
Journal of Artificial Intelligence Research 37 (2010) 279-328 Submitted 05/09; published 03/10

Join-Graph Propagation Algorithms

Robert Mateescu ROMATEES@MICROSOFT.COM

Microsoft Research
7 J J Thomson Avenue
Cambridge CB3 0FB, UK

Kalev Kask KKASK@ICS.UCI.EDU

Donald Bren School of Information and Computer Science
University of California Irvine
Irvine, CA 92697, USA

Vibhav Gogate VGOGATE@CS.WASHINGTON.EDU

Computer Science & Engineering
University of Washington, Seattle
Seattle, WA 98195, USA

Rina Dechter DECHTER@ICS.UCI.EDU

Donald Bren School of Information and Computer Science
University of California Irvine
Irvine, CA 92697, USA

Abstract
The paper investigates parameterized approximate message-passing schemes that are based on

bounded inference and are inspired by Pearl’s belief propagation algorithm (BP). We start with the
bounded inference mini-clustering algorithm and then move to the iterative scheme called Iterative
Join-Graph Propagation (IJGP), that combines both iteration and bounded inference. Algorithm
IJGP belongs to the class of Generalized Belief Propagation algorithms, a framework that allowed
connections with approximate algorithms from statistical physics and is shown empirically to sur-
pass the performance of mini-clustering and belief propagation, as well as a number of other state-
of-the-art algorithms on several classes of networks. We also provide insight into the accuracy of
iterative BP and IJGP by relating these algorithms to well known classes of constraint propagation
schemes.

1. Introduction

Probabilistic inference is the principal task in Bayesian networks and is known to be an NP-hard
problem (Cooper, 1990; Roth, 1996). Most of the commonly used exact algorithms such as join-
tree clustering (Lauritzen & Spiegelhalter, 1988; Jensen, Lauritzen, & Olesen, 1990) or variable-
elimination (Dechter, 1996, 1999; Zhang, Qi, & Poole, 1994), and more recently search schemes
(Darwiche, 2001; Bacchus, Dalmao, & Pitassi, 2003; Dechter & Mateescu, 2007) exploit the net-
work structure. While significant advances were made in the last decade in exact algorithms, many
real-life problems are too big and too hard, especially when their structure is dense, since they are
time and space exponential in the treewidth of the graph. Approximate algorithms are therefore
necessary for many practical problems, although approximation within given error bounds is also
NP-hard (Dagum & Luby, 1993; Roth, 1996).

c©2010 AI Access Foundation. All rights reserved.

279

MATEESCU, KASK, GOGATE & DECHTER

The paper focuses on two classes of approximation algorithms for the task of belief updating.
Both are inspired by Pearl’s belief propagation algorithm (Pearl, 1988), which is known to be exact
for trees. As a distributed algorithm, Pearl’s belief propagation can also be applied iteratively to
networks that contain cycles, yielding Iterative Belief Propagation (IBP), also known as loopy belief
propagation. When the networks contain cycles, IBP is no longer guaranteed to be exact, but in
many cases it provides very good approximations upon convergence. Some notable success cases
are those of IBP for coding networks (McEliece, MacKay, & Cheng, 1998; McEliece & Yildirim,
2002), and a version of IBP called survey propagation for some classes of satisfiability problems
(Mézard, Parisi, & Zecchina, 2002; Braunstein, Mézard, & Zecchina, 2005).

Although the performance of belief propagation is far from being well understood in general,
one of the more promising avenues towards characterizing its behavior came from analogies with
statistical physics. It was shown by Yedidia, Freeman, and Weiss (2000, 2001) that belief propa-
gation can only converge to a stationary point of an approximate free energy of the system, called
Bethe free energy. Moreover, the Bethe approximation is computed over pairs of variables as terms,
and is therefore the simplest version of the more general Kikuchi (1951) cluster variational method,
which is computed over clusters of variables. This observation inspired the class of Generalized
Belief Propagation (GBP) algorithms, that work by passing messages between clusters of variables.
As mentioned by Yedidia et al. (2000), there are many GBP algorithms that correspond to the same
Kikuchi approximation. A version based on region graphs, called “canonical” by the authors, was
presented by Yedidia et al. (2000, 2001, 2005). Our algorithm Iterative Join-Graph Propagation is
a member of the GBP class, although it will not be described in the language of region graphs. Our
approach is very similar to and was independently developed from that of McEliece and Yildirim
(2002). For more information on BP state of the art research see the recent survey by Koller (2010).

We will first present the mini-clustering scheme which is an anytime bounded inference scheme
that generalizes the mini-bucket idea. It can be viewed as a belief propagation algorithm over a tree
obtained by a relaxation of the network’s structure (using the technique of variable duplication). We
will subsequently present Iterative Join-Graph Propagation (IJGP) that sends messages between
clusters that are allowed to form a cyclic structure.

Through these two schemes we investigate: (1) the quality of bounded inference as an anytime
scheme (using mini-clustering); (2) the virtues of iterating messages in belief propagation type
algorithms, and the result of combining bounded inference with iterative message-passing (in IJGP).

In the background section 2, we overview the Tree-Decomposition scheme that forms the basis
for the rest of the paper. By relaxing two requirements of the tree-decomposition, that of connect-
edness (via mini-clustering) and that of tree structure (by allowing cycles in the underlying graph),
we combine bounded inference and iterative message-passing with the basic tree-decomposition
scheme, as elaborated in subsequent sections.

In Section 3 we present the partitioning-based anytime algorithm called Mini-Clustering (MC),
which is a generalization of the Mini-Buckets algorithm (Dechter & Rish, 2003). It is a message-
passing algorithm guided by a user adjustable parameter called i-bound, offering a flexible tradeoff
between accuracy and efficiency in anytime style (in general the higher the i-bound, the better the
accuracy). MC algorithm operates on a tree-decomposition, and similar to Pearl’s belief propaga-
tion algorithm (Pearl, 1988) it converges in two passes, up and down the tree. Our contribution
beyond other works in this area (Dechter & Rish, 1997; Dechter, Kask, & Larrosa, 2001) is in: (1)
Extending the partition-based approximation for belief updating from mini-buckets to general tree-
decompositions, thus allowing the computation of the updated beliefs for all the variables at once.

280

JOIN-GRAPH PROPAGATION ALGORITHMS

This extension is similar to the one proposed by Dechter et al. (2001), but replaces optimization
with probabilistic inference. (2) Providing empirical evaluation that demonstrates the effectiveness
of the idea of tree-decomposition combined with partition-based approximation for belief updating.

Section 4 introduces the Iterative Join-Graph Propagation (IJGP) algorithm. It operates on a
general join-graph decomposition that may contain cycles. It also provides a user adjustable i-bound
parameter that defines the maximum cluster size of the graph (and hence bounds the complexity),
therefore it is both anytime and iterative. While the algorithm IBP is typically presented as a gener-
alization of Pearl’s Belief Propagation algorithm, we show that IBP can be viewed as IJGP with the
smallest i-bound.

We also provide insight into IJGP’s behavior in Section 4. Zero-beliefs are variable-value pairs
that have zero conditional probability given the evidence. We show that: (1) if a value of a variable
is assessed as having zero-belief in any iteration of IJGP, it remains a zero-belief in all subsequent
iterations; (2) IJGP converges in a finite number of iterations relative to its set of zero-beliefs; and,
most importantly (3) that the set of zero-beliefs decided by any of the iterative belief propagation
methods is sound. Namely any zero-belief determined by IJGP corresponds to a true zero condi-
tional probability relative to the given probability distribution expressed by the Bayesian network.

Empirical results on various classes of problems are included in Section 5, shedding light on
the performance of IJGP(i). We see that it is often superior, or otherwise comparable, to other
state-of-the-art algorithms.

The paper is based in part on earlier conference papers by Dechter, Kask, and Mateescu (2002),
Mateescu, Dechter, and Kask (2002) and Dechter and Mateescu (2003).

2. Background

In this section we provide background for exact and approximate probabilistic inference algorithms
that form the basis of our work. While we present our algorithms in the context of directed proba-
bilistic networks, they are applicable to any graphical model, including Markov networks.

2.1 Preliminaries

Notations: A reasoning problem is defined in terms of a set of variables taking values on finite
domains and a set of functions defined over these variables. We denote variables or subsets of
variables by uppercase letters (e.g., X, Y, Z, S, R . . .) and values of variables by lower case letters
(e.g., x, y, z, s). An assignment (X1 = x1, . . . , Xn = xn) can be abbreviated as x = (x1, . . . , xn).
For a subset of variables S, DS denotes the Cartesian product of the domains of variables in S. xS
is the projection of x = (x1, . . . , xn) over a subset S. We denote functions by letters f , g, h, etc.,
and the scope (set of arguments) of the function f by scope(f).

DEFINITION 1 (graphical model) (Kask, Dechter, Larrosa, & Dechter, 2005) A graphical model
M is a 3-tuple, M = 〈X,D,F〉, where: X = {X1, . . . , Xn} is a finite set of variables; D =
{D1, . . . , Dn} is the set of their respective finite domains of values; F = {f1, . . . , fr} is a set
of positive real-valued discrete functions, each defined over a subset of variables Si ⊆ X, called
its scope, and denoted by scope(fi). A graphical model typically has an associated combination
operator 1 ⊗, (e.g., ⊗ ∈ {Π,

∑
} - product, sum). The graphical model represents the combination

1. The combination operator can also be defined axiomatically (Shenoy, 1992).

281

MATEESCU, KASK, GOGATE & DECHTER

of all its functions: ⊗r
i=1fi. A graphical model has an associated primal graph that captures the

structural information of the model:

DEFINITION 2 (primal graph, dual graph) The primal graph of a graphical model is an undi-
rected graph that has variables as its vertices and an edge connects any two vertices whose corre-
sponding variables appear in the scope of the same function. A dual graph of a graphical model has
a one-to-one mapping between its vertices and functions of the graphical model. Two vertices in the
dual graph are connected if the corresponding functions in the graphical model share a variable.
We denote the primal graph by G = (X,E), where X is the set of variables and E is the set of
edges.

DEFINITION 3 (belief networks) A belief (or Bayesian) network is a graphical model B =
〈X,D,G, P 〉, where G = (X,E) is a directed acyclic graph over variables X and P = {pi},
where pi = {p(Xi | pa (Xi)) } are conditional probability tables (CPTs) associated with each vari-
ableXi and pa(Xi) = scope(pi)−{Xi} is the set of parents ofXi in G. Given a subset of variables
S, we will write P (s) as the probability P (S = s), where s ∈ DS . A belief network represents
a probability distribution over X , P (x1,, xn) = Πn

i=1P (xi|xpa(Xi)). An evidence set e is an
instantiated subset of variables. The primal graph of a belief network is called a moral graph. It
can be obtained by connecting the parents of each vertex in G and removing the directionality of
the edges. Equivalently, it connects any two variables appearing in the same family (a variable and
its parents in the CPT).

Two common queries in Bayesian networks are Belief Updating (BU) and Most Probable Ex-
planation (MPE).

DEFINITION 4 (belief network queries) The Belief Updating (BU) task is to find the posterior
probability of each single variable given some evidence e, that is to compute P (Xi|e). The Most
Probable Explanation (MPE) task is to find a complete assignment to all the variables having max-
imum probability given the evidence, that is to compute argmaxXΠipi.

2.2 Tree-Decomposition Schemes

Tree-decomposition is at the heart of most general schemes for solving a wide range of automated
reasoning problems, such as constraint satisfaction and probabilistic inference. It is the basis for
many well-known algorithms, such as join-tree clustering and bucket elimination. In our presenta-
tion we will follow the terminology of Gottlob, Leone, and Scarcello (2000) and Kask et al. (2005).

DEFINITION 5 (tree-decomposition, cluster-tree) Let B = 〈X,D,G, P 〉 be a belief network. A
tree-decomposition for B is a triple 〈T, χ, ψ〉, where T = (V,E) is a tree, and χ and ψ are labeling
functions which associate with each vertex v ∈ V two sets, χ(v) ⊆ X and ψ(v) ⊆ P satisfying:

1. For each function pi ∈ P , there is exactly one vertex v ∈ V such that pi ∈ ψ(v), and
scope(pi) ⊆ χ(v).

2. For each variable Xi ∈ X , the set {v ∈ V |Xi ∈ χ(v)} induces a connected subtree of T .
This is also called the running intersection (or connectedness) property.

We will often refer to a node and its functions as a cluster and use the term tree-decomposition and
cluster-tree interchangeably.

282

JOIN-GRAPH PROPAGATION ALGORITHMS

DEFINITION 6 (treewidth, separator, eliminator) Let D = 〈T, χ, ψ〉 be a tree-decomposition of
a belief network B. The treewidth (Arnborg, 1985) of D is maxv∈V |χ(v)| − 1. The treewidth of
B is the minimum treewidth over all its tree-decompositions. Given two adjacent vertices u and
v of a tree-decomposition, the separator of u and v is defined as sep(u, v) = χ(u) ∩ χ(v), and
the eliminator of u with respect to v is elim(u, v) = χ(u) − χ(v). The separator-width of D is
max(u,v)|sep(u, v)|. The minimum treewidth of a graphG can be shown to be identical to a related
parameter called induced-width (Dechter & Pearl, 1987).

Join-tree and cluster-tree elimination (CTE) In both Bayesian network and constraint satisfac-
tion communities, the most used tree-decomposition method is join-tree decomposition (Lauritzen
& Spiegelhalter, 1988; Dechter & Pearl, 1989), introduced based on relational database concepts
(Maier, 1983). Such decompositions can be generated by embedding the network’s moral graph G
into a chordal graph, often using a triangulation algorithm and using its maximal cliques as nodes in
the join-tree. The triangulation algorithm assembles a join-tree by connecting the maximal cliques in
the chordal graph in a tree. Subsequently, every CPT pi is placed in one clique containing its scope.
Using the previous terminology, a join-tree decomposition of a belief network B = 〈X,D,G, P 〉 is
a tree T = (V,E), where V is the set of cliques of a chordal graph G

′

that contains G, and E is a set
of edges that form a tree between cliques, satisfying the running intersection property (Maier, 1983).
Such a join-tree satisfies the properties of tree-decomposition and is therefore a cluster-tree (Kask
et al., 2005). In this paper, we will use the terms tree-decomposition and join-tree decomposition
interchangeably.

There are a few variants for processing join-trees for belief updating (e.g., Jensen et al., 1990;
Shafer & Shenoy, 1990). We adopt here the version from Kask et al. (2005), called cluster-tree-
elimination (CTE), that is applicable to tree-decompositions in general and is geared towards space
savings. It is a message-passing algorithm; for the task of belief updating, messages are computed
by summation over the eliminator between the two clusters of the product of functions in the orig-
inating cluster. The algorithm, denoted CTE-BU (see Figure 1), pays a special attention to the
processing of observed variables since the presence of evidence is a central component in belief
updating. When a cluster sends a message to a neighbor, the algorithm operates on all the functions
in the cluster except the message from that particular neighbor. The message contains a single com-
bined function and individual functions that do not share variables with the relevant eliminator. All
the non-individual functions are combined in a product and summed over the eliminator.

Example 1 Figure 2a describes a belief network and Figure 2b a join-tree decomposition for it.
Figure 2c shows the trace of running CTE-BU with evidenceG = ge, where h(u,v) is a message that
cluster u sends to cluster v.

THEOREM 1 (complexity of CTE-BU) (Dechter et al., 2001; Kask et al., 2005) Given a Bayesian
network B = 〈X,D,G, P 〉 and a tree-decomposition 〈T, χ, ψ〉 of B, the time complexity of CTE-
BU is O(deg · (n+N) ·dw

∗+1) and the space complexity is O(N ·dsep), where deg is the maximum
degree of a node in the tree-decomposition, n is the number of variables, N is the number of nodes
in the tree-decomposition, d is the maximum domain size of a variable, w∗ is the treewidth and sep
is the maximum separator size.

283

MATEESCU, KASK, GOGATE & DECHTER

Algorithm CTE for Belief-Updating (CTE-BU)
Input: A tree-decomposition 〈T, χ, ψ〉, T = (V,E) for B = 〈X,D,G, P 〉. Evidence variables
var(e).
Output: An augmented tree whose nodes are clusters containing the original CPTs and the
messages received from neighbors. P (Xi, e), ∀Xi ∈ X .

Denote by H(u,v) the message from vertex u to v, nev(u) the neighbors of u in T excluding v,
cluster(u) = ψ(u) ∪ {H(v,u)|(v, u) ∈ E},
clusterv(u) = cluster(u) excluding message from v to u.

• Compute messages:
For every node u in T , once u has received messages from all nev(u), compute message to node
v:

1. Process observed variables:
Assign relevant evidence to all pi ∈ ψ(u)

2. Compute the combined function:

h(u,v) =
∑

elim(u,v)

∏
f∈A

f

where A is the set of functions in clusterv(u) whose scope intersects elim(u, v).
Add h(u,v) to H(u,v) and add all the individual functions in clusterv(u)−A
Send H(u,v) to node v.

• Compute P (Xi, e):
For every Xi ∈ X let u be a vertex in T such that Xi ∈ χ(u). Compute P (Xi, e) =∑

χ(u)−{Xi}
(
∏

f∈cluster(u) f)

Figure 1: Algorithm Cluster-Tree-Elimination for Belief Updating (CTE-BU).

1

2

3

4

)},|(),|(),({)1(

},,{)1(

bacpabpap

CBA

=
=

ψ
χ

},|(),|({)2(

},,,{)2(

dcfpbdp

FDCB

=
=

ψ
χ

)},|({)4(

},,{)4(

fegp

GFE

=
=

ψ
χ

)},|({)3(

},,{)3(

fbep

FEB

=
=

ψ
χ

G

E

F

C D

B

A

(a) (b)

),|()|()(),()2,1(bacpabpapcbh
a

⋅⋅= �
),(),|()|(),()2,3(

,
)1,2(fbhdcfpbdpcbh

fd

⋅⋅= �

),(),|()|(=),()2,1(
,

)3,2(cbhdcfpbdpfbh
dc

),(),|(),()3,4()2,3(fehfbepfbh
e

⋅= �

),(),|(),()3,2()4,3(fbhfbepfeh
b

⋅= �
),|(),()3,4(fegGpfeh e==

BCDF

ABC

2

4

1

3 BEF

EFG

EF

BF

BC

(c)

Figure 2: (a) A belief network; (b) A join-tree decomposition; (c) Execution of CTE-BU.

3. Partition-Based Mini-Clustering

The time, and especially the space complexity, of CTE-BU renders the algorithm infeasible for prob-
lems with large treewidth. We now introduce Mini-Clustering, a partition-based anytime algorithm
which computes bounds or approximate values on P (Xi, e) for every variable Xi.

284

JOIN-GRAPH PROPAGATION ALGORITHMS

Procedure MC for Belief Updating (MC-BU(i))

2. Compute the combined mini-functions:

Make an (i)-size mini-cluster partitioning of clusterv(u), {mc(1), . . . ,mc(p)};

h1
(u,v) =

∑
elim(u,v)

∏
f∈mc(1) f

hi
(u,v) = maxelim(u,v)

∏
f∈mc(i) f i = 2, . . . , p

add {hi
(u,v)|i = 1, . . . , p} to H(u,v). Send H(u,v) to v.

Compute upper bounds P (Xi, e) on P (Xi, e):
For every Xi ∈ X let u ∈ V be a cluster such that Xi ∈ χ(u). Make (i) mini-clusters from
cluster(u), {mc(1), . . . ,mc(p)}; Compute P (Xi, e) =
(
∑

χ(u)−Xi

∏
f∈mc(1) f) · (

∏p

k=2 maxχ(u)−Xi

∏
f∈mc(k) f).

Figure 3: Procedure Mini-Clustering for Belief Updating (MC-BU).

3.1 Mini-Clustering Algorithm

Combining all the functions of a cluster into a product has a complexity exponential in its number
of variables, which is upper bounded by the induced width. Similar to the mini-bucket scheme
(Dechter, 1999), rather than performing this expensive exact computation, we partition the clus-
ter into p mini-clusters mc(1), . . . ,mc(p), each having at most i variables, where i is an accu-
racy parameter. Instead of computing by CTE-BU h(u,v) =

∑
elim(u,v)

∏
f∈ψ(u) f , we can di-

vide the functions of ψ(u) into p mini-clusters mc(k), k ∈ {1, . . . , p}, and rewrite h(u,v) =∑
elim(u,v)

∏
f∈ψ(u) f =

∑
elim(u,v)

∏p
k=1

∏
f∈mc(k) f . By migrating the summation operator into

each mini-cluster, yielding
∏p

k=1

∑
elim(u,v)

∏
f∈mc(k) f , we get an upper bound on h(u,v). The

resulting algorithm is called MC-BU(i).
Consequently, the combined functions are approximated via mini-clusters, as follows. Suppose

u ∈ V has received messages from all its neighbors other than v (the message from v is ignored even
if received). The functions in clusterv(u) that are to be combined are partitioned into mini-clusters
{mc(1), . . . ,mc(p)}, each one containing at most i variables. Each mini-cluster is processed by
summation over the eliminator, and the resulting combined functions as well as all the individual
functions are sent to v. It was shown by Dechter and Rish (2003) that the upper bound can be
improved by using the maximization operator max rather than the summation operator sum on some
mini-buckets. Similarly, lower bounds can be generated by replacing sum with min (minimization)
for some mini-buckets. Alternatively, we can replace sum by a mean operator (taking the sum and
dividing by the number of elements in the sum), in this case deriving an approximation of the joint
belief instead of a strict upper bound.

Algorithm MC-BU for upper bounds can be obtained from CTE-BU by replacing step 2 of the
main loop and the final part of computing the upper bounds on the joint belief by the procedure given
in Figure 3. In the implementation we used for the experiments reported here, the partitioning was
done in a greedy brute-force manner. We ordered the functions according to their sizes (number of
variables), breaking ties arbitrarily. The largest function was placed in a mini-cluster by itself. Then,
we picked the largest remaining function and probed the mini-clusters in the order of their creation,

285

MATEESCU, KASK, GOGATE & DECHTER

),|()|()(:),(1
)2,1(bacpabpapcbh

a

⋅⋅=�

),|(max:)(

),()|(:)(

,

2
)1,2(

1
)2,3(

,

1
)1,2(

dcfpch

fbhbdpbh

fd

fd

=

⋅=�

),|(max:)(

),()|(:)(

,

2
)3,2(

1
)2,1(

,

1
)3,2(

dcfpfh

cbhbdpbh

dc

dc

=

⋅=�

),(),|(:),(1
)3,4(

1
)2,3(fehfbepfbh

e

⋅=�

)()(),|(:),(2
)3,2(

1
)3,2(

1
)4,3(fhbhfbepfeh

b

⋅⋅=�

),|(:),(1
)3,4(fegGpfeh e==

)2,1(H

)1,2(H

)3,2(H

)2,3(H

)4,3(H

)3,4(H

BCDF

ABC

2

4

1

3 BEF

EFG

EF

BF

BC

Figure 4: Execution of MC-BU for i = 3.

trying to find one that together with the new function would have no more than i variables. A new
mini-cluster was created whenever the existing ones could not accommodate the new function.

Example 2 Figure 4 shows the trace of running MC-BU(3) on the problem in Figure 2. First, evi-
dence G = ge is assigned in all CPTs. There are no individual functions to be sent from cluster 1
to cluster 2. Cluster 1 contains only 3 variables, χ(1) = {A,B,C}, therefore it is not partitioned.
The combined function h1(1,2)(b, c) =

∑
a p(a) · p(b|a) · p(c|a, b) is computed and the message

H(1,2) = {h1(1,2)(b, c)} is sent to node 2. Now, node 2 can send its message to node 3. Again, there
are no individual functions. Cluster 2 contains 4 variables, χ(2) = {B,C,D, F}, and a partition-
ing is necessary: MC-BU(3) can choose mc(1) = {p(d|b), h(1,2)(b, c)} and mc(2) = {p(f |c, d)}.
The combined functions h1(2,3)(b) =

∑
c,d p(d|b) · h(1,2)(b, c) and h

2
(2,3)(f) = maxc,dp(f |c, d) are

computed and the message H(2,3) = {h1(2,3)(b), h
2
(2,3)(f)} is sent to node 3. The algorithm contin-

ues until every node has received messages from all its neighbors. An upper bound on p(a,G = ge)
can now be computed by choosing cluster 1, which contains variable A. It doesn’t need partition-
ing, so the algorithm just computes

∑
b,c p(a) · p(b|a) · p(c|a, b) · h

1
(2,1)(b) · h

2
(2,1)(c). Notice that

unlike CTE-BU which processes 4 variables in cluster 2, MC-BU(3) never processes more than 3
variables at a time.

It was already shown that:

THEOREM 2 (Dechter & Rish, 2003) Given a Bayesian network B = 〈X,D,G, P 〉 and the evi-
dence e, the algorithm MC-BU(i) computes an upper bound on the joint probability P (Xi, e) of
each variable Xi (and each of its values) and the evidence e.

THEOREM 3 (complexity of MC-BU(i)) (Dechter et al., 2001) Given a Bayesian network B =
〈X,D,G, P 〉 and a tree-decomposition 〈T, χ, ψ〉 of B, the time and space complexity of MC-BU(i)
is O(n · hw∗ · di), where n is the number of variables, d is the maximum domain size of a variable
and hw∗ = maxu∈T |{f ∈ P |scope(f) ∩ χ(u)
= φ}|, which bounds the number of mini-clusters.

286

JOIN-GRAPH PROPAGATION ALGORITHMS

Figure 5: Node duplication semantics of MC: (a) trace of MC-BU(3); (b) trace of CTE-BU.

Semantics of Mini-Clustering The mini-bucket scheme was shown to have the semantics of re-
laxation via node duplication (Kask & Dechter, 2001; Choi, Chavira, & Darwiche, 2007). We
extend it to mini-clustering by showing how it can apply as is to messages that flow in one direction
(inward, from leaves to root), as follows. Given a tree-decomposition D, where CTE-BU computes
a function h(u,v) (the message that cluster u sends to cluster v), MC-BU(i) partitions cluster u into p
mini-clusters u1, . . . , up, which are processed independently and then the resulting functions h(ui,v)

are sent to v. Instead consider a different decomposition D′, which is just like D, with the excep-
tion that (a) instead of u, it has clusters u1, . . . , up, all of which are children of v, and each variable
appearing in more than a single mini-cluster becomes a new variable, (b) each child w of u (in D) is
a child of uk (in D′), such that h(w,u) (in D) is assigned to uk (in D′) during the partitioning. Note
that D′ is not a legal tree-decomposition relative to the original variables since it violates the con-
nectedness property: the mini-clusters u1, . . . , up contain variables elim(u, v) but the path between
the nodes u1, . . . , up (this path goes through v) does not. However, it is a legal tree-decomposition
relative to the new variables. It is straightforward to see that H(u,v) computed by MC-BU(i) on D
is the same as {h(ui,v)|i = 1, . . . , p} computed by CTE-BU on D′ in the direction from leaves to
root.

If we want to capture the semantics of the outward messages from root to leaves, we need to gen-
erate a different relaxed decomposition (D′′) because MC, as defined, allows a different partitioning
in the up and down streams of the same cluster. We could of course stick with the decomposition in
D′ and use CTE in both directions which would lead to another variant of mini-clustering.

Example 3 Figure 5(a) shows a trace of the bottom-up phase of MC-BU(3) on the network in Figure
4. Figure 5(b) shows a trace of the bottom-up phase of CTE-BU algorithm on a problem obtained
from the problem in Figure 4 by splitting nodes D (into D′ and D′′) and F (into F ′ and F ′′).

The MC-BU algorithm computes an upper bound P (Xi, e) on the joint probability P (Xi, e).
However, deriving a bound on the conditional probability P (Xi|e) is not easy when the exact

287

MATEESCU, KASK, GOGATE & DECHTER

Random Bayesian N=50 K=2 P=2 C=48

Number of iterations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
vg

 a
bs

 e
rr

or

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

#ev=0
#ev=10
#ev=20
#ev=30

Figure 6: Convergence of IBP (50 variables, evidence from 0-30 variables).

value of P (e) is not available. If we just try to divide (multiply) P (Xi, e) by a constant, the
result is not necessarily an upper bound on P (Xi|e). It is easy to show that normalization,
P (xi, e)/

∑
xi∈Di

P (xi, e), with the mean operator is identical to normalization of MC-BU output
when applying the summation operator in all the mini-clusters.

MC-BU(i) is an improvement over the Mini-Bucket algorithm MB(i), in that it allows the com-
putation of P (Xi, e) for all variables with a single run, whereas MB(i) computes P (Xi, e) for just
one variable, with a single run. When computing P (Xi, e) for each variable, MB(i) has to be run
n times, once for each variable, an algorithm we call nMB(i). It was demonstrated by Mateescu
et al. (2002) that MC-BU(i) has up to linear speed-up over nMB(i). For a given i, the accuracy of
MC-BU(i) can be shown to be not worse than that of nMB(i).

3.2 Experimental Evaluation of Mini-Clustering

The work of Mateescu et al. (2002) and Kask (2001) provides an empirical evaluation of MC-BU
that reveals the impact of the accuracy parameter on its quality of approximation and compares with
Iterative Belief Propagation and a Gibbs sampling scheme. We will include here only a subset of
these experiments which will provide the essence of our results. Additional empirical evaluation of
MC-BU will be given when comparing against IJGP later in this paper.

We tested the performance of MC-BU(i) on random Noisy-OR networks, random coding net-
works, general random networks, grid networks, and three benchmark CPCS files with 54, 360 and
422 variables respectively (these are belief networks for medicine, derived from the Computer based
Patient Case Simulation system, known to be hard for belief updating). On each type of network we
ran Iterative Belief Propagation (IBP) - set to run at most 30 iterations, Gibbs Sampling (GS) and
MC-BU(i), with i from 2 to the treewidth w∗ to capture the anytime behavior of MC-BU(i).

The random networks were generated using parameters (N,K,C,P), where N is the number of
variables, K is their domain size (we used only K=2), C is the number of conditional probability
tables and P is the number of parents in each conditional probability table. The parents in each table
are picked randomly given a topological ordering, and the conditional probability tables are filled

288

JOIN-GRAPH PROPAGATION ALGORITHMS

N=50, P=2, 50 instances

0 NHD Abs. Error Rel. Error Time
|e| 10

20 max mean max mean max mean max mean

0 9.0E-09 1.1E-05 0.102
IBP 0 3.4E-04 4.2E-01 0.081

0 9.6E-04 1.2E+00 0.062
0 0 1.6E-03 1.1E-03 1.9E+00 1.3E+00 0.056 0.057

MC-BU(2) 0 0 1.1E-03 8.4E-04 1.4E+00 1.0E+00 0.048 0.049
0 0 5.7E-04 4.8E-04 7.1E-01 5.9E-01 0.039 0.039
0 0 1.1E-03 9.4E-04 1.4E+00 1.2E+00 0.070 0.072

MC-BU(5) 0 0 7.7E-04 6.9E-04 9.3E-01 8.4E-01 0.063 0.066
0 0 2.8E-04 2.7E-04 3.5E-01 3.3E-01 0.058 0.057
0 0 3.6E-04 3.2E-04 4.4E-01 3.9E-01 0.214 0.221

MC-BU(8) 0 0 1.7E-04 1.5E-04 2.0E-01 1.9E-01 0.184 0.190
0 0 3.5E-05 3.5E-05 4.3E-02 4.3E-02 0.123 0.127

Table 1: Performance on Noisy-OR networks, w∗ = 10: Normalized Hamming Distance, absolute
error, relative error and time.

randomly. The grid networks have the structure of a square, with edges directed to form a diagonal
flow (all parallel edges have the same direction). They were generated by specifying N (a square
integer) and K (we used K=2). We also varied the number of evidence nodes, denoted by |e| in
the tables. The parameter values are reported in each table. For all the problems, Gibbs sampling
performed consistently poorly so we only include part of its results here.

In our experiments we focused on the approximation power of MC-BU(i). We compared two
versions of the algorithm. In the first version, for every cluster, we used the max operator in all its
mini-clusters, except for one of them that was processed by summation. In the second version, we
used the operator mean in all the mini-clusters. We investigated this second version of the algorithm
for two reasons: (1) we compare MC-BU(i) with IBP and Gibbs sampling, both of which are also
approximation algorithms, so it would not be possible to compare with a bounding scheme; (2) we
observed in our experiments that, although the bounds improve as the i-bound increases, the quality
of bounds computed by MC-BU(i) was still poor, with upper bounds being greater than 1 in many
cases.2 Notice that we need to maintain the sum operator for at least one of the mini-clusters. The
mean operator simply performs summation and divides by the number of elements in the sum. For
example, if A,B,C are binary variables (taking values 0 and 1), and f(A,B,C) is the aggregated
function of one mini-cluster, and elim = {A,B}, then computing the message h(C) by the mean
operator gives: 1/4

∑
A,B∈{0,1} f(A,B,C).

We computed the exact solution and used three different measures of accuracy: 1) Normalized
Hamming Distance (NHD) - we picked the most likely value for each variable for the approximate
and for the exact, took the ratio between the number of disagreements and the total number of vari-
ables, and averaged over the number of problems that we ran for each class; 2) Absolute Error (Abs.
Error) - is the absolute value of the difference between the approximate and the exact, averaged
over all values (for each variable), all variables and all problems; 3) Relative Error (Rel. Error) - is
the absolute value of the difference between the approximate and the exact, divided by the exact,
averaged over all values (for each variable), all variables and all problems. For coding networks,

2. Wexler and Meek (2008) compared the upper/lower bounding properties of the mini-bucket on computing probability
of evidence. Rollon and Dechter (2010) further investigated heuristic schemes for mini-bucket partitioning.

289

MATEESCU, KASK, GOGATE & DECHTER

N=50, P=3, 25 instances

10 NHD Abs. Error Rel. Error Time
|e| 20

30 max mean max mean max mean max mean

0 1.3E-04 7.9E-01 0.242
IBP 0 3.6E-04 2.2E+00 0.184

0 6.8E-04 4.2E+00 0.121
0 0 1.3E-03 9.6E-04 8.2E+00 5.8E+00 0.107 0.108

MC-BU(2) 0 0 5.3E-04 4.0E-04 3.1E+00 2.4E+00 0.077 0.077
0 0 2.3E-04 1.9E-04 1.4E+00 1.2E+00 0.064 0.064
0 0 1.0E-03 8.3E-04 6.4E+00 5.1E+00 0.133 0.133

MC-BU(5) 0 0 4.6E-04 4.1E-04 2.7E+00 2.4E+00 0.104 0.105
0 0 2.0E-04 1.9E-04 1.2E+00 1.2E+00 0.098 0.095
0 0 6.6E-04 5.7E-04 4.0E+00 3.5E+00 0.498 0.509

MC-BU(8) 0 0 1.8E-04 1.8E-04 1.1E+00 1.0E+00 0.394 0.406
0 0 3.4E-05 3.4E-05 2.1E-01 2.1E-01 0.300 0.308
0 0 2.6E-04 2.4E-04 1.6E+00 1.5E+00 2.339 2.378

MC-BU(11) 0 0 3.8E-05 3.8E-05 2.3E-01 2.3E-01 1.421 1.439
0 0 6.4E-07 6.4E-07 4.0E-03 4.0E-03 0.613 0.624
0 0 4.2E-05 4.1E-05 2.5E-01 2.4E-01 7.805 7.875

MC-BU(14) 0 0 0 0 0 0 2.075 2.093
0 0 0 0 0 0 0.630 0.638

Table 2: Performance on Noisy-OR networks, w∗ = 16: Normalized Hamming Distance, absolute
error, relative error and time.

Noisy-OR networks, N=50, P=3, evid=10, w*=16, 25 instances

i-bound

0 2 4 6 8 10 12 14 16

A
bs

ol
ut

e
er

ro
r

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

MC
IBP
Gibbs Sampling

Noisy-OR networks, N=50, P=3, evid=20, w*=16, 25 instances

i-bound

0 2 4 6 8 10 12 14 16
1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

MC
IBP
Gibbs Sampling

A
bs

ol
ut

e
er

ro
r

Figure 7: Absolute error for Noisy-OR networks.

we report only one measure, Bit Error Rate (BER). In terms of the measures defined above, BER
is the normalized Hamming distance between the approximate (computed by an algorithm) and the
actual input (which in the case of coding networks may be different from the solution given by
exact algorithms), so we denote them differently to make this semantic distinction. We also report
the time taken by each algorithm. For reported metrics (time, error, etc.) provided in the Tables, we
give both mean and max values.

In Figure 6 we show that IBP converges after about 5 iterations. So, while in our experiments
we report its time for 30 iterations, its time is even better when sophisticated termination is used.
These results are typical of all runs.

290

JOIN-GRAPH PROPAGATION ALGORITHMS

Random networks, N=50, P=2, k=2, evid=0, w*=10, 50 instances

i-bound

0 2 4 6 8 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

MC
Gibbs Sampling
IBP

A
bs

ol
ut

e
er

ro
r

Random networks, N=50, P=2, k=2, evid=10, w*=10, 50 instances

i-bound

0 2 4 6 8 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

MC
Gibbs Sampling
IBP

A
bs

ol
ut

e
er

ro
r

Figure 8: Absolute error for random networks.

σ = .22 σ = .26 σ = .32 σ = .40 σ = .51
BER max mean max mean max mean max mean max mean Time

N=100, P=3, 50 instances, w*=7
IBP 0.000 0.000 0.000 0.000 0.002 0.002 0.022 0.022 0.088 0.088 0.00
GS 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 31.36

MC-BU(2) 0.002 0.002 0.004 0.004 0.024 0.024 0.068 0.068 0.132 0.131 0.08
MC-BU(4) 0.001 0.001 0.002 0.002 0.018 0.018 0.046 0.045 0.110 0.110 0.08
MC-BU(6) 0.000 0.000 0.000 0.000 0.004 0.004 0.038 0.038 0.106 0.106 0.12
MC-BU(8) 0.000 0.000 0.000 0.000 0.002 0.002 0.023 0.023 0.091 0.091 0.19

N=100, P=4, 50 instances, w*=11
IBP 0.000 0.000 0.000 0.000 0.002 0.002 0.013 0.013 0.075 0.075 0.00
GS 0.506 0.506 0.506 0.506 0.506 0.506 0.506 0.506 0.506 0.506 39.85

MC-BU(2) 0.006 0.006 0.015 0.015 0.043 0.043 0.093 0.094 0.157 0.157 0.19
MC-BU(4) 0.006 0.006 0.017 0.017 0.049 0.049 0.104 0.102 0.158 0.158 0.19
MC-BU(6) 0.005 0.005 0.011 0.011 0.035 0.034 0.071 0.074 0.151 0.150 0.29
MC-BU(8) 0.002 0.002 0.004 0.004 0.022 0.022 0.059 0.059 0.121 0.122 0.71

MC-BU(10) 0.001 0.001 0.001 0.001 0.008 0.008 0.033 0.032 0.101 0.102 1.87

Table 3: Bit Error Rate (BER) for coding networks.

Random Noisy-OR networks results are summarized in Tables 1 and 2, and Figure 7. For NHD,
both IBP and MC-BU gave perfect results. For the other measures, we noticed that IBP is more
accurate when there is no evidence by about an order of magnitude. However, as evidence is added,
IBP’s accuracy decreases, while MC-BU’s increases and they give similar results. We see that
MC-BU gets better as the accuracy parameter i increases, which shows its anytime behavior.

General random networks results are summarized in Figure 8. They are similar to those for
random Noisy-OR networks. Again, IBP has the best result only when the number of evidence
variables is small. It is remarkable how quickly MC-BU surpasses the performance of IBP as
evidence is added (for more, see the results of Mateescu et al., 2002).

Random coding networks results are given in Table 3 and Figure 9. The instances fall within the
class of linear block codes, (σ is the channel noise level). It is known that IBP is very accurate for
this class. Indeed, these are the only problems that we experimented with where IBP outperformed
MC-BU throughout. The anytime behavior of MC-BU can again be seen in the variation of numbers
in each column and more vividly in Figure 9.

291

MATEESCU, KASK, GOGATE & DECHTER

Coding networks, N=100, P=4, sigma=.22, w*=12, 50 instances

i-bound

0 2 4 6 8 10 12

B
it

E
rr

or
 R

at
e

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

MC
IBP

Coding networks, N=100, P=4, sigma=.51, w*=12, 50 instances

i-bound

0 2 4 6 8 10 12

B
it

E
rr

or
 R

at
e

0.06

0.08

0.10

0.12

0.14

0.16

0.18

MC
IBP

Figure 9: Bit Error Rate (BER) for coding networks.

Grid 15x15, evid=10, w*=22, 10 instances

i-bound

0 2 4 6 8 10 12 14 16 18

A
bs

ol
ut

e
er

ro
r

0.00

0.01

0.02

0.03

0.04

0.05

0.06

MC
IBP

Grid 15x15, evid=10, w*=22, 10 instances

i-bound

0 2 4 6 8 10 12 14 16 18

T
im

e
(s

ec
on

ds
)

0

2

4

6

8

10

12

MC
IBP

Figure 10: Grid 15x15: absolute error and time.

Grid networks results are given in Figure 10. We notice that IBP is more accurate for no evidence
and MC-BU is better as more evidence is added. The same behavior was consistently manifested
for smaller grid networks that we experimented with (from 7x7 up to 14x14).

CPCS networks results We also tested on three CPCS benchmark files. The results are given
in Figure 11. It is interesting to notice that the MC-BU scheme scales up to fairly large networks,
like the real life example of CPCS422 (induced width 23). IBP is again more accurate when there
is no evidence, but is surpassed by MC-BU when evidence is added. However, whereas MC-BU
is competitive with IBP time-wise when i-bound is small, its runtime grows rapidly as i-bound
increases. For more details on all these benchmarks see the results of Mateescu et al. (2002).

Summary Our results show that, as expected, IBP is superior to all other approximations for
coding networks. However, for random Noisy-OR, general random, grid networks and the CPCS
networks, in the presence of evidence, the mini-clustering scheme is often superior even in its weak-
est form. The empirical results are particularly encouraging as we use an un-optimized scheme that
exploits a universal principle applicable to many reasoning tasks.

292

JOIN-GRAPH PROPAGATION ALGORITHMS

CPCS 422, evid=0, w*=23, 1 instance

i-bound

2 4 6 8 10 12 14 16 18

A
bs

ol
ut

e
er

ro
r

0.00

0.01

0.02

0.03

0.04

0.05

MC
IBP

CPCS 422, evid=10, w*=23, 1 instance

i-bound

2 4 6 8 10 12 14 16 18

A
bs

ol
ut

e
er

ro
r

0.00

0.01

0.02

0.03

0.04

0.05

MC
IBP

Figure 11: Absolute error for CPCS422.

4. Join-Graph Decomposition and Propagation

In this section we introduce algorithm Iterative Join-Graph Propagation (IJGP) which, like mini-
clustering, is designed to benefit from bounded inference, but also exploit iterative message-passing
as used by IBP. Algorithm IJGP can be viewed as an iterative version of mini-clustering, improving
the quality of approximation, especially for low i-bounds. Given a cluster of the decomposition,
mini-clustering can potentially create a different partitioning for every message sent to a neighbor.
This dynamic partitioning can happen because the incoming message from each neighbor has to be
excluded when realizing the partitioning, so a different set of functions are split into mini-clusters for
every message to a neighbor. We can define a version of mini-clustering where for every cluster we
create a unique static partition into mini-clusters such that every incoming message can be included
into one of the mini-clusters. This version of MC can be extended into IJGP by introducing some
links between mini-clusters of the same cluster, and carefully limiting the interaction between the
resulting nodes in order to eliminate over-counting.

Algorithm IJGP works on a general join-graph that may contain cycles. The cluster size of the
graph is user adjustable via the i-bound (providing the anytime nature), and the cycles in the graph
allow the iterative application of message-passing. In Subsection 4.1 we introduce join-graphs and
discuss their properties. In Subsection 4.2 we describe the IJGP algorithm itself.

4.1 Join-Graphs

DEFINITION 7 (join-graph decomposition) A join-graph decomposition for a belief network B =
〈X,D,G, P 〉 is a tripleD = 〈JG, χ, ψ〉, where JG = (V,E) is a graph, and χ and ψ are labeling
functions which associate with each vertex v ∈ V two sets, χ(v) ⊆ X and ψ(v) ⊆ P such that:

1. For each pi ∈ P , there is exactly one vertex v ∈ V such that pi ∈ ψ(v), and scope(pi) ⊆
χ(v).

2. (connectedness) For each variableXi ∈ X , the set {v ∈ V |Xi ∈ χ(v)} induces a connected
subgraph of JG. The connectedness requirement is also called the running intersection prop-
erty.

293

MATEESCU, KASK, GOGATE & DECHTER

1,2,4 2,3,4

1,3,4

2,4

3,41,4

A

B

C

1,2,4 2,3,4

1,3,4

2,4

31,4

A

B

C

a) b)

Figure 12: An edge-labeled decomposition.

We will often refer to a node in V and its CPT functions as a cluster3 and use the term join-
graph decomposition and cluster-graph interchangeably. Clearly, a join-tree decomposition or a
cluster-tree is the special case when the join-graph D is a tree.

It is clear that one of the problems of message propagation over cyclic join-graphs is over-
counting. To reduce this problem we devise a scheme, which avoids cyclicity with respect to any
single variable. The algorithm works on edge-labeled join-graphs.

DEFINITION 8 (minimal edge-labeled join-graph decompositions) An edge-labeled join-graph
decomposition for B = 〈X,D,G, P 〉 is a four-tuple D = 〈JG, χ, ψ, θ〉, where JG = (V,E)
is a graph, χ and ψ associate with each vertex v ∈ V the sets χ(v) ⊆ X and ψ(v) ⊆ P and θ
associates with each edge (v, u) ⊂ E the set θ((v, u)) ⊆ X such that:

1. For each function pi ∈ P , there is exactly one vertex v ∈ V such that pi ∈ ψ(v), and
scope(pi) ⊆ χ(v).

2. (edge-connectedness) For each edge (u, v), θ((u, v)) ⊆ χ(u) ∩ χ(v), such that ∀Xi ∈ X ,
any two clusters containing Xi can be connected by a path whose every edge label includes
Xi.

Finally, an edge-labeled join-graph is minimal if no variable can be deleted from any label while
still satisfying the edge-connectedness property.

DEFINITION 9 (separator, eliminator of edge-labeled join-graphs) Given two adjacent vertices
u and v of JG, the separator of u and v is defined as sep(u, v) = θ((u, v)), and the eliminator of u
with respect to v is elim(u, v) = χ(u)− θ((u, v)). The separator width ismax(u,v) |sep(u, v)|.

Edge-labeled join-graphs can be made label minimal by deleting variables from the labels while
maintaining connectedness (if an edge label becomes empty, the edge can be deleted). It is easy to
see that,

Proposition 1 A minimal edge-labeled join-graph does not contain any cycle relative to any single
variable. That is, any two clusters containing the same variable are connected by exactly one path
labeled with that variable.

Notice that every minimal edge-labeled join-graph is edge-minimal (no edge can be deleted), but
not vice-versa.

3. Note that a node may be associated with an empty set of CPTs.

294

JOIN-GRAPH PROPAGATION ALGORITHMS

Example 4 The example in Figure 12a shows an edge minimal join-graph which contains a cycle
relative to variable 4, with edges labeled with separators. Notice however that if we remove vari-
able 4 from the label of one edge we will have no cycles (relative to single variables) while the
connectedness property is still maintained.

The mini-clustering approximation presented in the previous section works by relaxing the join-
tree requirement of exact inference into a collection of join-trees having smaller cluster size. It
introduces some independencies in the original problem via node duplication and applies exact in-
ference on the relaxed model requiring only two message passings. For the class of IJGP algorithms
we take a different route. We choose to relax the tree-structure requirement and use join-graphs
which do not introduce any new independencies, and apply iterative message-passing on the result-
ing cyclic structure.

Indeed, it can be shown that any join-graph of a belief network is an I-map (independency map,
Pearl, 1988) of the underlying probability distribution relative to node-separation. Since we plan
to use minimally edge-labeled join-graphs to address over-counting problems, the question is what
kind of independencies are captured by such graphs.

DEFINITION 10 (edge-separation in edge-labeled join-graphs) Let D = 〈JG, χ, ψ, θ〉, JG =
(V,E) be an edge-labeled decomposition of a Bayesian network B = 〈X,D,G, P 〉. LetNW , NY ⊆
V be two sets of nodes, and EZ ⊆ E be a set of edges in JG. LetW,Y, Z be their corresponding
sets of variables (W = ∪v∈NW

χ(v), Z = ∪e∈EZ
θ(e)). We say that EZ edge-separates NW and

NY inD if there is no path betweenNW andNY in the JG graph whose edges in EZ are removed.
In this case we also say that W is separated from Y given Z in D, and write 〈W |Z|Y 〉D. Edge-
separation in a regular join-graph is defined relative to its separators.

THEOREM 4 Any edge-labeled join-graph decomposition D = 〈JG, χ, ψ, θ〉 of a belief network
B = 〈X,D,G, P 〉 is an I-map of P relative to edge-separation. Namely, any edge separation in D
corresponds to conditional independence in P .

Proof: Let MG be the moral graph of BN . Since MG is an I-map of P , it is enough to prove that
JG is an I-map of MG. Let NW and NY be disjoint sets of nodes and NZ be a set of edges in JG,
and W,Z, Y be their corresponding sets of variables in MG. We will prove:

〈NW |NZ |NY 〉JG =⇒ 〈W |Z|Y 〉MG

by contradiction. Since the sets W,Z, Y may not be disjoint, we will actually prove that 〈W −
Z|Z|Y − Z〉MG holds, this being equivalent to 〈W |Z|Y 〉MG.

Supposing 〈W −Z|Z|Y −Z〉MG is false, then there exists a path α = γ1, γ2, . . . , γn−1, β = γn
in MG that goes from some variable α = γ1 ∈ W − Z to some variable β = γn ∈ Y − Z without
intersecting variables in Z. Let Nv be the set of all nodes in JG that contain variable v ∈ X , and
let us consider the set of nodes:

S = ∪n
i=1Nγi −NZ

We argue that S forms a connected sub-graph in JG. First, the running intersection property
ensures that every Nγi , i = 1, . . . , n, remains connected in JG after removing the nodes in NZ

(otherwise, it must be that there was a path between the two disconnected parts in the original JG,
which implies that a γi is part of Z, which is a contradiction). Second, the fact that (γi, γi+1), i =

295

MATEESCU, KASK, GOGATE & DECHTER

1, . . . , n− 1, is an edge in the moral graph MG implies that there is a conditional probability table
(CPT) on both γi and γi+1, i = 1, . . . , n− 1 (and perhaps other variables). From property 1 of the
definition of the join-graph, it follows that for all i = 1, . . . , n − 1 there exists a node in JG that
contains both γi and γi+1. This proves the existence of a path in the mutilated join-graph (JG with
NZ pulled out) from a node in NW containing α = γ1 to the node containing both γ1 and γ2 (Nγ1

is connected), then from that node to the one containing both γ2 and γ3 (Nγ2 is connected), and
so on until we reach a node in NY containing β = γn. This shows that 〈NW |NZ |NY 〉JG is false,
concluding the proof by contradiction. �

Interestingly however, deleting variables from edge labels or removing edges from edge-labeled
join-graphs whose clusters are fixed will not increase the independencies captured by edge-labeled
join-graphs. That is,

Proposition 2 Any two (edge-labeled) join-graphs defined on the same set of clusters, sharing (V ,
χ, ψ), express exactly the same set of independencies relative to edge-separation, and this set of
independencies is identical to the one expressed by node separation in the primal graph of the
join-graph.

Proof: This follows by looking at the primal graph of the join-graph (obtained by connecting any
two nodes in a cluster by an arc over the original variables as nodes) and observing that any edge-
separation in a join-graph corresponds to a node separation in the primal graph and vice-versa. �

Hence, the issue of minimizing computational over-counting due to cycles appears to be unre-
lated to the problem of maximizing independencies via minimal I-mapness. Nevertheless, to avoid
over-counting as much as possible, we still prefer join-graphs that minimize cycles relative to each
variable. That is, we prefer minimal edge-labeled join-graphs.

Relationship with region graphs There is a strong relationship between our join-graphs and the
region graphs of Yedidia et al. (2000, 2001, 2005). Their approach was inspired by advances in
statistical physics, when it was realized that computing the partition function is essentially the same
combinatorial problem that expresses probabilistic reasoning. As a result, variational methods from
physics could have counterparts in reasoning algorithms. It was proved by Yedidia et al. (2000,
2001) that belief propagation on loopy networks can only converge (when it does so) to stationary
points of the Bethe free energy. The Bethe approximation is only the simplest case of the more
general Kikuchi (1951) cluster variational method. The idea is to group the variables together in
clusters and perform exact computation in each cluster. One key question is then how to aggregate
the results, and how to account for the variables that are shared between clusters. Again, the idea
that everything should be counted exactly once is very important. This led to the proposal of region
graphs (Yedidia et al., 2001, 2005) and the associated counting numbers for regions. They are
given as a possible canonical version of graphs that can support Generalized Belief Propagation
(GBP) algorithms. The join-graphs accomplish the same thing. The edge-labeled join-graphs can
be described as region graphs where the regions are the clusters and the labels on the edges. The
tree-ness condition with respect to every variable ensures that there is no over-counting.

A very similar approach to ours, which is also based on join-graphs appeared independently by
McEliece and Yildirim (2002), and it is based on an information theoretic perspective.

296

JOIN-GRAPH PROPAGATION ALGORITHMS

Algorithm Iterative Join-Graph Propagation (IJGP)

Input An arc-labeled join-graph decomposition 〈JG, χ, ψ, θ〉, JG = (V,E) for B = 〈X,D,G, P 〉. Evi-
dence variables var(e).

Output An augmented graph whose nodes are clusters containing the original CPTs and the messages received
from neighbors. Approximations of P (Xi|e), ∀Xi ∈ X .

Denote by h(u,v) the message from vertex u to v, nev(u) the neighbors of u in JG excluding v.
cluster(u) = ψ(u) ∪ {h(v,u)|(v, u) ∈ E}.
clusterv(u) = cluster(u) excluding message from v to u.

• One iteration of IJGP:
For every node u in JG in some topological order d and back, do

1. Process observed variables:
Assign relevant evidence to all pi ∈ ψ(u) χ(u) := χ(u)− var(e), ∀u ∈ V

2. Compute individual functions:
Include in H(u,v) each function in clusterv(u) whose scope does not contain variables in elim(u, v).
Denote by A the remaining functions.

3. Compute and send to v the combined function: h(u,v) =
∑

elim(u,v)

∏
f∈A

f .
Send h(u,v) and the individual functions H(u,v) to node v.

Endfor
• Compute an approximation of P (Xi|e):

For every Xi ∈ X let u be a vertex in JG such that Xi ∈ χ(u).
Compute P (Xi, e) = α

∑
χ(u)−{Xi}

(
∏

f∈cluster(u)
f)

Figure 13: Algorithm Iterative Join-Graph Propagation (IJGP).

4.2 Algorithm IJGP

Applying CTE iteratively to minimal edge-labeled join-graphs yields our algorithm Iterative Join-
Graph Propagation (IJGP) described in Figure 13. One iteration of the algorithm applies message-
passing in a topological order over the join-graph, forward and back. When node u sends a message
(or messages) to a neighbor node v it operates on all the CPTs in its cluster and on all the messages
sent from its neighbors excluding the ones received from v. First, all individual functions that share
no variables with the eliminator are collected and sent to v. All the rest of the functions are combined
in a product and summed over the eliminator between u and v.

Based on the results by Lauritzen and Spiegelhalter (1988) and Larrosa, Kask, and Dechter
(2001) it can be shown that:

THEOREM 5 1. If IJGP is applied to a join-tree decomposition it reduces to join-tree cluster-
ing, and therefore it is guaranteed to compute the exact beliefs in one iteration.

2. The time complexity of one iteration of IJGP is O(deg · (n + N) · dw
∗+1) and its space

complexity is O(N · dθ), where deg is the maximum degree of a node in the join-graph, n
is the number of variables, N is the number of nodes in the graph decomposition, d is the
maximum domain size, w∗ is the maximum cluster size and θ is the maximum label size.

For proof, see the properties of CTE presented by Kask et al. (2005).

297

MATEESCU, KASK, GOGATE & DECHTER

A

B C

a)

A

AB ABC

b)

A

AB ABC

c)

A A

B

A

AB

2 1

3

2 1

3

Figure 14: a) A belief network; b) A dual join-graph with singleton labels; c) A dual join-graph
which is a join-tree.

The special case of Iterative Belief Propagation Iterative belief propagation (IBP) is an itera-
tive application of Pearl’s algorithm that was defined for poly-trees (Pearl, 1988), to any Bayesian
network. We will describe IBP as an instance of join-graph propagation over a dual join-graph.

DEFINITION 11 (dual graphs, dual join-graphs) Given a set of functions F = {f1, . . . , fl} over
scopes S1, . . . , Sl, the dual graph of F is a graph DG = (V,E, L) that associates a node with
each function, namely V = F and an edge connects any two nodes whose function’s scope share a
variable, E = {(fi, fj)|Si ∩ Sj
= φ}. L is a set of labels for the edges, each edge being labeled
by the shared variables of its nodes, L = {lij = Si ∩ Sj |(i, j) ∈ E}. A dual join-graph is an edge-
labeled edge subgraph of DG that satisfies the connectedness property. A minimal dual join-graph
is a dual join-graph for which none of the edge labels can be further reduced while maintaining the
connectedness property.

Interestingly, there may be many minimal dual join-graphs of the same dual graph. We will
define Iterative Belief Propagation on any dual join-graph. Each node sends a message over an edge
whose scope is identical to the label on that edge. Since Pearl’s algorithm sends messages whose
scopes are singleton variables only, we highlight minimal singleton-label dual join-graphs.

Proposition 3 Any Bayesian network has a minimal dual join-graph where each edge is labeled by
a single variable.

Proof: Consider a topological ordering of the nodes in the acyclic directed graph of the Bayesian
network d = X1, . . . , Xn. We define the following dual join-graph. Every node in the dual graph
D, associated with pi is connected to node pj , j < i if Xj ∈ pa(Xi). We label the edge between pj
and pi by variable Xj , namely lij = {Xj}. It is easy to see that the resulting edge-labeled subgraph
of the dual graph satisfies connectedness. (Take the original acyclic graph G and add to each node
its CPT family, namely all the other parents that precede it in the ordering. Since G already satisfies
connectedness so is the minimal graph generated.) The resulting labeled graph is a dual graph with
singleton labels. �

Example 5 Consider the belief network on 3 variables A,B,C with CPTs 1.P (C|A,B),
2.P (B|A) and 3.P (A), given in Figure 14a. Figure 14b shows a dual graph with singleton la-
bels on the edges. Figure 14c shows a dual graph which is a join-tree, on which belief propagation
can solve the problem exactly in one iteration (two passes up and down the tree).

298

JOIN-GRAPH PROPAGATION ALGORITHMS

Algorithm Iterative Belief Propagation (IBP)
Input: An edge-labeled dual join-graph DG = (V,E, L) for a Bayesian network B = 〈X,D,G, P 〉. Evi-
dence e.
Output: An augmented graph whose nodes include the original CPTs and the messages received from neigh-
bors. Approximations of P (Xi|e), ∀Xi ∈ X . Approximations of P (Fi|e), ∀Fi ∈ B.
Denote by: hv

u the message from u to v; ne(u) the neighbors of u in V ; nev(u) = ne(u) − {v}; luv the
label of (u, v) ∈ E; elim(u, v) = scope(u)− scope(v).
• One iteration of IBP

For every node u in DJ in a topological order and back, do:
1. Process observed variables

Assign evidence variables to the each pi and remove them from the labeled edges.
2. Compute and send to v the function:

h
v

u =
∑

elim(u,v)

(pu ·
∏

{h
u

i
,i∈nev(u)}

h
u

i)

Endfor
• Compute approximations of P (Fi|e), P (Xi|e):

For every Xi ∈ X let u be the vertex of family Fi in DJ ,
P (Fi, e) = α(

∏
h
u

i
,u∈ne(i)

hu

i) · pu;

P (Xi, e) = α
∑

scope(u)−{Xi}
P (Fi, e).

Figure 15: Algorithm Iterative Belief Propagation (IBP).

For completeness, we present algorithm IBP, which is a special case of IJGP, in Figure 15. It
is easy to see that one iteration of IBP is time and space linear in the size of the belief network. It
can be shown that when IBP is applied to a minimal singleton-labeled dual graph it coincides with
Pearl’s belief propagation applied directly to the acyclic graph representation. Also, when the dual
join-graph is a tree IBP converges after one iteration (two passes, up and down the tree) to the exact
beliefs.

4.3 Bounded Join-Graph Decompositions

Since we want to control the complexity of join-graph algorithms, we will define it on decompo-
sitions having bounded cluster size. If the number of variables in a cluster is bounded by i, the
time and space complexity of processing one cluster is exponential in i. Given a join-graph decom-
position D = 〈JG, χ, ψ, θ〉, the accuracy and complexity of the (iterative) join-graph propagation
algorithm depends on two different width parameters, defined next.

DEFINITION 12 (external and internal widths) Given an edge-labeled join-graph decomposition
D = 〈JG, χ, ψ, θ〉 of a network B = 〈X,D,G, P 〉, the internal width ofD ismaxv∈V |χ(v)|, while
the external width of D is the treewidth of JG as a graph.

Using this terminology we can now state our target decomposition more clearly. Given a graph
G, and a bounding parameter i we wish to find a join-graph decomposition D of G whose internal
width is bounded by i and whose external width is minimized. The bound i controls the complexity
of join-graph processing while the external width provides some measure of its accuracy and speed
of convergence, because it measures how close the join-graph is to a join-tree.

299

MATEESCU, KASK, GOGATE & DECHTER

Algorithm Join-Graph Structuring(i)

1. Apply procedure schematic mini-bucket(i).

2. Associate each resulting mini-bucket with a node in the join-graph, the variables of the
nodes are those appearing in the mini-bucket, the original functions are those in the mini-
bucket.

3. Keep the edges created by the procedure (called out-edges) and label them by the regular
separator.

4. Connect the mini-bucket clusters belonging to the same bucket in a chain by in-edges
labeled by the single variable of the bucket.

Figure 16: Algorithm Join-Graph Structuring(i).

Procedure Schematic Mini-Bucket(i)

1. Order the variables from X1 to Xn minimizing (heuristically) induced-width, and asso-
ciate a bucket for each variable.

2. Place each CPT in the bucket of the highest index variable in its scope.

3. For j = n to 1 do:
Partition the functions in bucket(Xj) into mini-buckets having at most i variables.
For each mini-bucket mb create a new scope-function (message) f where scope(f) =
{X|X ∈ mb} − {Xi} and place scope(f) in the bucket of its highest variable. Maintain
an edge between mb and the mini-bucket (created later) of f .

Figure 17: Procedure Schematic Mini-Bucket(i).

We can consider two classes of algorithms. One class is partition-based. It starts from a given
tree-decomposition and then partitions the clusters until the decomposition has clusters bounded by
i. An alternative approach is grouping-based. It starts from a minimal dual-graph-based join-graph
decomposition (where each cluster contains a single CPT) and groups clusters into larger clusters
as long as the resulting clusters do not exceed the given bound. In both methods one should attempt
to reduce the external width of the generated graph-decomposition. Our partition-based approach
inspired by the mini-bucket idea (Dechter & Rish, 1997) is as follows.

Given a bound i, algorithm Join-Graph Structuring(i) applies the procedure Schematic Mini-
Bucket(i), described in Figure 17. The procedure only traces the scopes of the functions that would
be generated by the full mini-bucket procedure, avoiding actual computation. The procedure ends
with a collection of mini-bucket trees, each rooted in the mini-bucket of the first variable. Each of
these trees is minimally edge-labeled. Then, in-edges labeled with only one variable are introduced,
and they are added only to obtain the running intersection property between branches of these trees.

Proposition 4 Algorithm Join-Graph Structuring(i) generates a minimal edge-labeled join-graph
decomposition having bound i.

Proof: The construction of the join-graph specifies the vertices and edges of the join-graph, as well
as the variable and function labels of each vertex. We need to demonstrate that 1) the connectedness
property holds, and 2) that edge-labels are minimal.

300

JOIN-GRAPH PROPAGATION ALGORITHMS

(b)(a)

CDB

CAB

BA

A

CB

P(D|B)

P(C|A,B)

P(A)

BA

P(B|A)

FCD

P(F|C,D)

GFE

EBF

BF

EF

P(E|B,F)

P(G|F,E)

B

CD

BF

A

F

G: (GFE)

E: (EBF) (EF)

F: (FCD) (BF)

D: (DB) (CD)

C: (CAB) (CB)

B: (BA) (AB) (B)

A: (A) (A)

Figure 18: Join-graph decompositions.

Connectedness property specifies that for any 2 vertices u and v, if vertices u and v contain
variable X , then there must be a path u,w1, . . . , wm, v between u and v such that every vertex on
this path contains variable X . There are two cases here. 1) u and v correspond to 2 mini-buckets
in the same bucket, or 2) u and v correspond to mini-buckets in different buckets. In case 1 we
have 2 further cases, 1a) variable X is being eliminated in this bucket, or 1b) variable X is not
eliminated in this bucket. In case 1a, each mini-bucket must contain X and all mini-buckets of the
bucket are connected as a chain, so the connectedness property holds. In case 1b, vertexes u and v
connect to their (respectively) parents, who in turn connect to their parents, etc. until a bucket in
the scheme where variable X is eliminated. All nodes along this chain connect variable X , so the
connectedness property holds. Case 2 resolves like case 1b.

To show that edge labels are minimal, we need to prove that there are no cycles with respect to
edge labels. If there is a cycle with respect to variable X , then it must involve at least one in-edge
(edge connecting two mini-buckets in the same bucket). This means variable X must be the variable
being eliminated in the bucket of this in-edge. That means variable X is not contained in any of the
parents of the mini-buckets of this bucket. Therefore, in order for the cycle to exist, another in-edge
down the bucket-tree from this bucket must contain X . However, this is impossible as this would
imply that variable X is eliminated twice. �

Example 6 Figure 18a shows the trace of procedure schematic mini-bucket(3) applied to the prob-
lem described in Figure 2a. The decomposition in Figure 18b is created by the algorithm graph
structuring. The only cluster partitioned is that of F into two scopes (FCD) and (BF), connected by
an in-edge labeled with F.

A range of edge-labeled join-graphs is shown in Figure 19. On the left side we have a graph
with smaller clusters, but more cycles. This is the type of graph IBP works on. On the right side
we have a tree decomposition, which has no cycles at the expense of bigger clusters. In between,
there could be a number of join-graphs where maximum cluster size can be traded for number of
cycles. Intuitively, the graphs on the left present less complexity for join-graph algorithms because
the cluster size is smaller, but they are also likely to be less accurate. The graphs on the right side

301

MATEESCU, KASK, GOGATE & DECHTER

A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A C

A AB BC

BE

C

C
DE CE

F
H

F
FG GH H

GI

A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A

AB BC

C
DE CE

H

F
F GH

GI

ABCDE

FGI

BCE

GHIJ

CDEF

FGH

BC

DE CE

F
F GH

GI

ABCDE

FGHI GHIJ

CDEF

CDE

F

GHI

more accuracy

less complexity

Figure 19: Join-graphs.

are computationally more complex, because of the larger cluster size, but they are likely to be more
accurate.

4.4 The Inference Power of IJGP

The question we address in this subsection is why propagating the messages iteratively should help.
Why is IJGP upon convergence superior to IJGP with one iteration and superior to MC? One clue
can be provided when considering deterministic constraint networks which can be viewed as “ex-
treme probabilistic networks”. It is known that constraint propagation algorithms, which are anal-
ogous to the messages sent by belief propagation, are guaranteed to converge and are guaranteed
to improve with iteration. The propagation scheme of IJGP works similar to constraint propagation
relative to the flat network abstraction of the probability distribution (where all non-zero entries
are normalized to a positive constant), and propagation is guaranteed to be more accurate for that
abstraction at least.

In the following we will shed some light on the IJGP’s behavior by making connections with
the well-known concept of arc-consistency from constraint networks (Dechter, 2003). We show
that: (a) if a variable-value pair is assessed as having a zero-belief, it remains as zero-belief in
subsequent iterations; (b) that any variable-value zero-beliefs computed by IJGP are correct; (c) in
terms of zero/non-zero beliefs, IJGP converges in finite time. We have also empirically investigated
the hypothesis that if a variable-value pair is assessed by IBP or IJGP as having a positive but very
close to zero belief, then it is very likely to be correct. Although the experimental results shown in
this paper do not contradict this hypothesis, some examples in more recent experiments by Dechter,
Bidyuk, Mateescu, and Rollon (2010) invalidate it.

302

JOIN-GRAPH PROPAGATION ALGORITHMS

4.4.1 IJGP AND ARC-CONSISTENCY

For any belief network we can define a constraint network that captures the assignments having
strictly positive probability. We will show a correspondence between IJGP applied to the belief
network and an arc-consistency algorithm applied to the constraint network. Since arc-consistency
algorithms are well understood, this correspondence not only proves the target claims, but may
provide additional insight into the behavior of IJGP. It justifies the iterative application of belief
propagation, and it also illuminates its “distance” from being complete.

DEFINITION 13 (constraint satisfaction problem) A Constraint Satisfaction Problem (CSP) is a
triple 〈X,D,C〉, where X = {X1, . . . , Xn} is a set of variables associated with a set of discrete-
valued domains D = {D1, . . . , Dn} and a set of constraints C = {C1, . . . , Cm}. Each constraint
Ci is a pair 〈Si, Ri〉 where Ri is a relation Ri ⊆ DSi

defined on a subset of variables Si ⊆ X and
DSi

is a Cartesian product of the domains of variables Si. The relation Ri denotes all compatible
tuples ofDSi

allowed by the constraint. A projection operator π creates a new relation, πSj
(Ri) =

{x|x ∈ DSj
and ∃y, y ∈ DSi\Sj

and x∪y ∈ Ri}, where Sj ⊆ Si. Constraints can be combined with
the join operator �, resulting in a new relation, Ri � Rj = {x|πSi

(x) ∈ Ri and πSj
(x) ∈ Rj}.

A solution is an assignment of values to all the variables x = (x1, . . . , xn), xi ∈ Di, such that
∀Ci ∈ C, xSi

∈ Ri. The constraint network represents its set of solutions, �i Ci.

Given a belief network B, we define a flattening of the Bayesian network into a constraint
network called flat(B), where all the zero entries in a probability table are removed from the corre-
sponding relation. The network flat(B) is defined over the same set of variables and has the same
set of domain values as B.

DEFINITION 14 (flat network) Given a Bayesian network B = 〈X,D,G, P 〉, the flat network
flat(B) is a constraint network, where the set of variables is X , and for every Xi ∈ X and its
CPT P (Xi|pa(Xi)) ∈ B we define a constraint RFi

over the family of Xi, Fi = {Xi} ∪ pa(Xi) as
follows: for every assignment x = (xi, xpa(Xi)) to Fi, (xi, xpa(Xi)) ∈ RFi

iff P (xi|xpa(Xi)) > 0.

THEOREM 6 Given a belief network B = 〈X,D,G, P 〉, where X = {X1, . . . , Xn}, for any tuple
x = (x1, . . . , xn): PB(x) > 0 ⇔ x ∈ sol(flat(B)), where sol(flat(B)) is the set of solutions of
the flat constraint network.

Proof: PB(x) > 0 ⇔ Πn
i=1P (xi|xpa(Xi)) > 0 ⇔ ∀i ∈ {1, . . . , n}, P (xi|xpa(Xi)) > 0 ⇔ ∀i ∈

{1, . . . , n}, (xi, xpa(Xi)) ∈ RFi
⇔ x ∈ sol(flat(B)). �

Constraint propagation is a class of polynomial time algorithms that are at the center of con-
straint processing techniques. They were investigated extensively in the past three decades and the
most well known versions are arc-, path-, and i-consistency (Dechter, 1992, 2003).

DEFINITION 15 (arc-consistency) (Mackworth, 1977) Given a binary constraint network
(X,D,C), the network is arc-consistent iff for every binary constraintRij ∈ C, every value v ∈ Di

has a value u ∈ Dj s.t. (v, u) ∈ Rij .

303

MATEESCU, KASK, GOGATE & DECHTER

Note that arc-consistency is defined for binary networks, namely the relations involve at most
two variables. When a binary constraint network is not arc-consistent, there are algorithms that
can process it and enforce arc-consistency. The algorithms remove values from the domains of
the variables that violate arc-consistency until an arc-consistent network is generated. There are
several versions of improved performance arc-consistency algorithms, however we will consider a
non-optimal distributed version, which we call distributed arc-consistency.

DEFINITION 16 (distributed arc-consistency algorithm) The algorithm distributed arc-
consistency is a message-passing algorithm over a constraint network. Each node is a variable,
and maintains a current set of viable values Di. Let ne(i) be the set of neighbors of Xi in the
constraint graph. Every node Xi sends a message to any node Xj ∈ ne(i), which consists of the
values in Xj’s domain that are consistent with the current Di, relative to the constraint Rji that
they share. Namely, the message that Xi sends to Xj , denoted by D

j
i , is:

Dj
i ← πj(Rji � Di) (1)

and in addition node i computes:

Di ← Di ∩ (�k∈ne(i) D
i
k) (2)

Clearly the algorithm can be synchronized into iterations, where in each iteration every node
computes its current domain based on all the messages received so far from its neighbors (Eq. 2), and
sends a new message to each neighbor (Eq. 1). Alternatively, Equations 1 and 2 can be combined.
The message Xi sends to Xj is:

Dj
i ← πj(Rji � Di �k∈ne(i) D

i
k) (3)

Next we will define a join-graph decomposition for the flat constraint network so that we can
establish a correspondence between the join-graph decomposition of a Bayesian network B and the
join-graph decomposition of its flat network flat(B). Note that for constraint networks, the edge
labeling θ can be ignored.

DEFINITION 17 (join-graph decomposition of the flat network) Given a join-graph decomposi-
tion D = 〈JG, χ, ψ, θ〉 of a Bayesian network B, the join-graph decomposition Dflat =
〈JG, χ, ψflat〉 of the flat constraint network flat(B) has the same underlying graph structure
JG = (V,E) as D, the same variable-labeling of the clusters χ, and the mapping ψflat maps
each cluster to relations corresponding to CPTs, namely Ri ∈ ψflat(v) iff CPT pi ∈ ψ(v).

The distributed arc-consistency algorithm of Definition 16 can be applied to the join-graph de-
composition of the flat network. In this case, the nodes that exchange messages are the clusters
(namely the elements of the set V of JG). The domain of a cluster of V is the set of tuples of the
join of the original relations in the cluster (namely the domain of cluster u is ��R∈ψflat(u) R). The
constraints are binary, and involve clusters of V that are neighbors. For two clusters u and v, their
corresponding values tu and tv (which are tuples representing full assignments to the variables in
the cluster) belong to the relation Ruv (i.e., (tu, tv) ∈ Ru,v) if the projections over the separator (or
labeling θ) between u and v are identical, namely πθ((u,v))tu = πθ((u,v))tv.

304

JOIN-GRAPH PROPAGATION ALGORITHMS

We define below the algorithm relational distributed arc-consistency (RDAC), that applies dis-
tributed arc-consistency to any join-graph decomposition of a constraint network. We call it re-
lational to emphasize that the nodes exchanging messages are in fact relations over the original
problem variables, rather than simple variables as is the case for arc-consistency algorithms.

DEFINITION 18 (relational distributed arc-consistency algorithm: RDAC over a join-graph)
Given a join-graph decomposition of a constraint network, let Ri and Rj be the relations of two
clusters (Ri and Rj are the joins of the respective constraints in each cluster), having the scopes Si

and Sj , such that Si ∩ Sj
= ∅. The message Ri sends to Rj denoted h(i,j) is defined by:

h(i,j) ← πSi∩Sj
(Ri) (4)

where ne(i) = {j|Si ∩Sj
= ∅} is the set of relations (clusters) that share a variable with Ri. Each
cluster updates its current relation according to:

Ri ← Ri � (�k∈ne(i) h(k,i)) (5)

Algorithm RDAC iterates until there is no change.

Equations 4 and 5 can be combined, just like in Equation 3. The message that Ri sends to Rj

becomes:

h(i,j) ← πSi∩Sj
(Ri � (�k∈ne(i) h(k,i))) (6)

To establish the correspondence with IJGP, we define the algorithm IJGP-RDAC that applies
RDAC in the same order of computation (schedule of processing) as IJGP.

DEFINITION 19 (IJGP-RDAC algorithm) Given the Bayesian network B = 〈X,D,G, P 〉, let
Dflat = 〈JG, χ, ψflat, θ〉 be any join-graph decomposition of the flat network flat(B). The al-
gorithm IJGP-RDAC is applied to the decomposition Dflat of flat(B), and can be described as
IJGP applied to D, with the following modifications:

1. Instead of
∏
, we use �.

2. Instead of
∑
, we use π.

3. At end end, we update the domains of variables by:

Di ← Di ∩ πXi
((�v∈ne(u) h(v,u)) � (�R∈ψ(u) R)) (7)

where u is the cluster containing Xi.

Note that in algorithm IJGP-RDAC, we could first merge all constraints in each cluster u into
a single constraint Ru =�R∈ψ(u) R. From our construction, IJGP-RDAC enforces arc-consistency
over the join-graph decomposition of the flat network. When the join-graph Dflat is a join-tree,
IJGP-RDAC solves the problem namely it finds all the solutions of the constraint network.

305

MATEESCU, KASK, GOGATE & DECHTER

Proposition 5 Given the join-graph decomposition Dflat = 〈JG, χ, ψflat, θ〉, JG = (V,E), of
the flat constraint network flat(B), corresponding to a given join-graph decomposition D of a
Bayesian network B = 〈X,D,G, P 〉, the algorithm IJGP-RDAC applied to Dflat enforces arc-
consistency over the join-graph Dflat.

Proof: IJGP-RDAC applied to the join-graph decomposition Dflat = 〈JG, χ, ψflat, θ〉, JG =
(V,E), is equivalent to applying RDAC of Definition 18 to a constraint network that has vertices V
as its variables and {�R∈ψ(u) R|u ∈ V } as its relations. �

Following the properties of convergence of arc-consistency, we can show that:

Proposition 6 Algorithm IJGP-RDAC converges in O(m · r) iterations, wherem is the number of
edges in the join-graph and r is the maximum size of a separator Dsep(u,v) between two clusters.

Proof: This follows from the fact messages (which are relations) between clusters in IJGP-RDAC
change monotonically, as tuples are only successively removed from relations on separators. Since
the size of each relation on a separator is bounded by r and there are m edges, no more than O(m·r)
iterations will be needed. �

In the following we will establish an equivalence between IJGP and IJGP-RDAC in terms of
zero probabilities.

Proposition 7 When IJGP and IJGP-RDAC are applied in the same order of computation, the
messages computed by IJGP are identical to those computed by IJGP-RDAC in terms of zero / non-
zero probabilities. That is, h(u,v)(x)
= 0 in IJGP iff x ∈ h(u,v) in IJGP-RDAC.

Proof: The proof is by induction. The base case is trivially true since messages h in IJGP are initial-
ized to a uniform distribution and messages h in IJGP-RDAC are initialized to complete relations.

The induction step. Suppose that hIJGP
(u,v) is the message sent from u to v by IJGP. We will show

that if hIJGP
(u,v) (x)
= 0, then x ∈ hIJGP−RDAC

(u,v) where hIJGP−RDAC
(u,v) is the message sent by IJGP-

RDAC from u to v. Assume that the claim holds for all messages received by u from its neighbors.
Let f ∈ clusterv(u) in IJGP and Rf be the corresponding relation in IJGP-RDAC, and t be an as-
signment of values to variables in elim(u, v). We have hIJGP

(u,v) (x)
= 0 ⇔
∑

elim(u,v)

∏
f f(x)
= 0

⇔∃t,
∏

f f(x, t)
= 0⇔∃t, ∀f, f(x, t)
= 0⇔∃t, ∀f, πscope(Rf)(x, t) ∈ Rf ⇔∃t, πelim(u,v)(�Rf

πscope(Rf)(x, t)) ∈ hIJGP−RDAC
(u,v) ⇔ x ∈ hIJGP−RDAC

(u,v) . �

Next we will show that IJGP computing marginal probability P (Xi = xi) = 0 is equivalent to
IJGP-RDAC removing xi from the domain of variable Xi.

Proposition 8 IJGP computes P (Xi = xi) = 0 iff IJGP-RDAC decides that xi
∈ Di.

Proof: According to Proposition 7 messages computed by IJGP and IJGP-RDAC are identical in
terms of zero probabilities. Let f ∈ cluster(u) in IJGP and Rf be the corresponding relation in
IJGP-RDAC, and t be an assignment of values to variables in χ(u)\Xi. We will show that when
IJGP computes P (Xi = xi) = 0 (upon convergence), then IJGP-RDAC computes xi
∈ Di. We

306

JOIN-GRAPH PROPAGATION ALGORITHMS

have P (Xi = xi) =
∑

X\Xi

∏
f f(xi) = 0 ⇔ ∀t,

∏
f f(xi, t) = 0 ⇔ ∀t, ∃f, f(xi, t) = 0 ⇔

∀t, ∃Rf , πscope(Rf)(xi, t)
∈ Rf ⇔ ∀t, (xi, t)
∈ (�Rf
Rf (xi, t))⇔ xi
∈ Di ∩ πXi

(�Rf
Rf (xi, t))

⇔ xi
∈ Di. Since arc-consistency is sound, so is the decision of zero probabilities. �

Next we will show that P (Xi = xi) = 0 computed by IJGP is sound.

THEOREM 7 Whenever IJGP finds P (Xi = xi) = 0, then the probability P (Xi) expressed by the
Bayesian network conditioned on the evidence is 0 as well.

Proof: According to Proposition 8, whenever IJGP finds P (Xi = xi) = 0, the value xi is removed
from the domain Di by IJGP-RDAC, therefore value xi ∈ Di is a no-good of the network flat(B),
and from Theorem 6 it follows that PB(Xi = xi) = 0. �

In the following we will show that the time it takes IJGP to find all P (Xi = xi) = 0 is bounded.

Proposition 9 IJGP finds all P (Xi = xi) = 0 in finite time, that is, there exists a number k, such
that no P (Xi = xi) = 0 will be found after k iterations.

Proof: This follows from the fact that the number of iterations it takes for IJGP to compute P (Xi =
xi) = 0 is exactly the same number of iterations IJGP-RDAC takes to remove xi from the domain
Di (Proposition 7 and Proposition 8), and the fact the IJGP-RDAC runtime is bounded (Proposition
6). �

Previous results also imply that IJGP is monotonic with respect to zeros.

Proposition 10 Whenever IJGP finds P (Xi = xi) = 0, it stays 0 during all subsequent iterations.

Proof: Since we know that relations in IJGP-RDAC are monotonically decreasing as the algorithm
progresses, it follows from the equivalence of IJGP-RDAC and IJGP (Proposition 7) that IJGP is
monotonic with respect to zeros. �

4.4.2 A FINITE PRECISION PROBLEM

On finite precision machines there is the danger that an underflow can be interpreted as a zero
value. We provide here a warning that an implementation of belief propagation should not allow
the creation of zero values by underflow. We show an example in Figure 20 where IBP’s messages
converge in the limit (i.e., in an infinite number of iterations), but they do not stabilize in any finite
number of iterations. If all the nodes Hk are set to value 1, the belief for any of the Xi variables as a
function of iteration is given in the table in Figure 20. After about 300 iterations, the finite precision
of our computer is not able to represent the value for Bel(Xi = 3), and this appears to be zero,
yielding the final updated belief (.5, .5, 0), when in fact the true updated belief should be (0, 0, 1).
Notice that (.5, .5, 0) cannot be regarded as a legitimate fixed point for IBP. Namely, if we would
initialize IBP with the values (.5, .5, 0), then the algorithm would maintain them, appearing to have
a fixed point, but initializing IBP with zero values cannot be expected to be correct. When we

307

MATEESCU, KASK, GOGATE & DECHTER

X1

X2

X3H1

H2

H3

.1

.45

.45

P (Xi)

3

2

1

Xi

0……1

3

1

2

Xj

1

1

1

P (Hk | Xi , Xj)

31

2

1

Xi

1

1

Hk

100
True
belief

0.5.5300

1e-260……200

1e-129……100

.49986

.49721

.45

Bel(Xi = 2)

.00027

.00545

.1

Bel(Xi = 3)

.499863

.49721

.45

Bel(Xi = 1)

2

1

#iterPrior for Xi

CPT for Hk

Figure 20: Example of a finite precision problem.

initialize with zeros we forcibly introduce determinism in the model, and IBP will always maintain
it afterwards.

However, this example does not contradict our theory because, mathematically, Bel(Xi = 3)
never becomes a true zero, and IBP never reaches a quiescent state. The example shows that a close
to zero belief network can be arbitrarily inaccurate. In this case the inaccuracy seems to be due to
the initial prior belief which are so different from the posterior ones.

4.4.3 ACCURACY OF IBP ACROSS BELIEF DISTRIBUTION

We present an empirical evaluation of the accuracy of IBP’s prediction for the range of belief distri-
bution from 0 to 1. These results also extend to IJGP. In the previous section, we proved that zero
values inferred by IBP are correct, and we wanted to test the hypothesis that this property extends
to ε small beliefs (namely, that are very close to zero). That is, if IBP infers a posterior belief close
to zero, then it is likely to be correct. The results presented in this paper seem to support the hy-
pothesis, however new experiments by Dechter et al. (2010) show that it is not true in general. We
do not have yet a good characterization of the cases when the hypothesis is confirmed.

To test this hypothesis, we computed the absolute error of IBP per intervals of [0, 1]. For a given
interval [a, b], where 0 ≤ a < b ≤ 1, we use measures inspired from information retrieval: Recall
Absolute Error and Precision Absolute Error.

Recall is the absolute error averaged over all the exact posterior beliefs that fall into the interval
[a, b]. For Precision, the average is taken over all the approximate posterior belief values computed
by IBP to be in the interval [a, b]. Intuitively, Recall([a,b]) indicates how far the belief computed
by IBP is from the exact, when the exact is in [a, b]; Precision([a,b]) indicates how far the exact is
from IBP’s prediction, when the value computed by IBP is in [a, b].

Our experiments show that the two measures are strongly correlated. We also show the his-
tograms of distribution of belief for each interval, for the exact and for IBP, which are also strongly
correlated. The results are given in Figures 21 and 22. The left Y axis corresponds to the histograms
(the bars), the right Y axis corresponds to the absolute error (the lines).

We present results for two classes of problems: coding networks and grid network. All problems
have binary variables, so the graphs are symmetric about 0.5 and we only show the interval [0, 0.5].
The number of variables, number of iterations and induced width w* are reported for each graph.

308

JOIN-GRAPH PROPAGATION ALGORITHMS

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

noise = 0.60

0

0.01

0.02

0.03

0.04

0.05

A
b

so
lu

te
 E

rr
o

r

%

%

%

%

%

%

%

%

%

%

%

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

noise = 0.40

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%
0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

noise = 0.20

P
er

ce
n

ta
g

e
Exact Histogram IBP Histogram Recall Abs. Error Precision Abs. Error

Figure 21: Coding, N=200, 1000 instances, w*=15.
0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

evidence = 10

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

evidence = 20

0

0.001

0.002

0.003

0.004

0.005

A
b

so
lu

te
 E

rr
o

r

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

evidence = 0

P
er

ce
n

ta
g

e

Exact Histogram IBP Histogram Recall Abs. Error Precision Abs. Error

Figure 22: 10x10 grids, 100 instances, w*=15.

Coding networks IBP is famously known to have impressive performance on coding networks.
We tested on linear block codes, with 50 nodes per layer and 3 parent nodes. Figure 21 shows the
results for three different values of channel noise: 0.2, 0.4 and 0.6. For noise 0.2, all the beliefs
computed by IBP are extreme. The Recall and Precision are very small, of the order of 10−11. So,
in this case, all the beliefs are very small (ε small) and IBP is able to infer them correctly, resulting
in almost perfect accuracy (IBP is indeed perfect in this case for the bit error rate). When the noise
is increased, the Recall and Precision tend to get closer to a bell shape, indicating higher error for
values close to 0.5 and smaller error for extreme values. The histograms also show that less belief
values are extreme as the noise is increased, so all these factors account for an overall decrease
in accuracy as the channel noise increases. These networks are examples with a large number of
ε-small probabilities and IBP is able to infer them correctly (absolute error is small).

Grid networks We present results for grid networks in Figure 22. Contrary to the case of coding
networks, the histograms show higher concentration of beliefs around 0.5. However, the accuracy is
still very good for beliefs close to zero. The absolute error peaks close to 0 and maintains a plateau,
as evidence is increased, indicating less accuracy for IBP.

5. Experimental Evaluation

As we anticipated in the summary of Section 3, and as can be clearly seen now by the structuring
of a bounded join-graph, there is a close relationship between the mini-clustering algorithm MC(i)

309

MATEESCU, KASK, GOGATE & DECHTER

Absolute error Relative error KL distance Time
IBP IJGP IBP IJGP IBP IJGP IBP IJGP

#it #evid i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8
0 0.02988 0.03055 0.02623 0.02940 0.06388 0.15694 0.05677 0.07153 0.00213 0.00391 0.00208 0.00277 0.0017 0.0036 0.0058 0.0295

1 5 0.06178 0.04434 0.04201 0.04554 0.15005 0.12340 0.12056 0.11154 0.00812 0.00582 0.00478 0.00558 0.0013 0.0040 0.0052 0.0200
10 0.08762 0.05777 0.05409 0.05910 0.23777 0.18071 0.14278 0.15686 0.01547 0.00915 0.00768 0.00899 0.0013 0.0040 0.0036 0.0121
0 0.00829 0.00636 0.00592 0.00669 0.01726 0.01326 0.01239 0.01398 0.00021 0.00014 0.00015 0.00018 0.0066 0.0145 0.0226 0.1219

5 5 0.05182 0.00886 0.00886 0.01123 0.12589 0.01967 0.01965 0.02494 0.00658 0.00024 0.00026 0.00044 0.0060 0.0120 0.0185 0.0840
10 0.08039 0.01155 0.01073 0.01399 0.21781 0.03014 0.02553 0.03279 0.01382 0.00055 0.00042 0.00073 0.0048 0.0100 0.0138 0.0536
0 0.00828 0.00584 0.00514 0.00495 0.01725 0.01216 0.01069 0.01030 0.00021 0.00012 0.00010 0.00010 0.0130 0.0254 0.0436 0.2383

10 5 0.05182 0.00774 0.00732 0.00708 0.12590 0.01727 0.01628 0.01575 0.00658 0.00018 0.00017 0.00016 0.0121 0.0223 0.0355 0.1639
10 0.08040 0.00892 0.00808 0.00855 0.21782 0.02101 0.01907 0.02005 0.01382 0.00028 0.00024 0.00029 0.0109 0.0191 0.0271 0.1062

0 0.04044 0.04287 0.03748 0.08811 0.09342 0.08117 0.00403 0.00435 0.00369 0.0159 0.0173 0.0552
MC 5 0.05303 0.05171 0.04250 0.12375 0.11775 0.09596 0.00659 0.00636 0.00477 0.0146 0.0158 0.0532

10 0.06033 0.05489 0.04266 0.14702 0.13219 0.10074 0.00841 0.00729 0.00503 0.0119 0.0143 0.0470

Table 4: Random networks: N=50, K=2, C=45, P=3, 100 instances, w*=16.

and IJGP(i). In particular, one iteration of IJGP(i) is similar to MC(i). MC sends messages up and
down along the clusters that form a set of trees. IJGP has additional connections that allow more
interaction between the mini-clusters of the same cluster. Since this is a cyclic structure, iterating is
facilitated, with its virtues and drawbacks.s

In our evaluation of IJGP(i), we focus on two different aspects: (a) the sensitivity of parametric
IJGP(i) to its i-bound and to the number of iterations; (b) a comparison of IJGP(i) with publicly
available state-of-the-art approximation schemes.

5.1 Effect of i-bound and Number of Iterations

We tested the performance of IJGP(i) on random networks, on M-by-M grids, on the two bench-
mark CPCS files with 54 and 360 variables, respectively and on coding networks. On each type
of networks, we ran IBP, MC(i) and IJGP(i), while giving IBP and IJGP(i) the same number of
iterations.

We use the partitioning method described in Section 4.3 to construct a join-graph. To determine
the order of message computation, we recursively pick an edge (u,v), such that node u has the fewest
incoming messages missing.

For each network except coding, we compute the exact solution and compare the accuracy
using the absolute and relative error, as before, as well as the KL (Kullback-Leibler) distance -
Pexact(X = a) · log(Pexact(X = a)/Papproximation(X = a)) averaged over all values, all variables
and all problems. For coding networks we report the Bit Error Rate (BER) computed as described
in Section 3.2. We also report the time taken by each algorithm.

The random networks were generated using parameters (N,K,C,P), where N is the number of
variables, K is their domain size, C is the number of conditional probability tables (CPTs) and P
is the number of parents in each CPT. Parents in each CPT are picked randomly and each CPT
is filled randomly. In grid networks, N is a square number and each CPT is filled randomly. In
each problem class, we also tested different numbers of evidence variables. As before, the coding
networks are from the class of linear block codes, where σ is the channel noise level. Note that we
are limited to relatively small and sparse problem instances because our evaluation measures are
based on comparing against exact figures.

Random networks results for networks having N=50, K=2, C=45 and P=3 are given in Table 4
and in Figures 23 and 24. For IJGP(i) and MC(i) we report 3 different values of i-bound: 2, 5, 8. For
IBP and IJGP(i) we report results for 3 different numbers of iterations: 1, 5, 10. We report results

310

JOIN-GRAPH PROPAGATION ALGORITHMS

Random networks, N=50, K=2, P=3, evid=5, w*=16

i-bound

0 1 2 3 4 5 6 7 8 9 10 11

K
L

di
st

an
ce

0.000

0.002

0.004

0.006

0.008

0.010
IJGP 1 it
IJGP 2 it
IJGP 3 it
IJGP 5 it
IJGP 10 it
IJGP 15 it
IJGP 20 it
MC
IBP 1 it
IBP 2 it
IBP 3 it
IBP 5 it
IBP 10 it

(a) Performance vs. i-bound.

Random networks, N=50, K=2, P=3, evid=5, w*=16

Number of iterations

0 5 10 15 20 25 30 35

K
L

di
st

an
ce

0.000

0.002

0.004

0.006

0.008

0.010
IBP
IJGP(2)
IJGP(10)

(b) Convergence with iterations.

Figure 23: Random networks: KL distance.

for 3 different numbers of evidence: 0, 5, 10. From Table 4 and Figure 23a we see that IJGP(i)
is always better than IBP (except when i=2 and number of iterations is 1), sometimes by an order
of magnitude, in terms of absolute error, relative error and KL distance. IBP rarely changes after 5
iterations, whereas IJGP(i)’s solution can be improved with more iterations (up to 15-20). As theory
predicted, the accuracy of IJGP(i) for one iteration is about the same as that of MC(i). But IJGP(i)
improves as the number of iterations increases, and is eventually better than MC(i) by as much as
an order of magnitude, although it clearly takes more time, especially when the i-bound is large.

311

MATEESCU, KASK, GOGATE & DECHTER

Random networks, N=50, K=2, P=3, evid=5, w*=16

i-bound

0 1 2 3 4 5 6 7 8 9 10 11

T
im

e
(s

ec
on

ds
)

0.0

0.2

0.4

0.6

0.8

1.0
IJPG 1 it
IJGP 2 it
IJGP 3 it
IJGP 5 it
IJGP 10 it
IJGP 15 it
IJGP 20 it
MC
IBP 1 it
IBP 20 it

Figure 24: Random networks: Time.

Absolute error Relative error KL distance Time
IBP IJGP IBP IJGP IBP IJGP IBP IJGP

#it #evid i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8
0 0.03524 0.05550 0.04292 0.03318 0.08075 0.13533 0.10252 0.07904 0.00289 0.00859 0.00602 0.00454 0.0010 0.0053 0.0106 0.0426

1 5 0.05375 0.05284 0.04012 0.03661 0.16380 0.13225 0.09889 0.09116 0.00725 0.00802 0.00570 0.00549 0.0016 0.0041 0.0092 0.0315
10 0.07094 0.05453 0.04304 0.03966 0.23624 0.14588 0.12492 0.12202 0.01232 0.00905 0.00681 0.00653 0.0013 0.0038 0.0072 0.0256
0 0.00358 0.00393 0.00325 0.00284 0.00775 0.00849 0.00702 0.00634 0.00005 0.00006 0.00007 0.00010 0.0049 0.0152 0.0347 0.1462

5 5 0.03224 0.00379 0.00319 0.00296 0.11299 0.00844 0.00710 0.00669 0.00483 0.00006 0.00007 0.00010 0.0053 0.0131 0.0309 0.1127
10 0.05503 0.00364 0.00316 0.00314 0.19403 0.00841 0.00756 0.01313 0.00994 0.00006 0.00009 0.00019 0.0036 0.0127 0.0271 0.0913
0 0.00352 0.00352 0.00232 0.00136 0.00760 0.00760 0.00502 0.00293 0.00005 0.00005 0.00003 0.00001 0.0090 0.0277 0.0671 0.2776

10 5 0.03222 0.00357 0.00248 0.00149 0.11295 0.00796 0.00549 0.00330 0.00483 0.00005 0.00003 0.00002 0.0096 0.0246 0.0558 0.2149
10 0.05503 0.00347 0.00239 0.00141 0.19401 0.00804 0.00556 0.00328 0.00994 0.00005 0.00003 0.00001 0.0090 0.0223 0.0495 0.1716

0 0.05827 0.04036 0.01579 0.13204 0.08833 0.03440 0.00650 0.00387 0.00105 0.0106 0.0142 0.0382
MC 5 0.05973 0.03692 0.01355 0.13831 0.08213 0.03001 0.00696 0.00348 0.00099 0.0102 0.0130 0.0342

10 0.05866 0.03416 0.01075 0.14120 0.07791 0.02488 0.00694 0.00326 0.00075 0.0099 0.0116 0.0321

Table 5: 9x9 grid, K=2, 100 instances, w*=12.

Figure 23a shows a comparison of all algorithms with different numbers of iterations, using the
KL distance. Because the network structure changes with different i-bounds, we do not necessarily
see monotonic improvement of IJGP with i-bound for a given number of iterations (as is the case
with MC). Figure 23b shows how IJGP converges with more iterations to a smaller KL distance
than IBP. As expected, the time taken by IJGP (and MC) varies exponentially with the i-bound (see
Figure 24).

Grid networks results with networks of N=81, K=2, 100 instances are very similar to those of
random networks. They are reported in Table 5 and in Figure 25, where we can see the impact
of having evidence (0 and 5 evidence variables) on the algorithms. IJGP at convergence gives the
best performance in both cases, while IBP’s performance deteriorates with more evidence and is
surpassed by MC with i-bound 5 or larger.

CPCS networks results with CPCS54 and CPCS360 are given in Table 6 and Figure 26, and are
even more pronounced than those of random and grid networks. When evidence is added, IJGP(i)
is more accurate than MC(i), which is more accurate than IBP, as can be seen in Figure 26a.

Coding networks results are given in Table 7. We tested on large networks of 400 variables, with
treewidth w*=43, with IJGP and IBP set to run 30 iterations (this is more than enough to ensure

312

JOIN-GRAPH PROPAGATION ALGORITHMS

Grid network, N=81, K=2, evid=5, w*=12

i-bound

0 1 2 3 4 5 6 7 8 9 10 11

K
L

di
st

an
ce

0.000

0.002

0.004

0.006

0.008

0.010
IJGP 1 it
IJGP 2 it
IJGP 3 it
IJGP 5 it
IJGP 10 it
MC
IBP 1 it
IBP 2 it
IBP 3 it
IBP 5 it
IBP 10 it

(a) Performance vs. i-bound.

Grid network, N=81, K=2, evid=5, w*=12

i-bound

1 2 3 4 5 6 7 8 9 10 11

K
L

di
st

an
ce

0

1e-5

2e-5

3e-5

4e-5

5e-5

6e-5

7e-5
IJGP 20 iterations
 (at convergence)

(b) Fine granularity for KL.

Figure 25: Grid 9x9: KL distance.

convergence). IBP is known to be very accurate for this class of problems and it is indeed better
than MC. However we notice that IJGP converges to slightly smaller BER than IBP even for small
values of the i-bound. Both the coding network and CPCS360 show the scalability of IJGP for large
size problems. Notice that here the anytime behavior of IJGP is not clear.

In summary, we see that IJGP is almost always superior to both IBP and MC(i) and is sometimes
more accurate by several orders of magnitude. One should note that IBP cannot be improved with
more time, while MC(i) requires a large i-bound for many hard and large networks to achieve
reasonable accuracy. There is no question that the iterative application of IJGP is instrumental to its
success. In fact, IJGP(2) in isolation appears to be the most cost-effective variant.

313

MATEESCU, KASK, GOGATE & DECHTER

Absolute error Relative error KL distance Time
IBP IJGP IBP IJGP IBP IJGP IBP IJGP

#it #evid i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8

CPCS54
0 0.01324 0.03747 0.03183 0.02233 0.02716 0.08966 0.07761 0.05616 0.00041 0.00583 0.00512 0.00378 0.0097 0.0137 0.0146 0.0275

1 5 0.02684 0.03739 0.03124 0.02337 0.05736 0.09007 0.07676 0.05856 0.00199 0.00573 0.00493 0.00366 0.0072 0.0094 0.0087 0.0169
10 0.03915 0.03843 0.03426 0.02747 0.08475 0.09156 0.08246 0.06687 0.00357 0.00567 0.00506 0.00390 0.005 0.0047 0.0052 0.0115
0 0.00031 0.00016 0.00123 0.00110 0.00064 0.00033 0.00255 0.00225 7.75e-7 0.00000 0.00002 0.00001 0.0371 0.0334 0.0384 0.0912

5 5 0.01874 0.00058 0.00092 0.00098 0.04067 0.00124 0.00194 0.00203 0.00161 0.00000 0.00001 0.00001 0.0337 0.0215 0.0260 0.0631
10 0.03348 0.00101 0.00139 0.00144 0.07302 0.00215 0.00298 0.00302 0.00321 0.00001 0.00003 0.00002 0.0290 0.0144 0.0178 0.0378
0 0.00031 0.00009 0.00014 0.00015 0.00064 0.00018 0.00029 0.00031 7.75e-7 0.0000 0.00000 0.00000 0.0736 0.0587 0.0667 0.1720

10 5 0.01874 0.00037 0.00034 0.00038 0.04067 0.00078 0.00071 0.00080 0.00161 0.00000 0.00000 0.00000 0.0633 0.0389 0.0471 0.1178
10 0.03348 0.00058 0.00051 0.00057 0.07302 0.00123 0.00109 0.00122 0.00321 4.0e-6 3.0e-6 4.0e-6 0.0575 0.0251 0.0297 0.0723
0 0.02721 0.02487 0.01486 0.05648 0.05128 0.03047 0.00218 0.00171 0.00076 0.0144 0.0125 0.0333

MC 5 0.02702 0.02522 0.01760 0.05687 0.05314 0.03713 0.00201 0.00186 0.00098 0.0103 0.0126 0.0346
10 0.02825 0.02504 0.01600 0.06002 0.05318 0.03409 0.00216 0.00177 0.00091 0.0094 0.0090 0.0295

CPCS360
1 10 0.26421 0.14222 0.13907 0.14334 7.78167 2119.20 2132.78 2133.84 0.17974 0.09297 0.09151 0.09255 0.7172 0.5486 0.5282 0.4593

20 0.26326 0.12867 0.12937 0.13665 370.444 28720.38 30704.93 31689.59 0.17845 0.08212 0.08269 0.08568 0.6794 0.5547 0.5250 0.4578
10 10 0.01772 0.00694 0.00121 0.00258 1.06933 6.07399 0.01005 0.04330 0.017718 0.00203 0.00019 0.00116 7.2205 4.7781 4.5191 3.7906

20 0.02413 0.00466 0.00115 0.00138 62.99310 26.04308 0.00886 0.01353 0.02027 0.00118 0.00015 0.00036 7.0830 4.8705 4.6468 3.8392
20 10 0.01772 0.00003 3.0e-6 3.0e-6 1.06933 0.00044 8.0e-6 7.0e-6 0.01771 5.0e-6 0.0 0.0 14.4379 9.5783 9.0770 7.6017

20 0.02413 0.00001 9.0e-6 9.0e-6 62.9931 0.00014 0.00013 0.00004 0.02027 0.0 0.0 0.0 13.6064 9.4582 9.0423 7.4453
MC 10 0.03389 0.01984 0.01402 0.65600 0.20023 0.11990 0.01299 0.00590 0.00390 2.8077 2.7112 2.5188

20 0.02715 0.01543 0.00957 0.81401 0.17345 0.09113 0.01007 0.00444 0.00234 2.8532 2.7032 2.5297

Table 6: CPCS54 50 instances, w*=15; CPCS360 10 instances, w*=20.

Bit Error Rate
i-bound

σ 2 4 6 8 10 IBP
0.22 IJGP 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005

MC 0.00501 0.00800 0.00586 0.00462 0.00392
0.28 IJGP 0.00062 0.00062 0.00062 0.00062 0.00062 0.00064

MC 0.02170 0.02968 0.02492 0.02048 0.01840
0.32 IJGP 0.00238 0.00238 0.00238 0.00238 0.00238 0.00242

MC 0.04018 0.05004 0.04480 0.03878 0.03558
0.40 IJGP 0.01202 0.01188 0.01194 0.01210 0.01192 0.01220

MC 0.08726 0.09762 0.09272 0.08766 0.08334
0.51 IJGP 0.07664 0.07498 0.07524 0.07578 0.07554 0.07816

MC 0.15396 0.16048 0.15710 0.15452 0.15180
0.65 IJGP 0.19070 0.19056 0.19016 0.19030 0.19056 0.19142

MC 0.21890 0.22056 0.21928 0.21904 0.21830
Time

IJGP 0.36262 0.41695 0.86213 2.62307 9.23610 0.019752
MC 0.25281 0.21816 0.31094 0.74851 2.33257

Table 7: Coding networks: N=400, P=4, 500 instances, 30 iterations, w*=43.

5.2 Comparing IJGP with Other Algorithms

In this section we provide a comparison of IJGP with state-of-the-art publicly available schemes.
The comparison is based on a recent evaluation of algorithms performed at the Uncertainty in AI
2008 conference4. We will present results on solving the belief updating task (also called the task
of computing posterior node marginals - MAR). We first give a brief overview of the schemes that
we experimented and compared with.

1. EDBP - Edge Deletion for Belief Propagation

4. Complete results are available at http://graphmod.ics.uci.edu/uai08/Evaluation/Report.

314

JOIN-GRAPH PROPAGATION ALGORITHMS

CPCS360, evid=10, w*=20

i-bound

0 1 2 3 4 5 6 7 8 9 10 11

K
L

di
st

an
ce

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
IJGP 1 it
IJGP 10 it
IJGP 20 it
MC
IBP 1 it
IBP 10 it
IBP 20 it

(a) Performance vs. i-bound.

CPCS360, evid=10, w*=20

i-bound

1 2 3 4 5 6 7 8 9 10 11

K
L

di
st

an
ce

0

1e-6

2e-6

3e-6

4e-6

5e-6

6e-6
IJGP 20 iterations
 (at convergence)

(b) Fine granularity for KL.

Figure 26: CPCS360: KL distance.

EDBP (Choi & Darwiche, 2006a, 2006b) is an approximation algorithm for Belief Updating.
It solves exactly a simplified version of the original problem, obtained by deleting some of
the edges of the problem graph. Edges to be deleted are selected based on two criteria:
quality of approximation and complexity of computation (tree-width reduction). Information
loss from lost dependencies is compensated for by introducing auxiliary network parameters.
This method corresponds to Iterative Belief Propagation (IBP) when enough edges are deleted
to yield a poly-tree, and corresponds to generalized BP otherwise.

2. TLSBP - A truncated Loop series Belief propagation algorithm

315

MATEESCU, KASK, GOGATE & DECHTER

TLSBP is based on the loop series expansion formula of Chertkov and Chernyak (2006) which
specifies a series of terms that need to be added to the solution output by BP so that the exact
solution can be recovered. This series is basically a sum over all so-called generalized loops in
the graph. Unfortunately, because the number of these generalized loops can be prohibitively
large, the series is of little value. The idea in TLSBP is to truncate the series by decomposing
all generalized loops into simple and smaller loops, thus limiting the number of loops to be
summed. In our evaluation, we used an implementation of TLSBP available from the work
of Gomez, Mooji, and Kappen (2007). The implementation can handle binary networks only.

3. EPIS - Evidence Pre-propagation Importance Sampling

EPIS (Yuan & Druzdzel, 2003) is an importance sampling algorithm for Belief Updating. It is
well known that sampling algorithms perform poorly when presented with unlikely evidence.
However, when samples are weighted by an importance function, good approximation can be
obtained. This algorithm computes an approximate importance function using loopy belief
propagation and ε-cutoff heuristic. We used an implementation of EPIS available from the
authors. The implementation works on Bayesian networks only.

4. IJGP - Iterative Join-Graph Propagation

In the evaluation, IJGP(i) was first run with i=2, until convergence, then with i=3, until con-
vergence, etc. until i= treewidth (when i-bound=treewidth, the join-graph becomes a join-tree
and IJGP becomes exact). As preprocessing, the algorithm performed SAT-based variable do-
main pruning by converting zero probabilities in the problem to a SAT problem and perform-
ing singleton-consistency enforcement. Because the problem size may reduce substantially,
in some cases, this preprocessing step may have a significant impact on the time-complexity
of IJGP, amortized over the increasing i-bound. However, for a given i-bound, this step im-
proves the accuracy of IJGP only marginally.

5. SampleSearch

SampleSearch (Gogate & Dechter, 2007) is a specialized importance sampling scheme for
graphical models that contain zero probabilities in their CPTs. On such graphical models,
importance sampling suffers from the rejection problem in that it generates a large number
of samples which have zero weight. SampleSearch circumvents the rejection problem by
sampling from the backtrack-free search space in which every assignment (sample) is guar-
anteed to have non-zero weight. The backtrack-free search space is constructed on the fly by
interleaving sampling with backtracking style search. Namely, when a sample is supposed
to be rejected because its weight is zero, the algorithm continues instead with systematic
backtracking search, until a non zero weight sample is found. For the evaluation version,
the importance distribution of SampleSearch was constructed from the output of IJGP with
i-bound of 3. For more information on how the importance distribution is constructed from
the output of IJGP, see the work by Gogate (2009).

The evaluation was conducted on the following benchmarks (see footnote 4 for details):

1. UAI06-MPE - from UAI-06, 57 instances, Bayesian networks (40 instances were used).

2. UAI06-PE - from UAI-06, 78 instances, Bayesian networks (58 instances were used).

316

JOIN-GRAPH PROPAGATION ALGORITHMS

WCSPs BN2O Grids Linkage Promedas UAI06-MPE UAI06-PE Relational
IJGP

√ √ √ √ √ √ √ √

EDBP
√ √ √ √ √ √ √ √

TLSBP
√ √ √ √

EPIS
√ √ √ √ √

SampleSearch
√ √ √ √ √ √ √ √

Table 8: Scope of our experimental study.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Sc
or

e

KL distance

Score vs KL distance
Score vs KL distance

Figure 27: Score as a function of KL distance.

3. Relational Bayesian networks - constructed from the Primula tool, 251 instances, binary vari-
ables, large networks with large tree-width, but with high levels of determinism (30 instances
were used).

4. Linkage networks - 22 instances, tree-width 20-35, Markov networks (5 instances were used).

5. Grids - from 12x12 to 50x50, 320 instances, treewidth 12-50.

6. BN2O networks - Two-layer Noisy-OR Bayesian networks, 18 instances, binary variables, up
to 55 variables, treewidth 24-27.

7. WCSPs - Weighted CSPs, 97 instances, Markov networks (18 instances were used).

8. Promedas - real-world medical diagnosis, 238 instances, tree-width 1-60, Markov networks
(46 instances were used).

Table 8 shows the scope of our experimental study. A
√

indicates that the solver was able to
handle the benchmark type and therefore evaluated on it while a lack of a

√
indicates otherwise.

We measure the performance of the algorithms in terms of a KL-distance based score. Formally,
the score of a solver on a problem instance is equal to 10−avgkld where avgkld is the average KL
distance between the exact marginal (which was computed using the UCLA Ace solver, see Chavira
& Darwiche, 2008) and the approximate marginal output by the solver. If a solver does not output a
solution, we consider its KL-distance to be ∞. A score lies between 0 and 1, with 1 indicating that
the solver outputs exact solution while 0 indicating that the solver either does not output a solution
or has infinite average KL distance. Figure 27 shows the score as a function of KL distance.

317

MATEESCU, KASK, GOGATE & DECHTER

In Figures 28-35 we report the results of experiments with each of the problem sets. Each
solver has a timeout of 20 minutes on each problem instance; when solving a problem, each solver
periodically outputs the best solution found so far. Using this, we can compute, for each solver, at
any point in time, the total sum of its scores over all problem instances in a particular set, called
SumScore(t). On the horizontal axis, we have the time and on the vertical axis, the SumScore(t).
The higher the curve of a solver is, the better (the higher the score).

In summary, we see that IJGP shows the best performance on the first four classes of networks
(UAI-MPE, UAI-PE, Relational and Linkage), it is tied with other algorithms on two classes (Grid
and BN2O), and is surpassed by EDBP on the last two classes (WCSPs and Promedas). EPIS and
SampleSearch, which are importance sampling schemes, are often inferior to IJGP and EDBP. In
theory, the accuracy of these importance sampling schemes should improve with time. However,
the rate of improvement is often unknown in practice. On the hard benchmarks that we evaluated
on, we found that this rate is quite small and therefore the improvement cannot be discerned from
the Figures. We discuss the results in detail below.

As mentioned earlier, TLSBP works only on binary networks (i.e., two variables per function)
and therefore it was not evaluated on WCSPs, Linkage, UAI06-MPE and UAI06-PE benchmarks.

The UAI-MPE and UAI-PE instances were used in the UAI 2006 evaluation of exact solvers (for
details see the report by Bilmes & Dechter, 2006). Exact marginals are available on 40 UAI-MPE
instances and 58 UAI-PE instances. The results for UAI-MPE and UAI-PE instances are shown
in Figures 28 and 29 respectively. IJGP is the best performing scheme on both benchmark sets
reaching a SumScore very close to the maximum possible value in both cases after about 2 minutes
of CPU time. EDBP and SampleSearch are second best in both cases.

Relational network instances are generated by grounding the relational Bayesian networks using
the Primula tool (Chavira, Darwiche, & Jaeger, 2006). Exact marginals are available only on 30
out of the submitted 251 instances. From Figure 30, we observe that IJGP’s SumScore steadily
increases with time and reaches a value very close to the maximum possible score of 30 after about
16 minutes of CPU time. SampleSearch is the second best performing scheme. EDBP, TLSBP and
EPIS perform quite poorly on these instances reaching the SumScore of 10, 13 and 13 respectively
after 20 minutes of CPU time.

The Linkage instances are generated by converting linkage analysis data into a Markov network
using the Superlink tool (Fishelson & Geiger, 2003). Exact marginals are available only on 5 out of
the 22 instances. The results are shown in Figure 31. After about one minute of CPU time, IJGP’s
SumScore is close to 5 which remains steady thereafter while EDBP only reaches a SumScore of 2
in 20 minutes. SampleSearch is the second best performing scheme while EDBP is third best.

The results on Grid networks are shown in Figure 32. The sink node of the grid is the evidence
node. The deterministic ratio p is a parameter specifying the fraction of nodes that are deterministic,
that is, whose values are determined given the values of their parents. The evaluation benchmark
set consists of 30 instances having p = 50%,75% and 90% with exact marginals available on 27
instances only. EPIS, IJGP, SampleSearch and EDBP are in a close tie on this network, while
TLSBP has the lowest performance. While hard to see, EPIS is just slightly the best performing
scheme, IJGP is the second best followed by SampleSearch and EDBP. On this instances IJGP’s
SumScore increases steadily with time.

The results on BN2O instances appear in Figure 33. This is again a very close tie, in this case
of all five algorithms. IJGP has a minuscule decrease of SumScore with time from 17.85 to 17.7.
Although in general an improvement in accuracy is expected for IJGP with higher i-bound, it is not

318

JOIN-GRAPH PROPAGATION ALGORITHMS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12 14 16 18 20

Su
m

 S
co

re

Time in minutes

Approximate Mar Problem Set uai06-mpe

SampleSearch IJGP EDBP EPIS

Figure 28: Results on UAI-MPE networks. TLSBP is not plotted because it cannot handle UAI-
MPE benchmarks.

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12 14 16 18 20

Su
m

 S
co

re

Time in minutes

Approximate Mar Problem Set uai06-pe

SampleSearch IJGP EDBP EPIS

Figure 29: Results on UAI-PE networks. TLSBP is not plotted because it cannot handle UAI-PE
benchmarks.

319

MATEESCU, KASK, GOGATE & DECHTER

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16 18 20

Su
m

 S
co

re

Time in minutes

Approximate Mar Problem Set Relational

SampleSearch
IJGP

EDBP
TLSBP

EPIS

Figure 30: Results on relational networks.

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16 18 20

Su
m

 S
co

re

Time in minutes

Approximate Mar Problem Set Linkage

SampleSearch IJGP EDBP

Figure 31: Results on Linkage networks. EPIS and TLSBP are not plotted because they cannot
handle Linkage networks.

320

JOIN-GRAPH PROPAGATION ALGORITHMS

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16 18 20

Su
m

 S
co

re

Time in minutes

Approximate Mar Problem Set Grids

SampleSearch
IJGP

EDBP
TLSBP

EPIS

Figure 32: Results on Grid networks.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16 18 20

Su
m

 S
co

re

Time in minutes

Approximate Mar Problem Set bn2o

SampleSearch
IJGP

EDBP
TLSBP

EPIS

Figure 33: Results on BN2O networks. All solvers except IJGP quickly converge to the maximum
possible score of 18 and are therefore indistinguishable in the Figure.

321

MATEESCU, KASK, GOGATE & DECHTER

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16 18 20

Su
m

 S
co

re

Time in minutes

Approximate Mar Problem Set WCSPs

SampleSearch IJGP EDBP

Figure 34: Results on WCSPs networks. EPIS and TLSBP are not plotted because they cannot
handle WCSPs.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16 18 20

Su
m

 S
co

re

Time in minutes

Approximate Mar Problem Set Promedas

SampleSearch IJGP EDBP TLSBP

Figure 35: Results on Promedas networks. EPIS is not plotted because it cannot handle Promedas
benchmarks, which are Markov networks.

322

JOIN-GRAPH PROPAGATION ALGORITHMS

guaranteed, and this is an example when it does not happen. The other solvers reach the maximum
possible SumScore of 18 (or very close to it) after about 6 minutes of CPU time.

The WCSP benchmark set has 97 instances. However we used only the 18 instances for which
exact marginals are available. Therefore the maximum SumScore that an algorithm can reach is
18. The results are shown in Figure 34. EDBP reaches a SumScore of 17 after almost 3 minutes
of CPU time while IJGP reaches a SumScore of 13 after about 3 minutes. The SumScores of
both IJGP and EDBP remain unchanged in the interval from 3 to 20 minutes. After looking at the
raw results, we found that IJGP’s score was zero on 5 instances out of 18. This was because the
singleton consistency component implemented via the SAT solver did not finish in 20 minutes on
these instances. Although the singleton consistency step generally helps to reduce the practical time
complexity of IJGP on most instances, it adversely affects it on these WCSP instances.

The Promedas instances are Noisy-OR binary Bayesian networks (Pearl, 1988). These instances
are characterized by extreme marginals. Namely, for a given variable, the marginals are of the form
(1− ε, ε) where ε is a very small positive constant. Exact marginals are available only on 46 out of
the submitted 238 instances. On these structured problems (see Figure 35), we see that EDBP is the
best performing scheme reaching a SumScore very close to 46 after about 7 minutes of CPU time
while TLSBP and IJGP are able to reach a SumScore of about 40 in 20 minutes.

6. Related Work

There are numerous lines of research devoted to the study of belief propagation algorithms, or
message-passing schemes in general. Throughout the paper we have mentioned and compared with
other related work, especially in the experimental evaluation section. We give here a short summary
of the developments in belief propagation and present some related schemes that were not mentioned
before. For additional information see also the recent review by Koller (2010).

About a decade ago, Iterative Belief Propagation (Pearl, 1988) received a lot of interest from
the information theory and coding community. It was realized that two of the best error-correcting
decoding algorithms were actually performing belief propagation in networks with cycles. The
LDPC code (low-density parity-check) introduced long time ago by Gallager (1963), is now con-
sidered one of the most powerful and promising schemes that often performs impressively close to
Shannon’s limit. Turbo codes (Berrou, Glavieux, & Thitimajshima, 1993) are also very efficient in
practice and can be understood as an instance of belief propagation (McEliece et al., 1998).

A considerable progress towards understanding the behavior and performance of BP was made
through concepts from statistical physics. Yedidia et al. (2001) showed that IBP is strongly related
to the Bethe-Peierls approximation of variational (Gibbs) free energy in factor graphs. The Bethe
approximation is a particular case of the more general Kikuchi (1951) approximation. Generalized
Belief Propagation (Yedidia et al., 2005) is an application of the Kikuchi approximation that works
with clusters of variables, on structures called region graphs. Another algorithm that employs the
region-based approach is Cluster Variation Method (CVM) (Pelizzola, 2005). These algorithms
focus on selecting a good region-graph structure to account for the over-counting (and over-over-
counting, etc.) of evidence. We view generalized belief propagation more broadly as any belief
propagation over nodes which are clusters of functions. Within this view IJGP, and GBP as defined
by Yedidia et al. (2001), as well as CVM, are special realizations of generalized belief propagation.

Belief Propagation on Partially Ordered Sets (PBP) (McEliece & Yildirim, 2002) is also a gen-
eralized form of Belief Propagation that minimizes the Bethe-Kikuchi variational free energy, and

323

MATEESCU, KASK, GOGATE & DECHTER

that works as a message-passing algorithm on data structures called partially ordered sets, which
has junction graphs and factor graphs as examples. There is one-to-one correspondence between
fixed points of PBP and stationary points of the free energy. PBP includes as special cases many
other variants of belief propagation. As we noted before, IJGP is basically the same as PBP.

Expectation Propagation (EP) (Minka, 2001) is a an iterative approximation algorithm for com-
puting posterior belief in Bayesian networks. It combines assumed-density filtering (ADF), an
extension of the Kalman filter (used to approximate belief states using expectations, such as mean
and variance), with IBP, and iterates until these expectations are consistent throughout the network.
TreeEP (Minka & Qi, 2004) deals with cyclic problem by reducing the problem graph to a tree sub-
graph and approximating the remaining edges. The relationship between EP and GBP is discussed
by Welling, Minka, and Teh (2005).

Survey Propagation (SP) (Braunstein et al., 2005) solves hard satisfiable (SAT) problems using a
message-passing algorithm on a factor graph consisting of variable and clause nodes. SP is inspired
by an algorithm called Warning Propagation (WP) and by BP. WP can determine if a tree-problem is
SAT, and if it is then it can provide a solution. BP can compute the number of satisfying assignments
for a tree-problem, as well as the fraction of the assignments where a variable is true. These two
algorithms are used as heuristics to define the SP algorithm, that is shown to be more efficient
than either of them on arbitrary networks. SP is still a heuristic algorithm with no guarantee of
convergence. SP was inspired by the new concept of “cavity method” in statistical physics, and can
be interpreted as BP where variables can not only take the values true or false, but also the extra
“don’t care” value. For a more detailed treatment see the book by Mézard and Montanari (2009).

7. Conclusion

In this paper we investigated a family of approximation algorithms for Bayesian networks, that
could also be extended to general graphical models. We started with bounded inference algorithms
and proposed Mini-Clustering (MC) scheme as a generalization of Mini-Buckets to arbitrary tree
decompositions. Its power lies in being an anytime algorithm governed by a user adjustable i-bound
parameter. MC can start with small i-bound and keep increasing it as long as it is given more time,
and its accuracy usually improves with more time. If enough time is given to it, it is guaranteed to
become exact. One of its virtues is that it can also produce upper and lower bounds, a route not
explored in this paper.

Inspired by the success of iterative belief propagation (IBP), we extended MC into an iterative
message-passing algorithm called Iterative Join-Graph Propagation (IJGP). IJGP operates on gen-
eral join-graphs that can contain cycles, but it is sill governed by an i-bound parameter. Unlike IBP,
IJGP is guaranteed to become exact if given enough time.

We also make connections with well understood consistency enforcing algorithms for constraint
satisfaction, giving strong support for iterating messages, and giving insight into the performance
of IJGP (IBP). We show that: (1) if a value of a variable is assessed as having zero-belief in any
iteration of IJGP, then it remains a zero-belief in all subsequent iterations; (2) IJGP converges in a
finite number of iterations relative to its set of zero-beliefs; and, most importantly (3) that the set
of zero-beliefs decided by any of the iterative belief propagation methods is sound. Namely any
zero-belief determined by IJGP corresponds to a true zero conditional probability relative to the
given probability distribution expressed by the Bayesian network.

324

JOIN-GRAPH PROPAGATION ALGORITHMS

Our experimental evaluation of IJGP, IBP and MC is provided, and IJGP emerges as one of the
most powerful approximate algorithms for belief updating in Bayesian networks.

References

Arnborg, S. A. (1985). Efficient algorithms for combinatorial problems on graphs with bounded
decomposability - a survey. BIT, 25, 2–23.

Bacchus, F., Dalmao, S., & Pitassi, T. (2003). Value elimination: Bayesian inference via back-
tracking search. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial
Intelligence (UAI’03), pp. 20–28.

Berrou, C., Glavieux, A., & Thitimajshima, P. (1993). Near Shannon limit error-correcting coding:
Turbo codes. In Proceedings of the 1993 International Conference on Communications, pp.
1064–1070.

Bilmes, J., & Dechter, R. (2006). Evaluation of probabilistic inference systems in UAI’06.
http://ssli.ee.washington.edu/ bilmes/uai06InferenceEvaluation/.

Braunstein, A., Mézard, M., & Zecchina, R. (2005). Survey propagation: An algorithm for satisfia-
bility. Random Struct. Algorithms, 27(2), 201–226.

Chavira, M., & Darwiche, A. (2008). On probabilistic inference by weighted model counting.
Artificial Intelligence, 172(6–7), 772–799.

Chavira, M. D., Darwiche, A., & Jaeger, M. (2006). Compiling relational bayesian networks for
exact inference. International Journal of Approximate Reasoning, 42(1-2), 4–20.

Chertkov, M., & Chernyak, V. Y. (2006). Loop series for discrete statistical models on graphs.
Journal of Statistical Mechanics: Theory and Experiment, P6009.

Choi, A., Chavira, M., & Darwiche, A. (2007). Node splitting: A scheme for generating upper
bounds in bayesian networks. In Proceedings of the Twenty Third Conference on Uncertainty
in Artificial Intelligence (UAI’07), pp. 57–66.

Choi, A., & Darwiche, A. (2006a). An edge deletion semantics for belief propagation and its
practical impact on approximation quality. In Proceedings of the The Twenty-First National
Conference on Artificial Intelligence (AAAI’06), pp. 1107–1114.

Choi, A., & Darwiche, A. (2006b). A variational approach for approximating bayesian networks by
edge deletion. In Proceedings of the Twenty Second Conference on Uncertainty in Artificial
Intelligence (UAI’06), pp. 80–89.

Cooper, G. F. (1990). The computational complexity of probabistic inferences. Artificial Intelli-
gence, 42, 393–405.

Dagum, P., & Luby, M. (1993). Approximating probabilistic inference in bayesian belief networks
is NP-hard. Artificial Intelligence, 60(1), 141–153.

Darwiche, A. (2001). Recursive conditioning. Artificial Intelligence, 125(1-2), 5–41.

325

MATEESCU, KASK, GOGATE & DECHTER

Dechter, R. (1992). Constraint networks. Encyclopedia of Artificial Intelligence, 276–285.

Dechter, R. (1996). Bucket elimination: A unifying framework for probabilistic inference algo-
rithms. In Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence
(UAI’96), pp. 211–219.

Dechter, R. (1999). Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,
113, 41–85.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann Publishers.

Dechter, R., Bidyuk, B., Mateescu, R., & Rollon, E. (2010). The power of belief propagation: A
constraint propagation perspective. In Dechter, R., Geffner, H., & Halpern, J. (Eds.), Heuris-
tics, Probabilities and Causality: A Tribute to Judea Pearl.

Dechter, R., Kask, K., & Larrosa, J. (2001). A general scheme for multiple lower bound compu-
tation in constraint optimization. In Proceedings of the Seventh International Conference on
Principles and Practice of Constraint Programming (CP’01), pp. 346–360.

Dechter, R., Kask, K., & Mateescu, R. (2002). Iterative join-graph propagation. In Proceedings of
the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI’02), pp. 128–136.

Dechter, R., & Mateescu, R. (2003). A simple insight into iterative belief propagation’s success. In
Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI’03),
pp. 175–183.

Dechter, R., & Mateescu, R. (2007). AND/OR search spaces for graphical models. Artificial Intel-
ligence, 171(2-3), 73–106.

Dechter, R., & Pearl, J. (1987). Network-based heuristics for constraint satisfaction problems.
Artificial Intelligence, 34, 1–38.

Dechter, R., & Pearl, J. (1989). Tree clustering for constraint networks. Artificial Intelligence, 38,
353–366.

Dechter, R., & Rish, I. (1997). A scheme for approximating probabilistic inference. In Proceedings
of the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI’97), pp. 132–141.

Dechter, R., & Rish, I. (2003). Mini-buckets: A general scheme for approximating inference.
Journal of ACM, 50(2), 107–153.

Fishelson, M., & Geiger, D. (2003). Optimizing exact genetic linkage computations. In Proceedings
of the Seventh Annual International Conference on Computational Biology (RECOMB’03),
pp. 114–121.

Gallager, R. G. (1963). Low-Density Parity-Check Codes. MIT Press, Cambridge, MA.

Gogate, V., & Dechter, R. (2007). SampleSearch: A scheme that searches for consistent samples. In
Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics
(AISTATS’07), pp. 147–154.

326

JOIN-GRAPH PROPAGATION ALGORITHMS

Gogate, V. (2009). Sampling Algorithms for Probabilistic Graphical models with Determinism.
Ph.D. thesis, School of Information and Computer Sciences, University of California, Irvine.

Gomez, V., Mooji, J. M., & Kappen, H. J. (2007). Truncating the loop series expansion for belief
propagation. Journal of Machine Learning, 8, 1987–2016.

Gottlob, G., Leone, N., & Scarcello, F. (2000). A comparison of structural CSP decomposition
methods. Artificial Intelligence, 243–282.

Jensen, F. V., Lauritzen, S. L., & Olesen, K. G. (1990). Bayesian updating in causal probabilistic
networks by local computation. Computational Statistics Quarterly, 4, 269–282.

Kask, K. (2001). Approximation algorithms for graphical models. Ph.D. thesis, Information and
Computer Science, University of California, Irvine.

Kask, K., & Dechter, R. (2001). A general scheme for automatic search heuristics from specification
dependencies. Artificial Intelligence, 129(1-2), 91–131.

Kask, K., Dechter, R., Larrosa, J., & Dechter, A. (2005). Unifying cluster-tree decompositions for
reasoning in graphical models. Artificial Intelligence, 166 (1-2), 165–193.

Kikuchi, R. (1951). A theory of cooperative phenomena. Phys. Rev., 81(6), 988–1003.

Koller, D. (2010). Belief propagation in loopy graphs. In Dechter, R., Geffner, H., & Halpern, J.
(Eds.), Heuristics, Probabilities and Causality: A Tribute to Judea Pearl.

Larrosa, J., Kask, K., & Dechter, R. (2001). Up and down mini-bucket: a scheme for approximating
combinatorial optimization tasks. Tech. rep., University of California Irvine.

Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computation with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society,
Series B, 50(2), 157–224.

Mackworth, A. K. (1977). Consistency in networks of relations. Artificial Intelligence, 8(1), 99–
118.

Mézard, M., & Montanari, A. (2009). Information, Physics and Computation. Oxford University
Press.

Mézard, M., Parisi, G., & Zecchina, R. (2002). Analytic and algorithmic solution of random satis-
fiability problems. Science, 297, 812–815.

Maier, D. (1983). The Theory of Relational Databases. Computer Science Press, Rockville, MD.

Mateescu, R., Dechter, R., & Kask, K. (2002). Tree approximation for belief updating. In Proceed-
ings of the Eighteenth National Conference on Artificial Intelligence (AAAI’02), pp. 553–559.

McEliece, R. J., MacKay, D. J. C., & Cheng, J. F. (1998). Turbo decoding as an instance of Pearl’s
belief propagation algorithm. IEEE J. Selected Areas in Communication, 16(2), 140–152.

McEliece, R. J., & Yildirim, M. (2002). Belief propagation on partially ordered sets. In Mathemat-
ical Systems Theory in Biology, Communications, Computation, and Finance, pp. 275–300.

327

MATEESCU, KASK, GOGATE & DECHTER

Minka, T. (2001). Expectation propagation for approximate bayesian inference. In Proceedings
of the Seventeenth Annual Conference on Uncertainty in Artificial Intelligence (UAI’01), pp.
362–369.

Minka, T., & Qi, Y. (2004). Tree-structured approximations by expectation propagation. In Ad-
vances in Neural Information Processing Systems 16 (NIPS’03).

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann.

Pelizzola, A. (2005). Cluster variation method in statistical physics and probabilistic graphical
models. Journal of Physics A: Mathematical and General, 38(33), R309–R339.

Rollon, E., & Dechter, R. (2010). Evaluating partition strategies for mini-bucket elimination. In The
Eleventh International Symposium on Artificial Intelligence and Mathematics (ISAIM’10).

Roth, D. (1996). On the hardness of approximate reasoning. Artificial Intelligence, 82(1-2), 273–
302.

Shafer, G. R., & Shenoy, P. P. (1990). Probability propagation. Annals of Mathematics and Artificial
Intelligence, 2, 327–352.

Shenoy, P. P. (1992). Valuation-based systems for bayesian decision analysis. Operations Research,
40, 463–484.

Welling, M., Minka, T. P., & Teh, Y. W. (2005). Structured region graphs: Morphing ep into gbp. In
Proceedings of the Twenty First Conference on Uncertainty in Artificial Intelligence (UAI’05),
pp. 609–614.

Wexler, Y., & Meek, C. (2008). MAS: A multiplicative approximation scheme for probabilistic in-
ference. In Proceedings of Advances in Neural Information Processing Systems 21 (NIPS’08),
pp. 1761–1768.

Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2000). Generalized belief propagation. Tech. rep.
TR2000-26, Mitsubishi Electric Research Laboratories.

Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2001). Generalized belief propagation. In Advances in
Neural Information Processing Systems 13 (NIPS’00), pp. 689–695.

Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2005). Constructing free energy approximations and
generalized belief propagation algorithms. IEEE Transactions on Information Theory, 51,
2282–2312.

Yuan, C., & Druzdzel, M. J. (2003). An importance sampling algorithm based on evidence pre-
propagation. In Proceedings of the Nineteenth Conference in Uncertainty in Artificial Intelli-
gence (UAI’03), pp. 624–631.

Zhang, N. L., Qi, R., & Poole, D. (1994). A computational theory of decision networks. Interna-
tional Journal of Approximate Reasoning, 11, 83–158.

328

