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Abstract. A novel algorithm for buffer management and packet scheduling is
presented for providing loss and delay differentiation for traffic classes at a net-
work router. The algorithm, called JoBS (Joint Buffer Management and Schedul-
ing), provides delay and loss differentiation independently at each node, without
assuming admission control or policing. The novel capabilities of the proposed
algorithm are that (1) scheduling and buffer management decisions are performed
in a single step, and (2) both relative and (whenever possible) absolute QoS re-
quirements of classes are supported. Numerical simulation examples, including
results for a heuristic approximation, are presented to illustrate the effectiveness
of the approach and to compare the new algorithm to existing methods for loss
and delay differentiation.

1 Introduction

Quality-of-Service (QoS) guarantees in packet networks are often classified according
to two criteria. The first criterion is whether guarantees are expressed for individual
end-to-end traffic flows (per-flow QoS) or for groups of flows with the same QoS re-
quirements (per-class QoS). The second criterion is whether guarantees are expressed
with reference to guarantees given to other flows/flow classes (relative QoS), or whether
guarantees are expressed as absolute bounds (absolute QoS).

Efforts to provision for QoS in the Internet in the early and mid-1990s, which re-
sulted in theIntegrated Services(IntServ) service model [3], focused on per-flow ab-
solute QoS guarantees. However, due to scalability issues and a lagging demand for
per-flow absolute QoS, the interest in Internet QoS eventually shifted to relative per-
class guarantees. Since late 1997, theDifferentiated Services(DiffServ) [2] working
group has discussed several proposals for per-class relative QoS guarantees, e.g., [4,
17].

With the exception of the Expedited Forwarding service [11], proposals for relative
per-class QoS discussed within the DiffServ context define the service differentiation
qualitatively, in the sense that some classes receive lower delays and a lower loss rate
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than others, but without quantifying the differentiation. Recently, research studies have
tried to strengthen the guarantees of relative per-class QoS, and have proposed new
buffer management and scheduling algorithms which can support stronger notions of
relative QoS [6, 7, 15, 16]. Probably the best known such effort is theproportional ser-
vice differentiationmodel [6, 7], which attempts to enforce that the ratios of delays or
loss rates of successive priority classes be roughly constant. For two priority classes
such a service could specify that the delays of packets from the higher-priority class be
half of the delays from the lower-priority class, but without specifying an upper bound
on the delays.

In this paper, we express the provisioning of per-class QoS within a formalism in-
spired by the network calculus [5]. We present a rate allocation and dropping algorithm
for a single output link, calledJoint Buffer Management and Scheduling (JoBS), which
is capable of supporting a wide range of relative, as well as absolute, per-class guaran-
tees for loss and delay, without assuming admission control or traffic policing. The al-
gorithm operates as follows. Upon each arrival, a prediction is made on the delays of the
currently backlogged traffic. Then, the service rates allocation to classes are adjusted to
meet delay requirements. If necessary, traffic from certain classes is selectively dropped.
A unique feature of the presented algorithm is that rate allocation for link scheduling
and buffer management are approached together in a single step. The JoBS algorithm
provides delay and loss differentiation independently at each node. End-to-end delays
and end-to-end loss rates are thus dependent on the per-node guarantees of traffic and
on the number of nodes traversed.

This paper is organized as follows. In Section 2 we give an overview of the cur-
rent work on relative per-class QoS guarantees. In Sections 3 and 4, we specify our
algorithm for buffer management and rate allocation. In Section 5 we propose a heuris-
tic approximation of the algorithm. In Section 6 we evaluate the effectiveness of our
algorithm via simulation. In Section 7 we present brief conclusions.

2 Related Work

Due to space considerations, we limit our discussions to the relevant work on scheduling
and buffer management algorithms for relative service differentiation.

Scheduling. The majority of work on per-class relative service differentiation sug-
gests to use well-known fixed-priority, e.g., [17], or rate-based scheduling algorithms,
e.g., [9]. Only a few scheduling algorithms have been specifically designed for relative
delay differentiation. The Proportional Queue Control Mechanism (PQCM, [15]) and
Backlog-Proportional Rate scheduler (BPR, [6]) are variations of the GPS algorithm
[18]. Both schemes use the backlog of classes to determine the service rate allocation,
and bear similarity to the scheduling component of JoBS, in the sense that they dynam-
ically adjust service rate allocations to meet relative QoS requirements.

Different from the rate-based schedulers discussed above, the Waiting-Time Pri-
ority scheduler (WTP, [7]) implements a well-known scheduling algorithm with time-
dependent priorities ([12], Ch. 3.7). Likewise, the Mean-Delay Proportional scheduler
(MDP, [16]) uses a dynamic priority mechanism, but sets priorities based on the average
experienced delay of packets. Finally, the Hybrid Proportional Delay scheduler (HPD,
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[6]) uses a combination of time-dependent priorities and average experienced delay to
set the priority of a given packet.

The Alternative Best-Effort service (ABE, [10]) provides service differentiation for
two traffic classes. The first class is provided with absolute delay guarantees, and the
second class has guarantees for a lower loss rate. The delay guarantees for the first class
are enforced by dropping all traffic that has exceeded the delay bound.

In contrast to the schedulers presented in this section, the scheduling algorithm pre-
sented in this paper not only considers the current state and past history of the link,
but, in addition, makes predictions on future delays to improve the performance of its
scheduling decisions.

Buffer Management. For a discussion of buffer management algorithms, we refer to
a recent survey article [13]. Many proposals for buffer management in IP networks are
motivated with the need to improve TCP performance (e.g., RED [8], REM [1]). Tech-
niques specifically targeted for class-based service differentiation include RIO [4] and
multiclass RED [19]. Of these schemes, REM is closest in spirit to the dropping algo-
rithm presented in this paper, since REM treats the problem of marking (or dropping)
arrivals as an optimization problem.

The Proportional Loss Rate (PLR) dropper [7] is specifically designed to support
proportional differentiated services. PLR enforces that the ratio of the loss rates of two
successive classes remains roughly constant at a given value. There are two variants
of PLR. PLR(M ) uses only the lastM packets for estimating the loss rate of a class,
whereas PLR(1) has no such memory constraints.

With the possible exception of [10], the work on relative per-class service differ-
entiation generally considers delay and loss differentiation as orthogonal issues, which
are handled by separate algorithms.

3 An Approach to Joint Buffer Management and Scheduling

In this section, we introduce the key concepts ofJoint Buffer Management and Schedul-
ing (JoBS). Before we provide a detailed description, we first give an informal overview
of the operations.

3.1 Overview

We assume that each output link performs per-class buffering of arriving traffic and that
traffic is transmitted from the buffers using a rate-based scheduling algorithm [21] with
a dynamic, time-dependent service rate allocation for classes. Traffic from the same
class is transmitted in a First-Come-First-Served order. There is no admission control
and no policing of traffic. The set of performance requirements are specified to the
algorithm as a set of per-class QoS constraints. As an example, for three classes, the
QoS constraints could be of the form:

– Class-1 Delay� 2 �Class-2 Delay,
– Class-2 Loss Rate� 10�1 � Class-3 Loss Rate, or
– Class-3 Delay� 5ms.



4 Jörg Liebeherr and Nicolas Christin

Here, the first two constraints are relative constraints and the last one is an absolute con-
straint. The set of constraints can be any mix of relative and absolute constraints. Since
absolute constraints may render a system of constraints infeasible, some constraints
may need to be relaxed. We assume that all QoS constraints are prioritized, so that an
order is provided in which constraints are relaxed in case the system of constraints is
infeasible.

The time-dependent service rate allocation operates as follows. For every arrival, a
prediction is made on the delays of all backlogged traffic. Then, the service rate alloca-
tion to traffic classes is modified so that all QoS constraints will be met. If no feasible
rate allocation for meeting all constraints exists, traffic is dropped, either from a new
arrival or from the current backlog.

We find it convenient to view the service rate allocation in terms of an optimization
problem. The constraints of the optimization problem are relative or absolute bounds
on the loss and delay as given in the example above (QoS constraints) and constraints
on the link and buffer capacity (system constraints). The objective function of the op-
timization primarily aims at minimizing the amount of traffic to be dropped, and, as a
secondary objective, aims at maintaining the current service rate allocation. The first
objective prevents traffic from being dropped unnecessarily, and the second objective
tries to avoid frequent fluctuations of the service rate allocation. The solution of the op-
timization problem yields a service rate allocation of classes and determines how much
traffic must be dropped.

To explore the principal properties of the optimization, we will, at first, assume
that sufficient computing resources are available to solve the optimization problem for
each arrival to the link. In a later section, we will approximate the optimization with a
heuristic which incurs less computational overhead.

3.2 Formal Description

Next we describe the basic operations of the service rate allocation and the dropping
algorithms at a link with capacityC and total buffer spaceB. We assume that all traffic
is marked to belong to one ofQ traffic classes. In general, we expectQ to be small, e.g.,
Q = 4. Classes are marked by an index. We use a convention, whereby a class with a
smaller index requires a better level of QoS. We useai(t) andli(t) to denote the traffic
arrivals and amount of dropped traffic from classi at timet. We useri(t) to denote the
service rate allocated to classi at timet. We assume thatri(t) > 0 only if there is a
backlog of class-i traffic in the buffer (andri(t) = 0 otherwise), and we assume that
scheduling is work-conserving, that is,

P
i ri(t) = C, if there is at least one backlogged

class at timet.
Remark. Throughout this paper, we take a fluid-flow interpretation of traffic, that is,
the output link is regarded as serving simultaneously traffic from several classes. Since
actual traffic is sent in discrete-sized packets, a fluid-flow interpretation of traffic is ide-
alistic. However, scheduling algorithms that closely approximate fluid-flow schedulers
with rate guarantees are available [18, 21].

We now introduce the notions ofarrival curve, input curve, andoutput curvefor a
traffic classi in the time interval[0; t]. The arrival curveAi and the input curveRin

i of
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Fig. 1. Delay, Backlog and Projections.In Figure 1(b), the projection is performed at times for
the time interval[s; s+ ~Ti;s].

classi are defined as

Ai(t) =

Z t

0

ai(x)dx ; Rin
i (t) = Ai(t)�

Z t

0

li(x)dx : (1)

So, the difference between the arrival and input curve is the amount of dropped traffic.
The output curveRout

i of class-i is the transmitted traffic in the interval[0; t], given by

Rout
i (t) =

Z t

0

ri(x)dx : (2)

We refer to Figure 1(a) for an illustration. In the figure, the service rate is adjusted at
timest1, t2, andt4, and packet drops occur at timest2 andt3.

The vertical and the horizontal distance between the input and output curves from
classi, respectively, are the backlogBi and the delayDi. This is illustrated in Fig-
ure 1(a) for timet. The delayDi at timet is the delay of an arrival which is transmitted
at timet. Backlog and delay at timet are defined as

Bi(t) = Rin
i (t)�Rout

i (t) ; Di(t) = max
x<t

fx j Rout
i (t) � Rin

i (t� x)g : (3)

Upon a traffic arrival, say at times, the new service ratesri(s) and the amount of
traffic to be droppedli(s) for all classes are set such that all QoS and system constraints
can be met at times greater thans. If all constraints cannot be satisfied at the same time,
then some QoS constraints are relaxed in a predetermined order.

To determine the rate allocation, the scheduler makes a projection of the delays of
all backlogged traffic. For the purpose of the projection, it is assumed that the current
state of the link will not change after times. Specifically, indicating projected values
by a tilde (˜), for timest > s, we assume that (1) service rates remain as they are (i.e.,
~ri(t) = ri(s)), (2) there are no further arrivals (i.e.,~ai(t) = 0), and (3) there are no
further packet drops (i.e.,~li(t) = 0).



6 Jörg Liebeherr and Nicolas Christin

With these assumptions, we now define the notions of projected input curve~Rin
i;s,

projected output curve~Rout
i;s , and projected backlog~Bi;s, for t > s as follows:

~Rin
i;s(t) = Rin

i (s) ; ~Rout
i;s (t) = Rout

i (s) + (t� s)ri(s) ; ~Bi;s(t) = ~Rin
i;s(t)�

~Rout
i;s (t) :

(4)
We refer to theprojected horizonfor classi at times, denoted as~Ti;s, as the time when
the projected backlog becomes zero, i.e.,~Ti;s = minx>0fx j ~Bi;s(s + x) = 0g. With
this notation, we can make predictions for delays in the time interval[s; s + ~Ti;s]. We
define the projected delay~Di;s as

~Di;s(t) = max
t�s<x<t

fx j ~Rout
i;s (t) � Rin

i (t� x)g : (5)

If there are no arrivals after times, the delay projections are correct. In Figure 1(b),
we illustrate the projected input curve, projected output curve, and projected delays for
projections made at times. In the figure, all values fort > s are projections and are
indicated by dashed lines. The figure includes the projected delays for timest5 andt6.

4 Service Rate Adaptation and Drop Algorithm

In this section we discuss an algorithm to perform the service rates allocation to classes
and the decision to drop traffic in terms of an optimization problem.

Each times at which an arrival occurs, a new optimization is performed. The op-
timization variable is a time-dependent vectorxs = (r1(s) : : : rQ(s) l1(s) : : : lQ(s))

T ,
which contains the service ratesri(s) and the amount of traffic to be droppedli(s). The
optimization problem has the form

Minimize F (xs)
Subject to gj(xs) = 0; j = 1; : : : ;M

hj(xs) � 0; j =M + 1; : : : ; N;
(6)

whereF (:) is an objective function, and thegj ’s andhj ’s are constraints. The objective
function, which will be presented in Subsection 4.2, will be chosen so that the amount
of dropped traffic and the changes to the current service rate allocation are minimized.
The constraints of the optimization problem are QoS constraints and system constraints.
The optimization at times is done with knowledge of the system state before times,
that is the optimizer knowsRin

i andRout
i for all timest < s, andAi for all timest � s.

In the remainder of this section we discuss the constraints and the optimization
function. The optimization can be used as a reference system against which practical
scheduling and dropping algorithms can be compared.

4.1 System and QoS Constraints

There are two types of constraints.System constraintsdescribe constraints and proper-
ties of the output link, andQoS constraintsdefine the desired service differentiation.
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System Constraints. The system constraints specify physical limitations and prop-
erties at the output link. The first such constraint states that the total backlog cannot
exceed the buffer sizeB, that is,

P
i Bi(t) � B for all times t. The second system

constraint enforces that scheduling at the output link is work-conserving. At a work-
conserving link,

P
i ri(t) = C holds for all timest where

P
iBi(t) > 0. Other system

constraints enforce that transmission rates and loss rates are non-negative. Also, the
amount of traffic that can be dropped is bounded by the current backlog. So we obtain
ri(t) � 0 and0 � li(t) � Bi(t) for all timest.

QoS Constraints. We consider two types of QoS constraints, relative constraints and
absolute constraints. QoS constraints are either constraints on delays or constraints on
the loss rate. The number and type of QoS constraints is not limited. Since absolute QoS
constraints may result in an infeasible system of constraints, one or more constraints
may need to be relaxed at certain times. We assume that the set of QoS constraints is
assigned some total order, and that constraints are relaxed in the given order until the
system of constraints becomes feasible. In addition, QoS constraints for classes which
are not backlogged are simply ignored.

Absolute delay constraints (ADC)enforce that the projected delays of classi satisfy a
worst-case bounddi. That is,

max
s<t<s+ ~Ti;s

~Di;s(t) � di ; (7)

for all t 2 [s; s + ~Ti;s]. If this condition holds for alls, the delay bounddi is never
violated.
Relative delay constraints (RDC)specify the proportional delay differentiation between
classes. As an example, for two classes1 and2, the RDC enforces a relationship

Delay of Class 2
Delay of Class 1

� constant:

Since, in general, there are several packets backlogged from a class, each likely to
have a different delay, the notion of ‘delay of classi’ needs to be further specified. For
example, the delay of classi could be specified as the delay of the packet at the head of
the class-i queue, the maximum projected delay as in Eqn. (7), or via other measures.
We choose a measure, calledaverage projected delayDi;s, which is the time average
of the projected delays from a class, averaged over the horizon~Ti;s. We obtain

Di;s =
1
~Ti;s

Z s+ ~Ti;s

s

~Di;s(x)dx : (8)

To provide some flexibility in the scheduling decision, we do not enforce relative delay
constraints strictly, but allow for some slack. Using the metric defined in Eqn. (8), and
translating the notion of slack into a tolerance level, we can write the relative delay
constraints as

ki(1� ") �
Di+1;s

Di;s

� ki(1 + ") ; (9)
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whereki > 1 is a constant defining the proportional differentiation desired, and"

(0 � " � 1) indicates a tolerance level. If relative constraints are not specified for
some classes, the constraints are adjusted accordingly. Note that in the delay constraints
in Eqs. (7) and (9), all values with exception of the components of the optimization
variablexs are known at times.

Next we discuss constraints on the loss rate. Similar to delays, there are several
sensible choices for defining ‘loss’. Here, we select a loss measure, denoted bypi;s,
which expresses the fraction of lost traffic since the beginning of the current busy period
at timet0.1 So,pi;s expresses the fraction of traffic that has been dropped in the time
interval[t0; s], that is,2

pi;s =

R s
t0
li(x)dxR s

t0
ai(x)dx

= 1�
Rin
i (s�) + (ai(s)� li(s)) �Rin

i (t0)

Ai(s)�Ai(t0)
: (10)

In the last equation, all values exceptli(s) are known at times. With this definition we
now specify absolute and relative constraints on the loss rates.
An absolute loss constraint (ALC)specifies that the loss rate of classi, as defined above,
never exceeds a limitLi, that is,

pi;s � Li : (11)

Relative loss constraints (RLC)specify the desired proportional loss differentiation be-
tween classes. Similar to the RDCs, we provide a certain slack within these constraints.
The RLC for classes(i+ 1) andi has the form

k0i(1� "0) �
pi+1;s

pi;s
� k0i(1 + "0) ; (12)

wherek0i > 1 is the target differentiation factor, and"0 (0 � "0 � 1) indicates a level of
tolerance.

4.2 Objective Function

Provided that the QoS and system constraints can be satisfied, the objective function
will select a solution forxs. Even though the choice of the objective function is a policy
decision, we select two specific objectives, which, we believe, have general validity: (1)
avoid dropping traffic, and (2)avoid changes to the current service rate allocation. The
first objective ensures that traffic is dropped only if there is no alternative way to satisfy
the constraints. The second objective tries to hold on to a feasible service rate allocation
as long as possible. We give the first objective priority over the second objective.

The following formulation of an objective function expresses the above objectives
in terms of a cost function:

F (xs) =
QX
i=1

(ri(s)� ri(s
�))2 + C2

QX
i=1

li(s) ; (13)

1 A busy period is a time interval with a positive backlog of traffic. For timex with
P

i
Bi(x) >

0, the beginning of the busy period is given bysupy<xf
P

i
Bi(y) = 0g.

2 s� = s� h, whereh > 0 is infinitesimally small.
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Fig. 2. Outline of the Heuristic Algorithm .

whereC is the link capacity. The first term expresses the changes to the service rate
allocation and the second term expresses the losses at times. Note that, at times, ri(s)
is part of the optimization variable, whileri(s�) is a known value. In Eqn. (13) we
use the quadratic form(ri(s) � ri(s

�))2, since
P

i(ri(s) � ri(s
�)) = 0 for a work-

conserving link with a backlog at times. The scaling factorC2 in front of the second
sum of Eqn. (13) ensures that traffic drops are the dominating term in the objective
function.

This concludes the description of the optimization process in JoBS. The structure of
constraints and objective function makes this anon-linear optimization problem, which
can be solved with available numerical algorithms [20].

5 Heuristic Approximation

We next present a heuristic that approximates the optimization presented in the previ-
ous section, with significantly lower computational complexity. The presented heuristic
should be regarded as a first step towards a router implementation.

Approximating a non-linear optimization problem such as the one presented in Sec-
tion 4 can be performed by well-known techniques such as fuzzy systems, or neural
networks. However, these techniques are computationally too expensive if a high accu-
racy in the approximation is desired. Therefore, we choose a different approach, which
decomposes the optimization problem into several computationally less intensive prob-
lems. The heuristic algorithm presented here maintains a feasible rate allocation until a
buffer overflow occurs or a delay violation is predicted. At that time, the heuristic picks
a new feasible rate allocation and/or drops traffic. Unless there is a buffer overflow, the
tests for violations of ADCs and RDCs are not performed for every packet arrival, but
only periodically.

A set of constraints, which contains absolute constraints (ALCs or ADCs), may be
infeasible at certain times. Then, some constraints need to be relaxed. In our heuristic
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algorithm, the constraints are prioritized in the following order: system constraints have
priority over absolute constraints, which in turn have priority over relative constraints.
If the system of constraints becomes infeasible, the heuristic relaxes the relative con-
straints (RLCs or RDCs). If this does not yield a feasible solution, the heuristic relaxes
one or more absolute constraints.

A high-level overview of the heuristic algorithm is presented in Figure 2. The algo-
rithm consists of a number of small computations, one for each situation which requires
to adjust the service rate allocation and/or to drop packets. We next present each of these
situations and the associated computation.

Buffer Overflow. If an arrival at times causes a buffer overflow, one can either drop
the arriving packet or free enough buffer space to accommodate the arriving packets.
Both cases are satisfied if X

i

li(s) =
X
i

ai(s) : (14)

The heuristic picks a solution for theli(s) which satisfies Eqn. (14) and the RLCs in
Eqn. (12), where we set"0 = 0 to obtain a unique solution. If the solution violates an
ALC, the RLCs are relaxed until all ALCs are satisfied. Once theli(s)’s are determined
the algorithm continues with a test for delay constraint violations, as shown in Figure 2.
The algorithm only specifies the amount of traffic which should be dropped from a
particular class, however, the algorithm does not select the position in the queue from
which to drop traffic. In the present paper, we assume a Drop-Tail dropping policy.

If there are no buffer overflows, the algorithm makes projections for delay violations
only once for everyN packet arrivals. The selection ofN represents a tradeoff between
the runtime complexity of the algorithm and performance of the scheduling with respect
to satisfying the constraints. Simulation experiments, as described in Section 6, show
that the valueN = 100 provides good performance.

The tests use the current service rate allocation to predict future violations. For delay
constraint violations, the heuristic distinguishes three cases.

Case 1: No violation. In this case, the service rates are unchanged.

Case 2: RDC violation. If some RDC (but no ADC) is violated, the heuristic algorithm
determines new rate values. Here, the RDCs as defined in Eqn. (9) are transformed into
equations by setting" = 0. Together with the work-conserving property, one obtains a
system of equations, for which the algorithm picks a solution. If the solution violates
an ADC, the RDCs are relaxed until the ADCs are satisfied.

Case 3: ADC violation. Resolving an ADC violation is not entirely trivial as it requires
to recalculate theri(s)’s, and, if traffic needs to be dropped to meet the ADCs, the
li(s)’s. To simplify the task, our heuristic ignores all relative constraints when an ADC
violation occurs, and only tries to satisfy absolute constraints.

The heuristic starts with a conservative estimate of the worst-case delay for the
class-i backlog at times. For this, the heuristic uses the fact that for allx 2 [s; s+ ~Ti;s],
~Di;s(x) � Di(s) +

Bi(s)
ri(s)

, which can be verified by referring to Figures 1(a) and 1(b).

Then, usingBi(s) = Bi(s
�) + ai(s) � li(s), we can write a sufficient condition for



To appear inProceedings of IWQoS 2001 11

42 201816141210860
0

20
40
60
80

100
120
140

Simulation Time (s)

O
ff

er
ed

 lo
ad

(i
n 

%
 o

f 
th

e 
lin

k 
ca

pa
ci

ty
)

Fig. 3. Offered Load.

satisfying the ADC of classi with delay bounddi at times,

1

ri(s)

Bi(s
�) + ai(s)� li(s)

di �Di(s)| {z }
�i

� 1 : (15)

The heuristic algorithm will select theri(s) andli(s) such that Eqn. (15) is satisfied for
all i. Initially, rates and traffic drops are set tori(s) = ri(s

�) andli(s) = 0. Since at
least one ADC is violated, there is at least one class with�i > 1, where�i is defined in
Eqn.(15). Now, we apply a greedy method which tries to redistribute the rate allocations
until �i � 1 for all classes. This is done by reducingri(s) for classes with�i < 1, and
increasingri(s) for classes with�i > 1. If it is not feasible to achieve�i � 1 for
all classes by adjusting theri(s)’s, the li(s)’s are increased until�i � 1 for all i. To
minimize the number of dropped packets,li(s) is never increased to a point where an
ALC is violated.

6 Evaluation

We present an evaluation of the algorithms developed in this paper via simulation. Our
goals are (1) to determine if and how well the desired service differentiation is achieved;
(2) to determine how well the heuristic algorithm from Section 5 approximates the
optimization from Section 4; and (3) to compare our algorithm with existing proposals
for proportional differentiated services.

We present two simulation experiments. In the first experiment, we compare the
relative differentiation provided by the optimization algorithm described in Section 4,
JoBS (optimization), the heuristic approximation of Section 5,JoBS (heuristic), and
WTP/PLR(1) [7], which provided uniformly the best results among previously pro-
posed schemes for relative service differentiation. In the second experiment, we aug-
ment the set of constraints by absolute loss and delay constraints on the highest priority
class, and show that JoBS can effectively provide both relative and absolute differenti-
ation.

6.1 Experimental Setup

We consider a single output link with capacityC = 1 Gbps and a buffer size of
6.25 MB. We assumeQ = 4 classes. The length of each experiment is 20 seconds of
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Fig. 4. Experiment 1: Relative Delay Differentiation.The graphs show the ratios of the delays
for successive classes. The target value isk = 4.
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Fig. 5. Experiment 1: Relative Loss Differentiation.The graphs show the ratios of loss rates
for successive classes. The target value isk0 = 2.

simulated time, starting with an empty system. In all experiments, the incoming traffic
is composed of a superposition of Pareto sources with� = 1:2 and average interarrival
time of 300�s. The number of sources active at a given time oscillates between 200
and 550, following a sinusoidal pattern. All sources generate packets with a fixed size
of 125 bytes. The resulting offered load is plotted in Figure 3. At any time, each class
contributes 25% of the aggregate load, yielding a symmetric load. In a realistic envi-
ronment, one would expect to have “less” high priority traffic than low priority traffic.
Therefore, a symmetric load can be regarded as a realistic worst-case that can occur
during bursts of high-priority traffic.

6.2 Simulation Experiment 1: Relative Differentiation Only

The first experiment focuses on relative service differentiation, and does not include
absolute constraints. The objectives for the relative differentiation are so that we want
to have a ratio of four between the delays of two successive classes, and a ratio of two
between the loss rates of two successive classes. Thus, for JoBS, we setki = 4 andk0i =
2 for all i. The tolerance levels are set to("; "0) = (0:001; 0:05) in JoBS (optimization),
and to" = 0:01 in JoBS (heuristic). The results of the experiment are presented in
Figures 4 and 5, where we graph the ratios of delays and loss rates, respectively, of
successive classes for JoBS (optimization), JoBS (heuristic), and WTP/PLR(1). The
plotted delay and loss values are averages over moving time windows of size 0.1 s.

When the link load is above 90% of the link capacity, that is, in time intervals
[0 s; 6 s] and[10 s; 15 s], all methods provide the desired service differentiation. The
oscillations around the target values in JoBS (optimization) and JoBS (heuristic) are



To appear inProceedings of IWQoS 2001 13

Class 2

Class 1

181614121086420 20

Class 3
Class 4

10

100

1

0.1

0.01

1000

0.001

D
el

ay
 (

m
s)

Simulation Time (s)

(a) With ADC, all RDCs.

Class 2
Class 1

181614121086420 20

Class 3
Class 4

10

100

1

0.1

0.01

1000

0.001

D
el

ay
 (

m
s)

Simulation Time (s)

(b) With ADC, one RDC removed.

Class 3
Class 2

181614121086420 20

Class 4

Class 1
10

100

1

0.1

0.01

1000

0.001

D
el

ay
 (

m
s)

Simulation Time (s)

(c) No ADC, all RDCs.

Fig. 6. Experiment 2: Absolute Delay Differentiation.The graphs show the delays of all pack-
ets. All results are for JoBS (heuristic).
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Fig. 7. Experiment 2: Absolute Loss Differentiation.The graphs show the loss rates of all
classes. All results are for JoBS (heuristic).

mostly due to the tolerance values" and"0. The selection of the tolerance values" and
"0 in JoBS presents a tradeoff: smaller values for" and"0 reduce oscillations, but incur
more work for the algorithms. When the system load is low, that is, in time intervals
[6 s; 10 s] and [16 s; 20 s], only JoBS (optimization) and WTP/PLR(1) manage to
achieve some delay differentiation, albeit far from the target values. However, at an
underloaded link, the absolute values of the delays are very small for all classes.

Finally, one should note that the total loss rate is of interest, as a scheme may provide
excellent proportional loss differentiation, but have an overall high loss rate. Additional
plots provided in [14] show that the loss rates and the absolute values for the delays are
very similar in all schemes.

6.3 Simulation Experiment 2: Relative and Absolute Differentiation

In this second experiment, we evaluate how well our algorithm can satisfy a mix of
absolute and relative constraints on both delays and losses. Here, we only present results
for JoBS (heuristic). WTP/PLR(1) does not support absolute guarantees.

We consider the same simulation setup and the same relative delay constraints as
in Experiment 1, but add an absolute delay constraint (ADC) for Class 1 such that
d1=1 ms, and we replace the relative loss constraint (RLC) between Classes 1 and 2 by
an absolute loss constraint (ALC) for Class 1 such thatL1=1%. We call this scenario
“with ADC, all RDCs”. With the given relative delay constraints from Experiment 1,
the other classes have implicit absolute delay constraints, which are approximately3

4 ms for Class 2, 16 ms for Class 3, and 64 ms for Class 4. Removing the RDC between

3 Due to the tolerance value", the exact values are not integers.
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Class1 and Class2, we avoid the ‘implicit’ absolute constraints for Classes 2, 3, and 4,
and call the resulting constraint set “with ADC, one RDC removed”. We also include the
results for JoBS (heuristic) from Experiment 1, with the ALC on Class 1 replacing the
RLC between Classes 1 and 2, and refer to this constraint set as “no ADC, all RDCs”.
In Figure 6 we plot the absolute delays of all packets, and in Figure 7 we plot the loss
rates of all classes, averaged over time intervals of length 0.1 s. We discuss the results
for each of the three constraint sets proposed.

Concerning the experiment “with ADC, all RDCs”, Figure 6(a) shows that the
heuristic maintains the relative delay differentiation between classes, thus, enforcing
the ‘implicit’ delay constraints for Classes 2, 3, and 4. With a large number of absolute
delay constraints, the system of constraints easily becomes infeasible, which brings two
observations. First, Figure 7(a) shows that the loss rates of Classes 2, 3 and 4 are sim-
ilar. This result illustrates that the heuristic relaxes relative loss constraints to meet the
absolute delay constraints. Second, Figure 6(a) shows that the absolute delay constraint
d1 is sometimes violated. However, such violations are rare (over 95% of Class-1 pack-
ets have a delay less than 900�s), and Class-1 packet delays always remain reasonably
close to the delay boundd1. For the experiment “with ADC, one RDC removed”, Fig-
ure 6(b) shows that, without an RDC between Classes 1 and 2, the ratio of Class-2
delays and Class-1 delays can exceed a factor of 10 at high loads. With this constraint
set, the absolute delay constraintd1 is never violated, and Figure 7(b) shows the RLCs
are consistently enforced during periods of packet drops. Finally, for the experiment
“no ADC, all RDCs”, Figure 6(c) shows that, without the ADC, the delays for Class 1
are as high as 5 ms.4

7 Conclusions

We proposed an algorithm, called JoBS (Joint Buffer Management and Scheduling),
for relative and absolute per-class QoS guarantees without information on traffic ar-
rivals. At times when not all absolute QoS guarantees can be satisfied simultaneously,
JoBS selectively ignores some of the QoS guarantees. The JoBS algorithm reconciles
rate allocation and buffer management into a single scheme, thereby acknowledging
that scheduling and dropping decisions at an output link are not orthogonal issues, but
should be addressed together. JoBS implements the desired service differentiation based
on delay predictions of backlogged traffic. The predictions are used to update service
rate allocations to classes and the amount of traffic to be dropped. We showed in a set
of simulation experiments, that JoBS can provide relative and absolute per-class QoS
guarantees for delay and loss.

In future work, we will extend the approach presented in this paper to TCP conges-
tion control. As a point of departure, we will attempt to express existing active queue
management schemes, e.g., RED [8] and RIO [4], within the formal framework intro-
duced in this paper.

4 The delay values for Classes 2, 3, and 4 in Figures 6(b) and (c) appear similar, especially since
we use a log-scale. We emphasize that the values arenot identical, and that the results are
consistent.
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