JOHN'S DECOMPOSITIONS: SELECTING A LARGE PART

BY
R. Vershynin
Department of Mathematics, University of Missouri
Columbia, MO 65211, USA
e-mail: vershynin@math.missouri.edu

ABSTRACT

We extend the invertibility principle of J. Bourgain and L. Tzafriri to operators acting on arbitrary decompositions $i d=\sum x_{j} \otimes x_{j}$, rather than on the coordinate one. The John's decomposition brings this result to the local theory of Banach spaces. As a consequence, we get a new lemma of Dvoretzky-Rogers type, where the contact points of the unit ball with its maximal volume ellipsoid play a crucial role. We then apply these results to embeddings of l_{∞}^{k} into finite dimensional spaces.

1. Introduction

The aim of this paper is to find a part of the John's decomposition on which a given nontrivial operator is invertible in a certain sense, and to apply this to the study of contact points of convex bodies.

John's decomposition of the identity is a classical tool in the local theory of Banach spaces. Suppose $X=\left(\mathbf{R}^{n},\|\cdot\|\right)$ is a Banach space whose ellipsoid of maximal volume contained in $B(X)$ coincides with the unit Euclidean ball. The John's decomposition of the identity operator on X is

$$
\begin{equation*}
i d=\sum_{j=1}^{m} x_{j} \otimes x_{j} \tag{1}
\end{equation*}
$$

where $x_{j} /\left\|x_{j}\right\|_{X}$ are some of the contact points of the surfaces of $B(X)$ and the unit Euclidean ball. This celebrated theorem of F. John has been used extensively

Received October 6, 1999
over the past 30 years. Recently it was interpreted as an isotropic condition [G-M], and was generalized to a non-convex case in [G-P-T].

It is important to know the good subsets of the set of contact points $\left(x_{j}\right)$, as this can be useful in understanding the geometrical structure of X; see [R2]. In the present paper we find a part of a decomposition (1) which preserves the orthogonal structure under the action of a given linear operator T. More precisely, if $\|T\|_{2 \rightarrow 2}=1$ then there exists a subset of indices σ of cardinality $|\sigma| \geq(1-\varepsilon)\|T\|_{\mathrm{HS}}^{2}$ such that the system $\left(T x_{j}\right)_{j \in \sigma}$ is $C(\varepsilon)$-equivalent to an orthogonal basis in Hilbert space. In the case of the coordinate decomposition $i d=\sum e_{j} \otimes e_{j}$, this generalizes the principle of restricted invertibility proved by J. Bourgain and L. Tzafriri [B-Tz]. They considered only operators T for which all norms $\left\|T e_{j}\right\|_{2}$ are well bounded below and proved the principle with some fixed $0<\varepsilon<1$.

For T being an orthogonal projection, we derive a new lemma of DvoretzkyRogers type. Suppose P is an orthogonal projection in X with $\operatorname{rank} P=k$. Then for any $\kappa<k$ there are contact points $x_{1}, \ldots, x_{\kappa}$ such that setting $z_{j}=$ $P x_{j} /\left\|P x_{j}\right\|_{2}$ we have

- the system $\left(z_{j}\right)$ is $C(\kappa / k)$-equivalent in l_{2}-norm to the canonical basis of l_{2}^{κ};
- $\left\|z_{j}\right\|_{X} \geq c \sqrt{(k-\kappa) / n}$ for all j.

In other words, the orthonormal system in Z guaranteed by the classical Dvoretzky-Rogers Lemma is essentially the normalized projections of the contact points of X. Moreover, the result holds for selfadjoint operators as well as for projections with the Hilbert-Schmidt norm of the operator replacing rank P. For a general operator T the best lower bound for $\left\|T x_{j}\right\|_{X}$ is equivalent to $(1 / n) \mid$ trace $T \mid$.

For T being the identity operator, we obtain a set of $k>(1-\varepsilon) n$ contact points of X which is $C(\varepsilon)$-equivalent in l_{2}-norm to the canonical basis in l_{2}^{k}. This settles an isomorphic version of a problem of N. Tomczak-Jaegermann ([T-J], p. 127), and confirms the feeling that contact points are always distributed fairly uniformly on the surface of the maximal volume ellipsoid (see [B1]). Also this yields the proportional Dvoretzky-Rogers factorization (with constant $C(\varepsilon)=$ $\varepsilon^{c \log \varepsilon}$, which is however not the best known estimate).

The Dvoretzky-Rogers Lemma has been useful in the study of subspaces of X well isomorphic to l_{∞}^{k}. The use of the refined Dvoretzky-Rogers Lemma above yields a "Gaussian" version of a theorem of Alon-Milman-Talagrand concerning l_{∞}^{k}-subspaces of X. Let P be an orthogonal projection in X with $\operatorname{rank} P=k$.

Then there exists a subspace $Z \subset X$ which is M-isomorphic to l_{∞}^{m} for $m \geq c k / \sqrt{n}$ and $M=c \sqrt{n / k} \ell(P)$. The subspace Z is canonically spanned by the projections of m contact points x_{j}. Moreover, the norm on Z is M-equivalent to $\|\|z\|\|=$ $\max _{j \leq m}\left|\left\langle z, x_{j}\right\rangle\right|$. This improves the estimates obtained by M. Rudelson in [R1], and also provides information about the position of Z in X. Also, this yields a refinement of M. Rudelson's result about l_{∞}^{k}-subspaces in spaces with large volume ratio. That is, if $\operatorname{vr}(X) \geq a \sqrt{n}$ then X has a subspace Z of dimension $m \geq C_{1}(a) \sqrt{n}$ which is $C_{2}(a) \log n$-isomorphic to l_{∞}^{m}.

The extraction results concerning John's decompositions can be reformulated in the language of frames. Suppose we are given a tight frame $\left(x_{j}\right)$ in Hilbert space H, and a norm-one linear operator $T: H \rightarrow H$. Then there is a subsequence $\left(T x_{j}\right)_{j \in \sigma}$ with $|\sigma| \geq(1-\varepsilon)\|T\|_{\text {HS }}^{2}$ which is $C(\varepsilon)$-equivalent to an orthogonal basis in Hilbert space. This theorem again can be interpreted as an extension of the invertibility principle. It also generalizes results of P. Casazza [C2] and the author [V], who worked with the identity operator $T=i d$.

The rest of the paper is organized as follows. In $\S 2$ we review some basic tools used later in the paper. The extraction result about John's decompositions, as well as some modifications, is proved in §3. Its relation to the principle of restricted invertibility and infinite-dimensional analogs are discussed in $\S 4$. In $\S 5$ we use these results to derive some Dvoretzky-Rogers type lemmas. They help to understand the structure of the set of contact points. Applications to $l_{\infty}^{k}{ }^{-}$ subspaces of a finite dimensional space are given in $\S 6$. Finally, in $\S 7$ we relate these results to the theory of frames in Hilbert space.

Acknowledgement: I am grateful to M. Rudelson for many important discussions concerning this material, and to S. Dilworth, who pointed out to me a flaw in the proof of the main result. This research would not have occurred without the help and encouragement of my wife Lilya.

2. Preliminaries

In this section we review several known results. We denote by c, c_{1}, c_{2} absolute constants, and by $C(t), C_{1}(t), C_{2}(t)$ constants which depend on the parameter t only. The values of these constants may differ from line to line. The canonical vectors in \mathbf{R}^{n} are denoted by e_{j}.

Suppose we are given two sequences $\left(x_{j}\right)$ and $\left(y_{j}\right)$ in Banach spaces X and Y respectively. The sequences $\left(x_{j}\right)$ and $\left(y_{j}\right)$ are called K-equivalent if there exist constants K_{1} and K_{2} with $K_{1} K_{2} \leq K$ such that for any finite sequence of scalars
$\left(a_{j}\right)$

$$
K_{1}^{-1}\left\|\sum a_{j} y_{j}\right\|_{Y} \leq\left\|\sum a_{j} x_{j}\right\|_{X} \leq K_{2}\left\|\sum a_{j} y_{j}\right\|_{Y}
$$

In other words, the linear operator $T: \operatorname{span}\left(x_{j}\right) \rightarrow \operatorname{span}\left(y_{j}\right)$ defined by $T x_{j}=y_{j}$ for all j is a K-isomorphism: $\|T\|\left\|T^{-1}\right\| \leq K$. A sequence of vectors $\left(x_{j}\right)$ in a Banach space is called K-Hilbertian if $\left\|\sum a_{j} x_{j}\right\| \leq K\left(\sum\left|a_{j}\right|^{2}\right)^{1 / 2}$ for any finite set of scalars $\left(a_{j}\right)$. Similarly, $\left(x_{j}\right)$ is called K-Besselian if $K\left\|\sum a_{j} x_{j}\right\| \geq$ $\left(\sum\left|a_{j}\right|^{2}\right)^{1 / 2}$ for any finite set of scalars $\left(a_{j}\right)$.

Here and in the next section we work in a Hilbert space H whose scalar product is denoted by $\langle\cdot, \cdot\rangle$, and the norm by $\|\cdot\|$. First we observe that the HilbertSchmidt norm of an operator on H can be computed on the elements of certain decompositions of identity.

Lemma 2.1: Let $i d=\sum x_{j} \otimes x_{j}$ be a decomposition of the identity operator on a Hilbert space H, and $T: H \rightarrow H$ be a linear operator. Then

$$
\|T\|_{\mathrm{HS}}^{2}=\sum\left\|T x_{j}\right\|^{2}
$$

Proof: Let $\left(e_{j}\right)$ be an orthonormal basis of H. Now it is enough to write

$$
\sum T x_{j} \otimes T x_{j}=T T^{*}=\sum T e_{j} \otimes T e_{j}
$$

and to take traces of both sides.
As an immediate consequence we have
Corollary 2.2: Let $i d=\sum x_{j} \otimes x_{j}$ be a decomposition of the identity operator on a Hilbert space H. Then

$$
\sum\left\|x_{j}\right\|^{2}=\operatorname{dim} H
$$

Lemma 2.3: Let $i d=\sum x_{j} \otimes x_{j}$ be a decomposition of the identity operator on a Hilbert space. Then the system $\left(x_{j}\right)$ is 1-Hilbertian.

Proof: Note that for every vector x

$$
\|x\|^{2}=\langle x, x\rangle=\left\langle\sum\left\langle x_{j}, x\right\rangle x_{j}, x\right\rangle=\sum\left|\left\langle x_{j}, x\right\rangle\right|^{2}
$$

Thus $\left\|\sum x_{j} \otimes e_{j}\right\|=1$, and by duality $\left\|\sum e_{j} \otimes x_{j}\right\|=1$. This yields that $\left(x_{j}\right)$ is 1-Hilbertian.

The starting point of this paper is the principle of restricted invertibility proved by J. Bourgain and L. Tzafriri [B-Tz].

Theorem 2.4 (J. Bourgain, L. Tzafriri): Let T be a linear operator in l_{2}^{n} for which $\left\|T e_{j}\right\|=1, j=1, \ldots, n$. Then there exists a subset $\sigma \subset\{1, \ldots, n\}$ of cardinality $|\sigma| \geq c_{1} n /\|T\|^{2}$ such that

$$
\left\|\sum_{j \in \sigma} a_{j} T e_{j}\right\| \geq c\left(\sum_{j \in \sigma}\left|a_{j}\right|^{2}\right)^{1 / 2}
$$

for any choice of scalars $\left(a_{j}\right)$.
The invertibility principle will be used together with the following restriction theorem. It can easily be recovered from a result of A. Kashin and L. Tzafriri [K-Tz]. For the sake of completeness, we include the proof.

Theorem 2.5 (A. Kashin, L. Tzafriri): Let A be a norm-one linear operator on l_{2}^{m}. Fix a number λ with $1 / m \leq \lambda \leq 1$. Then there exists a subset $\nu \subset\{1, \ldots, m\}$ of cardinality $|\nu| \geq \lambda m / 4$ such that

$$
\left\|P_{\nu} A\right\| \leq c\left(\sqrt{\lambda}+\frac{\|A\|_{\mathrm{HS}}}{\sqrt{m}}\right)
$$

Here P_{ν} denotes the coordinate projection onto \mathbf{R}^{ν}.
In the dual setting this result can be reformulated as follows.
Corollary 2.6: Let $\left(x_{j}\right)_{j \leq m}$ be a 1-Hilbertian system in a Hilbert space, and put $\sum\left\|x_{j}\right\|^{2}=h$. Fix a number λ with $1 / m \leq \lambda \leq 1$. Then there exists a subset $\nu \subset\{1, \ldots, m\}$ of cardinality $|\nu| \geq \lambda m / 4$ such that setting $K=(\sqrt{\lambda}+\sqrt{h / m})^{-1}$, we have that
the system $\left(K x_{j}\right)_{j \in \sigma}$ is c-Hilbertian.
Proof of Theorem 2.5: Let $\left(\xi_{j}\right)_{j \leq m}$ be independent $\{0,1\}$-valued random variables of mean λ. We will consider the random coordinate projection P_{ξ} in \mathbf{R}^{n} onto the subspace spanned by $\left\{e_{j}: j \leq m, \xi_{j}=1\right\}$. First, we employ the Gine-Zinn's scheme to bound the expectation

$$
\begin{aligned}
\mathbf{E}\left\|P_{\xi} A\right\|_{2 \rightarrow 1} & =\mathbf{E} \sup _{x \in B\left(l_{2}^{m}\right)} \sum_{j=1}^{m} \xi_{j}\left|\left\langle A^{*} e_{j}, x\right\rangle\right| \\
& \leq \lambda \sup _{x \in B\left(l_{2}^{m}\right)} \sum_{j=1}^{m} \xi_{j}\left|\left\langle A^{*} e_{j}, x\right\rangle\right|+\mathbf{E} \sup _{x \in B\left(l_{2}^{m}\right)} \sum_{j=1}^{m}\left(\xi_{j}-\lambda\right)\left|\left\langle A^{*} e_{j}, x\right\rangle\right|
\end{aligned}
$$

The first summand is bounded above by $\lambda\|A\|_{2 \rightarrow 1} \leq \lambda \sqrt{m}\|A\|_{2 \rightarrow 2}=\lambda \sqrt{m}$. Let $\left(\xi_{j}^{\prime}\right)_{j \leq m}$ be an independent copy of $\left(\xi_{j}\right)_{j \leq m}$, and $\left(\varepsilon_{j}\right)_{j \leq m}$ be the Rademacher
random variables independent of $\left(\xi_{j}\right)$. Then

$$
\begin{aligned}
\mathbf{E}\left\|P_{\xi} A\right\|_{2 \rightarrow 1} & \leq \lambda \sqrt{m}+\mathbf{E} \sup _{x \in B\left(l_{2}^{m}\right)} \sum_{j=1}^{m}\left(\xi_{j}-\xi_{j}^{\prime}\right)\left|\left\langle A^{*} e_{j}, x\right\rangle\right| \\
& \leq \lambda \sqrt{m}+\mathbf{E} \sup _{x \in B\left(l_{2}^{m}\right)} \sum_{j=1}^{m} \varepsilon_{j} \xi_{j}\left|\left\langle A^{*} e_{j}, x\right\rangle\right|
\end{aligned}
$$

Let $\left(g_{j}\right)$ be normalized independent Gaussian random variables constructed on another probability space. Then by symmetry and using Slepian's Lemma (see [Le-Ta] Corollary 3.14) we have

$$
\begin{aligned}
\mathbf{E}\left\|P_{\xi} A\right\|_{2 \rightarrow 1} & \leq \lambda \sqrt{m}+\sqrt{2 \pi} \mathbf{E} \sup _{x \in B\left(l_{2}^{m}\right)} \sum_{j=1}^{m} g_{j} \xi_{j}\left|\left\langle A^{*} e_{j}, x\right\rangle\right| \\
& \leq \lambda \sqrt{m}+\sqrt{2 \pi} \mathbf{E} \sup _{x \in B\left(l_{2}^{m}\right)} \sum_{j=1}^{m} g_{j} \xi_{j}\left\langle A^{*} e_{j}, x\right\rangle \\
& =\lambda \sqrt{m}+\sqrt{2 \pi} \mathbf{E}\left\|\sum_{j=1}^{m} g_{j} \xi_{j} A^{*} e_{j}\right\|_{2} \\
& \leq \lambda \sqrt{m}+\sqrt{2 \pi}\left(\mathbf{E} \sum_{j=1}^{m}\left\|\xi_{j} A^{*} e_{j}\right\|_{2}^{2}\right)^{1 / 2} \\
& =\lambda \sqrt{m}+\sqrt{2 \pi} \sqrt{\lambda}\|A\|_{\text {HS }} .
\end{aligned}
$$

This yields the existence of a subset σ of $\{1, \ldots, m\}$ with cardinality $|\sigma|>\lambda m / 2$ so that for the coordinate projection P_{σ} onto \mathbf{R}^{σ}

$$
\left\|P_{\sigma} A\right\|_{2 \rightarrow 1} \leq \lambda \sqrt{m}+c_{1} \sqrt{\lambda}\|A\|_{\mathrm{HS}}
$$

The proof can be finished by applying Grothendieck's factorization to the operator $P_{\sigma} A: l_{2}^{m} \rightarrow l_{1}^{\sigma}$ (see e.g. [Le-Ta] Proposition 15.11). There exists a subset ν of σ with cardinality $|\nu|>|\sigma| / 2$ such that

$$
\left\|P_{\nu} P_{\sigma} A\right\|_{2 \rightarrow 2} \leq \sqrt{\frac{\pi}{|\sigma|}}\left\|P_{\sigma} A\right\|_{2 \rightarrow 1} \leq c\left(\sqrt{\lambda}+\frac{\|A\|_{\mathrm{HS}}}{\sqrt{m}}\right)
$$

This completes the proof.
Now we introduce an elementary procedure for splitting a sequence. Given a sequence $\left(x_{j}\right)$ in H, let $\left(y_{k}\right)$ be any sequence of vectors in H such that there exists a partition of \mathbf{N} into successive blocks $\left(\sigma_{j}\right)$ and for every $j=1,2, \ldots$

- the vectors $y_{k}, k \in \sigma_{j}$, are multiples of the vector x_{j};
- $\sum_{k \in \sigma_{j}}\left\|y_{k}\right\|^{2}=\left\|x_{j}\right\|^{2}$.

Then we say that $\left(y_{k}\right)$ is the splitted sequence $\left(x_{j}\right)$. Splitting allows us to make the norms of the vectors almost equal while preserving the property of being h-Hilbertian.

3. The main result

In this section we prove an extraction theorem, which is the core of the paper.
TheOrem 3.1: Let $i d=\sum x_{j} \otimes x_{j}$ be a decomposition on l_{2}^{n}, and T be a norm-one linear operator. Then for any $\varepsilon>0$ there exists a set of indices σ of cardinality $|\sigma| \geq(1-\varepsilon)\|T\|_{\text {HS }}^{2}$ such that
(i) the system $\left(T x_{j}\right)_{j \in \sigma}$ is $C(\varepsilon)$-equivalent to an orthogonal basis in l_{2}^{σ};
(ii) $\left\|T x_{j}\right\| \geq c \sqrt{\varepsilon}\left(\|T\|_{\text {HS }} / \sqrt{n}\right)\left\|x_{j}\right\|$ for all $j \in \sigma$.

Proof: Put $h=\|T\|_{\mathrm{HS}}^{2}$. By approximation one can assume that the system $\left(x_{j}\right)$ is finite, so we enumerate it as $\left(x_{j}\right)_{j \leq m}$. Denote $y_{j}=T x_{j}$ for all j. Splitting the $\operatorname{system}\left(x_{j}\right)_{j \leq m}$ we can assume that

$$
\begin{equation*}
0.9 \sqrt{\frac{h}{m}} \leq\left\|y_{j}\right\| \leq 1.1 \sqrt{\frac{h}{m}} \text { for all } j \leq m \tag{2}
\end{equation*}
$$

Let $\delta=\varepsilon / 3$ and

$$
\tau=\left\{j \leq m:\left\|y_{j}\right\| \geq 0.9 \sqrt{\delta} \sqrt{\frac{h}{n}}\left\|x_{j}\right\|\right\}
$$

We claim that

$$
\begin{equation*}
|\tau| \geq(1-\delta) m \tag{3}
\end{equation*}
$$

Indeed, by Corollary 2.2

$$
\begin{aligned}
n=\sum_{j \leq m}\left\|x_{j}\right\|^{2} & \geq \sum_{j \in \tau^{c}}\left\|x_{j}\right\|^{2} \\
& \geq \sum_{j \in \tau^{c}}\left(\frac{1}{0.9 \sqrt{\delta}} \sqrt{\frac{n}{h}}\left\|y_{j}\right\|\right)^{2} \\
& \geq\left|\tau^{c}\right|\left(\frac{1}{0.9 \sqrt{\delta}} \sqrt{\frac{n}{h}} 0.9 \sqrt{\frac{h}{m}}\right)^{2} \\
& =\left|\tau^{c}\right| \cdot \frac{n}{\delta m}
\end{aligned}
$$

Thus $\left|\tau^{c}\right| \leq \delta m$, which proves (3).

Now we have to find a further subset $\sigma \subset \tau$ of cardinality $|\sigma| \geq(1-\varepsilon) h$, such that the system $\left(y_{j}\right)_{j \in \sigma}$ is $C(\varepsilon)$-equivalent to an orthogonal basis in l_{2}^{σ}. The set σ will be constructed by successive iterations. In the first step $\sigma=\emptyset$. In each successive step, the remainder $h-|\sigma|$ will be reduced in a fixed proportion. So, it is enough to prove the following.
Lemma 3.2: Let $\sigma \subset \tau$ with $|\sigma|<(1-\varepsilon) h$ be given, and suppose the system $\left(y_{j}\right)_{j \in \sigma}$ is K-equivalent to an orthogonal basis in Hilbert space. Then σ can be extended in τ to a subset σ_{1} so that
(a) the system $\left(y_{j}\right)_{j \in \sigma_{1}}$ is $C(K, \varepsilon)$-equivalent to an orthogonal basis in Hilbert space;
(b) for some absolute constant $\alpha<1$

$$
h-\left|\sigma_{1}\right| \leq \alpha(h-|\sigma|)
$$

Proof: Let P be the orthonormal projection of l_{2}^{n} onto $l_{2}^{n} \ominus \operatorname{span}\left(y_{j}\right)_{j \in \sigma}$ (at the first step $P=i d$). First observe that by Lemma 2.1

$$
\begin{aligned}
\sum_{j \leq m}\left\|P y_{j}\right\|^{2} & =\sum_{j \leq m}\left\|P T x_{j}\right\|^{2}=\|P T\|_{\mathrm{HS}}^{2} \\
& =h-\|(i d-P) T\|_{\mathrm{HS}}^{2} \\
& \geq h-\|i d-P\|_{\mathrm{HS}}^{2}\|T\|^{2} \\
& =h-|\sigma|
\end{aligned}
$$

Using (3), we get

$$
\begin{aligned}
\sum_{j \in \tau \backslash \sigma}\left\|P y_{j}\right\|^{2} & =\sum_{j \in \tau}\left\|P y_{j}\right\|^{2} \\
& \geq \sum_{j \leq m}\left\|P y_{j}\right\|^{2}-\left|\tau^{c}\right| \cdot(1.1 \sqrt{h / m})^{2} \\
& \geq h-|\sigma|-1.21 \delta h \\
& \geq(1-2 \delta) h-|\sigma|=: h_{0}
\end{aligned}
$$

Note that h_{0} is comparable with h. Indeed, since $|\sigma|<(1-\varepsilon) h=(1-3 \delta) h$, we have

$$
\begin{equation*}
h_{0} \geq \delta h \tag{4}
\end{equation*}
$$

Now we can split the system $\left(y_{j}\right)_{j \in \tau \backslash \sigma}$ so that the resulting system $\left(y_{j}^{\prime}\right)_{j \leq M}$ satisfies

$$
\begin{equation*}
\left\|P y_{j}^{\prime}\right\| \geq 0.9 \sqrt{\frac{h_{0}}{M}} \quad \text { for all } j \leq M \tag{5}
\end{equation*}
$$

We are going to apply Kashin--Tzafriri's extraction result, Corollary 2.6, to the system $\left(y_{j}^{\prime}\right)_{j \leq M}$. This system is 1-Hilbertian and

$$
\sum_{j \leq M}\left\|y_{j}^{\prime}\right\|^{2} \leq \sum_{j \leq m}\left\|y_{j}\right\|^{2}=h
$$

With $\lambda=4 h / M$, we obtain a subset $\nu \subset\{1, \ldots, M\}$ of cardinality $|\nu| \geq h$ such that

$$
\begin{equation*}
\text { the system }\left(\sqrt{\frac{M}{h}} y_{j}^{\prime}\right)_{j \in \nu} \text { is } c \text {-Hilbertian } \tag{6}
\end{equation*}
$$

(notice that we could make M large enough to have $\lambda \leq 1$ as required in KashinTzafriri's Theorem). Therefore, the system $\left(\sqrt{M / h} P y_{j}^{\prime}\right)_{j \in \nu}$ is c-Hilbertian, too. Moreover, by (4) and (5)

$$
\left\|\sqrt{\frac{M}{h}} P y_{j}^{\prime}\right\| \geq 0.9 \sqrt{\frac{h_{0}}{h}} \geq 0.9 \sqrt{\delta} \quad \text { for all } j \in \nu
$$

At this point we use the original invertibility principle of J. Bourgain and L. Tzafriri [$\mathrm{B}-\mathrm{Tz}$], which can be reformulated in terms of sequences as follows.

- Let $\left(x_{j}\right)_{j \leq n}$ be a K-Hilbertian system in l_{2} and $\left\|x_{j}\right\| \geq \alpha$ for all j. Then there exists a subset $\rho \subset\{1, \ldots, n\}$ of cardinality $|\rho| \geq c(\alpha / K)^{2} n$ such that the system $\left(x_{j}\right)_{j \in \rho}$ is $\left(c_{1} / \alpha\right)$-Besselian.
Applying this to the system $\left(\sqrt{M / h} P y_{j}^{\prime}\right)_{j \in \nu}$, we obtain a subset $\rho^{\prime} \subset \nu$ of cardinality $\left|\rho^{\prime}\right| \geq c(0.9 \sqrt{\delta})^{2} h=c \delta h$ such that
the system $\left(\sqrt{M / h P} y_{j}^{\prime}\right)_{j \in \rho^{\prime}}$ is $c_{1} / \sqrt{\delta}$-Besselian.
Recall that each vector y_{j}^{\prime} with $j \in \rho^{\prime}$ is a multiple of some vector $y_{k(j)}$ with $k(j) \in$ $\tau \backslash \sigma$. By (7), these vectors $y_{k(j)}$ must be linearly independent. In particular, the correspondence $j \mapsto k(j)$ is one-to-one. Consider the subset $\rho \subset \tau \backslash \sigma$ consisting of the vectors

$$
\rho=\left\{k(j): j \in \rho^{\prime}\right\}
$$

Now put $\sigma_{1}=\sigma \cup \rho$.
We see that (b) is satisfied with $\alpha=1-c \delta$. That is,

$$
h-\left|\sigma_{\mathbf{1}}\right| \leq h-|\sigma|-c \delta h \leq \alpha(h-|\sigma|) .
$$

The underlying reason for (a) holding is that the system $\left(y_{j}\right)_{j \in \rho}$ is well equivalent to an orthogonal basis, and the spans of $\left(y_{j}\right)_{j \in \sigma}$ and $\left(y_{j}\right)_{j \in \rho}$ are well
separated. To check this formally, we first observe that (6) and (7) yield that there exist positive constants $\left(\lambda_{j}\right)_{j \in \rho}$ such that

- the system $\left(\lambda_{j} y_{j}\right)_{j \in \rho}$ is c-Hilbertian,
- the system $\left(\lambda_{j} P y_{j}\right)_{j \in \rho}$ is $c_{1} / \sqrt{\delta}$-Besselian.

Consider an arbitrary vector $y \in \operatorname{span}\left(y_{j}\right)_{j \in \rho}$. Writing it in the form $y=$ $\sum_{j \in \rho} a_{j} \lambda_{j} y_{j}$ we see that

$$
\begin{aligned}
\|P y\|=\left\|\sum_{j \in \rho} a_{j} \lambda_{j} P y_{j}\right\| & \geq \frac{\sqrt{\delta}}{c_{1}}\left(\sum_{j \in \rho}\left|a_{j}\right|^{2}\right)^{1 / 2} \\
& \geq \frac{\sqrt{\delta}}{c c_{1}}\left\|\sum_{j \in \rho} a_{j} \lambda_{j} y_{j}\right\|=\frac{\sqrt{\delta}}{c c_{1}}\|y\| .
\end{aligned}
$$

Hence for any $x \in \operatorname{span}\left(y_{j}\right)_{j \in \sigma}$

$$
\|x+y\| \geq \frac{\sqrt{\delta}}{c c_{1}}\|y\| .
$$

Therefore

$$
\begin{equation*}
\|x+y\| \geq\left(\sqrt{\delta} / c_{2}\right)\left(\|x\|^{2}+\|y\|^{2}\right)^{1 / 2} \tag{8}
\end{equation*}
$$

for an appropriate constant c_{2}. Now it is easy to complete the proof. Fix any scalars $\left(a_{j}\right)_{j \in \rho}$. Then defining $\lambda_{j}=1 /\left\|y_{j}\right\|$ for $j \in \sigma$ we have by (8)

$$
\begin{aligned}
\left(\sum_{j \in \sigma \cup \rho}\left|a_{j}\right|^{2}\right)^{1 / 2} & =\left(\sum_{j \in \sigma}\left|a_{j}\right|^{2}+\sum_{j \in \rho}\left|a_{j}\right|^{2}\right)^{1 / 2} \\
& \leq\left(K+c_{1} / \sqrt{\delta}\right)\left(\left\|\sum_{j \in \sigma} a_{j} \lambda_{j} y_{j}\right\|^{2}+\left\|\sum_{j \in \rho} a_{j} \lambda_{j} P y_{j}\right\|^{2}\right)^{1 / 2} \\
& \leq\left(K+c_{1} / \sqrt{\delta}\right)\left(\left\|\sum_{j \in \sigma} a_{j} \lambda_{j} y_{j}\right\|^{2}+\left\|\sum_{j \in \rho} a_{j} \lambda_{j} y_{j}\right\|^{2}\right)^{1 / 2} \\
& \leq\left(K+c_{1} / \sqrt{\delta}\right)\left(c_{2} / \sqrt{\delta}\right)\left\|\sum_{j \in \sigma \cup \rho} a_{j} \lambda_{j} y_{j}\right\|
\end{aligned}
$$

This shows that the system $\left(\lambda_{j} y_{j}\right)_{j \in \sigma_{1}}$ is $\left(K+c_{1} / \sqrt{\delta}\right)\left(c_{2} / \sqrt{\delta}\right)$-Besselian. Next,

$$
\begin{aligned}
\left\|\sum_{j \in \sigma_{1}} a_{j} \lambda_{j} y_{j}\right\| & \leq\left\|\sum_{j \in \sigma} a_{j} \lambda_{j} y_{j}\right\|+\left\|\sum_{j \in \rho} a_{j} \lambda_{j} y_{j}\right\| \\
& \leq K\left(\sum_{j \in \sigma}\left|a_{j}\right|^{2}\right)^{1 / 2}+c\left(\sum_{j \in \rho}\left|a_{j}\right|^{2}\right)^{1 / 2} \\
& \leq \sqrt{2}(K+c)\left(\sum_{j \in \sigma \cup \rho}\left|a_{j}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

so the system $\left(\lambda_{j} y_{j}\right)_{j \in \sigma_{1}}$ is $\sqrt{2}(K+c)$-Hilbertian as well. This establishes (a) of the Lemma and completes the proof of Theorem 3.1.

Now we rewrite Theorem 3.1 in a different form, which is useful in applications - especially for Dvoretzky-Rogers type lemmas.

Theorem 3.3: Let $i d=\sum x_{j} \otimes x_{j}$ be a decomposition of the identity on l_{2}^{n}, and T be a norm-one linear operator, $\|T\|_{\mathrm{HS}}^{2}=h$. Then for any integer $\kappa<h$ there exists a set of indices σ with $|\sigma|=\kappa$ such that
(i) the system $\left(T x_{j}\right)_{j \in \sigma}$ is $C(\kappa / h)$-equivalent to an orthogonal basis in l_{2}^{σ};
(ii) $\left\|T x_{j}\right\| \geq c \sqrt{(h-\kappa) / n}\left\|x_{j}\right\|$ for all $j \in \sigma$.

It is sometimes more useful to get a lower bound for $\left\langle x_{j}, T x_{j}\right\rangle$ rather than for $\left\|T x_{j}\right\|$.

Proposition 3.4: In Theorem 3.1, statement (ii) can be replaced by (ii') $\left|\left\langle x_{j}, T x_{j}\right\rangle\right| \geq c \varepsilon \frac{|\operatorname{trace} T|}{n}\left\|x_{j}\right\|^{2}$ for $j \in \sigma$.

Proof: Notice that $\sum\left\langle x_{j}, T x_{j}\right\rangle=$ trace T. Therefore, splitting our system $\left(x_{j}\right)_{j \leq m}$ we can assume, in addition to (2), that

$$
\begin{equation*}
\left|\left\langle x_{j}, T x_{j}\right\rangle\right| \geq 0.9 \frac{|\operatorname{trace} T|}{m} \quad \text { for all } j \tag{9}
\end{equation*}
$$

Let us examine the proof of Theorem 3.1. The set τ yielded the lower bound of $\left\|T x_{j}\right\|$. So, we replace τ by

$$
\tau^{\prime}=\left\{j \leq m:\left|\left\langle x_{j}, T x_{j}\right\rangle\right| \geq(\varepsilon / 5) \frac{|\operatorname{trace} T|}{n}\left\|x_{j}\right\|^{2}\right\}
$$

and all we have to check is that

$$
\begin{equation*}
\left|\tau^{\prime}\right| \geq(1-\varepsilon / 3) m \tag{10}
\end{equation*}
$$

By (9)

$$
\tau^{\prime} \supset \rho=\left\{j \leq m:\left\|x_{j}\right\|^{2} \leq(3 / \varepsilon) \frac{n}{m}\right\}
$$

Since $\sum_{j \leq m}\left\|x_{j}\right\|^{2}=n$, we have $|\rho| \geq(1-\varepsilon / 3) m$. This verifies (10) and allows us to finish the proof as in Theorem 3.1.

4. Principle of restricted invertibility

Our first application of these results comes from viewing Theorem 3.1 as an extension of the "principle of restricted invertibility", Theorem 2.4, proved by J. Bourgain and L. Tzafriri. Indeed, for the coordinate decomposition $i d=$ $\sum e_{j} \otimes e_{j}$ we get

Corollary 4.1: Let T be a norm-one linear operator on l_{2}. Then for any $\varepsilon>0$ there exists a subset $\sigma \subset\{1,2, \ldots\}$ of cardinality $|\sigma| \geq(1-\varepsilon)\|T\|_{\mathrm{HS}}^{2}$ such that the sequence $\left(T e_{j}\right)_{j \in \sigma}$ is $C(\varepsilon)$-equivalent to an orthogonal basis in Hilbert space.

This theorem generalizes the invertibility principle in two ways. First, instead of requiring that all norms $\left\|T e_{j}\right\|$ be large, we can assume only largeness of their average, which is the Hilbert-Schmidt norm of T. This makes the result independent of the dimension n of the space, $\|T\|_{\text {HS }}^{2}$ being a natural substitute for the dimension n.

The second improvement is that we obtain the subset σ with the largest possible cardinality. That is, Corollary 4.1 allows us to get $|\sigma| \geq(1-\varepsilon) n /\|T\|^{2}$ in the original invertibility principle for any $0<\varepsilon<1$ (while the Bourgain-Tzafriri's argument proves only the existence of such ε). In some applications one really needs almost full percentage. In particular, this is important in estimating the distance to the cube; see $[\mathrm{Sz}-\mathrm{T}]$.

Notice that the infinite-dimensional analogs of Theorem 3.1 and Corollary 4.1 hold, too.

Proposition 4.2: Let id $=\sum x_{j} \otimes x_{j}$ be a decomposition on a Hilbert space, and T be a linear operator which is not Hilbert-Schmidt. Then for any $\varepsilon>0$ there exists an infinite subset σ such that the sequence $\left(T x_{j}\right)_{j \in \sigma}$ is $(1+\varepsilon)$-equivalent to an orthogonal basis in Hilbert space.

Proof: The subset σ is constructed by a standard induction argument, modulo the following claim:

- For any finite dimensional subspace E of H,

$$
\sup _{j} \operatorname{dist}\left(T x_{j} /\left\|T x_{j}\right\|, E\right)=1
$$

Assume the contrary. Denoting the orthogonal projection in l_{2} onto E by P, we would have

$$
\underset{j}{\inf }\left\|P\left(T x_{j} /\left\|T x_{j}\right\|\right)\right\|=\delta>0
$$

that is

$$
\left\|P T x_{j}\right\| \geq \delta\left\|T x_{j}\right\| \quad \text { for all } j
$$

By Lemma 2.1, this yields

$$
\|P T\|_{\mathrm{HS}} \geq \delta\|T\|_{\mathrm{HS}}=\infty .
$$

But the operator $P T$ has finite rank, thus $\|P T\|_{\text {HS }}$ must be finite. This contradiction completes the proof.

An infinite dimensional analogue of Bourgain-Tzafriri's Theorem 2.4 says that, given a linear operator T in l_{2} with $\left\|T e_{j}\right\|=1, j=1,2, \ldots$, there exists a subset σ of $\{1,2, \ldots\}$ with upper density $\overline{\operatorname{dens}} \sigma \geq c /\|T\|^{2}$, such that the sequence $\left(T e_{j}\right)_{j \in \sigma}$ is c-Besselian [B-Tz].

As we lose the normalizing condition $\left\|T e_{j}\right\|=1$, nothing can be said in general about the density of σ. Indeed, let $\left(y_{k}\right)$ be the result of a splitting of a canonical basis in l_{2}, so that the sets σ_{j} from the definition of splitting satisfy $\left|\sigma_{j}\right| \rightarrow \infty$ as $j \rightarrow \infty$. There exist a norm-one operator T in l_{2} such that $\|T\|_{\mathrm{HS}}=\infty$ and $T e_{k}=y_{k}, k=1,2, \ldots$. However, each term y_{k} in the sequence $\left(y_{k}\right)$ is repeated $\left|\sigma_{j}\right|$ times. Therefore, the upper density of any subset σ satisfying the conclusion of Corollary 4.1 must be zero.

Similarly, in some cases σ must be a sparse set with respect to the dimension. More precisely, in general the sequence $\left(T x_{j}\right)_{j \in \sigma}$ spans a subspace of infinite codimension. This follows easily from a result of P. Casazza and O. Christensen discussed in $\S 7$.

5. Contact points and Dvoretzky-Rogers lemmas

Here we apply Theorem 3.1 to John's decompositions. Let $X=\left(\mathbf{R}^{n},\|\cdot\|\right)$ be a Banach space. The ellipsoid of maximal volume contained in $B(X)$ is unique and is called the maximal volume ellipsoid of X. Suppose the Euclidean structure on X is chosen so that the maximal volume ellipsoid coincides with the unit Euclidean ball D_{n}. Let us write a John's decomposition on X :

$$
\begin{equation*}
i d=\sum_{j=1}^{m} x_{j} \otimes x_{j} \tag{11}
\end{equation*}
$$

where $x_{j} /\left\|x_{j}\right\|_{X}$ are some of the contact points of $B(X)$ with the John's ellipsoid (see [T-J], $\S 15.3$). John's decompositions can be considered as a subclass in the class of all decompositions of type $i d=\sum x_{j} \otimes x_{j}$. Conversely, each decomposition (11) is a John's decomposition for a suitable Banach space $X=\left(\mathbf{R}^{n},\|\cdot\|\right)$, whose maximal volume ellipsoid is the unit Euclidean ball D_{n}. Actually, the norm on X is given by

$$
\|x\|_{X}=\max _{j \leq m}\left|\left\langle x, \frac{x_{j}}{\left\|x_{j}\right\|_{X}}\right\rangle\right| .
$$

This result goes back to F. John [J], although other proofs were found recently by K. Ball [B2] and A. Giannopoulos and V. Milman [G-M]. Therefore, working with contact points instead of decompositions $i d=\sum x_{j} \otimes x_{j}$ we do not lose generality.

Restating Theorem 3.1 in this light, we have
Corollary 5.1: Let X be an n-dimensional Banach space whose maximal volume ellipsoid is the unit Euclidean ball. Let T be a linear operator with $\|T\|_{2 \rightarrow 2} \leq 1$. Then for any $\varepsilon>0$ there are contact points x_{1}, \ldots, x_{k} with $k \geq(1-\varepsilon)\|T\|_{\text {HS }}^{2}$ such that the system $\left(T x_{j}\right)_{j \leq k}$ is $C(\varepsilon)$-equivalent in l_{2}-norm to the canonical basis of l_{2}^{k}.
Moreover, the norms $\left\|T x_{j}\right\|_{2}$ are well bounded below:

$$
\left\|T x_{j}\right\| \geq C_{1}(\varepsilon) \frac{\|T\|_{\mathrm{HS}}}{\sqrt{n}} \quad \text { for all } j \leq k
$$

Since T is an orthogonal projection, this result leads us to a new DvoretzkyRogers type lemma, which we will discuss now. Suppose X is an n-dimensional Banach space whose John's ellipsoid is the unit Euclidean ball. Let Z be a k dimensional subspace of X. The Dvoretzky-Rogers Lemma states that, given a positive integer $\kappa<k$, there is an orthonormal system $\left(z_{j}\right)_{j \leq \kappa}$ in Z such that

$$
\left\|z_{j}\right\|_{X} \geq \sqrt{\frac{k-\kappa+1}{n}} \quad \text { for all } j \leq \kappa
$$

Let us sketch the proof. By induction, it is enough to find one vector z in Z such that $\|z\|_{2}=1$ and $\|z\|_{X} \geq \sqrt{k / n}$ (then substitute Z by $Z \ominus \operatorname{span}(z)$ and repeat the argument). By duality, this is equivalent to finding a functional $x^{*} \in B\left(X^{*}\right)$ with $\left\|P x^{*}\right\|_{2} \geq \sqrt{k / n}$, where P is the orthogonal projection onto Z. Let $i d_{X^{*}}=\sum \lambda_{j} x_{j}^{*} \otimes x_{j}^{*}$ be a John's decomposition in X^{*}, that is $\sum \lambda_{j}=n$ and x_{j}^{*} are contact points of $B\left(X^{*}\right)$. Then $P=\sum \lambda_{j} P x_{j}^{*} \otimes P x_{j}^{*}$. Taking the trace, we get $k=\sum \lambda_{j}\left\|P x_{j}^{*}\right\|_{2}^{2}$. So, there is a j such that $\left\|P x_{j}^{*}\right\|_{2}^{2} \geq \sqrt{k / n}$. This completes the proof.

This argument, as well as other known proofs of the Dvoretzky-Rogers Lemma, only establish the existence of the vectors z_{j}. In contrast to that, the argument based on Theorem 3.1 provides information about their position.

Theorem 5.2: Let X be an n-dimensional Banach space whose maximal volume ellipsoid is the unit Euclidean ball. Let P be an orthogonal projection, $\operatorname{rank} P=$ k. Then for any positive integer $\kappa<k$ there are contact points $x_{1}, \ldots, x_{\kappa}$ such that setting $z_{j}=P x_{j} /\left\|P x_{j}\right\|_{2}$ we have
(i) the system $\left(z_{j}\right)$ is $C(\kappa / k)$-equivalent in l_{2}-norm to the canonical basis of l_{2}^{κ};
(ii) $\left\|z_{j}\right\|_{X} \geq c \sqrt{(k-\kappa) / n}$ for all j.

Proof: We note that $\|P\|_{\mathrm{HS}}=\sqrt{k}$ and apply Theorem 3.3 to a John's decomposition on X. This gives us contact points $x_{1}, \ldots, x_{\kappa}$ such that (i) is satisfied, and

$$
\left\|P x_{j}\right\|_{2} \geq c \sqrt{\frac{k-\kappa}{n}} \quad \text { for every } j \leq m
$$

It remains to note that for every $j \leq m$

$$
\left\|P x_{j}\right\|_{X} \geq \frac{\left\langle P x_{j}, x_{j}\right\rangle}{\left\|x_{j}\right\|_{X^{*}}}=\left\langle P x_{j}, x_{j}\right\rangle=\left\|P x_{j}\right\|_{2}^{2}
$$

Hence

$$
\left\|z_{j}\right\|_{X} \geq\left\|P x_{j}\right\|_{2} \quad \text { for every } j \leq m
$$

This completes the proof.
A natural question is whether Theorem 5.2 can be extended to arbitrary operators $T,\|T\|_{2 \rightarrow 2}=1$, with k substituted for $\|T\|_{\mathrm{HS}}^{2}$. The answer is negative. Indeed, let $n=2^{m}$ for a positive integer m, and denote by W_{m} the Walsh $n \times n$ matrix. Consider the operator $T=n^{-1 / 2} W_{m}$ acting in the space $X=l_{\infty}^{n}$. All contact points $\left(x_{j}\right)$ of X are simply the coordinate vectors. However, denoting $z_{j}=T x_{j} /\left\|T x_{j}\right\|_{2}$ we have for any j

$$
\left\|z_{j}\right\|_{X}=\left\|T x_{j}\right\|_{X} /\left\|T x_{j}\right\|_{2}=n^{-1 / 2}
$$

This shows that (ii) in Theorem 5.2 fails for the operator T.
Still, a lower bound for the $\|\cdot\|_{X}$-norm exists and is equivalent to $(1 / n)|\operatorname{trace} T|$.
Proposition 5.3: Let X be an n-dimensional Banach space whose maximal volume ellipsoid is the unit Euclidean ball. Let T be an operator with $\|T\|_{2 \rightarrow 2} \leq$ 1. Then for any $\varepsilon>0$ there are $k>(1-\varepsilon) n$ contact points $x_{1}, \ldots, x_{\kappa}$ such that
(i) the system $\left(T x_{j}\right)$ is $C(\varepsilon)$-equivalent in l_{2}-norm to the canonical basis of l_{2}^{κ};
(ii) $\left\|T x_{j}\right\|_{X} \geq c \varepsilon|\operatorname{trace} T| / n$.

Proof: The argument is similar to that of Theorem 5.2, using Proposition 3.4 instead of Theorem 3.1.

The estimate in (ii) is essentially sharp. Indeed, for any positive integers $k \leq n$ one can construct an orthogonal projection P in \mathbf{R}^{n} with $\operatorname{rank} P=k$, and such that

$$
\left\|P e_{j}\right\|_{2}=\sqrt{k / n} \quad \text { for all } j \leq n
$$

Notice that $\|P\|_{1 \rightarrow 2}=\sqrt{k / n}$, so that $\|P\|_{2 \rightarrow \infty}=\sqrt{k / n}$. Thus $\|P\|_{1 \rightarrow \infty} \leq k / n$. Now consider the space $X=l_{\infty}^{n}$ and the operator $T=P$ on it. The only contact points $\left(x_{j}\right)$ of X are the coordinate vectors $\left(e_{j}\right)$. Then for all j

$$
\left\|T x_{j}\right\|_{X}=\left\|P e_{j}\right\|_{\infty} \leq k / n=|\operatorname{trace} T| / n
$$

This shows that the lower bound in (ii) is essentially sharp.
Finally, there is a class of operators for which Theorem 5.2 itself can be extended: selfadjoint operators. So, the desired general result for arbitrary operators can be obtained if we allow a suitable rotation of $\left(z_{j}\right)$. There is always a unitary operator (coming from the polar decomposition of T) which sends the vectors $\left(z_{j}\right)$ to vectors with good $\|\cdot\|_{X}$-norm.

Theorem 5.4: Let X be an n-dimensional Banach space whose maximal volume ellipsoid is the unit Euclidean ball. Let T be an operator with $\|T\|_{2 \rightarrow 2} \leq 1$, and put $\|T\|_{\mathrm{HS}}^{2}=h$. Then for any positive integer $\kappa<h$ there are contact points $x_{1}, \ldots, x_{\kappa}$ such that setting $z_{j}=|T| x_{j} /\left\|T x_{j}\right\|_{2}$ we have
(i) the system $\left(z_{j}\right)$ is $C(\kappa / h)$-equivalent in l_{2}-norm to the canonical basis of l_{2}^{κ};
(ii) $\left\|z_{j}\right\|_{X} \geq c \sqrt{(h-\kappa) / n}$ for all j.

Proof: Let $T=U|T|$ be the polar decomposition of T, where $|T|=\left(T^{*} T\right)^{1 / 2}$ is a positive selfadjoint operator and U is a partial isometry on l_{2}^{n}. Apply Theorem 3.3 to the operator $|T|$ and a John's decomposition on X. As before, this gives us contact points $x_{1}, \ldots, x_{\kappa}$ such that (i) is satisfied, and

$$
\left\||T| x_{j}\right\|_{2} \geq c \sqrt{\frac{h-\kappa}{n}} \quad \text { for every } j \leq m
$$

Diagonalizing $|T|$ we see that $\left\||T|^{1 / 2}\right\|_{2 \rightarrow 2}=\|T\|_{2 \rightarrow 2}^{1 / 2} \leq 1$. Therefore we obtain for every $j \leq m$

$$
\begin{aligned}
\left\||T| x_{j}\right\|_{X} & \geq \frac{\langle | T\left|x_{j}, x_{j}\right\rangle}{\left\|x_{j}\right\|_{X^{*}}}=\left\||T|^{1 / 2} x_{j}\right\|_{2}^{2} \\
& \geq\left\||T| x_{j}\right\|_{2}^{2}=\left\|T x_{j}\right\|_{2}^{2}
\end{aligned}
$$

Hence

$$
\left\|z_{j}\right\|_{X} \geq\left\|T x_{j}\right\|_{2} \quad \text { for every } j \leq m
$$

This completes the proof.
Now we turn to a particular case when T is the identity operator. We clearly have

Corollary 5.5: Let X be an n-dimensional Banach space whose maximal volume ellipsoid is the unit Euclidean ball. Then for any $\varepsilon>0$ there is a set of $k>(1-\varepsilon) n$ contact points which is $C(\varepsilon)$-equivalent to the canonical vector basis of l_{2}^{k}.
This result is related to another variant of the classical Dvoretzky-Rogers Lemma, which establishes the existence of contact points whose distance to a certain orthonormal basis is controlled ([T-J], Theorem 15.7). More precisely, there exist contact points x_{1}, \ldots, x_{n} and an orthonormal basis h_{1}, \ldots, h_{n} such that

$$
\left\|x_{j}-h_{j}\right\|_{2} \leq 2\left(1-\sqrt{\frac{n-i+1}{n}}\right) \quad \text { for } i \leq n
$$

However, this estimate is too crude to assure that a fixed proportion of the system $\left(x_{j}\right)_{j \leq n}$ is equivalent in l_{2}-norm to an orthonormal system. Such an equivalence can be established only for $c \sqrt{n}$ contact points.

Using this argument, it is proved that for $k=[\sqrt{n} / 4]$ there exist orthonormal vectors x_{1}, \ldots, x_{k} in $\left(E,\|\cdot\|_{2}\right)$ on which all three norms $\|\cdot\|,\|\cdot\|_{2}$, and $\|\cdot\|_{*}$ differ by the factor 2 at most ([T-J], p. 127). It has been an open problem to make k proportional to n. By Corollary 5.5 we actually have $k \geq(1-\varepsilon) n$ and make all three norms $\|\cdot\|,\|\cdot\|_{2}$, and $\|\cdot\|_{*}$ equal to 1 on our sequence (giving up, however, exact orthogonality).

By duality, Corollary 5.5 holds also for the ellipsoid of minimal volume containing $B(X)$ instead of the maximal volume ellipsoid. This variant of Corollary 5.5 yields also the proportional Dvoretzky-Rogers factorization result from [B-Sz]. Namely, given an n-dimensional Banach space X and $\varepsilon>0$, there is a $k>(1-\varepsilon) n$ such that the formal identity id: $l_{2}^{k} \rightarrow l_{\infty}^{k}$ can be written as $i d=\alpha \cdot \beta$ for some $\beta: l_{2}^{k} \rightarrow X, \alpha: X \rightarrow l_{\infty}^{k}$, with $\|\alpha\|\|\beta\| \leq C(\varepsilon)$. This can be obtained by duality from the factorization of the identity on the contact points, id: $l_{1}^{k} \rightarrow X \rightarrow l_{2}^{k}$, guaranteed by Corollary 5.5.

A few comments about the dependence of $C(\varepsilon)$ in Theorem 3.1 on ε. It is a challenge to find the correct asymptotics. Indeed, by an argument of S. Szarek and M. Talagrand [Sz-T] the proportional Dvoretzky-Rogers factorization above yields a non-trivial estimate on the distance from X to l_{∞}^{n} - a well known and hard problem in the local theory of normed spaces. The factorization constant $C(\varepsilon)$ lies at the heart of the computation of this distance.

The proof of Theorem 3.1 guarantees that $C(\varepsilon) \leq \varepsilon^{c \log \varepsilon}$. However, for the Dvoretzky-Rogers factorization constant $C_{\mathrm{DR}}(\varepsilon)$ much better bounds are known $[\mathrm{G}]: C_{\mathrm{DR}}(\varepsilon) \leq c \varepsilon^{-1}$. Since $C_{\mathrm{DR}}(\varepsilon) \leq C(\varepsilon)$ and $C_{\mathrm{DR}}(\varepsilon) \rightarrow \infty$ as $\varepsilon \rightarrow 0$ (see [Sz-T]), we necessarily have $C(\varepsilon) \rightarrow \infty$ as $\varepsilon \rightarrow 0$.

However, $C(\varepsilon) \rightarrow 1$ as $\varepsilon \rightarrow 1$. This follows directly from
Lemma 5.6: Suppose a normalized sequence $\left(x_{j}\right)_{j \leq n}$ in Hilbert space is M Hilbertian, and $\varepsilon>0$. Then there is a subset $\sigma \subset\{1, \ldots, n\}$ of cardinality $|\sigma| \geq C(M, \varepsilon) n$ such that the system $\left(x_{j}\right)_{j \in \sigma}$ is $(1+\varepsilon)$-equivalent to the canonical basis of l_{2}^{σ}.

Proof: We can assume that the given Hilbert space is l_{2}^{n}. Define a linear operator $T: l_{2}^{n} \rightarrow l_{2}^{n}$ by

$$
T e_{j}=x_{j} \quad \text { for } j \leq n
$$

Let $A=T^{*} T-i d$. Then the matrix of A has zeros on the diagonal and $\|A\| \leq$ $M^{2}+1$. Now, by a theorem of J. Bourgain and L. Tzafriri ($[\mathrm{B}-\mathrm{Tz}]$ Theorem 1.6, see also $[\mathrm{K}-\mathrm{Tz}])$ there is a subset $\sigma \subset\{1, \ldots, n\}$ of cardinality $|\sigma| \geq C(M, \varepsilon)$ such that

$$
\left\|P_{\sigma} A P_{\sigma}\right\|<\varepsilon
$$

This shows that for any sequence of scalars $\left(a_{j}\right)_{j \leq n}$

$$
\left|\left\langle\left(T^{*} T-i d\right) \sum_{j \in \sigma} a_{j} e_{j}, \sum_{j \in \sigma} a_{j} e_{j}\right\rangle\right|<\varepsilon
$$

hence

$$
\left.\left|\left\langle\sum_{j \in \sigma} a_{j} x_{j}, \sum_{j \in \sigma} a_{j} x_{j}\right\rangle-\sum_{j \in s}\right| a_{j}\right|^{2} \mid<\varepsilon
$$

This clearly finishes the proof.

6. Embeddings of the cube

In this section we apply Theorem 3.1 to the study of embeddings of l_{∞}^{k} into finite dimensional spaces. N. Alon and V. Milman [A-M] proved that if a given normalized sequence $\left(x_{j}\right)$ in a Banach space X has small Rademacher average $\mathbf{E}\left\|\sum \varepsilon_{j} x_{j}\right\|_{X}$, then it must contain a large subsequence well equivalent to the canonical basis of l_{∞}^{k}. Later on, M. Talagrand [T] improved this result and simplified the argument.

Theorem 6.1 (M. Talagrand): Suppose we are given vectors $\left(x_{j}\right)_{j \leq n}$ in a Banach space X with $\left\|x_{j}\right\|_{X} \geq 1$. Set

$$
M=\mathbf{E}\left\|\sum \varepsilon_{j} x_{j}\right\|_{X} \quad \text { and } \quad \omega=\sup \left\{\sum\left|x^{*}\left(x_{j}\right)\right|: x^{*} \in B\left(X^{*}\right)\right\}
$$

Then there exists a subset $\sigma \subset\{1, \ldots, n\}$ of cardinality $|\sigma| \geq c n / \omega$ such that

$$
\frac{1}{2} \max _{j \in \sigma}\left|a_{j}\right| \leq\left\|\sum_{j \in \sigma} a_{j} x_{j}\right\|_{X} \leq 4 M \max _{j \in \sigma}\left|a_{j}\right|
$$

for any choice of scalars $\left(a_{j}\right)$.
A few years earlier, M. Rudelson [R1] proved a "Gaussian" version of this theorem. Recall that the ℓ-norm of an operator $u: l_{2}^{n} \rightarrow X$ is defined as

$$
\ell(u)^{2}=\int\|u x\|_{X}^{2} d \gamma_{n}(x)
$$

where γ_{n} is the canonical Gaussian measure on \mathbf{R}^{n}. We will sometimes write $\ell(X)$ instead of $\ell\left(i d_{X}\right)$.

Suppose X is an n-dimensional Banach space whose maximal volume ellipsoid is the unit Euclidean ball. Let P be an orthogonal projection in X and set $k=\operatorname{rank} P, a=k / n$. The result of M. Rudelson states that there is a subspace $Z \subset P(X)$ of dimension $m \geq C_{1}(a) \sqrt{n} / \ell(P)$ which is $C_{2}(a) \ell(P)$-isomorphic to l_{∞}^{m} 。

We will remove $\ell(P)$ from the estimate on the dimension. Further, it will be shown that Z is canonically spanned by the projections of some contact points of X. In particular, the norm on Z is well equivalent to $\max _{j \leq m}\left|\left\langle z, x_{j}\right\rangle\right|$, where x_{j} are contact points. This yields automatically that Z is well complemented by the orthogonal projection. Moreover, the dependence on a will be improved.

Theorem 6.2: Let X be an n-dimensional Banach space whose maximal volume ellipsoid is $B\left(l_{2}^{n}\right)$. Let P be an orthogonal projection, $\operatorname{rank} P=k$. Then there are contact points $\left(x_{j}\right)_{j \leq m}$ with $m \geq c_{1} k / \sqrt{n}$ such that

$$
\max _{j \leq m}\left|\left\langle x, x_{j}\right\rangle\right| \leq\|x\|_{X} \leq c \sqrt{\frac{n}{k}} \ell(P) \max _{j \leq m}\left|\left\langle x, x_{j}\right\rangle\right|
$$

for every x in $Z=\operatorname{span}\left(P x_{j}\right)_{j \leq m}$.
The particular case $k=n$ is also interesting. We get a sequence of $m \geq c_{1} \sqrt{n}$ contact points which is $c \ell(X)$-equivalent to the canonical basis of l_{∞}^{m}. Let us prove this latter fact separately. By Corollary 5.5 , there exists a set of contact points $\left(x_{j}\right)_{j \leq m^{\prime}}, m^{\prime} \geq n / 2$, which is c-equivalent in l_{2}-norm to the canonical basis of $l_{2}^{m^{\prime}}$. Let $\left(g_{j}\right)$ be independent standard Gaussian random variables. To apply Talagrand's Theorem 6.1, we check

$$
M=\mathbf{E}\left\|\sum \varepsilon_{j} x_{j}\right\|_{X} \leq c \mathbf{E}\left\|\sum g_{j} x_{j}\right\|_{X} \leq c c_{2} \mathbf{E}\left\|\sum g_{j} e_{j}\right\|_{X}
$$

where we have used the ideal property of the ℓ-norm (see Lemma 6.4 below). Further, for any finite set of scalars $\left(a_{j}\right)$

$$
\begin{aligned}
\left\|\sum a_{j} x_{j}\right\|_{X} & \leq\left\|\sum a_{j} x_{j}\right\|_{2} \\
& \leq c_{2}\left(\sum\left|a_{j}\right|^{2}\right)^{1 / 2} \leq c_{2} \sqrt{n} \max _{j}\left|a_{j}\right|
\end{aligned}
$$

Thus

$$
\omega=\sup \left\{\sum\left|x^{*}\left(x_{j}\right)\right|: x^{*} \in B\left(X^{*}\right)\right\} \leq c_{2} \sqrt{n}
$$

Now Talagrand's Theorem 6.1 finishes the proof.
The proof of Theorem 6.2 is longer than the argument for the case $k=n$, but the main idea is the same, i.e. to combine the results of $\S 5$ with Talagrand's theorem. First, we need to know what vectors canonically span a large subspace Z well isomorphic to l_{∞}^{m}. They happen to be multiples of the projection of some contact points $\left(x_{j}\right)_{j \leq m}$. More precisely, we have

Proposition 6.3: Under the assumptions of Theorem 6.2, the system

$$
\left(\frac{P x_{j}}{\left\|P x_{j}\right\|_{2}}\right)_{j \leq m}
$$

is $c \sqrt{n / k} \ell(P)$-equivalent to the canonical basis of l_{∞}^{m}.
To prove this, let $\left(x_{j}\right)_{j \leq k^{\prime}}, k^{\prime} \geq k / 2$, be the contact points provided by Theorem 5.2. Put

$$
z_{j}=\alpha \sqrt{\frac{n}{k}} \frac{P x_{j}}{\left\|P x_{j}\right\|_{2}}
$$

for an appropriate $\alpha>0$ and all j. Then
(i) the system $\left(z_{j}\right)_{j \leq k^{\prime}}$ is $(c \sqrt{n / k})$-equivalent in l_{2}-norm to the canonical basis of $l_{2}^{k^{\prime}}$;
(ii) $\left\|z_{j}\right\| \geq 1$ for all j.

For future reference we note that the proof of Theorem 5.2 gives also

$$
\begin{equation*}
\left\|P x_{j}\right\|_{2} \geq c_{1} \sqrt{n / k} \tag{12}
\end{equation*}
$$

To apply Talagrand's Theorem 6.1 to the system $\left(z_{j}\right)_{j \leq k^{\prime}}$, recall the ideal property of the ℓ-norm (cf. [T-J], §12)

Lemma 6.4: For any two linear operators $A: l_{2}^{n} \rightarrow X$ and $B: l_{2}^{n} \rightarrow l_{2}^{n}$

$$
\ell(A B) \leq\|B\| \ell(A)
$$

Let $\left(h_{j}\right)_{j \leq k^{\prime}}$ be an orthonormal basis in $\operatorname{span}\left(z_{j}\right)$. Now we bound

$$
\begin{aligned}
M & =\mathbf{E}\left\|\sum \varepsilon_{j} z_{j}\right\|_{X} \leq c \mathbf{E}\left\|\sum g_{j} z_{j}\right\|_{X} \\
& \leq c \sqrt{\frac{n}{k}} \mathbf{E}\left\|\sum g_{j} h_{j}\right\|_{X} \quad \text { by (i) and Lemma } 6.4 \\
& =c \sqrt{\frac{n}{k}} \ell(P(X))=c \sqrt{\frac{n}{k}} \ell(P)
\end{aligned}
$$

Noting (ii) above, we apply Talagrand's Theorem 6.1. This finishes the proof.

To obtain Theorem 6.2, Talagrand's Theorem will be used more delicately. Its proof in [T] gives the following additional property.

Lemma 6.5: In the setting of Theorem 6.2, suppose $\left(x_{j}^{*}\right)_{j \leq n}$ are functionals in X^{*} such that

$$
x_{j}^{*}\left(x_{j}\right) \geq 1 \quad \text { and } \quad\left\|x_{j}^{*}\right\|_{X^{*}}=1 \quad \text { for all } j \leq n
$$

Then the subset σ can be found so that

$$
\sum_{j \in \sigma \backslash\{i\}}\left|x_{i}^{*}\left(x_{j}\right)\right| \leq 1 / 2 \quad \text { for all } i \in \sigma
$$

Let us turn again to the proof of Proposition 6.3. We applied Talagrand's Theorem to the system $\left(x_{j}\right)_{j \leq k^{\prime}}$. Note that by (12)

$$
\begin{aligned}
\left\langle x_{j}, z_{j}\right\rangle & =\alpha \sqrt{\frac{n}{k}} \frac{\left\langle x_{j}, P x_{j}\right\rangle}{\left\|P x_{j}\right\|_{2}} \\
& =\alpha \sqrt{\frac{n}{k}}\left\|P x_{j}\right\|_{2} \geq 1 \quad \text { for all } j
\end{aligned}
$$

Therefore we obtain a subset $\sigma \subset\left\{1, \ldots, k^{\prime}\right\}$ of cardinality $|\sigma| \geq c_{1} k / \sqrt{n}$ such that

- the system $\left(z_{j}\right)_{j \in \sigma}$ is $c \sqrt{n / k} \ell(P)$-equivalent to the canonical basis of l_{∞}^{σ};
- $\sum_{j \in \sigma \backslash\{i\}}\left|\left\langle x_{i}, z_{j}\right\rangle\right| \leq 1 / 2$ for all $j \in \sigma$.

Now fix an $x=\sum_{j \in \sigma} a_{j} z_{j}$, and let $i \in \sigma$ be such that $\left|a_{i}\right|=\max _{j \in \sigma}\left|a_{j}\right|$. Then

$$
\begin{aligned}
\max _{j \in \sigma}\left|\left\langle x, x_{j}\right\rangle\right| & \geq\left|\left\langle x_{i}, x\right\rangle\right|=\left|\sum_{j \in \sigma} a_{j}\left\langle x_{i}, z_{j}\right\rangle\right| \\
& \geq\left|a_{j}\right|\left(\left|\left\langle x_{i}, z_{i}\right\rangle\right|-\sum_{j \in \sigma \backslash\{i\}}\left|\left\langle x_{i}, z_{j}\right\rangle\right|\right) \\
& \geq \frac{1}{2}\left|a_{i}\right|=\frac{1}{2} \max _{j \in \sigma}\left|a_{j}\right| \\
& \geq\left(c \sqrt{\frac{n}{k}} \ell(P)\right)^{-1}\|x\|_{X} .
\end{aligned}
$$

This proves the second inequality in Theorem 6.2, while the first one is obvious.

Theorem 6.2 also yields that Z is well complemented by the orthogonal projection.

Proposition 6.6: In the situation of Theorem 6.2, let P_{Z} be the orthogonal projection in X onto Z. Then

$$
\left\|P_{Z}\right\| \leq c \sqrt{\frac{n}{k}} \ell(P)
$$

Proof: For any $x \in X$

$$
\begin{aligned}
\left\|P_{Z} x\right\|_{X} & \leq c \sqrt{\frac{n}{k}} \ell(P) \max _{j \leq m}\left|\left\langle P_{Z} x, x_{j}\right\rangle\right| \\
& =c \sqrt{\frac{n}{k}} \ell(P) \max _{j \leq m}\left|\left\langle x, x_{j}\right\rangle\right| \\
& \leq c \sqrt{\frac{n}{k}} \ell(P)\|x\|_{X} .
\end{aligned}
$$

This completes the proof.
Another consequence of Theorem 6.2 is a refined isomorphic characterization of spaces with large volume ratio. Recall that the volume ratio of an n-dimensional Banach space X is defined as

$$
\operatorname{vr}(X)=\min \left(\frac{\operatorname{Vol}\left(B_{X}\right)}{\operatorname{Vol}(E)}\right)^{1 / n}
$$

over all ellipsoids E contained in B_{X}, see $[\mathrm{L}-\mathrm{M}],[\mathrm{P}]$. The maximal value of $\operatorname{vr}(X)$ among all n-dimensional spaces is of order \sqrt{n}, and the only space with maximal volume ratio is l_{∞}^{n} (K. Ball [B1]). Later on, M. Rudelson proved in [R1] that
if $\operatorname{vr}(X)$ is proportional to the maximal volume ratio, then X has a subspace isomorphic to l_{∞}^{m} with the isomorphism constant of order $\log n$, and such that $m \sim \sqrt{n} / \log n$. Using Theorem 6.2 in M. Rudelson's proof of this result removes the parasitic factor $\log n$ from the estimate on the dimension.

Theorem 6.7: Let $a>0$, and X be an n-dimensional Banach space. If $\operatorname{vr}(X) \geq$ $a \sqrt{n}$ then there exists a subspace Z of X of dimension $m \geq C_{1}(a) \sqrt{n}$ which is $C_{2}(a) \log n$-isomorphic to l_{∞}^{m}.

7. Frames

The notion of frame goes back to the work of R. Duffin and A. Schaeffer on nonharmonic Fourier series [D-S]. A sequence (x_{j}) in a Hilbert space H is called a frame if there exist positive numbers A and B such that

$$
A\|x\|^{2} \leq \sum_{j}\left|\left\langle x, x_{j}\right\rangle\right|^{2} \leq B\|x\|^{2} \quad \text { for } x \in H .
$$

The number $(B / A)^{1 / 2}$ is called a constant of the frame. We call $\left(x_{j}\right)$ a tight frame if $A=B=1$. For an introduction to the theory of frames, its relation to wavelets and signal processing, see [B-W]. The geometric structure of frames has been studied extensively in recent years; see [Ho], [A], [C-C1], [C-C2], [C2], [V].

It is known that finite dimensional frames are essentially the same object as John's decompositions. In the isomorphic theory, it is sufficient to work only with tight frames, because every frame with constant M is M-equivalent to a tight frame (cf. e.g. [Ho]). Further, one has the following equivalence between frames and John's decompositions:

$$
\left(x_{j}\right) \text { is a tight frame in } H \Longleftrightarrow i d_{H}=\sum_{j} x_{j} \otimes x_{j}
$$

This observation allows us to interpret the results of $\S 3$ and $\S 4$ as statements about frames. Theorem 3.1 yields:

Corollary 7.1: Let $\left(x_{j}\right)$ be a tight frame in Hilbert space H, and T be a normone linear operator in H. Then for any $\varepsilon>0$ there exists a subset of indices σ of cardinality $|\sigma| \geq(1-\varepsilon)\|T\|_{\text {HS }}^{2}$ such that the system $\left(T x_{j}\right)_{j \in \sigma}$ is $C(\varepsilon)$-equivalent to an orthogonal basis in Hilbert space.

For operators T which are not Hilbert-Schmidt this means that the subset σ is infinite.

Clearly, Corollary 7.1 itself generalizes the invertibility principle of J. Bourgain and L. Tzafriri. When applied to the identity operator, it yields that every tight frame in l_{2}^{n} has a subset of length $(1-\varepsilon) n$ which is $C(\varepsilon)$-equivalent to an orthogonal basis in Hilbert space. This result was proved in [V] as a generalization of P. Casazza's theorem [C2].

Notice that one necessarily has $C(\varepsilon) \rightarrow \infty$ as $\varepsilon \rightarrow 1$, as explained in $\S 5$. An infinite dimensional analog of this phenomenon holds, too. A frame may not in general contain a complete subsequence equivalent to an orthogonal basis. The counterexample was found by P. Casazza and O. Christensen in [C-C2]; see also [V].

References

[A] A. Aldroubi, Portraits of frames, Proceedings of the American Mathematical Society 123 (1995), 1661-1668.
[A-M] N. Alon and V. D. Milman, Embedding of ℓ_{∞}^{k} in finite dimensional Banach spaces, Israel Journal of Mathematics 45 (1983), 265-280.
[B1] K. Ball, Volumes of sections of cubes and related problems, GAFA Seminar 87-88, Lecture Notes in Mathematics 1376, Springer-Verlag, Berlin, 1989, pp. 251-263.
[B2] K. Ball, Ellipsoids of maximal volume in convex bodies, Geometriae Dedicata 41 (1992), 241-250.
[B-Sz] J. Bourgain and S. Szarek, The Banach-Mazur distance to cube and the Dvoretzky-Rogers factorization, Israel Journal of Mathematics 62 (1988), 169-180.
[B-Tz] J. Bourgain and L. Tzafriri, Invertibility of "large" submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel Journal of Mathematics 57 (1987), 137-224.
[B-W] J. Benedetto and D. Walnut, Gabor frames for L^{2} and related spaces, in Wavelets: Mathematics and Applications (J. Benedetto and M. Frazier, eds.), CRC Press, Boca Raton, 1994.
[C2] P. G. Casazza, Local theory of frames and Schauder bases for Hilbert space, Illinois Journal of Mathematics, to appear.
[C-C1] P. G. Casazza and O. Christensen, Hilbert space frames containing a Riesz basis and Banach spaces which have no subspace isomorphic to c_{0}, Journal of Mathematical Analysis and Applications 202 (1996), 940-950.
[C-C2] P. G. Casazza and O. Christensen, Frames containing a Riesz basis and preservation of this property under perturbations, SIAM Journal on Mathematical Analysis 29 (1998), 266-278.
[D-S] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Transactions of the American Mathematical Society 72 (1952), 341-366.
[G] A. Giannopoulos, A proportional Dvoretzky-Rogers factorization result, Proceedings of the American Mathematical Society 124 (1996), 233-241.
[G-M] A. Giannopoulos and V. Milman, Extremal problems and isotropic positions of convex bodies, Preprint.
[G-P-T] A. Giannopoulos, I. Perissinaki and A. Tsolomitis, John's theorem for an arbitrary pair of convex bodies, Preprint.
[Ho] J. R. Holub, Pre-frame operators, Besselian frames, and near-Riesz bases in Hilbert spaces, Proceedings of the American Mathematical Society 122 (1994), 779-785.
[J] F. John, Extremum problems with inequalities as subsidiary conditions, in Courant Anniversary Volume, Interscience, New York, 1948, pp. 187-204.
[K-Tz] B. Kashin and L. Tzafriri, Some remarks on the restrictions of operators to coordinate subspaces, Preprint.
[Le-Ta] M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, Berlin, 1991.
[L-M] J. Lindenstrauss and V. Milman, The local theory of normed spaces and its applications to convexity, in Handbook of Convex Geometry, Vol. A, B, NorthHolland, Amsterdam, 1993, pp. 1149-1220.
[P] G. Pisier, The Volume of Convex Bodies and banach Space Geometry, Cambridge Tracts in Mathematics, 94, Cambridge University Press, 1989.
[R1] M. Rudelson, Estimates of the weak distance between finite-dimensional Banach spaces, Israel Journal of Mathematics 89 (1995), 189-204.
[R2] M. Rudelson, Contact points of convex bodies, Israel Journal of Mathematics 101 (1997), 93-124.
[Sz-T] S. Szarek and M. Talagrand, An "isomorphic" version of the Sauer-Shelah lemma and the Banach-Mazur distance to the cube, GAFA Seminar 87-88, Lecture Notes in Mathematics 1376, Springer-Verlag, Berlin, 1989, pp. 105112.
[T] M. Talagrand, Embedding of l_{∞}^{k} and a theorem of Alon and Milman, GAFA (Israel, 1992-1994), Operator Theory: Advances and Applications, 77, Birkhäuser, Basel, 1995, pp. 289-293.
[T-J] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite Dimensional Operator Ideals, Pitman, London, 1989.
[V] R. Vershynin, Subsequences of frames, Studia Mathematica, to appear.

