
Centrum voor Wiskunde en lnformatica

Centre for Mathematics and Computer Science

P.J.M. van Laarhoven, E.H.L. Aarts, J.K. Lenstra

Job shop scheduling by simulated annealing

, Department of Operations Research and System Theory Report OS-R8809 July

Bibfiothf!of>J;

Centrum vocr ',\ ; .. .r.:; "":" e,1 lnformaUca;
/o'JT1$lt<1cJ<;rT>

The Centre for Mathematics and Computer Science is a research institute of the Stichting

Mathematisch Centrum, which was founded on February 11 . 1946, as a nonprofit institution aim­

ing at the promotion of mathematics. computer science, and their applications. It is sponsored by

the Dutch Government through the Netherlands Organization for the Advancement of Pure

Research (Z.W.0.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Job Shop Scheduling by Simulated Annealing

Peter J.M. van Laarhoven
Philips Research Laboratories,

P.O. Box BO.OOO, 5600 JA Eindhoven, The Netherlands

Emile H.L. Aarts
Philips Research Laboratories,

P.O. Box BO.OOO, 5600 JA Eindhoven, The Netherlands;

Department of Mathematics and Computing Science,

Eindhoven University of Technology,

P.O. Box513, 5600MBEindhoven, The Netherlands

Jan Karel Lenstra

Centre for Mathematics and Computer Science,

P. 0. Box 4079, 1009 AB Amsterdam, The Netherlands;

Econometric Institute, Erasmus University,

P.O. Box 173B, 3000 DR Rotterdam, The Netherlands

We describe an approximation algorithm for the problem of finding the minimum

makespan in a job shop. The algorithm is based on simulated annealing, a gen­

eralization of the well-known iterative improvement approach to combinatorial

optimization problems. The generalization implies the acceptance of cost­

increasing transitions with a non-zero probability so as to avoid getting stuck in

local minima.

We prove that our algorithm asymptotically converges in probability to a glo­

bally minimal solution, despite the fact that the Markov chains generated by the

algorithm are generally not irreducible.

Computational experiments show that our algorithm can find shorter make­

spans than tailored heuristics for this problem, at the expense of larger computa­

tion times.

19BO Mathematics Subject Classification (19B5 Revision): 90835, 90C27.

Key Words & Phrases. job shop scheduling, probabilistic algorithms, simulated

annealing.
Note-. This paper has been submitted for publication.

In this paper we are concerned with a problem in machine scheduling, which

is known as the job shop scheduling problem (Coffman 1976, French 1982).

Informally, the problem can be described as follows. We are given a set of

jobs and a set of machines. Each job consists of a chain of operations, each

of which needs to be processed during an uninterrupted time period of a

given length on a given machine. Each machine can process at most one

operation at a time. The problem is to find a schedule, i.e. an allocation of

Report OS-R8809

Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

the operations to time intervals on the machines, that has minimum length.

A precise formulation of the problem is given in §1.

The job shop scheduling problem is among the hardest combinatorial opti­

mization problems; not only is it }./ P-hard, but even among the members

of the latter class it belongs to the more difficult ones (Lawler, Lenstra and

Rinnooy Kan 1982). Optimization algorithms for job shop scheduling pro­

ceed by branch and bound, see for instance Lageweg, Lenstra and Rinnooy

Kan {1977), Carlier and Pinson {1988). Most approximation algorithms use

a priority rule, i.e. a rule for choosing an operation from a specified subset of

as yet unscheduled operations. Adams, Balas and Zawack (1988) developed

a shifting bottleneck procedure, which employs an ingeneous combination

of schedule construction and iterative improvement, guided by solutions to

single-machine problems. In this paper we describe an alternative approach,

known as simulated annealing (Kirkpatrick, Gelatt and Vecchi 1983, Cerny

1985). Simulated annealing can be viewed as a generalization of iterative

improvement and is described in more detail in §2.

In §3 we describe the application of simulated annealing to job shop schedul­

ing. We prove asymptotic convergence of the algorithm to a globally minimal

solution by showing that the neighbourhood structure is such that each er­

godic set contains at least one global minimum. §4 contains the results of a

computational study, in which simulated annealing is used to find approxi­

mate solutions to a large set of instances of the job shop scheduling problem.

We show that simulated annealing performs slightly better than the shifting

bottleneck procedure with respect to the length of the schedules returned

by the algorithm, though computation times can be (very) long. We end

this paper with some concluding remarks.

1 The Problem

We are given a set J of n jobs, a set .M of m machines, and a set 0 of

N operations. For each operation v E 0 there is a job Jv E J to which it

belongs, a machine Mv E .Mon which it requires processing, and a processing

time tv E IN. There is a binary relation ~ on 0 that decomposes 0 into

chains corresponding to the jobs; more specifically, if v ~ w, then Jv = Jw

and there is no x €/:. { v, w} such that v ~ x or x ~ w. The problem is to

find a start time Sv for each operation v E 0 such that

max Sv + tv,
vEO

2

(1)

is minimized subject to

Bv 2: O, Vv E 0 {2)

Bw - Bv 2: tv, if V -t w, v, WE 0 {3)

Bw - Bv 2: tv V Bv - Bw 2:: tw, if Mv = Mw, V, W E 0 (4)

It is useful to represent the problem by the disjunctive graph model of Roy

and Bussmann (1964). The disjunctive graph G = (V, A, E) is defined as

follows:

• V = Ou{O, N +1}, where 0 and N +1 are two fictitious operations; the

weight of a vertex vis given by the processing time tv (to= tN+l = 0).

• A= {(v,w)I v,w E O,v -t w} U {(O,w)I w E 0, ~ v E 0: v -t w} U

{(v, N + 1)1 v E 0, ~ w E 0 : v -t w}. Thus, A contains arcs connect­

ing consecutive operations of the same job, as well as arcs from 0 to

the first operation of each job and from the last operation of each job

to N + 1.

• E = {{ v, w} I Mv = Mw}. Thus, edges in E connect operations to be

processed by the same machine.

Figure 1 illustrates the disjunctive graph for a 3-job 3-machine instance,

where each job consists of three operations.

For each pair of operations v, w E 0 with v -t w, condition (3) is represented

by an arc (v,w) in A. Similarly, for each pair of operations v,w E 0 with

Mv = Mw, the disjunctive constraint (4) is represented by an edge { v, w} in

E, and the two ways to settle the disjunction correspond to the two possible

orientations of the edge. There is an obvious one-to-one correspondence

between a set of choices in (4) that is overall feasible and an orientation of

all the edges in E for which the resulting digraph is acyclic. The objective

value (the makespan) of the corresponding solution is given by the length of

a longest path in this digraph. Such a set of orientations decomposes 0 into

chains corresponding to the machines, i.e., it defines for each machine an

ordering or permutation of the operations to be processed by that machine.

Conversely, a set of machine permutations defines a set of orientations of the

edges in E, though not necessarily one which results in an acyclic digraph.

Since the longest path in a cyclic digraph has infinite length, we can now

rephrase the problem as: find a set of machine permutations that minimizes

the longest path in the resulting digraph. In §3 we use this formulation of

the problem to find approximate solutions by simulated annealing.

3

2 Simulated Annealing

Ever since its introduction, independently by Kirkpatrick, Gelatt and Vec­

chi (1983) and Cerny { 1985), simulated annealing has been applied to many

combinatorial optimization problems in such diverse areas as computer-aided

design of integrated circuits, image processing, code design and neural net­

work theory; for a review the reader is referred to Van Laarhoven and Aarts

(1987). The algorithm is based on an intriguing combination of ideas from

at first sight completely unrelated fields of science, viz. combinatorial op­

timization and statistical physics. On the one hand the algorithm can be

considered as a generalization of the well-known iterative improvement ap­

proach to combinatorial optimization problems, on the other hand it can be

viewed as an analogue of an algorithm used in statistical physics for com­

puter simulation of the annealing of a solid to its ground state, i.e. the state

with minimum energy. In this paper we mainly restrict ourselves to the first

point of view; thus, we first briefly review iterative improvement.

Generally, a combinatorial optimization problem is a tuple (R, C), where R
is the set of configurations or solutions of the problem, and C : R ---+ lR the

cost function (Papadimitriou and Steiglitz 1982). To be able to use iterative

improvement we need a neighbourhood structure ,}./ : R ---+ zR; thus, for each

configuration i, JI (i) is a subset of configurations, called the neighbourhood

of i. Neighbourhoods are usually defined by first choosing a simple type of

transition to obtain a new configuration from a given one and then defining

the neighbourhood as the set of configurations that can be obtained from a

given configuration in one transition.

Given the set of configurations, a cost function and a neighbourhood struc­

ture, we can define the iterative improvement algorithm as follows. The

algorithm consists of a number of iterations. At the start of each iteration,

a configuration i is given and a transition to a configuration j E)I (i) is

generated. If C(j) < C(i), the start configuration in the next iteration is j,

otherwise it is i. If R is finite and if the transitions are generated in some

exhaustive enumerative way, then the algorithm terminates by definition in

a local minimum. Unfortunately, a local minimum may differ considerably

in cost from a global minimum. Simulated annealing can be viewed as an

attempt to find near-optimal local minima by allowing the acceptance of

cost-increasing transitions. More precisely, if i and j E JI (i) are the two

configurations to choose from, then the algorithm continues with configura­

tion j with a probability given by min {1, exp (-(C(j) - C(i))/c)}, where c

is a positive control parameter, which is gradually decreased during the exe-

4

cution of the algorithm. c is the analogue of the temperature in the physical

annealing process. Note that the aforementioned probability decreases for

increasing values of C(j)- C(i) and for decreasing values of c and that cost­

decreasing transitions are always accepted.

For a fixed value of c, the configurations that are consecutively visited by the

algorithm can be seen as a Markov chain with transition matrix P = P(c)

given by

{

Gi;~;(c)

.f'i;(c) = IRI
1- 2: Gik~k(c)

k=l

if j I- i

if j = i,
(5)

where the generation probabilities Gij are given by

Gi'(c) = { IN(i)j-
1

if j E ~(i)
1 0 otherwise,

(6)

and the acceptance probabilities Ai; by

. { (-(C(j) - C(i)))} Ai;(c) =mm 1,exp ----~---- . (7)

The stationary distribution of this Markov chain exists and is given by [Folk­

lore]:

{8)

for some io E Rapt, where Rapt is the set of globally minimal configurations,

provided the neighbourhoods are such that for each pair of configurations

(i,j) there is a finite sequence of transitions leading from i to j. The latter

condition is equivalent to the requirement that the matrix G be irreducible.

It can readily be shown that

limqi(c) = { IRoptl-l if£ E ~opt
c!O 0 otherwise.

(9)

Recalling that the stationary distribution of the Markov chain is defined as

the probability distribution of the configurations after an infinite number

of transitions, we conclude from (9) that the simulated annealing algorithm

converges with probability 1 to a globally minimal configuration if the se­

quence of values of the control parameter converges to 0 and if the Markov

chains generated at each value of c are of infinite length, provided the matrix

5

G is irreducible.

Unfortunately, the neighbourhood structure chosen for job shop scheduling

in §3 is such that the corresponding matrix G is not irreducible. In that case,

we can still prove asymptotic convergence provided the neighbourhoods are

such that for each configuration i there is a finite sequence of transitions

leading from i to some configuration io E Rapt (Van Laarhoven 1988). To

do so, we use the fact that in every chain the recurrent configurations can

be uniquely divided into irreducible ergodic sets Si, S2, . .. , Sr. In addition

to the ergodic sets there is a set T of transient configurations from which

configurations in the ergodic sets can be reached (but not vice versa). Note

that if the neighbourhoods satisfy the aforementioned condition, then each

St contains at least one globally minimal configuration.

Now consider the sequence of configurations constituting the Markov chain

associated with P(c). There are two possibilities: either the Markov chain

starts in a transient configuration or it does not. In the latter case, the

configurations constituting the Markov chain all belong to the same irre­

ducible ergodic set St and we can prove asymptotic convergence as before,

with R replaced by St. On the other hand, if the Markov chain starts in a

transient configuration, it will eventually 'land' (Feller 1950) in an ergodic

set St, t E {1, ... , T}, though it is not a priori known which one. The line

of reasoning described above can then be applied again.

We can make the preceding arguments more precise by introducing the no­

tion of a stationary matrix Q, whose elements qij are defined by

% = lim Pr{X(k) = jjX(O) = i}.
k-+oo

(10)

Using the results in chapter 15, sections 6-8 of Feller (1950), we obtain

0 if j E T or i E St, j tf:. St, for some t E {l, ... , T},

if i,j E St for some t E {l, ... , T},

(11)

if i E T, j E St for some t E {l, ... , T},

where Xit is the probability that the Markov chain, starting from the tran­

sient configuration i, eventually reaches the ergodic set St.
From (11) we obtain, for a recurrent configuration j E St,

6

0 :-::; lim Pr{X(k) = j} = L Pr{X(O) = i} ·qi;
k-+oo iER

(L Pr{X(O) = £} · Xit + L Pr{X(O) = £})
iET iESt

(12}

Using (7) we find

l
• Ai11;(c) O
Im = ,
c!O :LtESt Aioi (C)

(13)

if j E St, j fj_ Ropt· Consequently, limc!o(limk-+oo Pr{X(k) = j}) = 0 for

any transient or non-globally minimal recurrent configuration j. In other

words,

lim(lim Pr{X(k) E R~pt}) = 1,
c!O k-+oo

{14)

where R~pt denotes the non-empty set of globally minimal recurrent config­

urations.

Some of the conditions for asymptotic convergence, as for instance the infi­

nite length of Markov chains, cannot be met in practice. In any finite-time

implementation, we therefore have to make a choice with respect to each of

the following parameters:

• the length of the Markov chains,

• the initial value of the control parameter,

• the decrement rule of the control parameter,

• the final value of the control parameter.

Such a choice is usually referred to as a cooling schedule or annealing sched­

ule. Our implementation uses the cooling schedule described in Aarts and

Van Laarhoven (1985a, 1985b). This is a three-parameter schedule: the

parameters xo and € 8 determine the initial and final value of the control pa­

rameter, respectively, whereas the decrement rule depends on a parameter

8, hereinafter referred to as the distance parameter. The dependence is such

that large values of 8 correspond to a 'fast' decrement of c and small values

7

to a 'slow' decrement. Finally, for each instance the length of the Markov

chains is set to the size of the largest neighbourhood.

Under some mild assumptions, it is possible to show that with the afore­

mentioned cooling schedule the time-complexity of the simulated annealing

algorithm is bounded by 0 (r L In I R I), where r is the time involved in the

generation and (possible) acceptance of a transition and L the size of the

largest neighbourhood (the length of the Markov chains) (Aarts and Van

Laarhoven 1985a). If one works out this bound for a particular combinato­

rial optimization problem, it is usually polynomial in the size of the problem.

In those cases, we have a polynomial-time approximation algorithm. Such

a result with respect to the efficiency of the algorithm is only worthwhile in

combination with results on its effectivity, viz. on the difference in cost be­

tween solutions returned by the algorithm and globally minimal ones. From

a theoretical point of view, very little is known about the effectivity of sim­

ulated annealing, but there are many empirical results; see for instance the

extensive computational experiments of Johnson et al. (1987). For the job

shop scheduling problem, we present an empirical analysis of the effElctivity

and efficiency of simulated annealing in §4, but first the application of sim­

ulated annealing to the job shop scheduling problem is discussed in more

detail.

3 Simulated Annealing and

Joh Shop Scheduling

We recall from the previous section that in order to apply simulated anneal­

ing to any combinatorial optimization problem, we need a precise definition

of configurations, a cost function and a neighbourhood structure. Further­

more, to prove asymptotic convergence we must show that the neighbour­

hood structure is such that for an arbitrary configuration i there exists at

least one globally minimal configuration io E Rapt that can be reached from

i in a finite number of transitions. Hereinafter, we discuss these items in

more detail.

(i) Configurations

We recall from §1 that we can solve the job shop scheduling problem by

considering sets of machine permutations and by determining, for such a set

of permutations, the longest path in the digraph which results from giving

the edges in the disjunctive graph the orientations determined by the per­

mutations. We therefore define a configuration i of the problem as a set

8

rri = {1rH, ... ' 1rim} of machine permutations. Consequently, the number of

configurations is given by ru:·=l mk!, where fflk is the number of operations

to be processed by machine k (mk = l{v E OlMv = k}I).

(ii) Cost function

For each configuration i we define the following two digraphs:

1. Di= (V, AU Ei), where

Ei = {(v, w)I{ v, w} EE and 1rik(v) = w for some k E .M}. (15)

2. Di= (V,AU Ei), where

Ei = {(v, w)l{v, w} EE and 1r!k(v) = w for some k E .M, 1:::; l:::; m}.

(16)

In other words, Di is the digraph obtained from the disjunctive graph by

giving the edges in E the orientations resulting from ITi; the digraph Di

can be obtained from Di by taking only those arcs from Jj]i that connect

successive operations on the same machine. It is well known that the longest

paths in Di and Di are identical; thus, the cost of a configuration i can be

found by determining the length of a longest path from 0 to N + 1 in Di. To

compute such a cost, we use a simple labelling algorithm, based on Bellman's

equations (Bellman 1958), for solving the longest-path problem in a digraph.

The time-complexity of this algorithm is proportional to the number of arcs

in the graph. In our case, this number equals IAI + IEil = (N +n) + (N - m);

accordingly, the labelling algorithm takes 0 (N) time to compute the cost of

a configuration.

(iii) Neighbourhood structure

A transition is generated by choosing vertices v and w, such that

1. v and w are successive operations on some machine k,

2. (v, w) EE;. is a critical arc, i.e. (v, w) is on a longest path in Di,

and reversing the order in which v and ware processed on machine k. Thus,

in the digraph Di such a transition results in reversing the arc connecting v

and w and replacing the arcs (u, v) and (w, x) by (u, w) and (v, x), respec­

tively, where u = 1ri"k1(v) and x = 11"ik(w). Our choice is motivated by two

facts:

9

• Reversing a critical arc in a digraph Di can never lead to a cyclic

digraph D; (see Lemma 2).

• If the reversal of a non-critical arc in Di leads to an acyclic graph D;,
a longest path q in D; cannot be shorter than a longest path pin Di
(because Di still contains the path p).

Thus, we exclude beforehand some non-cost-decreasing transitions and, in

addition, all transitions that might result in a cyclic digraph. Consequently,

the neighbourhood structure is such that the algorithm visits only digraphs

corresponding to feasible solutions.

The neighbourhood of a configuration i is thus given by the set of acyclic

digraphs that can be obtained by reversing a critical arc belonging to Ei in

the graph Di· Consequently, j.A/(i)I < 2:r=1(mk - 1) = N - m.

(iv) Asymptotic convergence

It is not difficult to construct a problem instance containing pairs of con­
figurations (i,j) for which there is no finite sequence of transitions leading
from i to j (Van Laarhoven 1988). Thus, to prove asymptotic convergence,

we must show that for each configuration i there is a finite sequence of tran­

sitions leading from i to some globally minimal configuration. In order to
do so, we need two lemmas.

Lemma 1

Consider an arbitrary configuration £ and an arbitrary global minimum

io E Rapt. If i <:}. Rapt 1 then the set Ki(i°o) defined by

Ki(io) = { e = (v, w) E Eil e is critical A (w, v) E Ei,,} (17)

is not empty.

Proof

The proof consists of two parts: first, we show that Ei always contains

critical arcs, unless i E Rapti next that there are always critical arcs in Ei

that do not belong to Eio unless again i E Rapt.

1. Suppose Ei contains no critical arcs, then all critical arcs belong to

A. Consequently, a longest path consists of arcs connecting vertices
corresponding to operations of the same job; accordingly, its length is

given by the total processing time of that job. But this is a lower bound

to the length of a longest path in any digraph Di, hence i E Rapt.

10

2. Suppose that for all critical arcs e in Ei, we have that e E Eio· We

then know that any longest path p in D, is also a path q in D,
0

•

The length of a longest path r in D1
11

is also the length of a longest

path in Dio and because i"o E Rapt, we have length(r) :::; length(p).

But by definition length(r) ~ length(q) = length(p). Consequently,

length(p) = length(r) and £ E Rapt· 0

Lemma 2

Suppose e = (v,w) E E1 is a critical arc of an acyclic digraph D,. Let D; be

the digraph obtained from D1 by reversing the arc e in Ei. Then D; i's also

acyclic.

Proof

Suppose D; is cyclic. Because D1 is acyclic, the arc (w, v) is part of the

cycle in Di. Consequently, there is a path (v, x, y, ... , w) in Di. But this

path can also be found in Di and is clearly a longer path from v to w than

the arc (v, w). This contradicts the assumption that (v, w) is on a longest

path in D,. Hence, D; is acyclic. 0

Given a configuration io E Rapt, we define the following two sets for an

arbitrary configuration £:

Mi(io) = {e = (v, w) E E,j(w, v) E Ei 0 }

M1(i"o) = {e = (v,w) E E,j(w, v) E Efo}.

(18)

(19)

In view of §2, the following theorem now ensures asymptotic convergence in

probability to a globally minimal configuration.

Theorem 1

For each configuration ir/:.Rapt it is possible to construct a finite sequence of

transitions leading from i to a globally minimal configuration.

Proof

We choose an arbitrary configuration io E Rapt and construct a sequence of

configurations {Ao,)q, .. . } as follows:

1. Ao= i

2. Ak+l is obtained from Ak by reversing an arc e E K>. 1Jio) in E>.k·

According to Lemma 2, this can be done without creating a cycle in

D>.k+i" Furthermore, this operation is of the aforementioned type of

transition.

11

It can easily be seen that if IM >.k (io) I > 0 then

JM>.k+1(i'o)I = IM>.k(i'o)l -1. (20)

Hence, fork= JMi(i°o)J, JM>.k(i°o)I = 0. Using Ki(io) <;;; Mi(io) <;;; Mi(io),

we find K>.k(io) = 0 for k = JMi(io)J. According to Lemma 1, this implies

).k E Rovt·
D

4 Computational Results

We have analysed the finite-time behaviour of the simulated annealing algo­

rithm empirically by running the algorithm on a number of instances of the

job shop scheduling problem, varying in size from six jobs on six machines

to 30 jobs on ten machines. For all instances, the number of operations

of each job equals the number of machines and each job has precisely one

operation on each machine. In that case, the number of configurations of

each instance is given by (n!)m, the labelling algorithm takes O(nm) time

to compute the cost of a configuration, and the size of the neighbourhood

of a configuration is bounded by m(n - 1).

FISl, FIS2 and FIS3 are three problem instances due to Fisher and Thomp­

son (1963), the forty instances in Table II are due to Lawrence {1984). FIS2

is a notorious 10-job 10-machine instance that has defied solution to op­

timality for more than 20 years. A couple of years ago, a solution with

cost 930 was found after several hours of computation time (Lageweg 1988).

This solution was only recently proved to be globally minimal by Carlier

and Pinson (1988). For FISl, FIS2 and FIS3, the processing times of the

operations are randomly drawn and range from 1to10 (FISl) or to 99 (FIS2

and FIS3) units of time. The sequence of machines for each job is such that

lower-numbered machines tend to be used for earlier operations. For the

Lawrence instances processing times are drawn from a uniform distribution

on the interval [5,99]; the sequence of machines for each job is random.

The performance of simulated annealing on these instances is reported in

Table I for the Fisher-Thompson instances, and in Table II for the Lawrence

instances. The averages in these tables are computed from five solutions,

obtained by running the algorithm, controlled by the cooling schedule de­

scribed in §2, five times on each instance and recording the best configu­

ration encountered during each run (this need not necessarily be the final

configuration). The probabilistic nature of the algorithm makes it necessary

to carry out multiple runs on the same problem instance in order to get

12

meaningful results.

All results are obtained with the parameters xo and € 8 set to 0.95 and 10-6
,

respectively, and for different values of the distance parameter 8. Compu­

tation times are CPU times on a VAX-785.

From Tables I and II we can make the following observations:

• The quality of the average best solution returned by the algorithm

improves considerably when 8 is decreased. This is in accordance with

the theory underlying the employed cooling schedule: smaller values of

8 correspond to a better approximation of the asymptotic behaviour

(Aarts and Van Laarhoven 1985a). Furthermore, the difference be­

tween the average best solution and a globally minimal one does not

deteriorate significantly with increasing problem size. For the FIS2

instance, the five best solutions obtained with 8 = 10-4 have cost val­

ues of 930 (twice), 934, 935 and 938, respectively. Thus, a globally

minimal solution is found 2 out of 5 times, which is quite a remarkable

result, considering the notoriety of this instance.

• As for computation times, we remark that the bound for the compu­

tation time given in §2 is O((nm)3
ln n) (L = O(nm), IRI = O((nl)m)

and r = 0 (nm)). Thus, for fixed m the bound is 0 (n3 ln n), for fixed

nit is O(m3
). For the A, Band C instances in Table II, for which m is

constant, the average computation time t for 8 = 0.01 is approximately

given by t =to· n 2
·
215 ·Inn, for some constant to (x2 = 1.00); for the

G, Band I instances, for which n is constant, the average computation

time for Ii = 0.01 is approximately given by t = ti · m 2.40G, for some

constant t 1 (x2 = 1.00). Thus, the observed computation times are in

good accordance with the bound given in §2.

Table I also contains results obtained by repeated execution of the itera­

tive improvement algorithm based on the same neighbourhood structure as

simulated annealing. The initial configurations, to which the iterative im­

provement algorithm is applied, are randomly generated. The averages for

iterative improvement are obtained from five macro-runs. Each macro-run

consists ·of repeated execution of the iterative improvement algorithm for

a large number of initial configurations and thus yields a large number of

local minima. Execution of each macro-run is terminated as soon as the

computation time exceeds the computation time of an average run of sim­

ulated annealing applied to the same problem instance with the distance

parameter Ii set to 10-3 (10-2 for FISl); Cbest is the average of the best cost

13

value found during each macro-run.

We observe that repeated execution of iterative improvement is easily out­

performed by simulated annealing for the two larger problems. The differ­

ence is significant: for FIS3, for instance, the average best solution obtained

by simulated annealing is almost 11 % better in cost than the one obtained

by repeated execution of iterative improvement.

Table I and Table II also contain for each instance the cost value of the best

solution obtained by Adams, Balas and Zawack (1988). Most values are

obtained by a second heuristic, which embeds the aforementioned sliding

bottleneck procedure and proceeds by partial enumeration of the solution

space. The values for the instances Fl, F5, G3 as well as for the D and

H instances are obtained by the sliding bottleneck procedure only. The

corresponding computation times are obtained by halving the CPU times

in Adams, Balas and Zawack (1988), since these correspond to a VAX-780.

Adams, Balas and Zawack show their approach to be superior to approaches

based on priority dispatching rules: the typical improvement is reported to

be between 4% and 10%.

Comparison of simulated annealing and the shifting bottleneck procedure

leads to the following observations:

• For those instances for which Adams, Balas and Zawack do not find a

globally minimal solution (mainly the A, B, C and I instances in Ta­

ble II), the computation times of simulated annealing with 8 = 0.1 and

of the heuristic of Adams, Balas and Zawack are of the same order of

magnitude. In this case, the best solution found by Adams, Balas and

Zawack is considerably better than the average best solution returned

by simulated annealing and as good as the best solution found in five

runs of simulated annealing.

Putting 8 = 0.01 makes simulated annealing of course much slower

than the heuristic of Adams, Balas and Zawack, but now the best so­

lution of Adams, Balas and Zawack is slightly worse than the average

best solution of simulated annealing and considerably worse than the

best solution in five runs of simulated annealing (the typical improve­

m~nt is between 1 and 3%).

• For the instances for which the heuristic of Adams, Balas and Zawack

finds a globally minimal solution, it outperforms simulated annealing:

the latter algorithm also finds global minima, but takes much more

computation time to do so.

14

Admittedly, the performance of the shifting bottleneck heuristic is liable to

improve if it is allowed more computation time. Nevertheless, the results

in Table I and Table II indicate that simulated annealing is a promising

approach to job shop scheduling, as well as a robust one (cf. the small

difference between Cbest and Cbest in tables I and II for 8 = 0.01) and

certainly superior to traditional approaches, such as procedures based on

priority dispatching rules.

5 Conclusion

We have discussed a new approach to job shop scheduling based on a ran­

domization version of iterative improvement. The probabilistic element of

the algorithm (the acceptance of cost-increasing transitions with a non-zero

probability) makes simulated annealing a significantly better approach than

the iterative improvement approach on which it is based. The difference is

especially pronounced for large problem instances. Furthermore, the algo­

rithm has a potential for finding shorter makespans than other approxima­

tion algorithms discussed in the literature, but a sufficient amount of com­

putation time to realize this potential is usually quite large. We consider

this disadvantage to be compensated for by the simplicity of the algorithm,

the fact that it is relatively easy to implement, requires no deep insight into

the combinatorial structure of the problem instances, and, of course, by the

high quality of the solutions it returns.

References

AARTS, E.H.L AND P .J.M. VAN LAARHOVEN. 1985a. Statistical Cool­

ing: A General Approach to Combinatorial Optimization Problems.

Philips J. of Research 40, 193-226.

AARTS, E. H. L AND P. J.M. VAN LAARHOVEN. 1985b. A New Polyno­

mial Time Cooling Schedule. Proc. IEEE Int. Conference on Computer­

A ided Design, Santa Clara, November 1985, 206-208.

ADAMS, J., E. BALAS AND D. ZAWACK. 1988. The Shifting Bottleneck

Procedure for Job Shop Scheduling. Management Science 34, 391-401.

BELLMAN, R.E. 1958. On a Routing Problem. Quart. Appl. Math. 16,

87-90.

CARLIER, J. AND E. PINSON. 1988. An Algorithm for Solving the Job­

Shop Problem. To appear in: Management Science.

15

CERNY, V. 1985. Thermodynamical Approach to the Traveling Salesman

Problem: An Efficient Simulation Algorithm. J. Opt. Theory Appl. 45,

41-51.

COFFMAN, E.G., ED. 1976. Computer and Job-Shop Scheduling Theory.

Wiley, New York.

FELLER, W. 1950. An Introduction to Probability Theory and Applications,

vol. 1. Wiley, New York.

FISHER, H. AND G.L. THOMPSON. 1963. Probabilistic Learning Com­

binations of Local Job-shop Scheduling Rules. In: J. F. MUTH AND

G. L. THOMPSON, EDS. Industrial Scheduling. Prentice Hall, Engle­

wood Cliffs, N.J., 225-251.

FRENCH, S. 1982. Sequencing and Scheduling: An Introduction to the

Mathematics of the Job-Shop. Horwood, Chichester.

JOHNSON, D.S., C.R. ARAGON, L.A. MCGEOCH AND C. SCHEVON.

1987. Optimization by Simulated Annealing: an Experimental Evalua­

tion (Part I). Submitted to Operations Research.

KIRKPATRICK, S., C.D. GELATT JR. AND M.P. VECCHI. 1983. Op­

timization by Simulated Annealing. Science 220, 671-680.

LAARHOVEN, P .J.M. VAN AND E.H.L. AARTS. 1987. Simulated An­

nealing: Theory and Applications. Reidel, Dordrecht.

LAARHOVEN, P. J.M. VAN. 1988. Theoretical and Computational As­

pects of Simulated Annealing. Ph.D. Thesis, Erasmus University, Rot­

terdam.

LAGEWEG, B. J., J. K. LENSTRA AND A.H. G. RINNOOY KAN. 1977.

Job-shop scheduling by implicit enumeration. Management Science 24,

441-450.

LAGEWEG, B. J. 1988. private communication.

LAWLER, E.L., J.K. LENSTRA AND A.H.G. RINNOOY KAN. 1982.

Recent Developments in Deterministic Sequencing and Scheduling: A

Survey. In: M.A.H. DEMPSTER, J .K. LENSTRA AND A.H.G.

RINNOOY KAN, EDS. Deterministic and Stochastic Scheduling. Reidel,

Dordrecht, 35-73.

LAWRENCE, S. 1984. Resource Constrained Project Scheduling: An Ex­

perimental Investigation of Heuristic Scheduling Techniques (supple­

ment). Graduate School of Industrial Administration, Carnegie Mellon

University.

PAPADIMITRIOU, C.H. AND K. STEIGLITZ. 1982. Combinatorial Opti­

mization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs,

N.J.

16

ROY, B. AND B. SUSSMANN. 1964. Les problemes d'ordonnancement

avec constraints disjonctives. Note DS No. 9 bis, SEMA, Paris.

17

1

7

2

·.·· ; .. ·· ...

8

3

··.5 10

.·

9

Figure 1. The disjunctive graph G of a 3-job 3-machine instance. Oper­

ations 1, 5 and 9 are processed by machine 1, operations 2, 4

and 8 by machine 2, and operations 3, 6 and 7 by machine 3. 0

and 10 are the fictitious initial and final operations, respectively.

Thick arrows denote arcs in A, dotted lines edges in E.

Table I. Average cost of best solution (Cbest), average computation time

in seconds (t), standard deviations (uo and Ut, respectively),

cost of best solution (Chest), number of local minima per macro­

run of iterative improvement (lm) and % of average best cost

value above globally minimal cost value. The results are ob­

tained with the simulated annealing algorithm with different

values of the distance parameter 8 (upper part) and with re­

peated execution of the iterative improvement algorithm (lower

part), respectively. The averages are obtained from five (macro­

)runs. The table also includes for each instance the cost of the

best solution found by Adams, Balas and Zawack (1988) (CA)

and the corresponding computation time (tA)· Provably glob­

ally minimal solutions are marked with an asterisk.

~=-
-·

Simulated Annealing ABZ

I I Un l 3 I I I I Ill 0 C1w.-t l Ut C1w.-t CA tA

6 machines, 6 jobs

I 10-1 I t.·311:821 5~ r -! 1

. ~:: r .. S5~ I
...

FIS1 56.0 I 1

10-2 55.0' 0.0 0.00

10 machines, 10 jobs

FIS2 10-l 1039.6 15.1 11.78 113 13 1028 93o+ 476

10-2 985.8 22.1 6.00 779 61 951

10-3 942.4 4.5 1.33 5945 180 937

10-4 933.4 3.1 0.37 57772 2364 930''
~-

20 machines. 5 jobs

FIS3 10-l 1354.2 26.5 16.24 123 13 1325 1178 40

10- 2 1229.0 33.6 5.49 848 93 1184

10-3 1187.0 18.7 1.89 6840 389 1173

10-4 1173.8 5.2 0.76 62759 7805 1165'

Iterative Improvement

Prob-

lem c,,,._.t u,: 3 t Ut c,,,._.1 lm

FIS1 55.4 0.8 0.73 52 0 55' 803.2

FIS2 1018.2 9.1 9.48 5945 0 1006 9441.2

FIS3 1331.4 9.5 14.28 6841 0 1319 5221.0

Table II. Average cost of best solution (Cbest), average computation time

in seconds (t), standard deviations (110 and 11t, respectively),

and best cost of five runs (Cbest)· The averages are obtained

from five runs of the simulated annealing algorithm with differ­

ent values of the distance parameter 8. The table also includes

for each instance the cost of the best solution found by Adams,

Balas and Zawack (1988) (CA) and the corresponding computa­

tion time (tA)· Provably globally minimal solutions are marked

with an asterisk.

Prob­

lem

Ai

A2

A3

A4

A5

81

82

83

84

85

C1

C2

C3

C4

C5

01

02

03

04

05

Table II
Simulated Annealing ABZ

10 machines. 10 jobs

120

966.2 10.1 686 83.3 956

Lo--

0.1

0.01

1.0

0.1

0.01

i~~.~ ... ~~. -~~:~- 1i: l-~~-~ -!~r- -- 978 --

861.0 -- -41y --23- - -3~7 797" --787 - --9(;

792.4 6.2 112 7.0 784

787.8 1.6 720 109.0 785

1.0

0.1

0.01

902.6 30.9 23 1.6 870 859

872.2 12.4 112 22.1 861

861.2 0.4 673 69.0 861

1.0

0.1

0.01

950.0 54.5 24 5.3 904 860

881.4 6.9 97 20.4 874

853.4 4.6 830 85.4 848

1.0 1021.6

0.1 927.6

0.01 908.4

1.0

0.1

0.01

1.0

0.1

0.01

1.0

0.1

0.01

1.0

0.1

0.01

1.0

0.1

0.01

1.0

0.1

0.01

1.0

0.1

0.01

1.0

0.1

0.01

1.0

0.1

0.01

1.0

0.1

0.01

1.0

0.1

1.0

0.1

1.0

0.1

1.0

0.1

1.0

0.1

1176.2

1115.2

1067.6

1125.6

977.4

944.2

1155.8

1051.0

1032.0*

1101.0

977.6

966.6

1114.6

1035.4

1004.4

1397.0

1268.0

1219.0

1434.2

1311.6

1273.6

1414.6

1280.2

1244.8

1387.4

1260.4

1226.4

1539.2

1393.6

1355.0*

1882.2

1784.0*

1921.4

1850.0*

1761.8

1726.6

1816.4

1775.6

2011.2

1890.0

26.2 30 1.9

18.9 86 7.9

4.2 667 126.9

10 machines. 15 jobs

37.8 69 6.7

23.9 299 50.9

3.7 1991 341.1

35.6 65 3.6

19.5 307 36.5

4.7 2163 154.6

64.2 63 5.6

24.6 275 35.8

0.0 2093 89.7

53.5 71 5.0

8.1 252 28.5

8.7 2098 406.0

9.1 77 16.9

10.6 283 44.3

14.4 2133 374.5

10 machines. 20 jobs

69.1 139 16.0

9.7 555 81.7

2.0 4342 597.8

40.0 139 6.4

12.7 651 82.9

5.2 4535 392.0

57.8 135 7.4

23.6 614 83.3

15.4 4354 349.8

47.0 138

35.4 581

6.5 4408

44.2 145

9.6 605

0.0 3956

14.1
24.0

450.9

20.6

84.4

428.2

10 machines. 30 jobs

39.3 442 79.3

0.0 1517 58.1

35.3 492 66.2

0 0 1752 124.6

12.2 433 40.4

15.2 1880 130.8

27.7 470 31.2

38.4 1886 232.4

81.3 434 34.6

4.0 1668 107.9

994

907

902

1133

1085

1063

1094

963

938

1056

1032*

1032*

1032

968

952

1103

1017

992

1311

1252

1218*

1390

1295

1269

1335

1246

1224

1307

1203

1218

1492

1381

1355•

1821

1784*

1868

1850*

1740

1719*

1788

1121·

1888*

1888*

914

1084

944

1032*

976

1017

1224

1291

1250

1239

1355*

1784"

1850*

1719*

1121·

1888*

112

120

144

181

210

113

217

215

372

419

451

446

276

19

15

14

11

11

Table II (cont'd}
--··--. -r-- ··· ·- - ·--·-siiiiiiate<iAn-neafing ___________ --)Thy---

Prob-

lem 6 0111.•pf a,, t C1t G11rPI GA tA

5 machines. 10 jobs

F1 1.0 707.0 32.2 6 1.0 666* 666' 1

0.1 666.0* 0.0 20 3.5 666*

0.01 666.0* 0.0 123 15.3 666.

F2 1.0 719.0 20.0 6 1.0 685 669 6

0.1 671.0 11.1 24 2.5 655*

0.01 663.0 4.9 117 19.0 655.

F3 1.0 689.6 22.4 5 0.9 664 605 32

0.1 635.6 9.5 24 3.8 626

0.01 617.6 8.5 129 12.6 606

F4 1.0 665.4 56.9 6 0.9 608 593 23

0.1 617.2 20.5 21 5.2 594

0.01 593.8 2.1 121 15.9 590

F5 1.0 594.4 2.8 5 0.6 593• 593• 0

0.1 593.0* 0.0 19 4.2 593•

0.01 593.0* 0.0 118 15.3 593•

5 machines, 15 jobs

G1 1.0 937.2 13.7 16 2.8 926* 926* 1

0.1 926.0* 0.0 52 5.8 926*

0.01 926.0* 0.0 286 32.1 926*

G2 1.0 948.6 44.1 15 1.6 911 890* 1

0.1 900.6 8.5 66 15.2 890*

0.01 890.0* 0.0 376 48.3 890*

G3 1.0 905.8 34.2 16 0.4 863* 863* 2

0.1 863.0* 0.0 55 7.3 863*

0.01 863.0* 0.0 292 40.8 863*

G4 1.0 965.2 20.0 13 1.0 951• 951* 0

0.1 951.0* 0.0 47 5.9 951•

0.01 951.0* 0.0 283 25.9 951•

G5 1.0 958.0· 0.0 14 1.6 958* 953• 0

0.1 958.0* 0.0 45 2.0 958*

0.01 958.0* 0.0 243 42.3 958*

5 machines. 20 jobs

H1 1.0 1229.6 14.7 32 3.9 1222· 1222· 1

0.1 1222.0· 0.0 108 17.2 1222•

0.01 1222.0· 0.0 627 18.4 1222·

H2 1.0 1042.8 7.6 34 3.9 1039* 1039* 0

0.1 1061.2 44.4 116 11.9 1039*

0.01 1039.0* 0.0 655 30.7 1039*

H3 1.0 1154.6 9.2 32 2.5 1150* 1150* 1

0.1 1150.0* 0.0 118 18.0 1150*

0.01 1150.0· 0.0 564 85.9 1150•

H4 1.0 1292.0' 0.0 27 1.7 1292* 1292* 0

0.1 1292.0• 0.0 93 20.6 1292*

0.01 1292.0· 0.0 462 21.8 1292•

H5 1.0 1299.8 77.4 34 5.3 1201· 1207* 2

0.1 1252.5 18.8 126 16.2 1233

0.01 1207.0* 0.0 736 26.3 1207*

15 machines. 15 jobs

11 1.0 1487.6 40.4 152 6.4 1450 1305 268

0.1 1343.2 30.2 785 80.6 1297

0.01 1300.0 7.8 5346 399.8 1293

12 1.0 1580.2 38.3 173 12.1 1523 1423 419

0.1 1479.4 28.8 757 94.6 1457

0.01 1442.4 5.7 5287 688.5 1433

13 1.0 1422.2 28.3 173 25.3 1376 1255
540 I

0.1 1303.4 30.5 713 90.8 1263

0.01 1227.2 8.2 5480 614.8 1215

14 1.0 1408.6 44.4 186 24.6 1348 1273
335 I

0.1 1305.4 27.5 673 75.1 1264

0.01 1258.2 5.2 5766 800.3 1248

15 1.0 1399.8 60.2 162 8.8 1318 1269 450 I
0.1 1282.2 15.5 745 68.4 1254

0.01 1247.4 9.9 5373 1066.4 1234 I

