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We describe an approximation algorithm for the problem of finding the minimum 

makespan in a job shop. The algorithm is based on simulated annealing, a gen­

eralization of the well-known iterative improvement approach to combinatorial 

optimization problems. The generalization implies the acceptance of cost­

increasing transitions with a non-zero probability so as to avoid getting stuck in 

local minima. 

We prove that our algorithm asymptotically converges in probability to a glo­

bally minimal solution, despite the fact that the Markov chains generated by the 

algorithm are generally not irreducible. 

Computational experiments show that our algorithm can find shorter make­

spans than tailored heuristics for this problem, at the expense of larger computa­

tion times. 
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In this paper we are concerned with a problem in machine scheduling, which 

is known as the job shop scheduling problem (Coffman 1976, French 1982). 

Informally, the problem can be described as follows. We are given a set of 

jobs and a set of machines. Each job consists of a chain of operations, each 

of which needs to be processed during an uninterrupted time period of a 

given length on a given machine. Each machine can process at most one 

operation at a time. The problem is to find a schedule, i.e. an allocation of 

Report OS-R8809 

Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 



the operations to time intervals on the machines, that has minimum length. 

A precise formulation of the problem is given in §1. 

The job shop scheduling problem is among the hardest combinatorial opti­

mization problems; not only is it }./ P-hard, but even among the members 

of the latter class it belongs to the more difficult ones (Lawler, Lenstra and 

Rinnooy Kan 1982). Optimization algorithms for job shop scheduling pro­

ceed by branch and bound, see for instance Lageweg, Lenstra and Rinnooy 

Kan {1977), Carlier and Pinson {1988). Most approximation algorithms use 

a priority rule, i.e. a rule for choosing an operation from a specified subset of 

as yet unscheduled operations. Adams, Balas and Zawack (1988) developed 

a shifting bottleneck procedure, which employs an ingeneous combination 

of schedule construction and iterative improvement, guided by solutions to 

single-machine problems. In this paper we describe an alternative approach, 

known as simulated annealing (Kirkpatrick, Gelatt and Vecchi 1983, Cerny 

1985). Simulated annealing can be viewed as a generalization of iterative 

improvement and is described in more detail in §2. 

In §3 we describe the application of simulated annealing to job shop schedul­

ing. We prove asymptotic convergence of the algorithm to a globally minimal 

solution by showing that the neighbourhood structure is such that each er­

godic set contains at least one global minimum. §4 contains the results of a 

computational study, in which simulated annealing is used to find approxi­

mate solutions to a large set of instances of the job shop scheduling problem. 

We show that simulated annealing performs slightly better than the shifting 

bottleneck procedure with respect to the length of the schedules returned 

by the algorithm, though computation times can be (very) long. We end 

this paper with some concluding remarks. 

1 The Problem 

We are given a set J of n jobs, a set .M of m machines, and a set 0 of 

N operations. For each operation v E 0 there is a job Jv E J to which it 

belongs, a machine Mv E .Mon which it requires processing, and a processing 

time tv E IN. There is a binary relation ~ on 0 that decomposes 0 into 

chains corresponding to the jobs; more specifically, if v ~ w, then Jv = Jw 

and there is no x €/:. { v, w} such that v ~ x or x ~ w. The problem is to 

find a start time Sv for each operation v E 0 such that 

max Sv + tv, 
vEO 

2 
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is minimized subject to 

Bv 2: O, Vv E 0 {2) 

Bw - Bv 2: tv, if V -t w, v, WE 0 {3) 

Bw - Bv 2: tv V Bv - Bw 2:: tw, if Mv = Mw, V, W E 0 ( 4) 

It is useful to represent the problem by the disjunctive graph model of Roy 

and Bussmann (1964). The disjunctive graph G = (V, A, E) is defined as 

follows: 

• V = Ou{O, N +1}, where 0 and N +1 are two fictitious operations; the 

weight of a vertex vis given by the processing time tv (to= tN+l = 0). 

• A= {(v,w)I v,w E O,v -t w} U {(O,w)I w E 0, ~ v E 0: v -t w} U 

{(v, N + 1)1 v E 0, ~ w E 0 : v -t w}. Thus, A contains arcs connect­

ing consecutive operations of the same job, as well as arcs from 0 to 

the first operation of each job and from the last operation of each job 

to N + 1. 

• E = {{ v, w} I Mv = Mw}. Thus, edges in E connect operations to be 

processed by the same machine. 

Figure 1 illustrates the disjunctive graph for a 3-job 3-machine instance, 

where each job consists of three operations. 

For each pair of operations v, w E 0 with v -t w, condition (3) is represented 

by an arc (v,w) in A. Similarly, for each pair of operations v,w E 0 with 

Mv = Mw, the disjunctive constraint ( 4) is represented by an edge { v, w} in 

E, and the two ways to settle the disjunction correspond to the two possible 

orientations of the edge. There is an obvious one-to-one correspondence 

between a set of choices in ( 4) that is overall feasible and an orientation of 

all the edges in E for which the resulting digraph is acyclic. The objective 

value (the makespan) of the corresponding solution is given by the length of 

a longest path in this digraph. Such a set of orientations decomposes 0 into 

chains corresponding to the machines, i.e., it defines for each machine an 

ordering or permutation of the operations to be processed by that machine. 

Conversely, a set of machine permutations defines a set of orientations of the 

edges in E, though not necessarily one which results in an acyclic digraph. 

Since the longest path in a cyclic digraph has infinite length, we can now 

rephrase the problem as: find a set of machine permutations that minimizes 

the longest path in the resulting digraph. In §3 we use this formulation of 

the problem to find approximate solutions by simulated annealing. 

3 



2 Simulated Annealing 

Ever since its introduction, independently by Kirkpatrick, Gelatt and Vec­

chi ( 1983) and Cerny { 1985), simulated annealing has been applied to many 

combinatorial optimization problems in such diverse areas as computer-aided 

design of integrated circuits, image processing, code design and neural net­

work theory; for a review the reader is referred to Van Laarhoven and Aarts 

(1987). The algorithm is based on an intriguing combination of ideas from 

at first sight completely unrelated fields of science, viz. combinatorial op­

timization and statistical physics. On the one hand the algorithm can be 

considered as a generalization of the well-known iterative improvement ap­

proach to combinatorial optimization problems, on the other hand it can be 

viewed as an analogue of an algorithm used in statistical physics for com­

puter simulation of the annealing of a solid to its ground state, i.e. the state 

with minimum energy. In this paper we mainly restrict ourselves to the first 

point of view; thus, we first briefly review iterative improvement. 

Generally, a combinatorial optimization problem is a tuple (R, C), where R 
is the set of configurations or solutions of the problem, and C : R ---+ lR the 

cost function (Papadimitriou and Steiglitz 1982). To be able to use iterative 

improvement we need a neighbourhood structure ,}./ : R ---+ zR; thus, for each 

configuration i, JI ( i) is a subset of configurations, called the neighbourhood 

of i. Neighbourhoods are usually defined by first choosing a simple type of 

transition to obtain a new configuration from a given one and then defining 

the neighbourhood as the set of configurations that can be obtained from a 

given configuration in one transition. 

Given the set of configurations, a cost function and a neighbourhood struc­

ture, we can define the iterative improvement algorithm as follows. The 

algorithm consists of a number of iterations. At the start of each iteration, 

a configuration i is given and a transition to a configuration j E )I ( i) is 

generated. If C(j) < C(i), the start configuration in the next iteration is j, 

otherwise it is i. If R is finite and if the transitions are generated in some 

exhaustive enumerative way, then the algorithm terminates by definition in 

a local minimum. Unfortunately, a local minimum may differ considerably 

in cost from a global minimum. Simulated annealing can be viewed as an 

attempt to find near-optimal local minima by allowing the acceptance of 

cost-increasing transitions. More precisely, if i and j E JI ( i) are the two 

configurations to choose from, then the algorithm continues with configura­

tion j with a probability given by min {1, exp (-(C(j) - C(i))/c)}, where c 

is a positive control parameter, which is gradually decreased during the exe-
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cution of the algorithm. c is the analogue of the temperature in the physical 

annealing process. Note that the aforementioned probability decreases for 

increasing values of C(j)- C(i) and for decreasing values of c and that cost­

decreasing transitions are always accepted. 

For a fixed value of c, the configurations that are consecutively visited by the 

algorithm can be seen as a Markov chain with transition matrix P = P(c) 

given by 

{ 

Gi;~;(c) 

.f'i;(c) = IRI 
1- 2: Gik~k(c) 

k=l 

if j I- i 

if j = i, 
(5) 

where the generation probabilities Gij are given by 

Gi'(c) = { IN(i)j-
1 

if j E ~(i) 
1 0 otherwise, 

(6) 

and the acceptance probabilities Ai; by 

. { (-(C(j) - C(i)))} Ai;(c) =mm 1,exp ----~---- . (7) 

The stationary distribution of this Markov chain exists and is given by [Folk­

lore]: 

{8) 

for some io E Rapt, where Rapt is the set of globally minimal configurations, 

provided the neighbourhoods are such that for each pair of configurations 

(i,j) there is a finite sequence of transitions leading from i to j. The latter 

condition is equivalent to the requirement that the matrix G be irreducible. 

It can readily be shown that 

limqi(c) = { IRoptl-l if£ E ~opt 
c!O 0 otherwise. 

(9) 

Recalling that the stationary distribution of the Markov chain is defined as 

the probability distribution of the configurations after an infinite number 

of transitions, we conclude from (9) that the simulated annealing algorithm 

converges with probability 1 to a globally minimal configuration if the se­

quence of values of the control parameter converges to 0 and if the Markov 

chains generated at each value of c are of infinite length, provided the matrix 
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G is irreducible. 

Unfortunately, the neighbourhood structure chosen for job shop scheduling 

in §3 is such that the corresponding matrix G is not irreducible. In that case, 

we can still prove asymptotic convergence provided the neighbourhoods are 

such that for each configuration i there is a finite sequence of transitions 

leading from i to some configuration io E Rapt (Van Laarhoven 1988). To 

do so, we use the fact that in every chain the recurrent configurations can 

be uniquely divided into irreducible ergodic sets Si, S2, . .. , Sr. In addition 

to the ergodic sets there is a set T of transient configurations from which 

configurations in the ergodic sets can be reached (but not vice versa). Note 

that if the neighbourhoods satisfy the aforementioned condition, then each 

St contains at least one globally minimal configuration. 

Now consider the sequence of configurations constituting the Markov chain 

associated with P(c). There are two possibilities: either the Markov chain 

starts in a transient configuration or it does not. In the latter case, the 

configurations constituting the Markov chain all belong to the same irre­

ducible ergodic set St and we can prove asymptotic convergence as before, 

with R replaced by St. On the other hand, if the Markov chain starts in a 

transient configuration, it will eventually 'land' (Feller 1950) in an ergodic 

set St, t E {1, ... , T}, though it is not a priori known which one. The line 

of reasoning described above can then be applied again. 

We can make the preceding arguments more precise by introducing the no­

tion of a stationary matrix Q, whose elements qij are defined by 

% = lim Pr{X(k) = jjX(O) = i}. 
k-+oo 

(10) 

Using the results in chapter 15, sections 6-8 of Feller (1950), we obtain 

0 if j E T or i E St, j tf:. St, for some t E {l, ... , T}, 

if i,j E St for some t E {l, ... , T}, 

(11) 

if i E T, j E St for some t E {l, ... , T}, 

where Xit is the probability that the Markov chain, starting from the tran­

sient configuration i, eventually reaches the ergodic set St. 
From (11) we obtain, for a recurrent configuration j E St, 
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0 :-::; lim Pr{X(k) = j} = L Pr{X(O) = i} ·qi; 
k-+oo iER 

(L Pr{X(O) = £} · Xit + L Pr{X(O) = £}) 
iET iESt 

(12} 

Using (7) we find 

l
• Ai11;(c) O 
Im = , 
c!O :LtESt Aioi ( C) 

(13) 

if j E St, j fj_ Ropt· Consequently, limc!o(limk-+oo Pr{X(k) = j}) = 0 for 

any transient or non-globally minimal recurrent configuration j. In other 

words, 

lim( lim Pr{X(k) E R~pt}) = 1, 
c!O k-+oo 

{14) 

where R~pt denotes the non-empty set of globally minimal recurrent config­

urations. 

Some of the conditions for asymptotic convergence, as for instance the infi­

nite length of Markov chains, cannot be met in practice. In any finite-time 

implementation, we therefore have to make a choice with respect to each of 

the following parameters: 

• the length of the Markov chains, 

• the initial value of the control parameter, 

• the decrement rule of the control parameter, 

• the final value of the control parameter. 

Such a choice is usually referred to as a cooling schedule or annealing sched­

ule. Our implementation uses the cooling schedule described in Aarts and 

Van Laarhoven (1985a, 1985b). This is a three-parameter schedule: the 

parameters xo and € 8 determine the initial and final value of the control pa­

rameter, respectively, whereas the decrement rule depends on a parameter 

8, hereinafter referred to as the distance parameter. The dependence is such 

that large values of 8 correspond to a 'fast' decrement of c and small values 
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to a 'slow' decrement. Finally, for each instance the length of the Markov 

chains is set to the size of the largest neighbourhood. 

Under some mild assumptions, it is possible to show that with the afore­

mentioned cooling schedule the time-complexity of the simulated annealing 

algorithm is bounded by 0 ( r L In I R I), where r is the time involved in the 

generation and (possible) acceptance of a transition and L the size of the 

largest neighbourhood (the length of the Markov chains) (Aarts and Van 

Laarhoven 1985a). If one works out this bound for a particular combinato­

rial optimization problem, it is usually polynomial in the size of the problem. 

In those cases, we have a polynomial-time approximation algorithm. Such 

a result with respect to the efficiency of the algorithm is only worthwhile in 

combination with results on its effectivity, viz. on the difference in cost be­

tween solutions returned by the algorithm and globally minimal ones. From 

a theoretical point of view, very little is known about the effectivity of sim­

ulated annealing, but there are many empirical results; see for instance the 

extensive computational experiments of Johnson et al. (1987). For the job 

shop scheduling problem, we present an empirical analysis of the effElctivity 

and efficiency of simulated annealing in §4, but first the application of sim­

ulated annealing to the job shop scheduling problem is discussed in more 

detail. 

3 Simulated Annealing and 

Joh Shop Scheduling 

We recall from the previous section that in order to apply simulated anneal­

ing to any combinatorial optimization problem, we need a precise definition 

of configurations, a cost function and a neighbourhood structure. Further­

more, to prove asymptotic convergence we must show that the neighbour­

hood structure is such that for an arbitrary configuration i there exists at 

least one globally minimal configuration io E Rapt that can be reached from 

i in a finite number of transitions. Hereinafter, we discuss these items in 

more detail. 

(i) Configurations 

We recall from §1 that we can solve the job shop scheduling problem by 

considering sets of machine permutations and by determining, for such a set 

of permutations, the longest path in the digraph which results from giving 

the edges in the disjunctive graph the orientations determined by the per­

mutations. We therefore define a configuration i of the problem as a set 
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rri = {1rH, ... ' 1rim} of machine permutations. Consequently, the number of 

configurations is given by ru:·=l mk!, where fflk is the number of operations 

to be processed by machine k (mk = l{v E OlMv = k}I). 

(ii) Cost function 

For each configuration i we define the following two digraphs: 

1. Di= (V, AU Ei), where 

Ei = {(v, w)I{ v, w} EE and 1rik(v) = w for some k E .M}. (15) 

2. Di= (V,AU Ei), where 

Ei = {(v, w)l{v, w} EE and 1r!k(v) = w for some k E .M, 1:::; l:::; m}. 

(16) 

In other words, Di is the digraph obtained from the disjunctive graph by 

giving the edges in E the orientations resulting from ITi; the digraph Di 

can be obtained from Di by taking only those arcs from Jj]i that connect 

successive operations on the same machine. It is well known that the longest 

paths in Di and Di are identical; thus, the cost of a configuration i can be 

found by determining the length of a longest path from 0 to N + 1 in Di. To 

compute such a cost, we use a simple labelling algorithm, based on Bellman's 

equations (Bellman 1958), for solving the longest-path problem in a digraph. 

The time-complexity of this algorithm is proportional to the number of arcs 

in the graph. In our case, this number equals IAI + IEil = (N +n) + (N - m); 

accordingly, the labelling algorithm takes 0 ( N) time to compute the cost of 

a configuration. 

(iii) Neighbourhood structure 

A transition is generated by choosing vertices v and w, such that 

1. v and w are successive operations on some machine k, 

2. (v, w) EE;. is a critical arc, i.e. (v, w) is on a longest path in Di, 

and reversing the order in which v and ware processed on machine k. Thus, 

in the digraph Di such a transition results in reversing the arc connecting v 

and w and replacing the arcs ( u, v) and ( w, x) by ( u, w) and ( v, x), respec­

tively, where u = 1ri"k1(v) and x = 11"ik(w). Our choice is motivated by two 

facts: 
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• Reversing a critical arc in a digraph Di can never lead to a cyclic 

digraph D; (see Lemma 2). 

• If the reversal of a non-critical arc in Di leads to an acyclic graph D;, 
a longest path q in D; cannot be shorter than a longest path pin Di 
(because Di still contains the path p). 

Thus, we exclude beforehand some non-cost-decreasing transitions and, in 

addition, all transitions that might result in a cyclic digraph. Consequently, 

the neighbourhood structure is such that the algorithm visits only digraphs 

corresponding to feasible solutions. 

The neighbourhood of a configuration i is thus given by the set of acyclic 

digraphs that can be obtained by reversing a critical arc belonging to Ei in 

the graph Di· Consequently, j.A/(i)I < 2:r=1(mk - 1) = N - m. 

(iv) Asymptotic convergence 

It is not difficult to construct a problem instance containing pairs of con­
figurations (i,j) for which there is no finite sequence of transitions leading 
from i to j (Van Laarhoven 1988). Thus, to prove asymptotic convergence, 

we must show that for each configuration i there is a finite sequence of tran­

sitions leading from i to some globally minimal configuration. In order to 
do so, we need two lemmas. 

Lemma 1 

Consider an arbitrary configuration £ and an arbitrary global minimum 

io E Rapt. If i <:}. Rapt 1 then the set Ki(i°o) defined by 

Ki(io) = { e = ( v, w) E Eil e is critical A ( w, v) E Ei,,} (17) 

is not empty. 

Proof 

The proof consists of two parts: first, we show that Ei always contains 

critical arcs, unless i E Rapti next that there are always critical arcs in Ei 

that do not belong to Eio unless again i E Rapt. 

1. Suppose Ei contains no critical arcs, then all critical arcs belong to 

A. Consequently, a longest path consists of arcs connecting vertices 
corresponding to operations of the same job; accordingly, its length is 

given by the total processing time of that job. But this is a lower bound 

to the length of a longest path in any digraph Di, hence i E Rapt. 

10 



2. Suppose that for all critical arcs e in Ei, we have that e E Eio· We 

then know that any longest path p in D, is also a path q in D,
0

• 

The length of a longest path r in D1
11 

is also the length of a longest 

path in Dio and because i"o E Rapt, we have length(r) :::; length(p). 

But by definition length(r) ~ length(q) = length(p). Consequently, 

length(p) = length(r) and £ E Rapt· 0 

Lemma 2 

Suppose e = (v,w) E E1 is a critical arc of an acyclic digraph D,. Let D; be 

the digraph obtained from D1 by reversing the arc e in Ei. Then D; i's also 

acyclic. 

Proof 

Suppose D; is cyclic. Because D1 is acyclic, the arc (w, v) is part of the 

cycle in Di. Consequently, there is a path ( v, x, y, ... , w) in Di. But this 

path can also be found in Di and is clearly a longer path from v to w than 

the arc ( v, w). This contradicts the assumption that ( v, w) is on a longest 

path in D,. Hence, D; is acyclic. 0 

Given a configuration io E Rapt, we define the following two sets for an 

arbitrary configuration £: 

Mi(io) = {e = (v, w) E E,j(w, v) E Ei 0 } 

M1(i"o) = {e = (v,w) E E,j(w, v) E Efo}. 

(18) 

(19) 

In view of §2, the following theorem now ensures asymptotic convergence in 

probability to a globally minimal configuration. 

Theorem 1 

For each configuration ir/:.Rapt it is possible to construct a finite sequence of 

transitions leading from i to a globally minimal configuration. 

Proof 

We choose an arbitrary configuration io E Rapt and construct a sequence of 

configurations {Ao, )q, .. . } as follows: 

1. Ao= i 

2. Ak+l is obtained from Ak by reversing an arc e E K>. 1Jio) in E>.k· 

According to Lemma 2, this can be done without creating a cycle in 

D>.k+i" Furthermore, this operation is of the aforementioned type of 

transition. 
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It can easily be seen that if IM >.k ( io) I > 0 then 

JM>.k+1(i'o)I = IM>.k(i'o)l -1. (20) 

Hence, fork= JMi(i°o)J, JM>.k(i°o)I = 0. Using Ki(io) <;;; Mi(io) <;;; Mi(io), 

we find K>.k(io) = 0 for k = JMi(io)J. According to Lemma 1, this implies 

).k E Rovt· 
D 

4 Computational Results 

We have analysed the finite-time behaviour of the simulated annealing algo­

rithm empirically by running the algorithm on a number of instances of the 

job shop scheduling problem, varying in size from six jobs on six machines 

to 30 jobs on ten machines. For all instances, the number of operations 

of each job equals the number of machines and each job has precisely one 

operation on each machine. In that case, the number of configurations of 

each instance is given by (n!)m, the labelling algorithm takes O(nm) time 

to compute the cost of a configuration, and the size of the neighbourhood 

of a configuration is bounded by m( n - 1). 

FISl, FIS2 and FIS3 are three problem instances due to Fisher and Thomp­

son (1963), the forty instances in Table II are due to Lawrence {1984). FIS2 

is a notorious 10-job 10-machine instance that has defied solution to op­

timality for more than 20 years. A couple of years ago, a solution with 

cost 930 was found after several hours of computation time (Lageweg 1988). 

This solution was only recently proved to be globally minimal by Carlier 

and Pinson (1988). For FISl, FIS2 and FIS3, the processing times of the 

operations are randomly drawn and range from 1to10 (FISl) or to 99 (FIS2 

and FIS3) units of time. The sequence of machines for each job is such that 

lower-numbered machines tend to be used for earlier operations. For the 

Lawrence instances processing times are drawn from a uniform distribution 

on the interval [5,99]; the sequence of machines for each job is random. 

The performance of simulated annealing on these instances is reported in 

Table I for the Fisher-Thompson instances, and in Table II for the Lawrence 

instances. The averages in these tables are computed from five solutions, 

obtained by running the algorithm, controlled by the cooling schedule de­

scribed in §2, five times on each instance and recording the best configu­

ration encountered during each run (this need not necessarily be the final 

configuration). The probabilistic nature of the algorithm makes it necessary 

to carry out multiple runs on the same problem instance in order to get 
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meaningful results. 

All results are obtained with the parameters xo and € 8 set to 0.95 and 10-6
, 

respectively, and for different values of the distance parameter 8. Compu­

tation times are CPU times on a VAX-785. 

From Tables I and II we can make the following observations: 

• The quality of the average best solution returned by the algorithm 

improves considerably when 8 is decreased. This is in accordance with 

the theory underlying the employed cooling schedule: smaller values of 

8 correspond to a better approximation of the asymptotic behaviour 

(Aarts and Van Laarhoven 1985a). Furthermore, the difference be­

tween the average best solution and a globally minimal one does not 

deteriorate significantly with increasing problem size. For the FIS2 

instance, the five best solutions obtained with 8 = 10-4 have cost val­

ues of 930 (twice), 934, 935 and 938, respectively. Thus, a globally 

minimal solution is found 2 out of 5 times, which is quite a remarkable 

result, considering the notoriety of this instance. 

• As for computation times, we remark that the bound for the compu­

tation time given in §2 is O((nm)3 
ln n) (L = O(nm), IRI = O((nl)m) 

and r = 0 (nm)). Thus, for fixed m the bound is 0 ( n3 ln n), for fixed 

nit is O(m3
). For the A, Band C instances in Table II, for which m is 

constant, the average computation time t for 8 = 0.01 is approximately 

given by t =to· n 2
·
215 ·Inn, for some constant to (x2 = 1.00); for the 

G, Band I instances, for which n is constant, the average computation 

time for Ii = 0.01 is approximately given by t = ti · m 2.40G, for some 

constant t 1 (x2 = 1.00). Thus, the observed computation times are in 

good accordance with the bound given in §2. 

Table I also contains results obtained by repeated execution of the itera­

tive improvement algorithm based on the same neighbourhood structure as 

simulated annealing. The initial configurations, to which the iterative im­

provement algorithm is applied, are randomly generated. The averages for 

iterative improvement are obtained from five macro-runs. Each macro-run 

consists ·of repeated execution of the iterative improvement algorithm for 

a large number of initial configurations and thus yields a large number of 

local minima. Execution of each macro-run is terminated as soon as the 

computation time exceeds the computation time of an average run of sim­

ulated annealing applied to the same problem instance with the distance 

parameter Ii set to 10-3 (10-2 for FISl); Cbest is the average of the best cost 
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value found during each macro-run. 

We observe that repeated execution of iterative improvement is easily out­

performed by simulated annealing for the two larger problems. The differ­

ence is significant: for FIS3, for instance, the average best solution obtained 

by simulated annealing is almost 11 % better in cost than the one obtained 

by repeated execution of iterative improvement. 

Table I and Table II also contain for each instance the cost value of the best 

solution obtained by Adams, Balas and Zawack (1988). Most values are 

obtained by a second heuristic, which embeds the aforementioned sliding 

bottleneck procedure and proceeds by partial enumeration of the solution 

space. The values for the instances Fl, F5, G3 as well as for the D and 

H instances are obtained by the sliding bottleneck procedure only. The 

corresponding computation times are obtained by halving the CPU times 

in Adams, Balas and Zawack (1988), since these correspond to a VAX-780. 

Adams, Balas and Zawack show their approach to be superior to approaches 

based on priority dispatching rules: the typical improvement is reported to 

be between 4% and 10%. 

Comparison of simulated annealing and the shifting bottleneck procedure 

leads to the following observations: 

• For those instances for which Adams, Balas and Zawack do not find a 

globally minimal solution (mainly the A, B, C and I instances in Ta­

ble II), the computation times of simulated annealing with 8 = 0.1 and 

of the heuristic of Adams, Balas and Zawack are of the same order of 

magnitude. In this case, the best solution found by Adams, Balas and 

Zawack is considerably better than the average best solution returned 

by simulated annealing and as good as the best solution found in five 

runs of simulated annealing. 

Putting 8 = 0.01 makes simulated annealing of course much slower 

than the heuristic of Adams, Balas and Zawack, but now the best so­

lution of Adams, Balas and Zawack is slightly worse than the average 

best solution of simulated annealing and considerably worse than the 

best solution in five runs of simulated annealing (the typical improve­

m~nt is between 1 and 3%). 

• For the instances for which the heuristic of Adams, Balas and Zawack 

finds a globally minimal solution, it outperforms simulated annealing: 

the latter algorithm also finds global minima, but takes much more 

computation time to do so. 
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Admittedly, the performance of the shifting bottleneck heuristic is liable to 

improve if it is allowed more computation time. Nevertheless, the results 

in Table I and Table II indicate that simulated annealing is a promising 

approach to job shop scheduling, as well as a robust one (cf. the small 

difference between Cbest and Cbest in tables I and II for 8 = 0.01) and 

certainly superior to traditional approaches, such as procedures based on 

priority dispatching rules. 

5 Conclusion 

We have discussed a new approach to job shop scheduling based on a ran­

domization version of iterative improvement. The probabilistic element of 

the algorithm (the acceptance of cost-increasing transitions with a non-zero 

probability) makes simulated annealing a significantly better approach than 

the iterative improvement approach on which it is based. The difference is 

especially pronounced for large problem instances. Furthermore, the algo­

rithm has a potential for finding shorter makespans than other approxima­

tion algorithms discussed in the literature, but a sufficient amount of com­

putation time to realize this potential is usually quite large. We consider 

this disadvantage to be compensated for by the simplicity of the algorithm, 

the fact that it is relatively easy to implement, requires no deep insight into 

the combinatorial structure of the problem instances, and, of course, by the 

high quality of the solutions it returns. 
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Figure 1. The disjunctive graph G of a 3-job 3-machine instance. Oper­

ations 1, 5 and 9 are processed by machine 1, operations 2, 4 

and 8 by machine 2, and operations 3, 6 and 7 by machine 3. 0 

and 10 are the fictitious initial and final operations, respectively. 

Thick arrows denote arcs in A, dotted lines edges in E. 



Table I. Average cost of best solution (Cbest), average computation time 

in seconds (t), standard deviations (uo and Ut, respectively), 

cost of best solution (Chest), number of local minima per macro­

run of iterative improvement (lm) and % of average best cost 

value above globally minimal cost value. The results are ob­

tained with the simulated annealing algorithm with different 

values of the distance parameter 8 (upper part) and with re­

peated execution of the iterative improvement algorithm (lower 

part), respectively. The averages are obtained from five (macro­

)runs. The table also includes for each instance the cost of the 

best solution found by Adams, Balas and Zawack (1988) (CA) 

and the corresponding computation time (tA)· Provably glob­

ally minimal solutions are marked with an asterisk. 

~=-
-· 

Simulated Annealing ABZ 

I I Un l 3 I I I I Ill 0 C1w.-t l Ut C1w.-t CA tA 

6 machines, 6 jobs 

I 10-1 I t.·311:821 5~ r -! 1 

. ~:: r .. S5~ I 
... 

FIS1 56.0 I 1 

10-2 55.0' 0.0 0.00 

10 machines, 10 jobs 

FIS2 10-l 1039.6 15.1 11.78 113 13 1028 93o+ 476 

10-2 985.8 22.1 6.00 779 61 951 

10-3 942.4 4.5 1.33 5945 180 937 

10-4 933.4 3.1 0.37 57772 2364 930'' 
~-

20 machines. 5 jobs 

FIS3 10-l 1354.2 26.5 16.24 123 13 1325 1178 40 

10- 2 1229.0 33.6 5.49 848 93 1184 

10-3 1187.0 18.7 1.89 6840 389 1173 

10-4 1173.8 5.2 0.76 62759 7805 1165' 

Iterative Improvement 

Prob-

lem c,,,._.t u,: 3 t Ut c,,,._.1 lm 

FIS1 55.4 0.8 0.73 52 0 55' 803.2 

FIS2 1018.2 9.1 9.48 5945 0 1006 9441.2 

FIS3 1331.4 9.5 14.28 6841 0 1319 5221.0 



Table II. Average cost of best solution (Cbest), average computation time 

in seconds (t), standard deviations (110 and 11t, respectively), 

and best cost of five runs (Cbest)· The averages are obtained 

from five runs of the simulated annealing algorithm with differ­

ent values of the distance parameter 8. The table also includes 

for each instance the cost of the best solution found by Adams, 

Balas and Zawack (1988) (CA) and the corresponding computa­

tion time (tA)· Provably globally minimal solutions are marked 

with an asterisk. 



Prob­

lem 

Ai 

A2 

A3 

A4 

A5 

81 

82 

83 

84 

85 

C1 

C2 

C3 

C4 

C5 

01 

02 

03 

04 

05 

Table II 
Simulated Annealing ABZ 

10 machines. 10 jobs 

120 

966.2 10.1 686 83.3 956 

Lo--

0.1 

0.01 

1.0 

0.1 

0.01 

i~~.~ ... ~~. -~~:~- 1i: l-~~-~ -!~r- -- 978 --

861.0 -- -41y --23- - -3~7 797" --787 - --9(; 

792.4 6.2 112 7.0 784 

787.8 1.6 720 109.0 785 

1.0 

0.1 

0.01 

902.6 30.9 23 1.6 870 859 

872.2 12.4 112 22.1 861 

861.2 0.4 673 69.0 861 

1.0 

0.1 

0.01 

950.0 54.5 24 5.3 904 860 

881.4 6.9 97 20.4 874 

853.4 4.6 830 85.4 848 

1.0 1021.6 

0.1 927.6 

0.01 908.4 

1.0 

0.1 

0.01 

1.0 

0.1 

0.01 

1.0 

0.1 

0.01 

1.0 

0.1 

0.01 

1.0 

0.1 

0.01 

1.0 

0.1 

0.01 

1.0 

0.1 

0.01 

1.0 

0.1 

0.01 

1.0 

0.1 

0.01 

1.0 

0.1 

0.01 

1.0 

0.1 

1.0 

0.1 

1.0 

0.1 

1.0 

0.1 

1.0 

0.1 

1176.2 

1115.2 

1067.6 

1125.6 

977.4 

944.2 

1155.8 

1051.0 

1032.0* 

1101.0 

977.6 

966.6 

1114.6 

1035.4 

1004.4 

1397.0 

1268.0 

1219.0 

1434.2 

1311.6 

1273.6 

1414.6 

1280.2 

1244.8 

1387.4 

1260.4 

1226.4 

1539.2 

1393.6 

1355.0* 

1882.2 

1784.0* 

1921.4 

1850.0* 

1761.8 

1726.6 

1816.4 

1775.6 

2011.2 

1890.0 

26.2 30 1.9 

18.9 86 7.9 

4.2 667 126.9 

10 machines. 15 jobs 

37.8 69 6.7 

23.9 299 50.9 

3.7 1991 341.1 

35.6 65 3.6 

19.5 307 36.5 

4.7 2163 154.6 

64.2 63 5.6 

24.6 275 35.8 

0.0 2093 89.7 

53.5 71 5.0 

8.1 252 28.5 

8.7 2098 406.0 

9.1 77 16.9 

10.6 283 44.3 

14.4 2133 374.5 

10 machines. 20 jobs 

69.1 139 16.0 

9.7 555 81.7 

2.0 4342 597.8 

40.0 139 6.4 

12.7 651 82.9 

5.2 4535 392.0 

57.8 135 7.4 

23.6 614 83.3 

15.4 4354 349.8 

47.0 138 

35.4 581 

6.5 4408 

44.2 145 

9.6 605 

0.0 3956 

14.1 
24.0 

450.9 

20.6 

84.4 

428.2 

10 machines. 30 jobs 

39.3 442 79.3 

0.0 1517 58.1 

35.3 492 66.2 

0 0 1752 124.6 

12.2 433 40.4 

15.2 1880 130.8 

27.7 470 31.2 

38.4 1886 232.4 

81.3 434 34.6 

4.0 1668 107.9 

994 

907 

902 

1133 

1085 

1063 

1094 

963 

938 

1056 

1032* 

1032* 

1032 

968 

952 

1103 

1017 

992 

1311 

1252 

1218* 

1390 

1295 

1269 

1335 

1246 

1224 

1307 

1203 

1218 

1492 

1381 

1355• 

1821 

1784* 

1868 

1850* 

1740 

1719* 

1788 

1121· 

1888* 

1888* 

914 

1084 

944 

1032* 

976 

1017 

1224 

1291 

1250 

1239 

1355* 

1784" 

1850* 

1719* 

1121· 

1888* 

112 

120 

144 

181 

210 

113 

217 

215 

372 

419 

451 

446 

276 

19 

15 

14 

11 
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Table II (cont'd} 
--··--. -r-- ··· ·- - ·--·-siiiiiiate<iAn-neafing ___________ --)Thy---

Prob-

lem 6 0111.•pf a,, t C1t G11rPI GA tA 

5 machines. 10 jobs 

F1 1.0 707.0 32.2 6 1.0 666* 666' 1 

0.1 666.0* 0.0 20 3.5 666* 

0.01 666.0* 0.0 123 15.3 666. 

F2 1.0 719.0 20.0 6 1.0 685 669 6 

0.1 671.0 11.1 24 2.5 655* 

0.01 663.0 4.9 117 19.0 655. 

F3 1.0 689.6 22.4 5 0.9 664 605 32 

0.1 635.6 9.5 24 3.8 626 

0.01 617.6 8.5 129 12.6 606 

F4 1.0 665.4 56.9 6 0.9 608 593 23 

0.1 617.2 20.5 21 5.2 594 

0.01 593.8 2.1 121 15.9 590 

F5 1.0 594.4 2.8 5 0.6 593• 593• 0 

0.1 593.0* 0.0 19 4.2 593• 

0.01 593.0* 0.0 118 15.3 593• 

5 machines, 15 jobs 

G1 1.0 937.2 13.7 16 2.8 926* 926* 1 

0.1 926.0* 0.0 52 5.8 926* 

0.01 926.0* 0.0 286 32.1 926* 

G2 1.0 948.6 44.1 15 1.6 911 890* 1 

0.1 900.6 8.5 66 15.2 890* 

0.01 890.0* 0.0 376 48.3 890* 

G3 1.0 905.8 34.2 16 0.4 863* 863* 2 

0.1 863.0* 0.0 55 7.3 863* 

0.01 863.0* 0.0 292 40.8 863* 

G4 1.0 965.2 20.0 13 1.0 951• 951* 0 

0.1 951.0* 0.0 47 5.9 951• 

0.01 951.0* 0.0 283 25.9 951• 

G5 1.0 958.0· 0.0 14 1.6 958* 953• 0 

0.1 958.0* 0.0 45 2.0 958* 

0.01 958.0* 0.0 243 42.3 958* 

5 machines. 20 jobs 

H1 1.0 1229.6 14.7 32 3.9 1222· 1222· 1 

0.1 1222.0· 0.0 108 17.2 1222• 

0.01 1222.0· 0.0 627 18.4 1222· 

H2 1.0 1042.8 7.6 34 3.9 1039* 1039* 0 

0.1 1061.2 44.4 116 11.9 1039* 

0.01 1039.0* 0.0 655 30.7 1039* 

H3 1.0 1154.6 9.2 32 2.5 1150* 1150* 1 

0.1 1150.0* 0.0 118 18.0 1150* 

0.01 1150.0· 0.0 564 85.9 1150• 

H4 1.0 1292.0' 0.0 27 1.7 1292* 1292* 0 

0.1 1292.0• 0.0 93 20.6 1292* 

0.01 1292.0· 0.0 462 21.8 1292• 

H5 1.0 1299.8 77.4 34 5.3 1201· 1207* 2 

0.1 1252.5 18.8 126 16.2 1233 

0.01 1207.0* 0.0 736 26.3 1207* 

15 machines. 15 jobs 

11 1.0 1487.6 40.4 152 6.4 1450 1305 268 

0.1 1343.2 30.2 785 80.6 1297 

0.01 1300.0 7.8 5346 399.8 1293 

12 1.0 1580.2 38.3 173 12.1 1523 1423 419 

0.1 1479.4 28.8 757 94.6 1457 

0.01 1442.4 5.7 5287 688.5 1433 

13 1.0 1422.2 28.3 173 25.3 1376 1255 
540 I 

0.1 1303.4 30.5 713 90.8 1263 

0.01 1227.2 8.2 5480 614.8 1215 

14 1.0 1408.6 44.4 186 24.6 1348 1273 
335 I 

0.1 1305.4 27.5 673 75.1 1264 

0.01 1258.2 5.2 5766 800.3 1248 

15 1.0 1399.8 60.2 162 8.8 1318 1269 450 I 
0.1 1282.2 15.5 745 68.4 1254 

0.01 1247.4 9.9 5373 1066.4 1234 I 


