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A B S T R A C T  

We extend the invertibility principle of J. Bourgain and L. Tzafriri to 

operators acting on arbitrary decompositions id = ~ xj | xj, rather 

than on the coordinate one. The John's decomposition brings this result 

to the local theory of Banach spaces. As a consequence, we get a new 

lemma of Dvoretzky Rogers type, where the contact points of the unit 

ball with its maximal volume ellipsoid play a crucial role. We then apply 

these results to embeddings of l~  into finite dimensional spaces. 

1. I n t r o d u c t i o n  

The aim of this paper is to find a part of the John's decomposition on which a 

given nontrivial operator is invertible in a certain sense, and to apply this to the 

study of contact points of convex bodies. 

John's decomposition of the identity is a classical tool in the local theory of 

Banach spaces. Suppose X = (R n, ]1" []) is a Banach space whose ellipsoid of 

maximal volume contained in B(X) coincides with the unit Euclidean ball. The 

John's decomposition of the identity operator on X is 

m 

(l) id= Zx j |  
j = l  

where xj/llxjllx are some of the contact points of the surfaces of B(X) and the 

unit Euclidean ball. This celebrated theorem of F. John has been used extensively 
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over the past 30 years. Recently it was interpreted as an isotropic condition 

[G-M], and was generalized to a non-convex case in [G-P-T]. 

It is important to know the good subsets of the set of contact points (xj), as 

this can be useful in understanding the geometrical structure of X; see [R2]. 

In the present paper we find a part of a decomposition (1) which preserves 

the orthogonal structure under the action of a given linear operator T. More 

precisely, if [ITII2_~2 -- 1 then there exists a subset of indices c~ of cardinality 

](r] > ( 1 -  c)I]T]]~s such that the system (Txj ) jE a is C(c)-equivalent to an 

orthogonal basis in Hilbert space. In the case of the coordinate decomposition 

id -- ~ ej | e j ,  this generalizes the principle of restricted invertibility proved by 

J. Bourgain and L. Tzafriri [B-Tz]. They considered only operators T for which 

all norms IITej]12 are well bounded below and proved the principle with some 

fixed 0 < e < 1. 

For T being an orthogonal projection, we derive a new lemma of Dvoretzky- 

Rogers type. Suppose P is an orthogonal projection in X with rankP = k. 

Then for any n < k there are contact points x l , . . . ,  x~ such that setting zj = 

Px j /NPxj l [2  we have 

�9 the system (zj) is C(n/k)-equivalent  in/2-norm to the canonical basis of 

�9 [Izjllx > Cv/(k - n ) /n  for all j .  

In other words, the orthonormal system in Z guaranteed by the classical 

Dvoretzky-Rogers Lemma is essentially the normalized projections of the contact 

points of X. Moreover, the result holds for selfadjoint operators as well as for 

projections with the Hilbert-Schmidt norm of the operator replacing rankP.  

For a general operator T the best lower bound for I[Txjl]x is equivalent to 

(1/n)ltraceTI. 

For T being the identity operator, we obtain a set of k > (1 - r contact 

points of X which is C(c)-equivalent in/2-norm to the canonical basis in l k. This 

settles an isomorphic version of a problem of N. Tomczak-Jaegermann (IT-J], 

p. 127), and confirms the feeling that contact points are always distributed fairly 

uniformly on the surface of the maximal volume ellipsoid (see [B1]). Also this 

yields the proportional Dvoretzky-Rogers factorization (with constant C(e) = 

c cl~ which is however not the best known estimate). 

The Dvoretzky-Rogers Lemma has been useful in the study of subspaces of X 

well isomorphic to I k .  The use of the refined Dvoretzky-Rogers Lemma above 

yields a "Gaussian" version of a theorem of Alon-Milman-Talagrand concerning 

/k-subspaces of X. Let P be an orthogonal projection in X with rankP = k. 
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Then there exists a subspace Z C X which is M-isomorphic to I m for m ~ Ck/v/n 
and M = c x / ~ f ( P  ). The subspace Z is canonically spanned by the projections 

of m contact points xj. Moreover, the norm on Z is M-equivalent to ]llzll[ = 

maxd<_m I(z, xj) I. This improves the estimates obtained by M. Rudelson in [R1], 

and also provides information about the position of Z in X. Also, this yields 

a refinement of M. Rudelson's result about /k-subspaces in spaces with large 

volume ratio. That  is, if vr(X) > a v ~  then X has a subspace Z of dimension 

m >_ C l ( a ) v ~  which is C2(a)logn-isomorphic to l~.  

The extraction results concerning John's decompositions can be reformulated 

in the language of frames. Suppose we are given a tight frame (xj) in Hilbert 

space H,  and a norm-one linear operator T: H --~ H.  Then there is a subsequence 

( T x j ) j E  a with la[ > ( 1 -  r which is C(r to an orthogonal basis 

in Hilbert space. This theorem again can be interpreted as an extension of the 

invertibility principle. It also generalizes results of P. Casazza [C2] and the author 

IV], who worked with the identity operator T = id. 
The rest of the paper is organized as follows. In w we review some basic tools 

used later in the paper. The extraction result about John's decompositions, 

as well as some modifications, is proved in w Its relation to the principle of 

restricted invertibility and infinite-dimensional analogs are discussed in w In w 

we use these results to derive some Dvoretzky-Rogers type lemmas. They help 

to understand the structure of the set of contact points. Applications to l~-  

subspaces of a finite dimensional space are given in w Finally, in w we relate 

these results to the theory of frames in Hilbert space. 

ACKNOWLEDGEMENT: I am grateful to M. Rudelson for many important 

discussions concerning this material, and to S. Dilworth, who pointed out to 

me a flaw in the proof of the main result. This research would not have occurred 

without the help and encouragement of my wife Lilya. 

2. Pre l iminar i e s  

In this section we review several known results. We denote by c, cl, c2 absolute 

constants, and by C(t), C1 (t), C2(t) constants which depend on the parameter t 

only. The values of these constants may differ from line to line. The canonical 

vectors in R ~ are denoted by ej. 
Suppose we are given two sequences (xj) and (yj) in Banach spaces X and Y 

respectively. The sequences (xj) and (yj) are called K - e q u i v a l e n t  if there exist 

constants K1 and K2 with K1K2 <_ K such that for any finite sequence of scalars 
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(as) 
K; l l l  E aJyjlly <- II E ajx j l lx  <_ K21I E ajyhllY. 

In other words, the linear operator T : span(xj) --+ span(yj) defined by Txj  = yj 

for all j is a K-isomorphism: liT[lilT-Ill < K. A sequence of vectors (xj) in 
a Banach space is called K - H i l b e r t i a n  if II Eajxsl l  < K ( E  lasl2) 1/2 for any 

finite set of scalars (as). Similarly, (xs) is called K-Besse l ian  if Kll ~ asxsll >_ 

( E  lasl2) 1/2 for any finite set of scalars (as). 
Here and in the next section we work in a Hilbert space H whose scalar product 

is denoted by (., .), and the norm by I1" II. First we observe that  the Hilbert- 

Schmidt norm of an operator on H can be computed on the elements of certain 

decompositions of identity. 

LEMMA 2.1: Let id = ~ x s | x s be a decomposition of the identity operator on 

a Hilbert space H, and T: H ~ H be a linear operator. Then 

IlTll~s = ~ IpTxsrl ~. 

Proof: Let (eS) be an orthonormal basis of H. Now it is enough to write 

 Txs | Txs -- TT*= TeS | 

and to take traces of both sides. | 

As an immediate consequence we have 

COROLLARY 2.2: Let id = ~ x s |  s be a decomposition of the identity operator 

on a Hilbert space H. Then 

E I[xs [[2 = dimH. 

LEMMA 2.3: Let id = ~ x s | x s be a decomposition of the identity operator on 

a Hilbert space. Then the system (xs) is 1-Hilbertian. 

Proof: Note that for every vector x 

_-{ E 
Thus ]] )-~xj | = 1, and by duality ]l )-~ ej | = 1. This yields that (xj) is 

1-Hilbertian. | 

The starting point of this paper is the principle of restricted invertibility proved 

by J. Bourgain and L. Tzafriri [B-Tz]. 
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THEOREM 2.4 (J. Bourgain, L. Tzaffiri): Let T be a linear operator in l'~ [or 

which IITejll = 1, j = 1 , . . . , n .  Then there exists a subset a C {1 , . . . , n}  of 

cardinality lal >_ cln/llTII 2 such that 

 (Eqa l ) 1" 
jEa j6a  

for any choice of scalars (aj). 

The invertibility principle will be used together with the following restriction 

theorem. It can easily be recovered from a result of A. Kashin and L. Tzafriri 

[K-Tz]. For the sake of completeness, we include the proof. 

THEOREM 2.5 (A. Kashin, L. Tzafriri): Let A be a norm-one linear operator on 

l~. Fix a number A with 1/m < A < 1. Then there exists a s u b s e t ,  c {1 , . . . ,  m} 
of cardinality [u[ >_ Am~4 such that 

Here Pv denotes the coordinate projection onto R ' .  

In the dual setting this result can be reformulated as follows. 

COROLLARY 2.6: Let (xj)j<m be a 1-Hilbertian system in a Hilbert space, and 
put ~ [IXj[] 2 : h. Fix a mnnber A with 1/m < A < 1. Then there exists a subset 

v C {1 , . . . ,  m) ofcardinality I~1 >_ Am~4 such that se t t ingK = (x/A+ V / ~ )  -1, 
we have that 

the system ( K x j ) j ~ ,  is c-Hilbertian. 

Proof of Theorem 2.5: Let (~j)j<_m be independent {O, 1}-valued random 
variables of mean A. We will consider the random coordinate projection PC 
in R n onto the subspace spanned by {ej : j _< m, ~j = 1}. First, we employ the 
Gine-ninn's scheme to bound the expectation 

m 

EIWcAIh_~I=E sup ~'~jl(A*e~,x)l 
xeB(l~) 

m m 

_<A sup E ~ j I ( A * e j , x ) I + E  sup E ( ~ j -  A)l(d*e j ,x)l .  
x6B(l~ ) j = l  x6B(l'~ ) j = l  

The first summand is bounded above by AHA[Ie-~ <_ Av/-~HA[12-~2 = A v ~ .  Let 

(~) j<m be an independent copy of ((j)j_<m, and (ej)j<_m be the Rademacher 
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random variables independent of (~j). Then 

m 

EHPCAII2_~I_<Ax/~+E sup ~-~.(~-~)[(A*ej,x)[ 
xeB(l~ ) j=-i 

~ A v ~ + E  sup ~r 
~eB(Z~) j=l 

Let (gj) be normalized independent Gaussian random variables constructed on 
another probability space. Then by symmetry and using Slepian's Lemma (see 

[Le-Ta] Corollary 3.14) we have 

m 

xeB(lr) 
m 

< A v ~ + v / ~ E  sup ~-~gj~j(A*ej,x) 
.eB(*~") 

m 

=Av~  + v/-~E E g j ( j A *  ej 2 
j-----1 

m 

_<)~V~ -]- v ~ ( E  E [l~jA*ej 1]2) 1/2 
j=l 

=Av~ + ~-~v~llAllHs. 

This yields the existence of a subset a of {1 , . . . ,  m} with cardinality lal > )~m/2 
so that for the coordinate projection P~ onto R ~' 

The proof can be finished by applying Grothendieck's factorization to the 

operator P,,A: l~ --+ l~ (see e.g. [Le-Ta] Proposition 15.11). There exists a 

subset v of a with cardinality Ivl > [a[/2 such that 

IIP~,P,,All2~2 < ~,,P,,A],2-~I < c ( v ~ +  [IA'IHS 
_ _ 

This completes the proof. | 

Now we introduce an elementary procedure for splitting a sequence. Given a 
sequence (xj) in H,  let (Yk) be any sequence of vectors in H such that there 

exists a partition of N into successive blocks (aj) and for every j = 1, 2 , , . .  

�9 the vectors Yk, k E aj, are multiples of the vector xj; 
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Then we say that (Yk) is the s p l i t t e d  s e q u e n c e  (xj). Splitting allows us to 

make the norms of the vectors almost equal while preserving the property of 

being h-Hilbertian. 

3. T h e  m a i n  result  

In this section we prove an extraction theorem, which is the core of the paper. 

THEOREM 3.1: Let id = ~ xj | xj be a decomposition on l'~, and T be a 

norm-one linear operator. Then for any e > 0 there exists a set of indices a of 

cardinality la[ >_ (1 - e)[lTll~s such that 

(i) the system (Txj ) jea  is C(e)-equivalent to an orthogonal basis in l~; 

(ii) IITxjl[ >_ cv~(llrllHs/v/-Qllxjll for all j C a. 

Proo~ Put  h 2 = IIT[IHS. By approximation one can assume that the system (xj) 

is finite, so we enumerate it as (xj)j<,~. Denote yj = T x j  for all j .  Splitting the 

system (xj)j<m we can assume that 

(2) 0-9v~hm <-Ilyjll <- 1.1 

Let 5 = e/3 and 

We claim that 

for all j < m. 

T= { j ~ m :  Ilyyll ~ 0.9v~V~nh~llxyll} �9 

(3) ITI-> ( 1 -  5)m. 

Indeed, by Corollary 2.2 

n = ~ Ilxjll 2 ~ ~ Ilxjll 2 
j < m  j e t  c 

>_l<t �9 v 
n 

=I<P- ~m- 

Thus Ircl _< ~m, which proves (3). 
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Now we have to find a further subset a C r of cardinality I01 _> (1 - e)h, such 

that the system (Yj)je~ is C(e)-equivalent to an orthogonal basis in l~. The set 

a will be constructed by successive iterations. In the first step a = 0. In each 

successive step, the remainder h - I01 will be reduced in a fixed proportion. So, 

it is enough to prove the following. 

LEMMA 3.2: Let a C T with I0] < (1 - e)h be given, and suppose the system 

(Yj)jCa is K-equivalent to an orthogonal basis in Hilbert space. Then a can be 

extended in r to a subset 01 so that 
(a) the system (Yj)je~l is C(K, e)-equivalent to an orthogonal basis in Hilbert 

space; 
(b) for some absolute constant a < 1 

h -P~lr < ~(h -J~l). 

Proof: Let P be the orthonormal projection of l~ onto l~ G span(yj)je~ (at the 

first step P = id). First observe that by Lemma 2.1 

E ]IPYJlI2 = E IlPTxjll2 = HPTH~s 
j < m  j < m  

= h  - II( i d  - P)TI]~is 

>_h -I l id  - PII~sIITH 2 

=h -r~l. 

Using (3), we get 

E [[PYJH2=E [[PyjI[2 
j E r  \ a j E r  

E ll' ,fJ -I, J �9 
j<rn 

> _ h -  Iol - 1.215h 

_>(1 - 2(f)h - Iol =:  ho .  

Note that ho is comparable with h. Indeed, since I(rl < (1 - e)h = (1 - 38)h, we 

have 

(4) h0 __ ~h. 

Now we can split the system (Yj)je,' .~ so that the resulting system (Yj')j<_M 

satisfies 

(5) Ilry}[I _> 0.9 h i -  ~ for a l l j  _< M. 
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We are going to apply Kashin-Tzafriri's extraction result, Corollary 2.6, to the 

system (Y~)j<M. This system is 1-Hilbertian and 

ily~ll 2 < ~ ii~jll 2 -- h 
j < M  j<m 

With ), = 4h/M, we obtain a subset v C {1 , . . . ,  M} of cardinality Ivl _> h such 

that 

( V ~  ' )  is c-Hilbertian (6) the system YJ jev 

(notice that we could make M large enough to have A _< 1 as required in Kashin- 

Tzafriri's Theorem). Therefore, the system (V/--M~Py~)jev is c-Hilbertian, too. 
Moreover, by (4) and (5) 

I ~/~-~Py~ I > 0 . 9 V ~  > 0.9vf5 for all j E v. 

At this point we use the original invertibility principle of J. Bourgain and 
L. Tzafriri [B-Tz], which can be reformulated in terms of sequences as follows. 

�9 Let (xj)j<n be a K-Hilbertian system in I2 and IIxjlI _> ~ for all j .  Then 

there exists a subset p C (1 , . . . ,  n} of cardinality ]Pl >- c(o~/K) 2n such that 
the system (xj)jc p is (cl/c~)-Besselian. 

Applying this to the system (v/-M~Py~)jEv, we obtain a subset p' C v of 

cardinality ]P'I -> c(0.9x/~) 2h = cSh such that 

(7) the system ( ~ P Y ~ ) j c p '  is cl/vfS-Besselian. 

Recall that each vector y~ with j E p~ is a multiple of some vector Ylc(j) with k(j) E 
~- \ a. By (7), these vectors Yk(j) must be linearly independent. In particular, the 
correspondence j ~ k(j) is one-to-one. Consider the subset p C r \ a consisting 
of the vectors 

p --- {k(j): j �9 p'}. 

Now put O" 1 - -  O" (.J p. 

We see that (b) is satisfied with c~ -- 1 - c5. That is, 

h - I~ll  _< h - I ~ l -  cSh < ~ ( h  - I~l)- 

The underlying reason for (a) holding is that the system (Yj)jEp is well 
equivalent to an orthogonal basis, and the spans of (Yj)je~, and (Yj)jcp are well 
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separated. To check this formally, we first observe that (6) and (7) yield that  

there exist positive constants (Aj)jcp such that 

�9 the system (Ajyj)jep is c-Hilbertian, 

�9 the system (AjPyj)jep is cl/v~-Besselian. 

Consider an arbitrary vector y E span(yy)jep. Writing it in the form y = 

~j~p ajAjyj we see that 

- -  C1 
jEp jEp 

Hence for any x E span(y/)jea 

> ~ l ~ ~my~ -c~1 = ~ b l l .  
jEp 

IIx + yll >_ ~ b l l .  

Therefore 

(s) IIx + yll > (v~/c~)(ll~ll ~ + Ilyll~) ~/~ 

for an appropriate constant c2. Now it is easy to complete the proof. Fix any 

scalars (aj)jE p. Then defining )~j = 1/]lyj] ] for j E ~ we have by (8) 

( ~ levi ~) ~'~ : (  ~ lair ~ + ~ I~l~) ~'~ 
jE~rUp jEa jEP 

_~(KEc1/v/~) ( j~E aj)uy j 2+ j~Ep aj)~jpy j 2) I/2 

<_(K + ci/v/5) ~ aj)gYJ + Z aj,kjyj 
jEa jEp 

<(g  + c1/v/~)(C2/V~) Z aj)~jyj  �9 

j E a U p  

This shows that the system ("~jYj)jEal is (K + cl/v~)(c2/v'~)-Besselian. Next, 

ajAjyj ~_ ~-~ ajAjyj --k ~-~ ajAjyj 
jEal jEo" jEp 

~_K(E[aj[2)i/2+c(ElajI2)i/2 
jEa jEp 

<,~(,~+c)( ~ i~1~) *'~ 
jEaUp 
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so the system ()~jYj)jEal is v ~ ( K  -~- c)-Hilbertian as well. This establishes (a) of 

the Lemma and completes the proof of Theorem 3.1. | 

Now we rewrite Theorem 3.1 in a different form, which is useful in applications 

- -  especially for Dvoretzky-Rogers type lemmas. 

THEOREM 3.3: Let  id = ~ x j  |  be a decomposition of  the identi ty  on l~, and 

T be a norm-one linear operator, ][T[I~s = h. Then for any integer ~ < h there 

exists a set of  indices a with [a] = ~ such that  

(i) the system ( T x j ) j e a  is C(~/h)-equivalent  to an orthogonal basis in l~ ; 

(ii) ][Txj[] >_ cv / (h  - ~)/n[]xj[] for all j E a. 

It is sometimes more useful to get a lower bound for (xj ,  T x j )  rather than for 

IITxjll. 

PROPOSITION 3.4: In Theorem 3.1, s ta tement  (ii) can be replaced by 

(ii ~) [(xj, Txj)]  >_ ce Itr~eTI I[xj][ 2 for j E a. 
n 

Proo~ Notice that  ~-~(xj ,Txj)  = traceT. Therefore, splitting our system 

(xj)j<_,~ we can assume, in addition to (2), that 

(9) [(x j ,Tx j )[  >_ 0.9 ItraceT[ for all j. 
m 

Let us examine the proof of Theorem 3.1. The set r yielded the lower bound 

of [ITxj][. So, we replace T by 

]traceT] ~'= {j _< -~: I(xj,T~,}l _> ( ~ / 5 ) ~ l l x j l ? } ,  

and all we have to check is that 

( 1 0 )  

By (O) 

IT' I > ( 1 -  c /3 )m .  

Since ~3j~ llxjl? = n, we have IPl ~ (1 - ~13)~. This verifies (I0) and allows 

us to finish the proof as in Theorem 3.1. | 
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4. P r i n c i p l e  o f  r e s t r i c t e d  i nve r t i b i l i t y  

Our first application of these results comes from viewing Theorem 3.1 as an 

extension of the "principle of restricted invertibility',  Theorem 2.4, proved by 

J. Bourgain and L. Tzafriri. Indeed, for the coordinate decomposition id = 

ej | ej we get 

COROLLARY 4.1: Let T be a norm-one linear operator on 12. Then for any e > 0 

there exists a subset a C (1 ,2 , . . . }  of cardinality la] > ( 1 -  e)ltTIl~s such that 

the sequence (Tej ) iea  is C(~)-equivalent to an orthogonal basis in Hilbert space. 

This theorem generalizes the invertibility principle in two ways. First, instead 

of requiring that  all norms HTej[I be large, we can assume only largeness of 

their average, which is the Hilbert-Schmidt norm of T. This makes the result 

independent of the dimension n of the space, IIT[]~s being a natural substitute 

for the dimension n. 

The second improvement is that we obtain the subset a with the largest possible 

cardinality. That  is, Corollary 4.1 allows us to get [a[ _> (1 - e)n/[[T[[ 2 in the 

original invertibility principle for any 0 < ~ < 1 (while the Bourgain-Tzafriri 's 

argument proves only the existence of such r In some applications one really 

needs almost full percentage. In particular, this is important in estimating the 

distance to the cube; see [Sz-T]. 

Notice that  the infinite-dimensional analogs of Theorem 3.1 and Corollary 4.1 

hold, too. 

PROPOSITION 4.2: Let id = ~ x j  | x j  be a decomposition on a Hilbert space, 

and T be a linear operator which is not Hilbert-Schmidt. Then for any e > 0 there 

exists an infinite subset a such that the sequence (Tx j ) j ca  is (1 + r 

to an orthogonal basis in Hilbert space. 

Proof: The subset a is constructed by a standard induction argument, modulo 

the following claim: 

�9 For any finite dimensional subspace E of H,  

sup d i s t (Tx j /HTx  j II, E)  = 1. 
J 

Assume the contrary. Denoting the orthogonal projection in 12 onto E by P,  

we would have 

inf P(T x j / l l T x j l l )  = 5 > O, 
J 

that  is 

I]PTxjH > 5IITxjH for ally. 
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By Lemma 2.1, this yields 

IIPTIIHS > 511TItHS = co. 

But the operator P T  has finite rank, thus IIPTIIHS must be finite. This contra- 

diction completes the proof. | 

An infinite dimensional analogue of Bourgain-Tzafriri 's Theorem 2.4 says that,  

given a linear operator T in 12 with IITej II = 1, j = 1, 2 , . . . ,  there exists a subset 

a of {1 ,2 , . . .}  with upper density dens a > c/llTII 2, such that  the sequence 

(Tej)je~ is c-Besselian [B-Wz]. 

As we lose the normalizing condition IITej II -- 1, nothing can be said in general 

about the density of a. Indeed, let (Yk) be the result of a splitting of a canonical 

basis in/2,  so that the sets aj from the definition of splitting satisfy lajl --+ oc 
as j --+ c)c. There exist a norm-one operator T in 12 such that  IITIIHS = c~ and 

Tek = Yk, k -- 1, 2 , . . . .  However, each term Yk in the sequence (Yk) is repeated 

lajl times. Therefore, the upper density of any subset a satisfying the conclusion 

of Corollary 4.1 must be zero. 

Similarly, in some cases a must be a sparse set with respect to the dimension. 

More precisely, in general the s e q u e n c e  (Txj)jE a spans a subspace of infinite 

codimension. This follows easily from a result of P. Casazza and O. Christensen 

discussed in w 

5. Contact points and Dvoretzky-Rogers lemmas 

Here we apply Theorem 3.1 to John's decompositions. Let X = (R n, I1" II) be 

a Banach space. The ellipsoid of maximal volume contained in B ( X )  is unique 

and is called the m a x i m a l  v o l u m e  e l l ipsoid  of X. Suppose the Euclidean 

structure on X is chosen so that the maximal volume ellipsoid coincides with the 

unit Euclidean ball Dn. Let us write a John's decomposition on X: 
m 

(11) i d =  ~ x j |  
j ~ l  

where xj/ l lx j IIx are some of the contact points of B ( X )  with the John's ellipsoid 

(see IT-J], w John's decompositions can be considered as a subclass in the 

class of all decompositions of type id = ~ xj | xj. Conversely, each decomposi- 

tion (11) is a John's decomposition for a suitable Banach space X = (R n, I1" II), 

whose maximal volume ellipsoid is the unit Euclidean ball D~. Actually, the 

norm on X is given by 
xj hlxll  = m a x l ( x ,  
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This result goes back to F. John [J], although other proofs were found recently 

by K. Ball [B2] and A. Giannopoulos and V. Milman [G-M]. Therefore, working 

with contact points instead of decompositions id = ~ xj | xj  we do not lose 

generality. 

Restating Theorem 3.1 in this light, we have 

COROLLARY 5.1: Let X be an n-dimensional Banach space whose maximal 

volume ellipsoid is the unit Euclidean ball. Let T be a linear operator with 

IIT[12_~2 _~ 1. Then for any ~ > 0 there are contact points x l , . . . , x k  with 

k _> (1 - s)llTll~s such that the system (Tzj)j<_k is C(e)-equivalent in 12-norm 

to the canonical basis of l k. 

Moreover, the norms I ITxj II 2 are well bounded below: 

IITxjll _> for all j _< k. 

Since T is an orthogonal projection, this result leads us to a new Dvoretzky- 

Rogers type l emma,  which we will discuss now. Suppose X is an n-dimensional 

Banach space whose John's ellipsoid is the unit Euclidean ball. Let Z be a k- 

dimensional subspace of X. The Dvoretzky-Rogers Lemma states that,  given a 

positive integer a < k, there is an orthonormal system (zj)j<_~ in Z such that 

Ilzjllx _> i k- +ln for a l l j  _< n. 

Let us sketch the proof. By induction, it is enough to find o n e  vector z in 

Z such that Ilzlr2 = 1 and lizlrx >_ v~/n (then substitute Z by Z O span(z) 

and repeat the argument). By duality, this is equivalent to finding a functional 

x* C B ( X*)  with rlPx*ll2 _> v/-k/n, where P is the orthogonal projection onto 

Z. Let idx .  = ~ )Ux~ @ x~ be a John's decomposition in X*, that is y~ Aj = n 
* p * and xj  are contact points of B(X*) .  Then P = Y~ Aj xj | Px~. Taking the 

trace, we get k = F~jlIPx~IIN. So, there is a j such that flPx;ll~ _ v /k~.  This 

completes the proof. 

This argument, as well as other known proofs of the Dvoretzky-Rogers Lemma, 

only establish the existence of the vectors zj. In contrast to that, the argument 

based on Theorem 3.1 provides information about their position. 

THEOREM 5.2: Let X be an n-dimensional Banach space whose maximal volume 

ellipsoid is the unit Euclidean ball. Let P be an orthogonal projection, rankP = 

k. Then for any positive integer ~ < k there are contact points x l , . . . ,  x~ such 

that setting zj = Pxj / l lPxj l l2  we have 



Vol. 122, 2 0 0 1  JOHN'S DECOMPOSITIONS: SELECTING A LARGE PART 267 

(i) the system (zj) is C(~/k)-equivalent in 12-norm to the canonicM basis ofl~, 

(ii) ILzjLIx _> cv / (k  - for all j .  

Proof." We note tha t  [[P[]HS = V/~ and apply  Theorem 3.3 to a John ' s  decom- 

posit ion on X .  This  gives us contact  points  X l , . . . ,  x~ such tha t  (i) is satisfied, 

and 

I[Pxjll2 >_ c for every j < m. 
n 

I t  remains  to note t ha t  for every j <_ m 

(pxj,x ) _ ( p x j ,  = IlPxyll . 
IIPxjllx > IIx llx* 

Hence 

Ilzjllx > IIPxjll2 for every j < m. 

This  completes  the proof. | 

A na tura l  quest ion is whether  Theorem 5.2 can be extended to a rb i t r a ry  op- 

erators  T, IITII2-+2 = 1, wi th  k subs t i tu ted  for IITII2s . The  answer is negative. 

Indeed, let n = 2 m for a posit ive integer m,  and denote by Wm the Walsh n x n 

mat r ix .  Consider the opera to r  T = n - 1 / 2 W  m acting in the space X = l ~ .  All 

contact  points  (xj) of X are s imply the coordinate  vectors.  However, denot ing 

zj = Txj/HTxjlI2 we have for any j 

Hzj[Iz = IITxjllz /]lTxjl[2 = n- l~ 2. 

This shows tha t  (ii) in Theo rem 5.2 fails for the opera to r  T. 

Still, a lower bound for the I1" I Ix-norm exists and is equivalent to ( l / n ) I t r aceTI .  

P R O P O S I T I O N  5.3: Let X be an n-dimensional Banach space whose max ima /  

volmne ellipsoid is the unit Euclidean ball. Let T be an operator with IITH2_~2 _~ 

1. Then for any e > 0 there are k > (1 - a)n contact points x l , . . .  ,x~ such that 

(i) the system (Txj)  is C(e)-equivalent in 12-norm to the canonical basis of l~; 
(ii) []TxjI]x >_ csltraceT[/n. 

Proo~ The  a rgument  is similar to t ha t  of Theo rem 5.2, using Proposi t ion  3.4 

instead of Theorem 3.1. | 

The  es t imate  in (ii) is essentially sharp.  Indeed, for any posit ive integers k _< n 

one can construct  an or thogonal  project ion P in R n wi th  r a n k P  = k, and such 

tha t  

IIPejn2 = v/k-/n for all j <_ n. 
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Notice that  IIPIIl_~2 = V/if/n, so that I l P l l 2 ~  = V/-ff/n. Thus IIPlll_.~ _< k/n.  
Now consider the space X = l~  and the operator T = P on it. The only contact 

points (xj) of X are the coordinate vectors (ej). Then for all j 

IITxj[Ix = IIPejl]oo <_ k /n  = ItraceTI/n. 

This shows that  the lower bound in (ii) is essentially sharp. 

Finally, there is a class of operators for which Theorem 5.2 itself can be 

extended: selfadjoint operators. So, the desired general result for arbitrary op- 

erators can be obtained if we allow a suitable rotation of (zj). There is always 

a unitary operator (coming from the polar decomposition of T) which sends the 

vectors (zj) to vectors with good I1" IIx-norm. 

THEOREM 5.4: Let X be an n-dimensional Banach space whose maximM volume 

ellipsoid is the unit Euclidean ball. Let T be an operator with [[T[t2_~2 _< 1, and 
put  []T[[~s = h. Then for any positive integer ~ < h there are contact points 

Xl , . . . ,  x~ such that setting zj = [Tlxj/[[Txj []2 we have 

(i) the system (zj) is C(~/h)-equivMent in 12-norm to the canonical basis ofl~; 

(ii) [[zj[[x _> cv/(h - ~) /n  for all j .  

Proof: Let T = U[T[ be the polar decomposition of T, where IT[ = ( T ' T )  1/2 is 

a positive selfadjoint operator and U is a partial isometry on l~. Apply Theorem 

3.3 to the operator IT[ and a John's decomposition on X. As before, this gives 

us contact points Xl , . . . ,  x~ such that (i) is satisfied, and 

~ / h - n  
[]ITIxjH 2 _> c for every j < m. 

n 

= I]Tll2_~2 < 1. Therefore we obtain Diagonalizing ITI we see that IIITI1/2112__+ 2 1/2 
for every j _< m 

[[]T[xjl[x > (]T[xj,xj) = [[iT[1/2xj][ ~ 
-Ilxjllx. 
_>llrTrx lr  = FxJll  

Hence 

ll jllx IITxjH2 for every j _< m. 

This completes the proof. | 

Now we turn to a particular case when T is the identity operator. We clearly 

have 
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COROLLARY 5.5: Let X be an n-dimensional Banach space whose maximal vol- 

ume ellipsoid is the unit Euclidean ball. Then for any ~ > 0 there is a set of 

k > (1 - r  contact points which is C(e)-equivalent to the canonical vector basis 

ofl~. 

This result is related to another variant of the classical Dvoretzky-Rogers Lemma, 

which establishes the existence of contact points whose distance to a certain 

orthonormal basis is controlled ([T-J], Theorem 15.7). More precisely, there 

exist contact points 3:1,. . . ,  x~ and an orthonormal basis h i , . . . ,  hn such that 

(  or, n 
However, this estimate is too crude to assure that a fixed proportion of the system 

(xj)j<n is equivalent in/2-norm to an orthonornml system. Such an equivalence 

can be established only for Cv~ contact points. 

Using this argument, it is proved that for k = [x/-n/4] there exist orthonormal 

vectors x l , . . . ,  xk in (E, I[" H2) on which all three norms I1" II, I1" 112, and II" I1. 

differ by the factor 2 at most (IT-J], p. 127). It has been an open problem to 

make k proportional to n. By Corollary 5.5 we actually have k _> (1 - e)n and 

make all three norms II" II, I1" H2, and [1" I[* equal to 1 on our sequence (giving 

up, however, exact orthogonality). 

By duality, Corollary 5.5 holds also for the ellipsoid of minimal volume contain- 

ing B ( X )  instead of the maximal volume ellipsoid. This variant of Corollary 5.5 

yields also the proportional Dvoretzky-Rogers factorization result from [B-Sz]. 

Namely, given an n-dimensional Banach space X and e > 0, there is a k > (1 -~)n  

such that the formal identity id: l~ --+ l~ can be written as id = a �9 for some 

~: 12 k --+ X, a: X --+ I k ,  with II~lllI;~ll -< c(c) .  This can be obtained by duality 

from the factorization of the identity on the contact points, id: Ikl --+ X --+ l~, 

guaranteed by Corollary 5.5. 

A few comments about the dependence of C(e) in Theorem 3.1 on e. It is a 

challenge to find the correct asymptotics. Indeed, by an argument of S. Szarek 

and M. Talagrand [Sz-T] the proportional Dvoretzky-Rogers factorization above 

yields a non-trivial estimate on the distance from X to l~ a well known and 

hard problem in the local theory of normed spaces. The faetorization constant 

C(e) lies at the heart of the computation of this distance. 

The proof of Theorem 3.1 guarantees that C(e) <_ e ~l~ However, for the 

Dvoretzky-Rogers factorization constant CDR(e) much better  bounds are known 

[G]: CDR(e) _< ce -1. Since CDa(e) _< C(e) and CDR(e) ~ C~ as e ~ 0 (see 

[Sz-T]), we necessarily have C(e) ~ oc as e ~ 0. 
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However, C(e) -+ 1 as e -~ 1. This follows directly from 

LEMMA 5.6: Suppose a normalized sequence (xj)j<n in Hilbert space is M-  

Hilbertian, and e > 0. Then there is a subset a C {1, . . .  ,n} of cardinality 
lal >_ C(M, e)n such that the system (xj)je~ is (1 +c)-equivalent to the canonical 
basis of  l~. 

Proof." We can assume that the given Hilbert space is l~. Define a linear operator 

T: l~ --+ l~ by 

Tej = xj f o r j < n .  

Let A = T*T - id. Then the matrix of A has zeros on the diagonal and IIAII ___ 

M 2 + 1. Now, by a theorem of J. Bourgain and L. Tzafriri ([B-Tz] Theorem 1.6, 

see also [K-Tz]) there is a subset a C {1 , . . . ,  n} of cardinality la] _> C(M, e) such 

that 

IIP~APo]I < 6. 

This shows that for any sequence of scalars (aj)j<_n 

jEa jeer 

hence 

( ~-~ajxj, ~-~ajxj) - ~ [ajl 2 < 6. 
jEa jEa jEs 

This clearly finishes the proof. | 

6. E m b e d d i n g s  o f  t h e  c u b e  

In this section we apply Theorem 3.1 to the study of embeddings of lk~ into 

finite dimensional spaces. N. Alon and V. Milman [A-M] proved that if a given 

normalized sequence (xj) in a Banach space X has small Rademacher average 

Eli ~ c j x j l l x  , then it must contain a large subsequence well equivalent to the 

canonical basis of 1 k .  Later on, M. Talagrand IT] improved this result and 

simplified the argument. 

THEOREM 6.1 (M. Talagrand): Suppose we are given vectors (xj)j<n in a 
Banach space X with [IxjHx > 1. Set 

M = E I I ~ r  and w = s u p {~ - -~ l x* (x j ) l :  x* E B(X*)}. 
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Then there exists a subset cr C {1 , . . . ,  n} of cardinality [a[ >_ cn/w such that 

1 ajxj  x ~max la i l -<  E < 4 M m a x [ a j [  j6a jEa 
jEa 

for any choice of scalars (aj). 

A few years earlier, M. Rudelson JR1] proved a "Gaussian" version of this 

theorem. Recall that t he / -no rm of an operator u: l~ -+ X is defined as 

/(u) 2 = / l iuxll2x d~/n(x), 

where ~/n is the canonical Gaussian measure on R n. We will sometimes write 

/ (X)  instead of l ( idx ) .  
Suppose X is an n-dimensional Banach space whose maximal volume ellipsoid 

is the unit Euclidean ball. Let P be an orthogonal projection in X and set 

k = rankP,  a = k/n.  The result of M. Rudelson states that there is a subspace 

Z C P ( X )  of dimension m >_ C l ( a ) v ~ / ~ ( P  ) which is C2(a)l(P)-isomorphic to 

l~. 
We will r e m o v e / ( P )  from the estimate on the dimension. Further, it will be 

shown that Z is canonically spanned by the projections of some contact points 

of X. In particular, the norm on Z is well equivalent to maxj<m [(z, xj)l, where 

xj are contact points. This yields automatically that  Z is well complemented by 

the orthogonal projection. Moreover, the dependence on a will be improved. 

THEOREM 6.2: Let X be an n-dimensional Banach space whose maximal volume 

ellipsoid is B(l~). Let P be an orthogonal projection, rankP = k. Then there 

are contact points (xj)j<m with m >_ c l k / v ~  such that 

max [(x, xj) I <_ Ilxlix < c~/-~Tt(P) max [(x, xj)l 
3"..m V Ir j~_m 

for every x in Z = span(Pxj)j<_m. 

The particular case k -- n is also interesting. We get a sequence of m > cl v ~ 

contact points which is c~(X)-equivalent to the canonical basis of Im. Let us 

prove this latter fact separately. By Corollary 5.5, there exists a set of contact 

points (xj)j<_m,, m ~ >_ n/2, which is c-equivalent in/2-norm to the canonical basis 
%0/ of I e . Let (gj) be independent standard Gaussian random variables. To apply 

Talagrand's Theorem 6.1, we check 

M = Ell ZEjx II  _< cell Zgj jll  _< cc EII Zgj jll  
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where we have used the ideal property of the g-norm (see Lemma 6.4 below). 
Further, for any finite set of scalars (aj) 

Z ajxj X ~- Z ajxj 2 

~c2( Z laj[2)l/2 ~ c2v/-~IIaxlaj], 

Thus 

w = sup{ Z]x*(xj)[  :x* E B(X*)} <_ e2v'~. 

Now Talagrand's Theorem 6.1 finishes the proof. | 

The proof of Theorem 6.2 is longer than the argument for the case k = n, 

but the main idea is the same, i.e. to combine the results of w with Talagrand's 

theorem. First, we need to know what vectors canonically span a large subspace 

Z well isomorphic to Im. They happen to be multiples of the projection of some 

contact points (Xj)j~_m. More precisely, we have 

PROPOSITION 6.3: Under the assumptions of Theorem 6.2, the system 

Pxj 
IIPxjI]2] j<_m 

is cv/-n~l(P)-equivalent to the canonical basis of l m. 

To prove this, let (xj)j<k,, U > k/2, be the contact points provided by 

Theorem 5.2. Put  
S Pxj 

for an apA~ropriate a > 0 and all j .  Then 

(i) the system (zj)j<_k, is (cvf~) -equiva len t  in/e-norm to the canonical basis 

of lzk'; 

(ii) I[zj]l _> 1 for all j .  

For future reference we note that the proof of Theorem 5.2 gives also 

(12) ]lPxjll2 >_ c l v / - ~ .  

To apply Talagrand's Theorem 6.1 to the system (zj)j<k,, recall the ideal 

property of the l-norm (cf. [T-J], w 

LEMMA 6.4: For any two linear operators A: I'~ --+ X and B: l'~ --~ l'~ 

g(AB) < IIBIIg(A). 
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Let (hj)j<_k, be an orthonormal basis in span(zj). Now we bound 

273 

M =Ell E eizJllx < cEll E gjzj[Ix 

<_e Eli ~ g j h j l l x  by (i) and Lemma 6.4 

=cv~e(P(X) )  = c~t(P). 
Noting (ii) above, we apply Talagrand's Theorem 6.1. This finishes the proof. 
| 

To obtain Theorem 6.2, Talagrand's Theorem will be used more delicately. Its 

proof in [T] gives the following additional property. 

LEMMA 6.5: In the setting of Theorem 6.2, suppose (x~)j<,~ are functionals in 
X* such that 

x~(xj) >_ 1 and [Ix;llx. = 1  for all j <_ n. 

Then the subset a can be found so that 

E Ix~(xJ )1 <1/2 f o r a l l i c a .  
jea ' .{ i}  

Let us turn again to the proof of Proposition 6.3. We applied Talagrand's 

Theorem to the system (xj)j<_k,. Note that  by (12) 

_ S ( x j ,  Px ) 

=o~ Pxjl l2 >_ 1 for all j. 

Therefore we obtain a subset a C {1 , . . . ,  k'} of cardinality lal > clk/v/~ such 

that 

* the system ( z j ) j~  is cvZn~t(P)-equivalent to the canonical basis of l~;  

�9 ~ j ~ - . { i }  I(x~,zJ}l <- 1/2 for a l l j  e a. 
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Now fix an x = Y~je~ ajzj, and let i E a be such that  lail = maxje,, lajl. Then 

jEa 

E jEa \{~} 

>1pail  = 1 
je  

n - 1  

This proves the second inequality in Theorem 6.2, while the first one is obvious. 
| 

Theorem 6.2 also yields that Z is well complemented by the orthogonal pro- 

jection. 

PaOPOSmON 6.6: /n the situation of Theorem 6.2, let Pz be the orthogonal 
projection in X onto Z. Then 

IlPz[I < c~[~g(P). 
Proof: For any x C X 

Ilezxllx <craig(P) ~<axi(Pzx, x~)l 

=c /n e(P) I(x,  j)l 
y ~  j<m 

< n 
-cg~g(P)  llxllx. 

This completes the proof, | 

Another consequence of Theorem 6.2 is a refined isomorphic characterization of 

spaces with large volume ratio. Recall that the volume ratio of an n-dimensional 

Banach space X is defined as 

(Vol(Bx) ~ 1/,, 
vr(X) = min ~ ~ ] 

over all ellipsoids E contained in Bx, see [L-M], [P]. The maxiinal value of vr(X) 

among all n-dimensional spaces is of order v ~ ,  and the only space with maximal 

volume ratio is l n (K. Ball [B1D. Later on, M. Rudelson proved in [R1] that 
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if vr (X)  is proportional to the maximal  volume ratio, then X has a subspace 

isomorphic to I m with the isomorphism constant of order log n, and such that  

m ~-, v /n / log  n. Using Theorem 6.2 in M. Rudelson's proof of this result removes 

the parasitic factor log n from the estimate on the dimension. 

THEOREM 6.7: Let a > 0, and X be an n-dimensional Banach space. I f v r ( X )  > 

ax/~ then there exists a subspace Z of X of dimension m >_ Cl(a )v /n  which is 

C2 (a) log n-isomorphic to Im. 

7. F r a m e s  

The notion of frame goes back to the work of R. Duffin and A. Schaeffer on 

nonharmonic Fourier series [D-S]. A sequence (xj) in a Hilbert space H is called 

a f r a m e  if there exist positive numbers A and B such that  

AIIxll = <_ ~ I(x, xy}l = <_ BI}xll = for x e H. 
J 

The number (B/A) 1/2 is called a c o n s t a n t  of the frame. We call (xj) a t i g h t  

f r a m e  if A = B = 1. For an introduction to the theory of frames, its relation to 

wavelets and signal processing, see [B-W]. The geometric structure of frames has 

been studied extensively in recent years; see [Ho], [A], I t - e l ] ,  [C-C21, [C21, IV]. 

I t  is known that  finite dimensional frames are essentially the same object as 

John's  decompositions. In the isomorphic theory, it is sufficient to work only 

with tight frames, because every frame with constant M is M-equivalent to a 

tight frame (cf. e.g. [Ho]). Further, one has the following equivalence between 

frames and John's  decompositions: 

(xj) is a tight frame in H r idH = ~ xj | xj. 
ff 

This observation allows us to interpret the results of w and w as statements 

about frames. Theorem 3.1 yields: 

COROLLARY 7.1: Let (xj) be a tight frame in Hilbert space H, and T be a norm- 

one/ /near  operator in H. Then for any e > 0 there exists a subset o[indices ~ of 

cardinality lal> (1 - e)[lT[l~s such that the system ( T x j ) j ~  is C(e)-equivalent 

to an orthogonal basis in Hilbert space. 

For operators T which are not Hilbert-Schmidt  this means that  the subset a 

is infinite. 
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Clearly, Corollary 7.1 itself generalizes the invertibility principle of J. Bourgain 

and L. Tzafriri. When applied to the identity operator, it yields that  every 

tight frame in l~ * has a subset of length (1 - e)n  which is C(e)-equivalent to an 

orthogonal basis in Hilbert space. This result was proved in [V] as a generalization 

of P. Casazza's theorem [C2]. 

Notice that  one necessarily has C(e) --~ oc as e --+ 1, as explained in w An 

infinite dimensional analog of this phenomenon holds, too. A frame may not in 

general contain a complete subsequence equivalent to an orthogonal basis. The 

counterexample was found by P. Casazza and O. Christensen in [C-C2]; see also 

[V]. 
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