that UB has already an MRE of 0.40.

Table 3 gives the CPU-times for the corresponding results of Table 2. If the result in

Table 2 is a mean over several runs, the average CPU-time of a single run is given; if it is

a best result over several runs, the total CPU-time is given. The value SCT is the sum of

CPU-times over all instances; it was estimated if not all individual CPU-times were available.

Also the wmputer used is mentioned. For each algorithm, the value CISCT is a computer­

independent sum of CPU-times, computed using the work of Dongarra [1993].

Figure 1 shows for each algorithm the mean relative error and the corresponding computer­

independent sum of CPU-times. Note that the time-axis has a logarithmic scale.

The shifting bottleneck procedure SBI of Adams, Balas & Zawack [1988] is fast but gives

poor results. The variants SB3 and SB4 of Balas, Lenstra, & Vazacopoulos [1994], which

take the delayed precedences into acwunt, clearly give better results. The algorithm SBU of

Adams, Balas & Zawack [1988], which uses partial enumeration, also improves upon SBI. Ap­

plegate & Cook [1991] obtain reasonable results with their algorithms Bottle-5 and Bottle-6.

Note that the values given in Tables 2 and 3 do not correspond to those presented in their

paper. We computed our values using the enumeration scheme described in their paper; their

values were obtained using a different scheme [Applegate & Cook, 1993]. The results suggest

that the straight shifting hottleneck procedure (as in SBI, SB3 and 5B4) benefits from some

form of partial enumeration (as in SBlI and Bottle-t).

Among threshold algor·ithms the best results are obtained by the simulated annealing

13

Table 2: Performance comparison of various algorithms: schedule lengths for 13 instances

Authors Algorithm FTlO LA2 LA19 LA21 LA24 LA25 LA27 LA29 LA36 LA37 LA38 LA39 LA40 MRE SRE
UB 930 655 842 1046 935 977 1236 1160 1268 1397 1196 1233 1222 0.40 l.00
LB 930 655 842 1040 93·5 977 1235 1120 1268 1397 1184 1233 1222

AdamsBZ SBI' 101·5 720 875 1172 1000 1048 1325 1294 13·51 1485 1280 1321 1326 8.41 2.98
BalasLV SB3 1 981 667 902 1111 976 1012 1272 1227 1319 1425 1318 1278 1266 5.11 2.87
BalasLV SB4 1 940 667 878 1071 976 1012 1272 1227 1319 142·5 1294 1278 1262 4.07 2.57
AdamsBZ SBII l 930 669 860 1084 976 1017 1291 1239 1305 1423 1255 1273 1269 3.85 2.54
AppleCook Bottle-41 938 667 863 1094 983 1029 1307 1220 1326 1444 1299 1301 1295 4.98 2.52
AppleCook Bottle-51 938 662 847 1084 983 1001 1288 1220 1316 1444 1299 1291 1295 4.24 2.81
AppleCook Bottle-61 938 - 842 1084 9·58 1001 1286 1218 1299 1442 1268 1279 12.5.5 3.51 2.42
AppleCook Shuffle 1 , 938 655 842 1055 971 997 1280 1219 1295 1437 1294 1268 1276 3.25 2.93
AppleCook Shuffle2 1 938 6.55 842 1046 965 992 1269 1191 1275 1422 1267 1257 1238 2.14 2.23
StorerWV PS10 1 976 - - - - - - - - - - - -

StorerWV HSL10 1 1006 - - - - - - - - - - - -

AartsVLU TA1 m5 1003 693 925 1104 1014 1075 1289 1262 138.5 1469 1323 1305 1295 7.93 2.64
VLaarAL SAm' 985 663 8·53 1067 966 1004 1273 1226 1300 1442 1227 1258 1247 3.32 2.20
VLaarAL SA" 951 655 848 1063 952 992 1269 1218 1293 1433 1215 1248 1234 2.26 2.11
AartsVLU SAl m5 969 669 855 1083 962 1003 1282 1233 1307 1440 1235 1258 1256 3.59 2.14

~ ... AartsVLU SAl 1•t -
oo - - - 1053 935 983 1249 1185 - - 1208 - 1225 1.07 1.55

AartsVLU SA2m5 977 658 854 1078 960 1019 1275 1225 1308 1451 1243 1263 1254 3.63 2.16

MatsuoSS CSSA I 946 655 842 1071 973 991 1274 1196 1292 1435 1231 1251 1235 2.40 l.86
Taillard TS1" 930 - - 1047 - - 1240 1170 - - 1202 - -

BamesC TS2 1 935 655 843 1053 946 988 1256 1194 1278 1418 1211 1237 1239 1.45 l.68
Dell'AT TS3m5 935 6.55 846 10.57 943 980 1252 1194 1289 1423 1210 12·54 123.5 1.56 l.66
DeWAT TS3b5 935 655 842 1048 941 979 1242 1182 1278 1409 1203 1242 1233 1.01 1.42

NowickiS TSAB I 930 655 842 1055 948 988 1259 1164 1275 1422 1209 1235 1234 1.19 1.12
NowickiS TSABb3 930 65.5 842 1047 939 977 1236 1160 1268 1407 1196 1233 1229 0.54 0.98

YamadaN GAI'"'" 930 - - - - - - - - - - - -

AartsVLU GLS1 m5 978 668 863 1084 970 1016 1303 1290 1324 1449 1285 1279 1273 5.14 3.40

AartsVLU GLS2 m5 982 659 859 1085 981 1010 1300 1260 1310 1450 1283 1279 1260 4.69 2.99
AartsVLU GLS2l.t-oo - - - 1055 938 985 1265 1217 - - 1248 - 1233

DellaTV GA2m3 965 - - 1113 - - - - 1330 - - - -

DellaTV GA2b3 946 - - 1097 - - - - 1305 - - - -

NakanoY GA3 1 965 - - - - - - - - - - - -

DornPesch P_GA I 960 681 880 1139 1014 1014 1378 1336 1373 1498 1296 1351 1321 8.23 4.24

DomPesch SB-GA(40)m2 938 666 863 1074 960 1008 1272 1204 1317 1484 1251 1282 1274 3.74 l.84

DomPesch SB-GA(60)m2 - - 848 1074 957 1007 1269 1210 1317 1446 1241 1277 1252 3.49 l.82

NuijtAVV _ _RCS" 930 655
-'-'-'-- .

843 1069 942 981 128.5 1231 1292 1411 1278 1238 1247 2.41 3.16

-"',

Author

AdamsBZ

BalasLV

BalasLV

AdamsBZ

AppleCook

AppleCook

AppleCook

AppleCook

AppleCook

StorerWV

StorerWV

AartsVLU

VLaarAL

VLaarAL

AartsVLU

AartsVLU

AartsVLU

MatsuoSS

Taillard

BarnesC

Dell'AT

Dell'AT

NowiekiS

NowickiS

YamadaN

AartsVLU

AartsVLU

AartsVLU

DellaTV

DellaTV

NakanoY

DornPeseh

DornPeseh

DornPeseh

NuijtAVV

Method FTlO

SBI' 10.10

SB3 ' 5.82

SB4 ' 11.17

SBII' 8.51

Bottle-4 ' 6.8

Bottle-5 ' 7.1

Bottle-6 ' 7.6

Shuffiel ' 24.7

Shuffie2' 24.7

PSIO '
HSLIO'

TAl m5 99.4
SAm5 779

SA bS 3895

SAl m5 99.4
SAll.t-oo -

SA2m5 99.4

CSSA ' 987

TSI"

TS2 ' 15.8

TS3m5 155.8

TS3bS 779.0

TSAB ' 30

TSABb3

GAI"uU 36·10'

GLSl m5 99.4

GLS2m5 99.4
GLS2' ,t-oo -
GA2m3 628

GA2b3 1884

GA3 '
P-GA ' 932.6

SB-GA(40)m' 106.7

SB-GA(60)m2 -

RCS'· 1279

Table 3: Performance comparison of various algorithms: computation times for 13 instances

LA2 LA19 LA21 LA24 LA25 LA27 LA29 LA36 LA37 LA38 LA39 LA40 SCT computer CISCT

1.69 7.40 2.19 25.5 27.9 45.5 48.0 46.9 61.4 57.7 71.8 76.7 482.8 VAX 780/11 6.0· 10'

0.90 4.33 10.92 10.82 13.00 19.42 21.10 27.80 26.25 29.63 25.40 26.23 221.6 Spare 330 5.5 . 10'

1.43 8.80 19.88 19.82 22.70 37.90 39.00 55.83 53.28 59.26 50.63 .52.41 432.1 Spare 330 1.1 . 103

12.5 240 362 434 430 837 892 735 837 1079 669 899 10742 VAX 780/11 1.3 . 103

1.3 10 .. 5 17 .. 5 25.9 21.6 31.4 31.5 22.6 13.7 46.5 41.7 22.4 293.4 Spare st'n ELC 7.3·10'

7.8 64.8 46.4 62.7 48.5 92.1 91.4 152.9 56.4 95.7 134.3 23.7 883.8 Spare st'n ELC 2.2· 103

- 201.5 300.7 200.0 100.4 666.5 280.4 320.7 561.7 181.6 191.9 154.1 317·5 Spare st'n ELC 7.9.103

7.9 72.7 954.8 421.4 74.2 97.6 94.6 170.9 64.0 103.7 178.1 42.6 2307 Spare st'n ELC .5.8·10"

7.9 72.7 87478 65422 98.2 604.2 1.53·58 3348 1577 17799 6745 1·50.1 198685 Spare sl'n ELC 5.0 . 105

- - - - - - - - - - - -

- - - - - - - - - - - -

18.6 93.8 243.4 234.8 254.8 492.0 471.0 602.2 636.2 63·5.6 592.2 596.8 4971 VAX 8650 3.5· 103

117 830 1991 2098 2133 4535 4408 5346 5287 5480 5766 5373 44143 VAX 785 8.4.103

585 41·50 9955 10490 10665 2267·5 22040 26730 26435 27400 28830 26865 22071.5 VAX 785 4.2.104

18.6 93.8 243.4 234.8 254.8 492.0 471.0 602.2 636.2 635.6 ·592.2 596.8 4971 VAX 8650 3.5.103

- - - - - 4.104 VAX 8650 3.104

18.6 93.8 243.4 234.8 254.8 492.0 471.0 602.2 636.2 635.6 592.2 596.8 4971 VAX 8650 3 .. 5 . 103

3.03 115 205 199 180 286 267 624 577 672 660 603 ·5378 VAX 780/11 6.7 ·10'

- - - - - - - -
28.9 217.1 173.5 27.7 176.1 248.2 195.6 221.4 232.0 180.9 258.7 89.5 2065 IBM RS 6000 2.5· 104

18.8 103.8 198.8 181.8 191.7 254.2 281.3 238.4 242.2 256.6 237.8 236.6 2598 PC 386 1.3.103

94.0 519.0 994.0 909.0 958.5 1271 1407 1192 1211 1283 1189 1183 12989 PC 386 6.5· 103

8 60 21 184 155 66 493 623 443 165 325 322 289·5 AT 386 DX 1.4.103

868.5 AT 386 DX 4.3 . 103

- - - - - - - - - - - - Spare st'n 2

18.6 93.8 243.4 234.8 254.8 492.0 471.0 602.2 636.2 635.6 592.2 596.8 4971 VAX 8650 3 .. 5 . 103

18.6 93.8 243.4 234.8 254.8 492.0 471.0 602.2 636.2 635.6 592.2 596.8 4971 VAX 8650 3.5· 103

- - - - - 4.104 VAX 8650 3.104

- - 1062 - - - - 1880 - - - - PC 486/25

- - 3186 - - - - 5640 - - - - PC 486/25

- - - - - - - - - - - -

108 191 352 352 350 565 570 524 520 525 525 526 6041 DEC station 3100 9.7.103

16.4 77.4 134.8 137.3 134.2 242.5 241.0 335.6 350.5 33·5.7 327.2 348.0 2787 DEC station 3100 4.5 . 103

- 161.3 292.8 289.0 228.9 446.2 453.1 688.1 665.9 665.9 687.5 698.4 5523 DEC station 3100 8.8 . 103

64 1176 ~~610 5167 .5781 3336 6691 3860 5747 .5059 4208 49291 Spare st'n ELC 1.2 . 10'

MRE(%)~--,

9

8

7

6

5

4

3

2

1

.SBI I

.P-GA I

.TA1"'5

.SB31 .GLSl'n5
·Bottle-41

.GLS2m5

.Bottle-51

.SB41

.SBIII SB-GA(40)"'2
SA2",5·.S·Al ",5

Bottle-61

,
~.SA"'5

Shuffle 1 I

SB-GM60)""

.CSSA I

.TSAst
.TS3b5 .SAl l

,hoo

.TSABb3

O~----~------ __ ------~----~------ __ ----~------J
100 10" 106 CISCT (sec)

Figure 1: Relation between mean relative error and computer independent sum of CPU-times

16

algorithm of Aarts, Van Laarhoven, Lenstra & Ulder [1994J and the iterative improvement

algorithm Shuflle of Applegate & Cook [1991J.

Regarding itemtive impr'ovcment, Aarts, Van Laarhoven, Lenstra & Uhler [1994J report

that their mnlti-start algorithm is inferior to threshold accepting and simulated annealing.

Applegate & Cook's Shuflle algorithm works well, due to a neighborhood function that

allows major changes in the schedule. We used our own outcomes of Bottle-5 as start solutions.

The number t of machines to fix was chosen such that edge finder could rapidly fill in the

remainder of the schedule. We set t=1 for the instances FTI0, LA2 and LAI9, t=2 for LA21,

LA24 and LA24, and t=5 for the other instances. The results for these values of t are reported

under Shufllel. We also carried out some more time consuming runs with t=1 for FTIO and

LA2-LA24, t=3 for LA29, LA36 and LA37, and t=4 for LA27, LA38, LA39 and LA40. The

outcomes, reported under Shuflle2, are good but expensive.

Storer, Wu, & Vaccari [1992J give very few computational results for their variants of

iterative improvement. Their results for the instance FTIO are poor. It seems that their

search strategy or their neighborhood function is not powerful enough.

The threshold accepting algorithm of Aarts, Vau Laarhoven, Lenstra & Ulder [1994J com­

petes with their simulated annealing algorithm in case simulated annealing finds an optimal

schedule. Otherwise, threshold accepting is outperformed by simulated annealing. Almost all

instances in our table belong to the latter category.

The simulated annealing algorithm of Van Laarhoven, Aarts & Lenstra [1992J produces

reasonable results. Five runs on FTIO with a standard setting of the cooling parameters

produced an average schedule length of 985.8, with a minimum of 951; a much slower cooling

schedule yields solution values of 930 (twice), 934,935 and 938. Reasonable results are also

obtained by the simulated annealing algorithm of Aarts, Van Laarhoven, Lenstra & Ulder

[1994J with a standard cooling schedule, but an extremely slow cooling schedule gives very

good results. To compute MRE and SRE for the latter cooling schedule, we estimated the

values for the missing entries. It is remarkable that their algorithm with the standard cooling

schedule has a similar behaviour for the neighborhood functions N J (SAl) and NSa (SA2).

Good results are obtained by the simulated annealing variant CSSA of Matsuo, Suh, &
Sullivan [1988J. In comparison to other approximative approaches, simulated annealing may

require large running times, but it yields consistently good solutions with a modest amount

of human implementation effort and relatively little insight into the combinatorial structure

of the problem type under consideration.

The advent of taboo search has changed the picture. Methods of this type produce excellent

solutions in reasonable times, although these benefits come at the expense of a non-trivial

amount of testing and tuning. Although few data are available, Taillard's [1994J algorithm

TSI seems to perform extremely well. Also very good results are obtained by algorithm TS2

of Barnes & Chambers [1991J. Dell'Amico & Trubian's [1993J algorithm TS:1 obtained even

better results. Apparently, their complicated neighborhood function is very effective. The

algorithm TSAB of Nowicki & Smutnicki [1993J, which applies taboo search and traces its

way back to promising but rejected changes, is the current champion for job shop scheduling.

For our 13 instances it achieves a mean relative error of only 0.54 %.

For many genetic algor'ithms no results for our 1:1 instances are available. Sometimes,

only the result for FTIO is giveu. Yamada & Nakauo [1992J found a schedule of length 9:10

four times among 600 trials. They also tested their algorithm GA 1 on four 20-job 20-machine

instances, but their outcomes are on average 5.9 % above the best known npper bounds

[Wennink, 1994J. The results obtained by Aarts, Van Laarhoven, Lenstra & Uhler [1994J are

17

not very strong. Their algorithm GLS2 (using neighborhood function N sa) performs slightly

better than GLS1 (using NIl.
As for genetic algorithms using string representations, the results obtained by Della Croce,

Tadei, & Volta's [1994) algorithm GA2 and by Nakano & Yamada's [1991) algorithm GA:l

are poor. The algorithm P-GA of Dorndorf & Pesch [1994) is even worse. Their algorithm

SB-GA, which incorporates a shifting bottleneck variant, produces reasonable results. Values

are reported for runs with population sizes of 40 and 60.

The constmint satisfaction algorithm of Nuijten, Aarts, Van Erp Taalman Kip & Van Hee

[1993) produces good results but needs a lot of time. For the neuml network approaches no

computational results are available that allow a proper comparison with other techniques.

10 Conclusion

10.1 Review

Current optimization algorithms for job shop scheduling can handle problem instances no

harder than the 15 X 15 instances of Lawrence in reasonable alllounts of running titne. If one

wants to obtain approximate solutions to larger instances, one has to resort to local search.

From the local search algorithms discussed in this survey, taboo search seems to work best.

For the 13 instances investigated, the algorithm of Nowicki & Smutnicki, which combines

taboo search with backtraeking, outperforms the other loeal seareh algorithms developed so

far. Also the implementations of taboo seareh by Dell'Amico & Trubian and of simulated

annealing by Aarts, Van Laarhoven, Lenstra, & Ulder perform very well, but the latter only

if large running times are allowed.

The various shifting bottleneck procedures produce schedules of moderate quality. Better

results are obtained in combination with some type of local search or backtracking.

Genetic algorithms have a poor performance until now. Often the neighborhood function

applied in combination with the schedule representation ehosen does not generate meaningful

changes and it is hard to find improvements. Only when some kind of standard local search

is embedded at a second level, the computational results are satisfactory.

10.2 Preview

There is still considerable room for improving local search approaches to the job shop schedul­

ing problem. As shown in Figure 1, none of the existing algorithms achieves an average error

of less than 2% within 100 seconds. And our benchmark instances are still small ones.

We have observed that many approaches operate at two levels, with, for instance, schedule

construction, partial enumeration or local search with big ehanges at the top level, and loeal

seareh with smaller ehanges at the bottom level. Sueh hybrid approaehes are in need of a

more systematie investigation. The type of baektraeking proposed by Nowicki & Smutnieki is

a promising teehnique and ean be combined with almost any loeal seareh algorithm without

diffieulties. It might also be interesting to design a three-level approaeh with neighborhoods

of smaller size towards the bottom.

The flexibility of local seareh and the results reported here provide a promising basis for

the applieation of local seareh to more general scheduling problems. An example of practi­

cal interest is the multiprocessor job shop, where each production stage has a set of parallel

18

machines rather than a single one. Finding a schedule involves assigment as well as sequencing

decisions. This is a difficult problem, for which no effective solution methods exist.

Applying local search to large instances of scheduling problems requires the design of data

structures that allow fast incremental computations of, for example, longest paths. Johnson

[1990] has shown that sophisticated data structures play an important role in the application

of local search to large traveling salesman problems.

Our survey has been predominantly of a computational nature. There are several related

theoretical questions about the complexity of local search. A central concept in this respect

is PLS-completeness [Johnson, Papadimitriou, & Yannakakis, 1988]. Many of the neighbour­

hood functions defined in Section 5 define a PLS-problem, which may be PLS-complete. There

are also complexity issues regarding the parallel execution of local search. For example, for

some of the neighborhood functions it may be possible to verify local optimality in polylog

parallel time.

References

E.H.L. AARTS, P.J.M. VAN LAARHOVEN, J.K. LENSTRA, N.L.J. ULDER (1994), A computational

study of local search algorithms for job shop scheduling, ORSA J. Comput., to appear.

J. ADAMS, E. BALAS, D. ZAWACK (1988), The shifting bottleneck procedure for job shop scheduling,

Management Sci. 34,391-401.

S.B. AKERS (1956), A graphical approach to production scheduling problems, Oper. Res. 4, 244-245.

D. ApPLEGATE, W. COOK (1991), A computational study of the job-shop scheduling problem, ORSA

J. Comput. 3, 149-156.

D. ApPLEGATE, W. COOK (1993), Personal communication.

K.R. BAKER, Z.-S. Su (1974), Sequencing with due-dates and early start times to minimize maxi­

mum tardiness, Naval Res. Logist. Quart. 21,171-176.

E. BALAS (1969), Machine sequencing via disjunctive graphs: an implicit enumeration algorithm,

Oper. Res. 17,941-9.57.

E. BALAS (198.5), On the facial structure of scheduling polyhedra, Math. Programming Stud. 24, 179-

218.

E. BALAS, J.K. LENSTRA, A. VAZACOPOULOS (1994), One machine scheduling with delayed prece­

dence constraints, Management Sci., to appear.

J .W. BARNES, .1.B. CHAMBERS (1994), Solving the job shop scheduling problem using tabu search,

lIE Trans., to appear.

P. BRATLEY, M. FLORIAN, P. ROBILLARD (197:3), On sequencing with earliest starts and due dates

with application to computing bounds for the (1I/m/G/ Fmax) problem, Naval Res. Logist. Quart.

20, 57-67.

P. BRUCKER (1988), An efficient algorithm for the job-shop problem with two jobs, Computing 40,

:l5:l-3.59.

P. BRUCKER, B. JURISGH, B. SIEVERS (1994), A branch & bound algorithm for the job-shop sched­

uling problem, Discrete Appl. Math., to appear.

J. CARLIER (1982), The one-machine sequencing problem, European J. Oper. Res. 11, 42-47.

J. eARLIER, E. PINSON (1989), An algorithm for solving the job-shop problem, Management Sci. 35,

164-176.

J. CARLIER, E. PINSON (1990), A practical use of Jackson's preemptive schedule for solving the job­

shop problem, Ann. Oper. Res. 26, 269-287.

V. (:ERNY (1985), Thermodynamical approach to the traveling salesman problem, J. Optim. Theory

Appl. 45, 41-5\.

L. DAVIS (1985), Job shop scheduling with genetic algorithms. ,),,1. GREFENSTETTE (eeL) (1985),

Proceedings of an International Conference on Genetic Algorithms and Their Applications, Carlle-

19

gie-Mellon University, Pittsburgh, Pennsylvania, 1:16-140.

S. DAUZERE-PERES, J.-B. LASSERRE (1993), A modified shifting bottleneck procedure for job-shop

scheduling, Int. J. Prod. Res. 31, 923-932.

F. DELLA CROCE, R. TADEI, G. VOLTA (1994), A genetic algorithm for the job shop problem, Com­

put. Oper. Res., to appear.

M. DELL' AMICO, M. TRUBIAN (199:1), Applying tabu search to the job-shop scheduling problem,

Ann. Oper. Res. 41, 2:11-2.12.

J . .1. DONGARRA (199:3), Performance of various computers using standard linear equations software,

Report CS-89-8.5, Computer Science Department, University of Tennessee, Knoxville, Tennessee.

U. DORNDORF, E. PESCH (1994), Evolution b""ed learning in a job shop scheduling environment,

Comput. Oper. Res., to appear.

G. DUECK, T. SCHEUER (1990), Threshold accepting; a general purpose optimization algorithm, J.

Comput. Phys. 90, 161-17.1.

E. FALKENAUER, S. BOUFFOUIX (1991), A genetic algorithm for job shop, Proceedings of the 1991

IEEE Internationial Conference on Robotics and Automation, IEEE Computer Society Press, Los

Alamitos, California, 824-829.

M .L. FISHER, B.J. LAGEWEG, .J.K. LENSTRA, A.H.G. RINNOOY KAN (198:1), Surrogate duality re­

laxation for job shop scheduling, Discrete Appl. Math. 5, 65-75.

H. FISHER, C.L. THOMPSON (1963), Probabilistic learning combinations of local job-shop schedul­

ing rules .. J.F. MUTH, G.L. THOMPSON (eds.) (1963), Industrial Scheduling, Prentice Hall,

Englewood Cliffs, New Jersey, 225-2.11.

Y. P .S. Foo, Y. TAKEFUJI (1988a), Stoch""tic neural networks for solving job-shop scheduling: part

1. Problem representation, IEEE International Conference on Neural Networks, IEEE San Diego

section & IEEE TAB Neural Network Committee, San Diego, California, 275-282.

Y. P .S. Foo, Y. TAKEFUJI (1988b), Stochastic neural networks for solving job-shop scheduling: part

2. Architecture and simulations, IEEE International Conference on Neural Networks, IEEE San

Diego section & IEEE TAB Neural Network Committee, San Diego, California, 28:3-290.

B. GIFFLER, C.L. THOMPSON (1960), Algorithms for solving production scheduling problems, Oper.

Res. 8, 487-50:1.

F. GLOVER (1989), Tabu Search - Part I, ORSA J. Comput. 1, 190-206.

F. GLOVER (1990), Tabu Search - Part II, ORSA J. Comput. 2,4-:12.

F. GLOVER, E. TAILLARD, D. DE WERRA (199:3), A user's guide to tabu search, Ann. Oper. Res.

41,3-28.

D.E. GOLDBERG (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addi­

son-Wesley, Reading, Massachusetts.

R. HAUPT (1989), A survey of priority rule-based scheduling, OR Spektrum 11,3-16.

N. HEFETZ, l. ADIRI (1982), An efficient optimal algorithm for the two-machines unit-time jobshop

schedule-length problem, Math. Oper. Res. 7, :354-360.

J.H. HOLLAND (197.,), Adaptation in Natural and Artificial Systems, The University of Michigan

Press, Ann Arbor, Michigan.

J.J. HOPFIELD, D.W. TANK (1985), Neural computation of decisions in optimization problems, BioI.

Cybernet. 55, 141-152.

J.R. JACKSON (1956), An extension of Johnson's results on job lot scheduling, Naval Res. Logist.

Quart. 3,201-20:1.

D .S .. J OHNSON (1990), Data structures for traveling salesmen, .J. R. GILBERT, R. KARLSSON (eds.)

(1990), SWAT90, 2nd Scandinavian Workshop on Algorithm Theory, Springer, Berlin, 287-:305.

D .S . .l OHNSON, C. H. PAPADIMITRIOU, M. YANNAKAKIS (1988), How easy is local search,?, J. C011l­

put. 8ystem Sci. 37,79-100.

S. KIRKPATRICK, C.D. GELATT, JR., M.P. VECCHI (198:3), Optimization by simulated annealing,

Seience 220, 671-680.

B.J. LAGEWEG, .l.K. LENSTRA, A.H.G. RINNOOY KAN (1976), Minimizing maximum lateness on

one machine: computational experience and some applications, Statist. Neerlandica 30, 25-41.

B.J. LAGEWEG, J.K. LENSTRA, A.H.C. RINNOOY KAN (1977), .lob-shop scheduling by implicit

20

enumeration, Management Sci. 24, 441-4.50.

S LAWRENCE (1984), Resource constrained project scheduling: an experimental investigation of heu­

ristic scheduling techniques (Supplement), Graduate School of Industrial Administration, Carne­

gie-Mellon University, Pittsburgh, Pennsylvania.

J.K. LENSTRA, A.H.G. RINNOOY KAN (1979), Computational complexity of discrete optimization

problems, Ann. Discrete Math. 4, 121-140.

,l.K. LENSTRA, A.H.G. RINNOOY KAN, P. BRUCKER (1977), Complexity of machine scheduling

problems, Ann. Discrete Math. 1, 343-362.

H. MATSUO, C.J. SUH, R.S. SULLIVAN (1988), A controlled search simulated annealing method for

the general jobshop scheduling problem, Working paper 03-04-88, Graduate School of Business,

University of Texas, Austin.

G.B. McMAHON, M. FLORIAN (1975), On scheduling with ready times and due dates to minimize

maximum lateness, Oper. Res. 23, 47.5-482.

R. NAKANO, T. YAMADA (1991), Conventional genetic algorithm for job shop problems, R.K.

BELEW, L.B. BOOKER (eds.) (1991), Proceedings of the Fourth International Conference on

Genetic Algorithms, San Diego, California, 474-479.

L. NEMETI (1964), Das Reihenfolgeproblem in der Fertigungsprogrammierung und Linearplanung mit

logischen Bedingungen, Mathematica (Cluj) 6,87-99.

E. NOWICKI, C. SMUTNICKI (1993), A fast taboo search algorithm for the job shop problem, Preprint

8/93, Institute of Engineering Cybernetics, Technical University of Wroclaw.

W.P.M. NUIJTEN, E.H.L. AARTS, D.A.A. VAN ERP TAALMAN KIP, K.M. VAN HEE (1993), Job

shop scheduling by constraint satisfaction, Computing Science Note 93/:39, Department of Math­

ematics and Computing Science, Eindhoven University of Technology, Eindhoven.

B. Roy, B. SUSSMANN (1964), Les problhnes d'ordonnancement avec constraints disjonciives, Note

DS No.9 bis, SEMA, Montrouge.

N. SADEH (1991), Look-ahead Techniques for Micro-opponunistic Job Shop Scheduling, Ph.D. thesis,

School of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania.

S. V. SEVAST'JANOV (1994), Scheduling problems and vectors summing algorithms: a survey, Discrete

Appl. Math., to appear.

D.S. SHMOYS, C. STEIN, .J. WEIN (1994), Improved approximation algorithms for shop scheduling

problems, ORSA J. Comput., to appear.

Y. N. SOTSKOV (1991), The complexity of shop-scheduling problems with two or three jobs, European

J. Oper. Res. 53, 326-:3:36.

R.H. STORER, S.D. Wu, R. VACCARI (1992), New search spaces for sequencing problems with ap­

plication to job shop scheduling, Management Sci. 38, 1495-l.'i09.

E. TAILLARD (1994), Parallel taboo seach technique for the jobshop scheduling problem, ORSA J.

Comput., to appear.

F. TIOZZO (\988), Building a decision support system for operation scheduling in a large industrial

department: a preliminary algorithmic study, Internal report, Department of Mathematics and

Informatics, University of Udine, Italy.

P .. l.M. VAN LAARHOVEN, E.H.L. AARTS, J.K. LENSTRA (1992), Job shop scheduling by simulated

annealing, Oper. Res. 40, 113-125.

M. WENNINK (1994), Personal communication.

D.P. WILLIAMSON, L.A. HALL, J.A. HOOGEVEEN, C.A.J. HURKENS, .l.K. LENSTRA, D.B.

SHMOYS (1994), Short shop schedules, COSOR Memorandum 94-06, Department of Mathematics

and Computing Science, Eindhoven University of Technology, Eindhoven.

T. YAMADA, R. NAKANO (1992), A genetic. algorithm applicable to large-scale job-shop problems, R.

MANNER, B. MANDERICK (eds.) (1992), Parallel Problem Solving from Nature, 2, North-Holland,

Amsterdam, 281-290.

D.N. ZHOU, V. CHERKASSKY, T.R. BALDWIN, D.E. OLSON (1991), A neural network approach to

job-shop scheduling, IEEE Trans. Neural Networks 2,175-179.

21

Computing Science Notes

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voennans
J. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E.Voennans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Perfonnance Analysis of VLSI Programs, p. 3l.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Tenninology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 3l.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 2l.

The PDB Hypennedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p.25.

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.Y. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Yoorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eike1der
R. van Geldrop

91/30 lC.M. Baeten
F.W. Yaandrager

91/31 H. tcn Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 RP. Nederpelt

92/08 RP. Nederpelt
F. Kamareddine

92/09 R.C. Backhouse

92/10 P.M.P. Rambags

92/11 R.C. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R Seljee

92/17 W.M.P. van der Aalst

92/18 R.Nederpelt
F. Kamareddine

92/19 J.C.M.Baeten
J .A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

Asynchronous communication in process algebra, p. 20.

A note on compositional refmement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. 11 O.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

92/21 F .Kamareddine

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen

W.J.J.Stut
P.A. C. Verlwulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
PJ. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

Non well-foundedness and type freeness can unify the
interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bonum-up Abstract Interpretation of Logic Programs,
p.33.

A Programming Logic for Fro, p. 15.

A modelling method using MOVlE and SimCon/ExSpect,

p. 15.

A taxonomy of keyword pattern matching algorithms,

p.50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real­

Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

93/14 J.C.M. Baeten
J.A. Bergstra

93/15 J.C.M. Baeten
J.A. Bergstra
R.N. Bol

93/16 H. Schepers
J. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-J. Houben

93/20 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93/25 H. Schepers and R. Gerth

93/26 W.M.P. van der Aalst

93/27 T. Kloks and D. Kratsch

93/28 F. Kamareddine and
R. Nederpelt

93/29 R. Post and P. De Bra

93/30 J. Deogun
T. Kloks
D. Kratsch
H. Miiller

93/31 W. KOrver

93/32 H. ten Eikelder and
H. van Geldrop

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,

p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program­
ming, p. 15.

Freeness Analysis for Logic Programs - And Correct­
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real­
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. I!.

A Semantics for a fine A-calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. 11.

Derivation of delay insensitive and speed independent
CMOS circuits, using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

93/33

93/34

93/35

93/36

93/37

93/38

93/39

93/40

L. Loyens and I. Moonen

I.C.M. Baeten and
I.A. Bergstra

W. Ferrer and
P. Severi

I.C.M. Baeten and
I.A. Bergstra

J. Brunekreef
I-P. Katoen
R. Koymans
S. Mauw

C. Verhoef

W.P.M. Nuijten
E.H.L. Aarts
D.A.A. van Erp Taalman Kip
KM. van Hee

P.D.V. van der Stok
M.M.M.P.I. Oaessen
D. Alstein

93/41 A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.I. Luit
J.M.M. Martin

93/46 T. Kloks
D. Kratsch
J. Spinrad

93/47 W. v.d. Aalst
P. De Bra
G.I. Houben
Y. Komatzky

93/48 R. Gerth

ILIAS, a sequential language for parallel matrix
computations, p. 20.

Real Time Process Algebra with Inf'mitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension rheorem in process
algebra, p. 17.

lob Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transformers,
p. 11.

Automatic Verification of Regular Protocols in PIT Nets,
p.23.

A taxomomy of finite automata construction algorithms,
p. 87.

A taxonomy of fmite automata minimization algorithms,
p.23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

94/01 P. America
M. van der Kammen
R.P. Nederpelt
O.S. van Roosmalen
H.C.M. de Swart

94/02 F. Kamareddine
RP. N ederpelt

94/03 L.B. Hartman
K.M. van Hee

94/04 I.c'M. Baeten
I.A. Bergstra

94/05 P. Zhou
I. Hooman

94/06 T. Basten
T. Kunz
I. Black
M. Coffin
D. Taylor

94/07 K.R. Apt
R. Bol

94/08 O.S. van Roosmalen

94/09 I.C.M. Baeten
I.A. Bergstra

94/10 T. verlIoeff

94/11 I. Peleska
C. Huizing
C. Pctcrsohn

94/12 T. Kloks
D. Kratsch
H. Miiller

94/13 R Seljee

94/14 W. Peremans

The object-oriented paradigm, p. 28.

Canonical typiog and II-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programmiog and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class
Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

The testing Paradigm Applied to NetwoIi< Structure.
p. 31.

A Comparison of Ward & Mellor's Transformation
Schema with State- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraiot cheCking in
Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

	Abstract
	1. Introduction
	2. The job shop scheduling problem
	3. Complexity and algorithms
	3.1 Complexity
	3.2 Lower bounds
	3.3 Enumeration schemes
	3.4 Upper bounds
	4. Local search
	5. Solution representations and neighborhood functions
	6. Constructive algorithms with local search
	7. Iterative algorithms with local search
	7.1 Threshold algorithms
	7.2 Taboo search algorithms
	7.3 Genetic algorithms
	8. Other techniques
	8.1 Constraint satisfaction
	8.2 Neural networks
	9. Computational results
	10. Conclusion
	10.1 Review
	10.2 Preview
	References

