
Join Processing in Relational Databases

PRITI MISHRA and MARGARET H. EICH

Computer Sczence & Engineering Department, Southern Methoclmt Un z.erszty, Dallas, Texas 75275

The join operation is one of the fundamental relational database query operations. It

facilitates the retrieval of information from two different relations based on a CartesIan

product of the two relations. The Join is one of the most difficult operations to

implement efficiently, as no predefine links between relations are required to exist (as

they are with network and hierarchical systems), The jom is the only relational

algebra operation that allows the combining of related tuples from relations on

different attribute schemes. Since it is executed frequently and IS expensive, much

research effort has been applied to the optimization of join processing, In this paper,

the different kinds of joins and the various implementation techniques are surveyed,

These different methods are classified based on how they partition tuples from different

relations. Some require that all tuples from one be compared to all tuples from

another; other algorithms only compare some tuples from each. In addition, some

techniques perform an exphclt partitioning, whereas others are Implicit,

Caiegorles and Subject Descriptors: H 24 [Information Systems]: Systems— query

processing

Geueral Terms: Algorithms

Additional Key Words and Phrases: Database machines, distributed processing, join,

parallel processing, relational algebra

INTRODUCTION

The database join operation is used to

combine tuples from two different

relations based on some common infor-

mation. For example, a course-offering

relation could contain information con-

cerning all classes offered at a university

and a student-registration relation could

contain information for which courses a

student has registered. A join would typ-

ically be used to produce a student sched -

ule, which includes data about required

textbooks, time, and location of courses,

as well as general student identification

information. The join operation is one of

the operations defined in the relational

data model [Codd 1970, 19721. It is used

to combine tuples from two or more rela-

tions. Tuples are combined when they

satisfy a specified join condition. The

result tuples have the combined at-

tributes of the two input relations. In the

above example, the join condition could

Permission to copy without fee all or part of this material is granted provided that the copies are not made

or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication

and its date appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission

@ 1992 ACM 0360-0300/92/0300-0063 $01.50

ACM Computmg Surveys, Vol !24, No 1, March 1992

64 . P. Mishra and M. H. Eich

CONTENTS Consider, for example, the relations R

and S shown below:

I

be

INTRODUCTION

1 JOIN OPERATION

1 1 Jom versus Cartesian Product

12 Types of Joins

2. IMPLEMENTATION OF JOINS

2 1 Nested-Loops Jom

22 Sort-Merge Jom

23 Hash Jom Methods

24 Summary

3 JOINS BASED ON SPECIAL DATA

STRUCTURES

3 1 Jom Indexes

32 Be-Trees

33 T-Trees

34 Kd-Trees

35 PreJOms

36 Summary

4 JOIN CLASSIFICATION

41 Partltlomng

42 Classification

5 JOIN PROCESSING IN A DISTRIBUTED

ENVIRONMENT

5 1 Factors m Dlstrlbuted Processing

52 Jom Algorithms

53 Summary

6 HARDWARE SUPPORT FOR JOINS

6 1 Hardware Approaches

62 Nested-Loops Jom

63 Sort-Merge Jom

64 Hash-Based Joins

65 Summary

7 OTHER JOIN ISSUES

7 1 Selectivity Factor

72 Optimal Nesting of Joins

73 Hash Joins

74 Indexing and Clustering

75 Partltlonmg of Relatlons

76 JoIn-Type Processing m Nonrelatlonal

Databases

8. CONCLUSIONS

APPENDIX

ACKNOWLEDGMENTS

REFERENCES

BIBLIOGRAPHY

to combine tu~les when thev have the

same course number and offering num-

ber values. The resulting tuples would

contain all the offering data, as well as

all the student data.

ACM Computmg Surveys, Vol 24, No 1, March 1992

Relation R

employee payscale

james 1

jones 2

johns 1

smith 2

Relation S

payscale pay

1 10000

2 20000

3 30000

A join of R and S with the join condi-

tion R(payscale) = S(payscale) results in

the following relation:

Relation @

employee payscale payscale pay

james 1 1 10000

jones 2 2 20000

johns 1 1 10000

smith 2 2 20000

Normalization of relations in rela-

tional databases results in related infor-

mation being stored in separate relations

[Dutka and Hanson 1989; Fagin 1979;

Kent 1983]. Hence, queries that require

data from several relations are very com-

mon. The join operation is used to satisfy

such queries.

The join operation has been studied

and discussed extensively in the litera-

ture because it is one of the most time-

consuming and data-intensive operations

in relational query processing. It is also

important that joins be performed effi-

ciently because they are executed fre-

quently. Many optimizations of the join

operation automatically include the opti-

mization of the other common relational

operations, namely, the select and project

Join Process ingin Relationa~ Databases “ 65

operations, because they are implicit in

the join operation.

Joins may be implemented in many

ways, and it has been found that certain

techniques are more efficient than others

in some computing environments. This

paper collates the information available

in the literature in order to study the

unique and common features of join algo-

rithms. With this information, it is pos-

sible to classify the algorithms into

categories. The categorization scheme

included in Section 4 provides a simple

pictorial technique to visualize the differ-

ent approaches to implement join

processing.

A join can be two-way or multiway. It

is said to be two-way when it is per-

formed on two relations and multiway

when more than two relations are joined.

A multiway join produces the same re-

sult as a series of two-way joins. A join

between n relations is usually executed

as a sequence of (n – 1) two-way joins

[Mackert and Lehman 1986].

Join processing has been studied from

many points of view:

Query optimization. Issues such as

selecting best available access paths, de-

termining optimal nesting of joins in

multiway joins, and devising strategies

for distributed join processing are dis-

cussed in a number of articles; for exam-

ple, Christodulakis [1985], Kim et al.

[19851, Perrizo et al. [19891; Segev [19861,

Swami and Gupta [1988], Yoo and Lafor-

tune [1989], and Yu et al. [1985, 1987].

Optimizing 1/0. Reducing the total

number of page accesses by means of

efficient indexing [Cheiney et al. 1986;

Desai 1989; Goyal et al. 1988; Lehman

and Carey 1986] and clustering has been

the subject of much discussion [Blasgen

and Eswaran 1977; Chang and Fu 1980;

Omiecinski 1989; Ozkarahan and

Bozsahin 1988].

Optimizing buffer usage. Buffer us-

age can be optimized by reducing the

number of times a page is accessed

[Omiecinski 1989; Pramanik and Fotouhi

1985]. Some algorithms have been modi-

fied to reduce the amount of buffer space

needed, whereas others have been tuned

to make the best use of the available

space [Fotouhi and Pramanik 1989; Goyal

et al. 1988; Hagmann 1986; Sacco and

Schkolnick 1986].

Reducing computation. The number

of comparisons between tuples can be re-

duced, such as by using partitioning or

by using the simple sort-merge algo-

rithm. This aspect, of the join operation

will be discussed at length later.

Hardware support. Processing has

been speeded up by means of direct hard-

ware support such as special join proces-

sors and indirect support in the form of

hardware hashing units and sorters, data

filters, and associative memories. All

database machines incorporate one or

more of these features. The number of

database machine designs is too numer-

ous to list individually here, but a com-

prehensive survey can be found in Su

[19881.

Parallel processing. Many join algo-

rithms have a high degree of inherent

parallelism [Bitten et al. 1983; Schneider

and DeWitt 1989]. Parallelization is seen

in two forms: in the shape of special-

ized database machines and of general-

purpose multiprocessors [Baru and

Frieder 1989; Baru et al. 1987; Menezes

et al. 1987; Valduriez and Gardarin 1982,

1984]. The latter appear to have an edge

over database machines for a number of

reasons such as cost, scalability, and

availability.

Physical database design. Relations

in a database must be such that any pair

can be joined without loss of data and

that the result relation contains only

valid data [Aho et al. 1979; Dutka and

Hanson 1989]. The literature on join de-

pendencies [Beeri and Vardi 1981;

Gyssens 1986], lossless join decomposi-

tion, and theory of separability [Whang

et al. 1985] that affect physical database

design is voluminous. An indication of

this is the extensive bibliography found

in Dutka and Hanson [1989].

Although all of the above topics are

not covered in detail in this paper, an

ACM Computmg Surveys, Vol 24, No. 1, March 1992

66 “ P. Mishra and M. H. Eich

extensive bibliography on all topics is

provided. For example, the relationship

between the join operation and query

processing is not discussed in detail. The

topic is mentioned briefly where appro-

priate, and several references are pro-

vided that treat the issue at lemzth.

The remainder of the paper “is orga-

nized as follows. Section 1 contains defi-

nitions and descriptions of the basic join

operation and its various derivatives.

Section 2 describes some of the numerous

implementations, Join algorithms based

on specific data structures are described

in Section 3. A classification scheme for

join algorithms is described in Section 4.

Distributed join processing and hardware

support for join processing are discussed

in Sections 5 and 6, respectively. Miscel-

laneous issues related to join perfor-

mance, such as the effect of data

distribution on parallel algorithms and

joinlike operations in nonrelational

database systems, are contained in Sec-

tion 7. Section 8 contains a brief

summary of the paper. Notations and

abbreviations used in the paper are

summarized in the appendix.

1. JOIN OPERATION

In this section, first the relationship be-

tween the join operation and the Carte-

sian product is explored. Next, the many

derivatives of the basic join operation are

reviewed.

1.1 Join versus Cartesian Product

The join operation is closely related to

the Cartesian product. The Cartesian

product of two relations concatenates

each tuple of the first relation with every

tuple of the second relation. The result of

this operation on relations R and S, with

n and m number of tuples, respectively,

consists of a relation with (n x rn) tuples

and the combined attributes of the input

relations. The Cartesian product of the

two example relations R and S is the

relation Q:

Relation Q = R x S

employee payscale payscale pay

iames 1 1 10000

james

jones

jones

jones

johns

johns

johns

smith

smith

smith

1

1

2

2

2

1

1

1

2

2

2

2

3

1

2

3

1

2

3

1

2

3

20000

30000

10000

20000

30000

10000

20000

30000

10000

20000

30000

The join operation is used to combine

related tuples from two relations into

single tuples that are stored in the result

relation. The desired relationship be-

tween tuples or some attributes in the

tuples is specified in terms of the join

condition. In its simplest form, the join of

R and S is written as

RCU r(a)~ s(b)
s,

where r(a)6’ S(b) defines the join condi-

tion. The 0 operator defines the condition

that must hold true between the at-

tributes r(a) and s(b) of R and S, re-

spectively. This general join is called a

thetay”oin. The theta operator can be one

of the following: =, #, <, >, S, >.

The attributes used to define the join

condition must be comparable using the

theta operator.

In its most general form, the join con-

dition consists of multiple simple condi-

tions of the form described above,

connected with the logical connective

AND [Desai 1990; E1-Masri and Navathe

1989; Maier 1983]:

condition A condition A . A condition.

The presence of the join condition dis-

tinguishes the join operation from the

Cartesian product. In effect, the join op-

eration may be said to be equivalent to a

Cartesian product followed by a select

operation [E1-Masri and Navathe 1989],

where the select operation is implicit in

ACM Computmg Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases ● 67

the join condition. Or,

RW r,a),s(b)~ = %)os(b,[R x ~1.
As such, the result of joining two rela-

tions is a subset, proper or otherwise, of

the Cartesian product of the two rela-

tions. The tuples of either relation that

do not participate in the join are called

dangling tuples [Unman 1988].

The result of joining relations R and S

with n and m attributes, respectively, is

a relation Q with (n + m) attributes.

The relation Q has one tuple for each

pair of tuples from R and S that satis-

fies the join condition. The result rela-

tion Q may then be defined as

Q={tlt= rs~re R~se SAt(a)Ot(b)}

For example, joining R and S’ with the

join condition R(payscale) < S(payscale)

results in a relation Q is as follows:

Relation Q = R M ,(P,Y,C,I,) < ,(P,Y~C,l,)S

employee payscale payscale pay

james 1 2 20000

james 1 3 30000

jones 2 3 30000

johns 1 2 20000

johns 1 3 30000
smith 2 3 30000

This relation is a proper subset of the

cross product of R and S.

Both Cartesian product and join are

time-consuming and data-intensive oper-

ations. In the most naive implementa-

tion, each tuple in one relation must be

compared to every tuple in the other re-

lation. Therefore, the complexity of the

operation for relations with n tuples each

is 0(n2). Further, the staging of tuples

for the comparison steps requires an

enormous number of 1/0 operations. The

large number of algorithms that has been

devised to execute joins is a result of

efforts to reduce the number of compar-

isons, reduce the amount of 1/0, or both.

1.2 Types of Joins

Several other types of joins have been

defined. Some are direct derivatives of

the theta-join; others are combinations of

the theta-join and other relational opera-

tions such as projection. Some have been

implemented as primitive operations in

database management systems, whereas

others are currently found only in the

database literature. Variations of the join

operation seen in database management

systems and in the literature are

discussed below.

1.2.1 fqu~oin

The most commonly used theta operator

is the equality operator; in these cases,

the join is called an equijoin. For all

other theta operators the join is called a

norzequijoin. The result relation Q is

defined as follows:

Q={t\t= rsAre~Ase SAt(a)

= t(b)}.

In other words, the result relation con-

tains tuples t made up of two parts, r

and s, where r must be a tuple in rela-

tion R and s must be a tuple in relation

S. In each tuple t,the values of the join

attributes t(a), belonging to r, are iden-

tical in all respects to the values of the

join attributes t(b), belonging to s.

The result of joining R and S such

that R(payscale) = S(payscale) is the re-

lation Q is as follows:

Relation Q = R w ,(P,Y~C,l,)~ ,(P~Y,CaI,)S

employee pays&de payscale pay

james 1 1 10000

jones 2 2 20000

johns 1 10000

smith : 2 20000

1.2.2 Natural Join

In the theta-join, the tuples from the in-

put relation are simply concatenated.

Therefore, the result tuple, in the case of

equijoins, contains two sets of the join

attributes that are identical in all re -

spects. Thus, one set of join attributes in

the result relation can be removed with-

out any loss of information. Certainly,

ACM Computing Surveys, Vol. 24, No. 1, March 1992

68 “ P. Mishra and M. H. Eich

the removal of ofie column from the re-

sult relation should reduce the amount of

storage space required. In most cases, it

is required that one of these sets be pro-

jected out to get the final result. This

gives rise to a derivative of the equijoin

—the natural join. The natural join can,

therefore, be defined as an equijoin on

attributes with the same name in both

relations, followed by projection to re-

move one set of the join attributes.

The natural join operation can be writ-

ten as

R*S = ‘(a, b,-s(a)) [RM,(G)=~#],

where a, and b, are the attributes in

relations R and S, respectively. The re-

sult relation Q is given by

Q={tlt= (rs-s(a))Are RAse S

Ar(a) = s(a)}.

The result of R* S on the payscale at-

tribute is the following relation:

Relation Q = R* S

employee payscale pay

james 1 10000

jones 2 20000

johns 1 10000

smith 2 20000

1.2.3 Semijoin

In the conventional execution of the join

operation, the resulting relation has all

the attributes of both input relations.

Sometimes it is required that only the

attributes of one of the relations be pre-

sent in the output relation. The semi~”oin

operation is designed to perform such a

join [Bernstein and Chiu 1981; Bernstein

and Goodman 1979a]. It has also been

defined as an operation that selects a set

of tuples from one relation that relate to

one or more tuples in another relation.

The relationship is defined by the join

condition. (Inequality semijoins are dis-

cussed in Bernstein and Goodman [1979b,

1980].) It is equivalent to the join of the

two relations followed by a project opera-

tion that results in the attributes of the

second relation being dropped from the

output relation. The initial join itself may

be performed by any of the join

techniques.

The semijoin operation is written as

RR
r(a)tis(b)s = ‘a, [‘Wr(a)fls(b)

s],

and the result relation Q is given by

Q={tlt= rAt(a)@s(b) Are RAs~S}.

A list of payscales such that there is at

least one employee who gets paid accord-

ing to that scale is a semijoin between S

and R. That is,

Q=SM s@ayscale) = r(pay scale))
R.

The result relation Q is the following

relation:

payscale pay

1 10000

2 20000

Unlike most other join operations, the

semijoin operation is not commutative,

that is,

(RMS) # (SMR).

An alternative expression for the semi-

join operation is

No join condition has been specified in

this expression because it represents the

general case. Although the effect is

the same in both cases, this version of

the semijoin reduces the size of the sec-

ond relation participating in the join

operation. The initial projection on S

results in a smaller relation while

maintaining all data needed to get the

result of the semijoin. This feature is

especially useful when R and S are at

different sites and S must be transferred

to R’s site.

Semijoins can be used to reduce the

processing load of regular joins and to

ACM Computing Surveys, Vol 24, No 1, March 1992

Join Processing in Relational Databases “ 69

avoid the creation of large intermediate

relations [Kambayashi 1985; Perrizo et

al. 1989; Yoo and Lafortune 19891. Semi-

joins have been found to be a useful tool

in the processing of certain kinds of

queries, particularly tree queries

[Bernstein and Chiu 19811. Efficient pro-

cedures for handling cyclic queries using

semijoins are discussed in Kambayashi

[19851 and Yoshikawa and Kambayashi

[1984].

1.2.4 Outeuom

Strictly speaking, the outerjoin is an ex-

tension of the join operation [Date 1983;

E1-Masri and Navathe 1989; Rosenthal

and Reiner 1984]. It is also called an

external J“oin [Gardarin and Valduriez

19891. The outerjoin operation was de-

fined to overcome the problem of dan-

gling tuples. In conventional joins, tuples

that do not participate in the join opera-

tion are absent from the result relation.

In certain situations it is desired that the

result relation contain all the tuples from

one or both relations even if they do not

participate in the join (they must be

padded with null values as needed).

Depending on whether the result rela-

tion must contain the nonparticipant

tuples from the first, second, or both

relations, three kinds of outer joins are

defined: the left-outerjoin, the right-

outerJ”oin, and the full-o uter-”oin, respec-

tively [E1-h!Uasri and Navathe 19891. The

corresponding join symbols are = Da,

M= , and = ~= . The left and right

outerjoins are collectively referred to as

one-sided or directional joins. It must be

noted that only the full-outerjoin is com-

mutative. Although the left and right

outer joins are not commutative, the y are

related as follows:

(1? =Das) = (SW= R)

The result relation for a full-outerjoin

will contain three types of tuples: tuple

pairs that satisfy the join condition, dan-

gling tuples from R with padded S-

attributes, and dangling tuples from S

with padded R-attributes. The result re-

lation Q can be written as

Q={tlt= rsArel? Ase SAr(a)6s(b)}

+{tlt=rn Are R}

+{tlt=ns Ase S},

where, n represents the padding of the

tuples with null values.

An example of a right outer join using

the relations R and S is

Q = R ~ = (r@ay,CaIe) = s(paysw))s~

The result relation Q is as follows:

Relation Q

employee payscale payscale pay

james 1 1 10000

jones 2 2 20000

johns 1 1 10000

smith 2 2 20000

L .1 3 30000
——

Here the symbol ~ represents the null

value.

This operation is particularly useful in

dealing with situations where there are

null values in the join attributes of ei-

ther relation. At this point, not many

DBMSS support outerjoins directly. The

processing of queries containing outer-

joins is discussed in Rosenthal and

Galindo-Legaria [1990] and Rosenthal

and Reiner [19841.

A scheme for query optimization in

heterogeneous, distributed database sys-

tems that uses outerjoins to help in

database integration is discussed in

Dayal [1985]. One-sided outer joins may

be used in aggregate function evaluation

in statistical databases [Ozsoyoglu et al.

19891. Semiouterjoins, which combine the

qualities of outerjoins and semijoins, have

been used in query processing in multi-

database systems [Dayal 19851.

1.2.5 Self-Join

The self-join may be considered a special

case of the theta-join [Hursch 19891. The

only difference is that the input relation

ACM Computmg Surveys, Vol. 24, No, 1, March 1992

70 “ P. Mishra and M. H. Eich

is joined with itself. The output relation

Q is given by

Q={tlre RAs~SAR=SAt

= rsAr(a)@s(b)}.

The operation of the self-join can be

illustrated using example relation R. To

get a list of pairs of employees such that

each pair of employees gets the same

pay, the relation R can be selfjoined with

itself. That is,

Q = R w ,bay,cale)=r(pay.tale) R.

Then, the result relation Q is as follows:

Relation Q = R M ,(P~Y~C~l,)~ ,(P~Y,C,l,)S

employee payscale payscale employee

james

james

jones

jones

johns

johns

smith

smith

1

1

2

2

1

;

2

1

1

2

2

1

1

2

2

james

johns

jones

smith

johns

james

smith

jones

1.2.6 Composition

Composition was first described as one of

the operations on relations in Codd

[1970]. Two relations are said to be

conaposable if they are joinable. The com-

position of two relations is equivalent to

joining the two relations, then projecting

out both sets of join attributes. Formally,

this is written as

where @ represents the composition op-

erator and M without the join condition

represents any join between the relations

R and S.

The natural composition of R and S is

defined as the composition based on the

natural join between R and S [Codd

1970]. It is written as

The result relation Q, of the natural

composition of R and S, is given by

Q= {t It= (rs-r(a)-s(a))Are R

Ase SAr(a) = s(a)}.

The natural composition of the exam-

ple relations R and S on the attribute

payscale is the relation Q:

Relation Q = R . S

employee pay

james 10000

jones 20000

johns 10000

smith 20000

This operation has been discussed

further in Agrawal et al. [1989] and

Ozkarahan [1986].

1.2.7 Division

Strictly speaking, the division operation

is not a member of the set of relational

algebra operations. However, it is in-

cluded in discussions on the relational

algebra because it is commonly used in

database applications [Desai 1990; El-

Masri and Navathe 1989; Maier 1983].

The divide operator allows a tuple to be

retrieved from one relation if it is related

to all tuples in another based on some

predefined condition. For example, we

might find each employee of one com-

pany who has a salary larger than that

of all employees of another company.

Let relations R and S have attributes

a, and b~ such that b~ G a,. Let Ch = a,

– b,. That is, c~ is the set of attributes

in relation R that is not in relation S.

Then, R divided by S is written as

R + S= mC,(R)

– ~ck((~c,(R) x s) – R)”

The result relation Q is the quotient of

R divided by S and is given by

Q={tl Vs~S~re Rsuchthattlls= r}.

ACM Computmg Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases ● 71

In other words, the result relation Q is

the maximal subset of the relation mCJR)

such that the Cartesian product of rela-

tions Q and S is contained in R,

To illustrate the division operation, let

us redefine the relations.

Relation R

A B

Al B1

A2 B1

A3 B1

Al B2

A2 B2

A3 B2

Al B3

A2 B3

Relation S

A

Al

A2

A3

Then, the result relation Q is as follows:

Relation S = R + S

B

B1

B2

Several hash-based algorithms for per-

forming division are presented in Graefe

[19891. An implementation of the divi-

sion operation on a shuffle-exchange net-

work is described in Baba et al. [1987].

2. IMPLEMENTATIONS OF JOINS

The techniques and methods used to im-

plement joins are discussed in the follow-

ing sections. Unless otherwise noted, the

algorithms are used to implement the

theta-join. The description of a method

includes the basic algorithm, general

discussion of the method, special data

structures (if any), and applicability and

performance of the technique. General

problems that apply to a whole class of

join techniques, such as the effect of clus -

tering or the effect of collisions on the

hash join techniques, are discussed sepa-

rately in Section 7.

2.1 Nested-Loops Join

Nested-loops join is the simplest join

method. It follows from the definition of

the join operation. One of the relations

being joined is designated as the inner

relation, and the other is designated as

the outer relation. For each tuple of the

outer relation, all tuples of the inner re-

lation are read and compared with the

tuple from the outer relation. Whenever

the join condition is satisfied, the two

tuples are concatenated and placed in the

output buffer.

Algorithm

The algorithm for performing

Rb-d
?-(a)es(b)

s

is as follows:

for each tuple s do

{ for each tuple r do

{ if r(a) Os(b) then

concatenate r and s

place in relation Q }}

Note that for efficiency, the relation with

higher cardinality (R in this case) is cho-

sen to be the inner relation.

Discussicm

In practice, a nested-loops join is imple-

mented as a nes~ed-block join; that is,

tuples are retrieved in units of blocks

rather than individually [E1-Masri and

Navathe 1989], This implementation can

be briefly described as follows. The inner

relation is read one block at a time. The

number of main memory blocks available

determines the number of blocks read

from the outer relation. Then all tmples

in the inner relation’s block are joined

with all the tuples in the outer relation’s

blocks. This process is repeated with all

blocks of the inner relation before the

next set of outer relation blocks is read

ACM Computing Surveys, Vol 24, No. 1, March 1992

72 ● P. Mishra and M. H. Eich

in. The amount of reduction in 1/0 activ-

ity (compared to a simple tuple-oriented

implementation) depends on the size of

the available main memory.

A further step toward efficiency con-

sists of “rocking” the inner relation [Kim

1980]. In other words, the inner relation

is read from top to bottom for one tuple of

the outer relation and bottom to top for

the next. This saves on some 1/0 over-

head since the last page of the inner

relation which is retrieved in one loop is

also used in the next loop.

Performance

In the above algorithm, it is seen that

each tuple of the inner relation is com-

pared with every tuple of the outer

relation. Therefore, the simplest imple-

mentation of this algorithm requires 0(n

x m) time for execution of joins.

The block-oriented implementation of

the nested-loops join optimizes on 1/0

overhead in the following way. Since the

inner relation is read once for each tuple

in the outer relation, the operation is

most efficient when the relation with the

lower cardinality is chosen as the outer

relation. This reduces the number of

times the inner loop is executed and, con-

sequently, the amount of 1/0 associated

with reading the inner relation, An anal-

ysis of buffer management for the

nested-loops method with rocking shows

that buffering an equal number of pages

for both relations is the best strategy

[Hagmann 1986].

If the join attributes can be accessed

via an index, the algorithm can be made

much more efficient, Such an implemen-

tation has been described in Blasgen and

Eswaran [1977].

Applicability

The exhaustive matching performed in

this method makes it unsuitable for join-

ing large relations unless the j’oin selec-

tivity factor, the ratio of the number of

tuples in the result of the join to the total

number of tuples in the Cartesian prod-

uct, is high. If the selectivity factor is

low, the effort of comparing every tuple

in one relation with every tuple in the

other is further unjustified.

The simplicity of this algorithm has

made it a popular choice for hardware

implementation in database machines

[Su 1988]. It has been found that this

algorithm can be parallelized with great

advantage. The parallel version of this

algorithm is found to be more efficient

than most other methods. Thus, we see

that for the nested-loops join, a parallel

implementation of an inefficient serial

algorithm looks good. More details con-

cerning the parallel approach can be

found in Section 6.

This algorithm is also chosen in a pro-

posed model for main memory databases

called the DBGraph storage model

[Pucheral et al. 1990]. The entire

database is represented in terms of a

graph-based data structure called the

DBGraph. A set of primitive operations

is defined to traverse the graph, and all

database operations can be performed us-

ing these primitive operations. Advan -

tages of this model are efficient process-

ing of all database operations and

complex queries, compact storage, and

uniform treatment of permanent and

transient data.

2.2 Sort-Merge Join

The sort-merge join is executed in two

stages. First, both relations are sorted on

the join attributes. Then, both relations

are scanned in the order of the join at-

tributes, and tuples satisfying the join

condition are merged to form a single

relation. Whenever a tuple from the first

relation matches a tuple from the second

relation, the tuples are concatenated and

placed in the output relation.

Algorithm

The exact algorithm for performing a

sort-merge join depends on whether or

not the join attributes are nonkey at-

tributes and on the theta operator. In all

cases, however, it is necessary that the

two relations be physically ordered on

their respective join attributes.

ACM Computing Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases ● 73

The algorithm for performing equijoins

is as follows:

Stage 1: Sort process

sort R on r(a);

sort S on s(b);

Stage 2: Merge process

read first tuple from R;

read first tuple from S’;

for each tuple r do

{ while s(b) < r(a)

read next tuple from S;

if r(a) = S(b) then

join r and s

place in output relation Q };

Discussion

The merge process varies slightly de-

pending on whether the join attributes

are primary key attributes, secondary

key attributes, or nonkey attributes. If

the join attributes are not the primary

key attributes, several tuples with the

same attribute values may exist. This

necessitates several passes over the same

set of tuples of the inner relation. The

process is described below.

Let there be two tuples, rl and r2, in

R that have a given value x of the join

attribute r(a) and three tuples, s1, s2,

and s3, in S that have the same value x

of the join attribute S(b). If the above

join algorithm is used then when r2 is

the current tuple in R, the current tuple

in S would be the tuple following s3.

Now the result relation must also in-

clude the join of r2 with s1, s2, and s3.

To achieve this, the above algorithm must

be modified to remember the last r(a)

value and the point in S where it started

the last inner loop. Whenever it encoun-

ters a duplicate r(a) value, it backtracks

to the previous starting point in S. This

backtracking can be especially expensive

in terms of the 1/0 if the set of tuples

does not fit into the available main mem-

ory and the tuples have to be retrieved

from secondary storage for each pass.

Performance

If the relations are presorted, this algo-

rithm has a major advantage over the

brute force approach of the nested-loops

method. The advantage is that each rela-

tion is scanned only once. Further, if the

join selectivities are low, the number of

tuples compared is considerably lower

than in the case of the nested-loops join.

It has been shown that this algorithm is

most efficient for processing on a unipro -

cessor system [Blasgen and Eswaran

1977].

The processing time depends on the

sorting and merging algorithms used. If

the files are already sorted on the join

attributes, the cost is simply the cost of

merging the two relations. In general,

the overall execution time is more depen-

dent on the sorting time, which is usu-

ally 0(n log n) for each relation, where

n is the cardinality of the relation.

Execution is further simplified if the

join attributes are indexed in both rela-

tions. The Simple TID algorithm starts

by scanning the join attribute indices and

making a list of tuple-id pairs corre-

sponding to the tuple pairs that partici-

pate in the join [Blasgen and Eswaran

1977]. In the next stage, the tuples them-

selves are fetched and physically joined.

This approach reduces the number of tu-

ples read into main memory and, as a

result, the amount of 1/0 needed. If the

index is not the primary index, however,

retrieval of the records may be rather

inefficient [E1-Masri and Navathe 1989].

Applicability

If no indexes exist on the join attributes,

if not much is known about the select ivi -

ties, and if there is no basis for choosing

a particular join algorithm, then this al-

gorithm is often found to be the best

choice [Blasgen and Eswaran 1977; Su

1988].

With the help of hardware sorters, this

algorithm makes a good candidate for

hardware implementation. Several

database machines, such as VERSO

[Bancilhon et al. 19831 use this as the

primary join method.

The sort-merge join algorithm can also

be used to implement the full-outerjoin.

The algorithm for performing the

ACM Computing Surveys, Vol 24, No 1, March 1992

74 “ P. Mishra and M.

full-outerjoin

R =M=,(~)=,(6)S

using the sort-merge

lows:

sort R on r(a);

sort S on s(b);

read first tuple from R;

read first tuule from S:

for each tu~~e r do

{ while’s(b) < r(a)

write s into Q

method

H Eich

is as fol -

pad R-attributes with null values

read next tuple from S;

if r(a) = s(b) then

join r and s

place in output relation Q };

2.3 Hash Join Methods

The success of the sort-merge join lies in

the fact that it reduces the number of

comparisons between tuples. A tuple from

the first relation is not compared with

those tuples in the second relation with

which it cannot possibly join. Hash join

methods achieve the same effect in an-

other way [Bratbergsengen 1984; Good-

man 1981]. They attempt to isolate the

tuples from the first relation that may

join with a given tuple from the second

relation. Then, tuples from the second

relation are compared with a limited set

of tuples from the first relation.

A large number of join methods using

hashing has been proposed and/or imple-

mented. Some are discussed in the

following sections.

2.3.1 Simple l-lash Join Method

With the simple hash join, the join at-

tribute(s) values in the first relation are

hashed using a hash function. These

hashed values point to a hash table in

which each entry may contain entire tu -

ples or only tuple-ids [DeWitt et al. 1984].

In the latter case, it may be useful to

store the key values as well. Depending

on the efficiency of the hash function,

one or more entries may hash to the

same bucket. Then for each tuple of the

other relation participating in the join,

the join attribute values are hashed us-

ing the same hashing function as before.

If the values hash to a nonempty bucket

of the previous hash table, the tuple(s) in

the hash table bucket are compared with

the tuple of the second relation. The tu-

ples are joined if the join condition is

satisfied.

Algorithm

The algorithm for performing

RM r(a)~ S(b)
s

is as follows:

for each tuple s in S do

{ hash on join attributes s(b)

place tuples in hash table based on hash

values};

for each tuple r do

{ hash on join attributes r(a)

if r hashes to a nonempty bucket of hash

table for S

then { if r d-matches any s in bucket

concatenate r and s

place in relation Q }};

In the above algorithm, the same hash-

ing function must be used for both

relations.

Discussion

The hash table should ideally be created

for the relation with the fewest distinct

values of the join attributes. This would

require maintaining detailed statistics on

each attribute of the relation or deter-

mining the number of distinct values on

the fly. In order to avoid this overhead,

the hash table is usually created for the

smaller of the two input relations [Brat-

bergsengen 1984]. This optimizes on the

amount of mace needed to store the hash

table. This ‘property is particularly use-

ful in the case of main memory process-

ing, where the entire hash table can be

placed in memory.

Nonequijoins are difficult to imple-

ment since they require that the hashing

function used maintain the correct order-

ing of the tuples. Hash functions with

this property are not uncommon; how-

ACM Computmg Surveys, Vol 24, No 1, March 1992

Join Process in.gin Relational Databases “ 75

ever, they have the problem that they do

not easily lead to uniform distribution.

Performance

As a class, hash-based joins have been

found to be some of the most efficient join

techniques [Gerber 19861. The complex-

ity of this method is 0(n + m) because

both relations are scanned once. The per-

formance of this method depends on the

performance of the hash function. If the

hash function were perfect, it would be

possible to join tuples whenever a tuple

from the second relation hashed to a

nonempty entry of the hash table. Hash

collisions decrease the efficiency greatly

because each tuple that hashes to a

nonempty entry must be checked to see if

it satisfies the join condition. A further

problem with hash-based join methods is

that elimination of duplicates might be

harder because of collisions [Agrawal et

al. 1989].

Applicability

Hardware hashing units have made

hardware implementations of this

method feasible. This is discussed in de-

tail in a later section.

The simple hash join method can also

be used to implement one-sided joins, that

is, left- and right-outerjoins. The algo-

rithm for performing the left-outerjoin,

using the simple hash join technique is

as follows:

for each tuple s in S do

{ hash on join attributes s(b)

place tuples in hash table based on hash

values; }

for each tuple r do

{ hash on join attributes r(a)

if r hashes to a nonempty entry of hash

table for S
and if suitable s found
then { concatenate r and s

place in relation Q }

else write r into Q

pad S-attributes with null values};

With a little modification, a similar

algorithm can be used to perform the

right-outerjoin.

2.3.2 Hash-Partitioned Joins

Hash-partitioned joins attempt to opti-

mize join execution by partitioning the

problem into parts. They use hashing to

decompose the join problem into several

subproblems that are much easier to

solve. The divide-and-conquer approach

has been found to have a number of ad-

vantages; not only is the overall effi-

ciency improved, but partitioning makes

the parallelization of the algorithm eas-

ier by allowing independent pairs to be

processed in parallel. This results in fur-

ther performance improvement. The gen-

eral process works as follows.

A hash function, referred to as the split

~unction, is usecll to partition the tuples

in each relation Into a fixed number of

disjoint sets. The sets are such that a

tuple hashes into a given set if the hashed

value of its join attributes falls in the

range of values for that set. Then the

tuples in the first set of one relation can

match only with the tuples in the first

set of the second relation. Thus, the

processing of different pairs of corre-

sponding partitions from the two sets are

independent of other sets, As a result,

these partition pairs can be processed in

parallel. Figure 1 shows the load reduc-

tion, The horizontal side represents tu-

ples in relation S, and the vertical is for

relation R. In both Figures la and lb

the shaded area represents the number

of tuples that must be actually compared

in the join process. It can be seen that

partitioning reduces the join load consid-

erably. Tuples in partition pairs from

both relations may be joined by a simple

hash join or any other join method.

Several implementations of hash-parti-

tioned joins have been described in the

literature; for example, GRACE hash

join, hybrid hash join, and the hashed

loops join [DeWitt and Gerber 19851.

Some of these are discussed in the follow-

ing sections.

ACM Computmg Surveys, Vol. 24, No 1, March 1992

76 ● P. Mishra and M. H. Eich

,., .,
,,, ,,, , ,,, , .,,,

Relatlon S
(a)

Figure 1. Reduction of Join load.

mg.

s,
--) ●

.,

.’

u J
c ,’ ,’ ,’

0 ,’,, RI
z
w
G 1’
E

,,, ,,

,,, ,,,

Relatlon S
(b)

Simple Hash-Partitioned Join. In the

simple hash-partitioned join [Gerber

19861, not all the partitions are created

at the beginning of the operation; in-

stead, each partition pair is created and

used up before the next is generated.

As in the description above, the num-

ber of partitions and the range of

attribute values in each partition are de-

termined. Before the relations are

scanned, the range of hash values for the

current partition is chosen. Ideally, the

ranges should be such that all partitions

are of equal size. Since this is hard to

accomplish, the ranges are determined

by dividing the total range of attribute

values into equal-sized subranges. The

number of subranges is equal to the

number of partitions desired. This, in

turn, depends on factors like the amount

of main memory available and the num-

ber of processors. Next, the outer rela-

tion is scanned, and the attribute values

are hashed. If the hash value falls in the

current range of hash values, the tuple is

insert ed into the hash table for the cur-

rent partition; otherwise, it is written

into a temporary file. The hash table for

the partition is complete when the whole

relation has been scanned.

Next, the inner relation is scanned.

The join attributes are hashed using the

same hash function. If the hashed value

falls in the current range, the join pro-

cess is initiated; otherwise, the tuple is

(a) No partitioning (b) with partition-

written into a temporary file. The pro-

cess is repeated using the temporary files

as input until all the tuples have been

used up in at least one of the relations.

Algorithm

The algorithm for performing

RM r(a)6s(b) s

is as follows:

repeat

choose hash range for current partition;

for every s do

{ hash attribute values;

if value falls in current range then

make entry in partition hash

table

else write tuple in temp-S };

for every r do

{ hash on join attributes;

if value falls in current range then

{ if match found in hash table

~hen

{ concatenate tuples r and s

place in output relation Q}

else discard tuple}

else write tuple in temp-R };

S:= temp-t3;

R:= temp-R;

until (I S \ = null);

Temp-R and temp-S are temporary rela-

tions used to avoid processing of all tu-

ples at each step in the algorithm. The

smaller relation S is partitioned first to

reduce the execution time.

ACM Computmg Surveys, Vol. 24, No 1, March 1992

Join Processing in Relational Databases ● 77

Discussion

This is a naive implementation of a par-

tition-based join. An obvious source of

inefficiency lies in the fact that a tuple

may be read and written into the tempo-

rary relation several times before it actu-

ally participates in a join.

A variation of this algorithm, called

the simple toss hash join [Gerber 1986],

is found to be similar in performance.

This algorithm is exactly the same as the

foregoing simple hash-partitioned algo-

rithm except that the temporary rela-

tions are not generated. Instead, the two

input relations are scanned in their

entirety each time a new partition is pro-

cessed. This method has the disadvan-

tage that all tuples will be read as many

times as the number of partitions being

generated. It has been found that the

overhead associated with multiple scans

of the relation is comparable to the over-

head of creating temporary relations in

each iteration of the algorithm.

Performance

According to the results of a performance

evaluation study reported in Gerber

[19861, the amount of memory available

has a significant effect on the perfor-

mance of this algorithm. Unless the

memory is about 1.2 times the size of the

smaller relation, the algorithm is found

to perform worse than other join

algorithms.

Applicability

The 1/0 overhead associated with this

process is so high as to preclude its use

for any but the smallest relations. How-

ever, partitioning may not be necessary

for small relations, and the simple hash

join method may be found to be more

useful [Nakayama et al. 1988]. Simple

hash-partitioned joins may be good to

support pipelined processing.

GRACE Hash Join Method. The

GRACE hash join method relies on the

fact that the dynamic clustering feature

of hashing allows joins to be performed

efficiently [Kitsuregawa et al. 1983]. It

can be used on both single processor and

multiprocessor machines and is divided

into a partitioning and a matching phase.

During the partitioning phase, the two

relations are split into an equal number

of sets. The sets are disjoint within a

relation. For eaclh set of tuples from one

relation there is a corresponding set of

tuples in the other relation. These sets

reside on different machines or different

disk files. The matching operation is per-

formed separately for each partition. A

tuple in one partition need not be com-

pared with a tuple in any other partition.

This reduces the join load considerably.

Results from all matching steps are

merged together to form the output

relation.

Algorithm

In the algorithm presented here, the tu-

ples in related buckets are joined by a

simple hash join. The algorithm for per-

forming R CXI,(~jO~c~)S is as follows:

for each tuple r do

{ hash the join attributes r(a)

place tuple in appropriate output buffer

Ri};

flush all output buffers to disk;

for each tuple s do

{ hash the join attributes s(b)

place tuple in appropriate output buffer

Si};

flush all output buffers to disk;

fori=l,2,Ndo

{ for Ri do

{ build a hash table for tuples
read hash table for Ri into memory};

for Si do

{ for each tuple in Si do
hash the join attributes S(b)

if match found in Ri then

concatenate the two tuples

place in output relation Q});

Discussion

In this algorithm the partitioning and

joining phases are completely disjoint.

There are N partitions created for each

relation. Flushing of buffers to disk is

shown to be performed only at the end of

ACM Computmg Surveys, Vol. 24, No. 1, March 1992

78 “ P. Mishra and M. H. Eich

the partitioning phase. As a buffer for a

partition is filled, however, it is actually

written to the corresponding disk file for

that partition. At the end of the parti-

tioning phase, if any additional memory

is available, some of the partitions may

be split into smaller partitions. The ad-

vantage of this is discussed in the section

on handling partition overflow.

Performance

The GRACE hash join method takes

0((n + nz)/~) time to perform joins

where the relations R and S are stored

in K memory banks and (2 x K) proces-

sors are used [Kitsuregawa 19831. A mul-

tiprocessor system is not essential, even

though it is desirable, for this algorithm

to be applicable. The performance of the

GRACE hash join method is not affected

much by the amount of memory avail-

able [Gerber 19861. Also, memory use is

optimal during the join phase as com-

pared to the partitioning phase.

The overall gain in performance de-

pends on the collision factor of the hash

function, on how effectively the hash

function randomizes the attribute values,

and on the size of individual buckets with

respect to the available main memory.

Applicability

The load reduction feature (tuples in one

bucket do not have to be compared to

tuples in other buckets) makes it useful

in the case of large databases. Disjoint

partitioning makes it ideal for imple-

mentation on multiprocessors.

Hybrid Hash Join Method. The hybrid

hash join has been described in DeWitt

and Gerber [1984] and Shapiro [1986].

During the partitioning phase, the hy-

brid hash algorithm creates a number of

partitions such that the hash table for

any partition would fit into the available

main memory. Instead of writing out each

partition as it is created, however, the

hybrid hash join creates and keeps one

partition in memory while writing out

all others. Thus, at the end of the parti -

tioning phase, the hash table for one of

the partitions is in main memory and the

remaining partitions reside on the disk.

Algorithm

The algorithm for performing

RD4 r(a) fls(b) s

is as follows:

for each tuple r do

{ hash the join attributes r(a);

if hash value lies range for partition RI

then

insert entry in hash table

else place tuple in appropriate buffer

Ri };

flush all buffers except RI to disk;

for each tuple s do

{ hash the join attributes s(b);

if hash value lies in range for partition S1

then

initiate join process with tuples in

R1

else place tuple in appropriate buffer Si};

flush all buffers to disk;

fori=2,ndo

{ read tuples in Ri into memory

build a hash table for Ri};

for each Sc do

{ for each tuple in Si do

hash the join attributes S(b);

if match found in Ri then

concatenate the two tuples

place in output relation Q};

Discussion

This algorithm is similar to the GRACE

hash join in that the partitioning and

joining phases are, for the most part,

disjoint. The difference lies in the fact

that the hybrid hash algorithm does not

write out all partitions to the disk. It

starts the join process on the first pair of

partitions while the second relation is

being partitioned. This minimizes the 1/0

activity to the extent of not having to

write the first partition to the disk and

then read it back into main memory once

the partitioning phase is complete. This

is particularly advantageous in the case

ACM Computing Surveys, Vol. 24, No. 1, March 1992

Join Process ingin Relational Databases w 79

of systems with large main memories

where partitions may be quite large.

Performance

This algorithm has been found to per-

form at least as well as the GRACE hash

join method that it resembles [Gerber

1986]. It optimizes the use of main mem-

ory even during the partitioning phases

by initiating the join process if additional

memory is available. Thus, if additional

memory is available, it outperforms the

GRACE algorithm. In situations where

the amount of main memory available

changes dynamically, an adaptive hash-

join algorithm is more efficient [Zeller

and Gray 1990]. This has been imple-

mented as a prototype in Tandem’s Non-

Stop SQL. It is limited to the case of

equijoins since nonequijoins require the

correct ordering of tuples.

Applicability

The performance characteristics indicate

that this algorithm may be chosen over

other hash-partitioned algorithms if sig-

nificant amounts of main memory are

available.

Hashed Loops Join. The hashed loop

join is a variation of the nested-loops join

technique [Gerber 1986]. In the first

phase, the outer relation is divided into a

fixed number of parts. Next, each parti-

tion is read into memory one at a time. A

hash table is constructed for each parti-

tion when it is read into main memory.

Next, the tuples in the inner relation are

read. The join attributes are hashed, and

the hash values are used to probe the

hash table for the current partition for

matching tuples, Thus, the inner rela-

tion is read once for each partition, and

the hash table is used to speed up the

process of finding a match.

Algorithm

The algorithm for performing

RW
r(a)ds(b) s

is as follows:

partition R using a hash split function;

for each partition Ri do

{ read partition into memory;

create hash table for partition;

for each tuple s do

{ hash attribute value;

if s hashes to nonempty entry of hash

table for Ri then

initiate join of s and r;

place result in Q}};

Discussion

A simpler version of the above algorithm

avoids the overhead of partitioning by

staging the outer relation R in phases

[Nakayama et al. 19881. In each phase,

as much of R is staged as the size of the

available main memory allows.

Performance

Even though this algorithm is based on

the slow nested-loops join method, it is

found to perform better than other algo-

rithms for a large range of available

memory [Gerber 1986]. The reason for

this is that the presence of a hash table

makes probing for matches fast. Since

this method does not involve writing out

and reading in of partitions, it incurs less

1/0 overhead than even the hybrid hash

join method [Gerber 1986]. Furthermore,

the inner relation is read once for each

partition of the outer relation rather than

once for each tuple or each block of the

outer relation as is the case in the tuple-

and block-oriented implementations of

the nested-loops join method.

Applicability

This method is found to be especially

useful when partition overflow is a prob-

lem [Gerber 1986].

2.4 Summary

Various join techniques have been de-

scribed in this section. Although there

may be other methods, this is a represen-

tative selection. Most of these methods

have been studied in detail, and the

ACM Computmg Surveys, Vol 24, No 1, March 1992

80 ● P. Mishra and M. H. Eich

relative performance in various kinds of

computing environments has been com-

pared [Bitten et al. 1983; Gerber 1986;

Schneider and DeWitt 19891.

3. JOINS BASED ON SPECIAL DATA

STRUCTURES

It has been found that some inefficiencies

in the join operation can be overcome by

means of specially tailored data struc-

tures. Some of these have been in the

form of efficient index structures; others

have been designed specifically to sup-

port the join operation. The former speed

up joins by facilitating fast access to rela-

tions; for example, T-trees [Lehman and

Carey 19861, data space partitioning

[Ozkarahan and Bozsahin 1988], kd-trees

[Kitsuregawa et al. 1989bl, Be-trees

[Goyal et al. 1988]. The latter reduce the

response time of queries involving joins

by maintaining lists of matching tuples

for commonly joined relations. This in-

formation may be stored explicitly as in

the case of join indexes [Valduriez 19871

or implicitly as in the case of the data-

partitioning scheme in Ozkarahan and

Bozsahin [19881. Some such data struc-

tures are discussed below.

3.1 Join Indexes

Data structure

A join index is a relation with arity two

[Valduriez 19871. It identifies each result

tuple of a join by pointing to the partici-

pating tuples from each input relation.

Each pointer may be in the form of a key

value, physical address, or any other Iog-

ical value, surrogate, which uniquely

identifies a tuple in a relation. It is a

prejoined relation created by joining the

relations R and S and projecting the

result on the surrogates of the joined

tuples. Thus, each tuple in the relations

being joined must have a unique surro-

gate. Then a join index for two relations

is a binary relation that contains pairs of

surrogates. An example of a join index

for the two example relations R and S is

shown in Figure 2. Here we have added

tuple-ids as the surrogates for each rela-

tion. The relation may be clustered on

the surrogates for tuples of either or

both relations for fast access. The ioin

algorithm uses

locate matching

input relations.

the join index to

tuples from the two

Algorithm

using the ioin indexExecuting a join - .

consists of the following steps [Valduriez

1987]:

Scan join index to find matching tuples x;

Retrieve matching tuples x;

Concatenate tuples and place them in result

relation Q x;

Discussion

Since a join index is itself a relation, it

will incur all the overheads associated

with the creation and maintenance of a

relation. In Valduriez [1987] it is shown

that the maintenance cost of join indexes

is marginal in the case of foreign key

joins (most joins) because it is included in

referential integrity checking included in

the process. Furthermore, the join index

must be consistent with any changes

made in the participant relations. If join

indexes are maintained for several rela-

tion pairs in the database, the amount of

storage and housekeeping overhead can

be considerable [Desai 1989]. If the selec-

tivity factor is high, the number of en-

tries in the join index could approach the

size of the product of the cardinality of

the input relations. This expense must

be justified by frequent joins of the

relations involved.

Performance

The major cost in this method is the cost

of retrieving matching tuples. (The other

cost component, that of comparing tuples

to find matching pairs, is incurred only

at the time the join index is created.)

Therefore, the overall performance of the

algorithm is affected by the clustering

properties of the two relations. The best

results are obtained when both relations

ACM Computmg Surveys, Vol. 24, No. 1, March 1992

Join Process ingin Relational Databases w

Relatlon R

R-id employee pagscale

1 james I

2 jones 2

3 johns 1

4 smith 2

Relatlon S

S-Id payscale pay

1 I I 0000

2 2 10000

3 3 10000

Figure2. Join index.

are clustered on the join attributes. Join

indexes also give good results in the con-

text of complex queries involving many

joins and selects.

Applicability

Since surrogates are stored, selects and

projects may also be performed using the

join indexes [Valduriez 1987]. Join in-

dexes also provide an easy means of im-

plementing semijoins, With the help of a

join index, the semijoin operation R M S

simply consists of retrieving the tuples of

R listed in the join index. Query-

processing techniques based on join in-

dexes are presented in Valduriez [19861.

Processing of recursive queries using join

indexes is discussed in Valduriez and Bo -

ral [1986]. A natural extension of join

indexes is for complex object support

through hierarchical join indexes

[Valduriez et al. 19861.

3.2 Be-Trees

Data Structure

The Be-tree (composite B-tree) is a spe-

cial index structure which facilitates se-

lect and join processing [Desai 1989;

Goyal 1988]. The Be-tree is similar to a

B ‘-tree except that it indexes a given

attribute in more than one relation. That

is, it points to tuples with a given at-

Join index

R

R-]d S-Id

1 1

2 2

3 1

~i 2

tribute value in several relations. Figure

3 shows the basic format of a Be-tree

node assuming rrL relations are indexed.

It contains the key value and a list of

surrogates identifying the tuples from

each of the m relations with the associ-

ated key value. Here relation 1 is shown

to have n such tuples, and relation m is

shown to have k. This node list contains

all the information needed to perform a

natural join. An example of a Be-tree for

the example relations R and S is shown

in Figure 4, The index is created on the

payscale attribute, and the tuple-ids

shown in Figure 2 are used as the surro-

gates. A X is used to indicate a null

pointer or surrogate value.

Algorithm

The algorithm for performing the equi -

join R ~,(.)=.(~) S is as follows:

for every tuple s in S do

{ find node in B.-tree for key value S(b);
if a tuple r in R is found in the node list

then { concatenate r and s

place result tuple in Q }};

Discussion

The join process is expedited because the

tuple-ids of the tuples participating in

the join are isolated in the Be-tree nodes.

The page numbers of the pages partici-

pating in the join are determined from

ACM Computmg Surveys, Vol. 24, No. 1, March 1992

82 e P. Mishra and M. H. Eich

parent pointer

I A I
relatlon-1 relatlon-m

key
tl ,,, tl

value t2 t2

. .

. .

tn tk

o 0

left-child rlgh{-child

pointer pointer

Figure 3. Be-tree node

A null value

z
ke Relatlon R Relatlon S

1

1 1

3

A A

Figure 4

L
3 A

A

Be-tree on payscale for relatlon R and S,

2
Relatlon S

3

A

the tuple-id. Information on page pairs the tuples and join them. The major ad-

participating in the join is stored in a vantages that have been projected are

matrix, which is used to decide the order that the number of 1/0s can be mini-

in which the pages are retrieved from the mized and that buffer use can be opti -

disk. Once a pair of pages has been re- mized by knowing which page pairs

trieved, the tuple-id lists are used to read participate in the join in advance.

ACM Computmg Surveys, Vol 24, No 1, March 1992

Join Processing in Relational Databases

Performance

. 83

parent pointer

The major cost in this algorithm is that

of searching the Be-tree. The number of

searches is least when the index struc-

ture is searched for the values of the join

attributes in the smaller relation.

Applicability

This method can only be used when an

index on the join attributes exists in the

form of a Be-tree. Although the equijoin

is the simplest to implement using this

index structure, the basic algorithm can

be extended to cover nonequijoins. This

can be done by means of appropriate Bc-

tree traversal and search of all nodes

along the path for matching tuples.

3.3 T-Trees

Data Structure

The T-trees index structure was proposed

in Lehman and Carey [1986]. It has been

found to have special use in the context

of main memory processing. A T-tree is a

binary tree with several elements per

node. It can be described as a combina-

tion of the AVL-tree and the B-tree data

structures. Its search method is similar

to that of AVL-trees, and its nodes are

similar in structure to B-tree nodes. Thus,

it has the fast search characteristic of

AVL-trees and the good storage proper-

ties of the B-tree. T-trees can have three

types of nodes: internal nodes, half-leaf

nodes, and leaf nodes. The structure of

an internal node is shown in Figure 5.

This node contains n key values and

would also have surrogates indicating the

tuples from the relation with each of

those values. Unlike the Be-tree, the T-

tree is constructed for only one relation.

Each interior node of the tree, called the

T-node, can have at most two children.

The left subtree is searched for key val-

ues less than keyl, and the right subtree

is searched for key values greater than

key..

EEkey, keyz

*

keys 000

right-child ~_ -1 1-+ left-’h’ld
pointer ‘ ‘ pointer

Figure 5. T-tree internal node

Algorithm

The underlying algorithm for performing

joins using T-tree index is the nested-

100PS join method [Lehman and Carey

1986]. The relation with the T-tree index

is chosen to be the inner relation. For

each attribute value in the outer rela-

tion, the T-tree is searched to find the

corresponding values in the tree. The

surrogates are then used to find the ap-

propriate tuples from the inner relation.

The gain in efficiency is due to the fact

that the T-tree index permits fast loca-

tion of matching tuples from the inner

relation.

Discussion

A T-tree can be made to accommodate

duplicates easily [Lehman and Carey

1986]. This property makes it useful for

processing nonkey and secondary key

attributes.

Applicability

This algorithm is useful only if a T-tree

index exists on one of the input relations.

If an index were to be constructed at the

time of the join, the construction time

would mitigate any gains resulting from

the fast search of the tree.

ACM Computmg Surveys, Vol. 24, No 1, March 1992

84 ● P. Mishra and M. H. Eich

3.4 Kd-Trees

Data Structure

The kd-trees data structure was first pro-

posed and discussed in Bentley [1975].

Application of this data structure to the

case of searching in databases is dis-

cussed in Bentley [19791 and Bentley and

Kung [1979]. Many derivatives have

since appeared in the literature; for ex-

ample, extended kd-tree [Chang and Fu

1980], kdb-tree [Robinson 1981], and

gkd-tree [Fushimi et al. 1985].

A kd-tree is a multidimensional binary

search tree, where k is the dimensional-

ity of the search space. It can be used to

index a relation that has k distinct keys

al, a2, , ak. Each node in the tree con-

sists of a record, a left pointer, and a

right pointer. The index tree is created

as follows. The relation is first divided

into two equal-sized parts based on the

first key al. Both parts have the same

number of tuples. The values of attribute

al in the tuples in the first part are less

than values in the tuples in the second

part. Leaf nodes in the left subtree of the

root point to the first part, whereas those

in the right point to the second part. At

the root level, the attribute al is known

as the discriminator. At the next level,

the discriminator attribute is a2. Each of

the two parts above is divided into two

parts, each based on the values of a2.

This process is performed recursively,

with the appropriate discriminator at

each step, until the partitions are small

enough to fit on one page, Leaf nodes

point to pages that satisfy all of the dis-

criminator values above it.

All nodes at the same level in the tree

have the same discriminator. For a k-

dimensional index, the first k levels have

the discriminators al, a2, ak, re-

spectively. At lower levels in the tree,

the cycle repeats with discriminator at

the (k + l)th level being al.

This data structure has been found to

be an effective way of achieving multidi-

mensional clustering. It is particularly

useful in systems that allow queries to

specify search conditions in terms of sev -

eral keys. In this respect, a kd-tree may

be considered as a replacement for fea-

tures like inverted files and superim-

posed coding systems. The advantages

that kd-trees claim over previous at-

tempts to address the same problem are

logarithmic insertion, search and dele-

tion times, and the ability to handle

many different types of queries, such as

range, partial match, nearest neighbor,

and intersection queries.

An algorithm based on the use of the

kd-tree is a partition-based algorithm,

where the range of attribute values in

and the size of partitions is not fixed or

predefine. The partitioning of relations

is based on the number of tuples, not on

the ranges of attribute values. It is highly

unlikely that both relations would have

the same overall range of attribute val-

ues and also the same distribution of

attribute for each discriminator. As a

result, partitions of two relations do not

have a unique mapping. In most cases,

partition pairs will have overlapping

ranges of attribute values. ln order to

distinguish these partitions from the

fixed-range partitions discussed before,

the partitions in this case are called

waves.

A wave is a set of pages from each

relation participating in any given stage

of the join operation. Each join step is

characterized by a join range. The tuples

in the pages making up a wave must

include attribute values in this range.

Each page in a wave is characterized by

the upper and lower limits of the join

attribute values contained in a page.

Since the range of join attribute values

contained in a page depends on the dis-

tribution of the attribute values, upper

and lower limits of the join attribute val-

ues of all pages in a wave are usually not

the same. This leads to the fact that a

wave does not have a well-defined range

of attribute values. The attribute range

in each page in a wave will fall within

the join range or overlap it partially. For

example, the wave shown in Figure 6a

consists of three pages, each with a dif-

ferent range of join attribute values. It

must be remembered that each page con-

ACM Computing Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases 8 85

5 8

s

RI

R2

R3 15

1 10

(a)

5 8

t+2.

10 15

(b)

1 S1

S2 10

S3

S4

S5

[
S6

201 E!=L
5 25 5 25

(c) [d)

Figure6. Kd-tree join.

tains the same number of tuples, and the

range of attribute values is different as a

result of the nonuniform distribution of

attribute values in relations.

Algorithm

Any algorithm based on the concept of

waves must define how waves are deter-

mined. Consider the relations R and S,

with six pages each, shown in Figure 6.

The basic steps in one wave-based algo-

rithm are

repeat

load wave from 1?;

determine join range Jr;

load corresponding wave from S;

join the two waves;

until R has been exhausted;

Then, the relations in Figure 6 could

be joined in the following steps:

load R-wave = [RI, R2, R3];

let join range = 1 – 15;

load S-wave = [S1, S2, S3, S4, S5, S61;

join R-wave and S-wave;

load R-wave = [R4, R5, R61;

let join range = 10 – 25;

load S-wave = [S4, S5, S61;

join R-wave and S-wave;

In terms of Figure 6, the first wave

from relation R (shown in Figure 6a)

joins with the first wave in relation S

(shown in Figure 6c). The second wave in

relation R (shown in Figure 6b) joins

with the second wave in relation S

(shown in Figure 6d). The join range is

determined according to the Jrout defini-

tion (detailed below). This example is

meant only to illustrate the general

working of the ~d-’tree join method; it is

not the most optimal way of joining R

and S.

Discussion

Factors tlhat determine the exact form of

the algorithm are as follows:

(1) Wave size can vary from a minimum

of one page to a maximum of (M – 1)

pages, where M is the size of main

memory available [Kitsuregawa et al.

1989bl.

(2) The join range is defined in terms of

the maximum and minimum values

of the join attributes contained in the

pages of a wave. Two possible defini-

tions are as follows [lKitsuregawa et

al. 1989b]:

(a) Jrin. The lower limit of the range

is the largest of the lower limits of all

the pages in the wave. The upper

ACM Computing Surveys, Vol 24, No. 1, March 1992

86 “ P. Mishra and M. H. Eich

limit of the join range is the smallest

of the upper limits of the pages in the

wave. A consequence of this defini-

tion is that many tuples in the wave

have join attribute values that fall

outside the join range.

(b) Jrout. The lower limit of the join

range is the smallest of the lower

limits of the individual pages. The

upper limit the join range is the

largest of the upper limits of the pages

in the wave. As a result, many tuples

in the relation that would fall in the

join range are not part of the wave.

In the former case, waves of consecu-

tive join steps may have some pages in

common. In the latter case, there is no

overlap in the pages of waves of consecu-

tive join steps. A number of algorithms

based on different combinations of the

above factors are described in

Kitsuregawa et al. [1989bl.

Performance

An algorithm between kd-tree indexed

relations that does not take advantage of

the wave concept will have all the over-

head of the nested-loops method

[Kitsuregawa et al. 1989bl. The wave

concept offers the benefits of partitioning

to a limited extent. Instead of comparing

every tuple in one relation to every tuple

in the other relation, tuples in wave pairs

are compared. This is not as efficient as

comparing tuples in disjoint partition-

pairs, such as in the GRACE hash join

method, but it is still better than the

exhaustive comparisons of the nested-

loops method.

Factors that affect the performance of

the wave-based join operation on kd-tree

indexed relations are as follows:

(1) Wave size.

(2) Join range, which may be determined

from the point of view of either one or

both relations.

(3) Wave propagation speed, defined as

the inverse of the number of join

steps. The number of join steps is

determined by the wave size and how

the boundaries of a wave are

determined.

Other join algorithms based on this

data structure are presented and evalu-

ated in Harada et al. [19901.

Applicability

This method provides an efficient way of

joining two relations if both have a kd-

tree index on the join attributes. Its real

significance, however, lies in the fact that

it is general enough to be applied to any

pair of relations that have clustered in-

dexes on the join attributes.

3.5 Prejoins

Data Structure

The data structure on which this join

method is based is the predicate tree

[Valduriez and Viemont 19841, which is a

multidimensional access method, The use

of predicate trees for performing joins

and selects is discussed in Cheiney et al.

[1986]. A predicate tree is a balanced

tree index structure associated with a

relation. The tuples in the relation are

divided into classes based on the predi-

cates defined for the tree. At each level

in the tree, the predicate pertaining to

one specific attribute is used; for exam-

ple, refer to Figure 7. This figure shows a

predicate tree with two levels. The first

level has predicates based on name; the

second has predicates based on payscale,

The number of levels in the tree is equal

to the number of attributes on which the

predicates are defined, The tuples in any

subtree satisfy the predicates defined at

each node on the path from the root of

the predicate tree to the root of the sub-

tree. The leaf nodes of a predicate tree
contain pointers to the actual database

where the tuples with the corresponding

predicate values exist. In Figure 7, the

database is, in effect, partitioned into four

parts based on the predicate values indi-

cated by the four leaf nodes.

Algorithm

The join space for each relation is divided

into disjoint partitions based on the pred-

ACM Computing Surveys, Vol 24, No. 1, March 1992

Join Processing in Relational Databases “ 87

predicates:

name starts with a -m

name starts with n - z

payscale <2

payscale >2

@ pointer to page

names starting

with a-m

A

names starting

with n - z

A

Payscale <2 Payscale >2 pagscale <2 payscale >2

0
Figure 7. Predicate tree. Predicates: Name starts with a-m, name starts with n-z,

payscale <2, payscale z 2. @, pointer to page.

icates specified for the relation. As a re-

sult, the total join consists of the union of

the joins of the individual partition pairs.

The above holds true if it is assumed that

both input relations have the same predi-

cates, If not, the join may have to be

performed in a manner similar to the

kd-tree join.

Discussion

This algorithm takes advantage of multi-

attribute clustering. Queries containing

the predicates on which the tree is based

execute faster and generate fewer 1/0

requests. A query-processing method that

considers multiattribute clustering is

discussed in Harada et al. [19901.

Performance

The performance of joins on relations in-

dexed by predicate trees depends on two

factors: (1) the join method used to join

partition pairs and (2) whether the same

predicates are used to create the predi-

cate trees for both relations. If the same

predicates are used, the efficiency is as

high as any other partition-based join

method. If not, the efficiency is the same

as the kd-tree join method described

earlier.

Applicability

This method is limited to the cases where

the join attributes are used to define the

predicates associated with a relation’s

predicate tree. Although equijoins are the

simplest to perform, with appropriate tree

traversal, the predicate tree can also be

used for nonequijoins.

3.6 Summary

Join methods in this section have been

described in the context of specific data

structures. Some of them facilitate join

execution by providing fast access to re-

lations. Others, such as the Kd-tree join

method, are general enough to apply to

cases where overlapping partitioning of

relations exists. The join index method

and the Be-tree method are examples of

precomputed joins that are most useful

in situations where the relations are

joined often and rarely updated.

4. JOIN CLASSIFICATION

Each join algorithm performs the follow-

ing three major functions:

(1) Partition

(2) Match

(3) Merge

ACM Computing Surveys, Vol. 24, No 1, March 1992

88 “ P. Mishra and M. H. Eich

For discussion purposes, suppose we

wish to perform R MS, where R and S

have n and m number of tuples, respec-

tively. As we have seen, in algorithms

with no partitioning, such as, nested

loops, all (n x m) tuple pairs must be

examined to calculate the resulting set.

This is the worst-case scenario. The pur-

pose of the partition step is to reduce the

number of pairs of tuples to be examined;

for example, the hash-partitioning ap-

proaches use a hashing step, and the

sort-merge method uses sorting. Parti-

tioning may, however, increase the over-

head associated with the execution of a

join. Partitioning is usually done on each

input relation separately. The match step

is where tuples in each of the partitions

are matched. Finally, in the merge phase,

the matched tuples are combined to-

gether to create the result relation. The

merge step may simply consist of con-

catenation of tuples as in the sort-merge

method. Or it may involve staging of

tuples, for example, in hash joins where

the tuples themselves are not stored in

the hash tables.

In this section we concentrate on the

partitioning phase and describe a classi-

fication scheme based on it. The type of

partitioning is used to differentiate be-

tween the various join methods, In the

following sections, we further investigate

the partitioning phase of join processing

and then introduce the final categoriza-

tion scheme.

4.1 Partitioning

The various kinds of partitioning seen in

join algorithms are as follows:

(1)

(2)

(3)

None. No partitioning is performed,

and the input relations must be ex-

haustively compared in order to find

the tuple pairs that participate in the

join.

Pre. Partitioning is not performed as

part of the actual join algorithm.

These techniques assume that some

partitioning exists.

Implicit. Although the join algorithm

does not have a step aimed specifi-

ACM Computmg Surveys, Vol. 24, No 1, March 1992

tally at performing the partitioning,

it does do some dividing or ordering

of the data so fewer tuples need to be

compared in the match step.

(4) Explicit. The join algorithm contains

an explicit partitioning phase as part

of its execution.

In all cases of explicit partitioning,

each tuple is uniquely assigned to only

one partition. That is, partitions within a

relation are disjoint. In addition to the

kind of partitioning phase, another im-

portant factor is the mapping between

the partitions of the two input relations.

The mapping can be best described in

terms of the join attribute range of parti-

tions, which is the range of join attribute

values that can be assumed by the tuples

falling in the partition.

Suppose that R and S have been par-

titioned in such a way that tuples in a

given partition R, can join tuples in ex-

actly one partition S,. In other words, R,

and S, have the same join attribute

range. In this case, there is a one-to-one

mapping between partitions of R and S.

Such a situation is usually a result of

explicit partitioning. However, it is more

usual to have relations partitioned such

that the join ranges do not coincide; in-

stead, they overlap to a greater or lesser

extent. This is called the degree of over-

lap between partitions R, and S,.

Join algorithms can also be differenti-

ated on the basis of the degree of overlap

between the partitions of the two input

relations. Some possible degrees of over-

lap are described below and shown picto-

rially in Figure 8.

Complete. If no partitioning is per-

formed, there is no question of join

ranges. There is a complete overlap, and

all tuples must be compared. These cases

have the highest join load in that all

tuple pairs must be compared. In Figure

8a all tuples of R are shown to be com-

pared to all tuples from S. For example,

in performing a nested-loops join, the

james employee tuple in relation R would

be compared to each of the three tuples

in relation S. Likewise, each of the other

Join Process ingin Relational Databases 0 89

R:l I 2 3
.L.-l

S: I I 2 3 l---=--l

R:\ I I 2 3 -

—
R: I 1 2 3

I ____5_J

Figure 8. Degrees of overlap. (a) None: only one partition in each

relation; (b) variable overlap; (c) minimum overlap; (d) disjoint; (e)

complete,

tuples in R would be compared to all

three tuplesin S.

Variable overlap. There may be a

considerable amou~t of overlap between

different partitions. However, the

amount of overlap varies between differ-

ent partitions. In Figure 8b tuples in the

first partition of R are compared to tu-

ples in the first and second partitions of

S. Tuples from the second partition of R

are compared to tuples in the second and

third partitions of S. Tuples in the third

partition of R are compared only to tu -

ples in the third partition of S. Tuples in

the fourth partition of R are compared to

tuples in the third and fourth partitions

of S. The amount of overlap between join

ranges may be anywhere from no overlap

to complete overlap. Since the amount of

overlap cannot be predicted, it is not pos-

sible to predict the reduction in join load

accurately. The join process involves fix-

ing the join range at each step and find-

ing the partitions from both relations that

include all tudes that fall in the ioin

range. Due t; the variable natur~ of

waves when using Kd-tree indexes, the

wave-based algorithms have variable

overlapping partitions.

Minimum overlap. With these tech-

niques the join ranges may overlap, The

degree of overlap is, however, minimum.

There may be at most one attribute value

in common between two partitions (see

Figure 8c). Such partitioning results in a

high degree of reduction in the join load.

The sort-merge algorithm has a

minimum overlap.

ACM Computing Surveys, Vol. 24, No. 1, March 1992

90 “ P. Mishra and M. H. Eich

Table 1. Partltlonmg Descr!ptlon

Algorithm Partitioning Type Degree of Overlap

Sort-merge Implicit Minimum overlap

Nested loops None Complete

GRACE hash join Explicit Disjoint

Hybrid hash join Explicit Disjoint

Simple hash partitioning Explicit Disjoint

Hash loops None Complete

Kd-tree index Pre Variable overlap

Join index Pre None

Simple Hash Impliclt Variable overlap

Be-tree Index Pre None

Prejom Pre Variable overlap

Disioint. Both relations have the same

join r&ges for all partition pairs. These

join ranges are fixed before partitioning

the relations explicitly. Thus, tuples in a

given partition R, can join only with

tuples in the corresponding S, (see Fig-

ure 8d). That is, each partition of R maps

to one and onlv one ~artition of S, Parti -

tion pair joins-can b: carried out in isola-

tion and be independent of each other.

The result of joining the two relations is

the union of the results of joining the

partition pairs. Disjoint partitioning

therefore provides a high and predictable

amount of reduction of the join load.

Hash-partitioning algorithms are disjoint

since the partitions are disjoint and tu -

ples from only one partition of each rela-

tion are compared.

None. Each tuple of one relation in

the partition joins with each tuple of the

other relation in the partition. In other

words, each join range consists of exactly

one attribute value (Figure 8e). There is

no overlap between partitions of the two

relations. Partitions that do not overlap

are seen in precomputed joins using the

join index and Be-tree index. Join meth-

ods relying on no overlap have the small-

est join load. Note that this saving is

achieved at the expense of creating the

index beforehand and storing the pre -

computed join.

In the above classification, it may ap-

pear that some classes are merely special

cases of others. For instance, the mini-

mum overlap class appears to be a spe-

cial case of the variable overlap class. It

is, however, necessary to make the dis-

tinction between the two classes because

there are situations when the ~artition -

ing is consistently of the minimum

overlap variety. On the other hand, the

variable overla~ class encom~asses all.
algorithms whe~e it is never possible to

predict the degree of overlap.

In Table 1 the basic join algorithms

are described using these partitioning

descriptions. The nested-loop algorithms

perform no partitioning but have com-

plete overlap. Thus all (n x m) tuple

pairs must be examined for any such

join. Techniques that rely upon special

index data structures have no partition-

ing within the algorithms, These algo-

rithms simply do the matching by appro -

priate examination of the partitions

created by the index. The relations must

be indexed on the ioin attribute. and the.
index must be clustered. Most algo-

rithms, however, perform partitioning

within the join algorithm itself. Thus,

whenever a join is performed, the over.

head of partitioning is incurred. we can

differentiate between these algorithms

based on whether the partitioning is im-

plicit or explicit. Implicit algorithms, al-

though reducing the number of tuple

pairs to be examined, do not explicitly

perform a partition. For example, the

sort-merge algorithm reduces the num-

ber of tuples to be examined but does not

put tuples into partitions. The partition-

ACM Computmg Surveys, Vol. 24, No 1, March 1992

Join Process ingin Relational Databases - 91

overlap; (c) minimum overlap; (d)

ACM Computing Surveys, Vol. 24, No. l, March 1992

92 “ P. Mishra and M. H. Eich

ing is implicit based on the relative order

of tuples after the relation has been

sorted.

In Figure 9,1 we pictorially show the

five different types of join loads or over-

lap. As in Figure 1, the horizontal and

vertical axes represent the tuples in the

two relations. Each small box, then, rep-

resents a tuple pair to be examined. (In

this figure we assume that both R and S

have six tuples each.) The shaded boxes

in each figure indicate tuples to be com-

pared; the unshaded portions show tuple

pairs that do not need to be examined.

Figure 9a shows unpartitioned relations

where a complete overlap exists. Thus,

the entire 6 x 6 square is shaded. In this

case there is no partitioning and no sav-

ings, The algorithms with complete over-

lap are the loop types (nested and hash).

The other partitioning extreme is shown

in Figure 9e. Here a complete partition-

ing is performed with no overlap. The

maximum cost saving results because the

matching of tuples has been done before-

hand, and there is no need for a match

step in the join algorithm. As seen in

Table 1, the algorithms falling into this

class are the predefine join index and

the Be-tree index. Figure 9d shows a dis-

joint partitioning. Here each tuple of each

relation is placed into only one partition

(as with the three hashing algorithms),

Figures 9b and 9C show the two versions

of overlap partitioning, namely, the vari-

able overlap and the minimum overlap.

In Figure 9b, the type of overlap pro-

vided by using a Kd-tree index is shown.

Notice that partitions are generated with

no regular structure. The structure

shown in Figure 9C is much more precise.

Here the overlap between two successive

partitions is at most one tuple from one

relation. This is thus a minimum over-

lap. The sort-merge algorithm displays

this kind of partitioning. It is possible

with the sort-merge algorithm that two

successive partitions do not overlap at

1 This pictorial representation was inspired by sim-

ilar figures used to explain GRACE hash joins

EKitsuregawa et al. 19831.

all. Although these figures are not pre-

cise in that each algorithm of that type

always partitions precisely as shown,

they do accurately reflect the overlap-

ping between the partitions and the sav-

ings the partitioning provides.

4.2 Classification

Figure 10 shows our classification of join

algorithms based on this partitioning de-

scription. The first level in the tree indi-

cates the type of partitioning; the second

shows the degree of overlap. We have

indicated the class in which each of the

algorithms surveyed earlier fall. The

classification is fairly general, and it is

expected that any and every join algo-

rithm will have a definite place in the

classification.

5. JOIN PROCESSING IN A DISTRIBUTED

ENVIRONMENT

5.1 Factors in Distributed Processing

NIost of the algorithms discussed so far

have been for centralized computing en-

vironments in which the database re -

sides at one site and is accessed by users

at that site alone. With simple modifica-

tions, many of these algorithms can be

extended to the distributed case. In eval-

uating a join method for application to

the distributed environment extra fac-

tors must be considered, such as the

following:

Data transmission cost versus local

transmission cost. The cost of transmit-

ting data between sites depends on the

kind of network [Epstein 1982; Mackert

and Lehman 1986; Perrizo et al. 1989;

Yu et al. 1987]. In wide area networks

(WAN), the cost of data transmission

overshadows the local processing costs.

Query optimizers in databases dis-

tributed across such networks try to opti-

mize transmission costs even if it is done

at the expense of increased local process-

ing. In fast local area networks, trans-

mission costs are low, and processing

costs at the sites can no longer be ig-

nored [Wang and Luk 19881.

ACM Computing Surveys, Vol 24, No 1, March 1992

.Join Process ingin Relational Databases ● 93

JOINS

I

NONE

I

PRE IMPLICIT

1
MINIMUM VARIABLE

OVERLAP OVERLAP

I I
Sort-Merge Slrnple Hash

DISJOINT VARIABLE

OVERLAP

I
EXPLICIT

I
OISJOINT

1
Primary

1
Secondary

Index Index

I
rKd-tree Index

I
Join

Index
L

Prejoln

L-
Bc-tree

Index

Figure 108 Join classification.

Partitioning. Large relations are of-

ten partitioned and distributed across

sites. This is usually done to accOmnm-

.date eases where parts of a relation are

accessed most frequently by a single site

[Ceri et al. 1986; Chen and Lu 1989; Yu
et al. 1985]. ‘FEw type of partitioning,

whether horizontal, vertical, or both, de-

pends on the usage patterns. Horizontal

partitioning has a clirect effect on the

join operation and must be taken into

account.

Join site. Choosing sites at which the

join is to be executed depends on many

factors [Bandyopadhyay and Sengupta

1988; Cornell and Yu. 1988]; for example,

the site at which the result relation is

- GRACE

Hgbr-ld

‘Slmljle Hash

Partltlonlng

NONE

COMPLETE

[

Nested

Loops

Hash

Loops

desired, site of the largest relation or

relation fragment resides, and replica-

tion. The choice of site is also affected by

the data transmission costs. Depending

on the partitioning of relations, it may be

feasible to perform joins of fragments at

different sites. TIm partial results may

then be transmitted to a single site where

they can be concatenated to get the final

result.

Type of query processing. Opera-

tions in query processing may be per-

formed in strict sequence or be pipelined

[Lu and Carey :[985; Mikkilineni and

Su 1988; Richardson et al. 1987’].

Replication. ‘Whether relations or

fragments of relations are replicated is

ACM Computmg Surveys, Vol 24, No. 1, March 1992

94 “ P. Mishra and M. H. Eich

important in that the query optimizer

must be aware of the existence of all the

replications and whether they are consis-

tent with each other. It must then choose

between the copies based on the choice of

join site.

In the following section, the techniques

used for distributed join execution are

discussed in the context of the above-

mentioned criteria. The main steps in

the algorithms are also given.

5.2 Join Algorithms

In distributed databases, most join al-

gorithms used are built using the

algorithms devised for centralized

databases. For instance, since a semijoin

can be used to identify and transmit tu-

ples from one relation participating in a

join to another network node where the

other join relation resides, it is often a

common starting point for join algo-

rithms in distributed databases.

5.2.1 Semfioin

This implementation, consisting of one

semijoin operation followed by a join op-

eration, is particularly suited to the dis-

tributed environment since it helps

reduce the quantity of data transferred

between sites.

Algorithm

If the two relations R and S reside at

different sites and the result of a ~-join

between them must be made available at

the site of relation R, then they may be

joined in the following steps:

RI := T,(a)[R];

transfer R1 to site of S;

S1 := RIM
r(a)~s(b)s;

Transfer S1 to site of R;

Q:= slMr(a)o.(b)R

Discussion

The first three steps in the above algo-

rithm constitute the semijoin SM R. The

result relation Q in the last step is the

same as the result of RW S. However, to

perform RM S in a single step, one of

the two relations would have to be trans-

ferred to the other site in its entirety. In

the above method, the set of distinct val-

ues of the join attributes of R and

matching tuples from S are transmitted

between sites in the form of the interme-

diate relation RI. This volume of data is

not likely to exceed the data in either

one of the two relations, This is espe-

cially true if the join attributes are not

the primary key.

Applicability

Semijoins have been used to great advan-

tage in distributed systems despite the

fact that they necessitate multiple scans

of relations [Kang and Roussopoulos

198’7a, 1987b; Valduriez 1982]. This is

especially true in wide area networks

where the cost of data transmission is

usually higher than local processing

costs

In high-speed, local area networks,

however, the data transfer rate between

sites approaches the speed of data trans-

fer between main memory and disk [Lu

and Carey 1985]. In such cases, local pro-

cessing costs may overshadow data

transfer costs [Mackert and Lehman

1986], and the number of semijoins exe-

cuted may be more important than the

reduction of transmitted data [Masuyama

et al. 1987].

In queries that are solved using a se-

ries of semijoins, the sequence in which

the semijoins are executed can be impor-

tant [Gouda and Dayal 1981; Masuyama

et al. 1987; Yoo and Lafortune 1989].

A semijoin-based technique called

composite semiJ”oining has been devel-

oped for use in cases where multiple join

attributes are involved [Perrizo et al.

1989]. If the majority of the attributes in

a relation make up the join condition,

however, the overhead of transmitting

the entire relation may actually be less

than that of projecting out the join at-

tributes before transmission. Such a re-

lation-transmission technique has been

described in Sacco [1984].

ACM Computing Surveys, Vol 24, No 1, March 1992

Join Processing in Relational Databases * 95

5.2.2 Two-Way Semijoins

The two-way semijoin operator is an ex-

tended version of the semijoin operation

[Kang and Roussopoulos 1987al. Like the

semijoin operation, its usefulness lies in

its ability to reduce relations. The result

of a two-way semijoin between two rela-

tions is a set of two relations. Formally,

it can be described as

R+ [r(a) Os(b)] +S= {R1, S1},

where

RI = R!xT[~lO~(~)S,

SI = SK T(a,os@,R

Algorithm

Let relations R and S reside at sites 1

and 2, respectively. Then the steps in the

computation of

R+ [r(a) ~s(b)] +S

are as follows:

RI = 7r,(a)[R];
send RI to site 2;

S’1 = Sk m;

RI. = Rlk S;

R1.. = RI – Rl_;

if
,.,,. r,.

R1.., < R1. _ then,,. ,,,,,
send R1 ~ to site 1;

Rll = RW Rl~;

else send Rlnm to site 1;

Rll = Rk Rlnm;

send S’1 to site 1;

RMS = R1lWS1;

Note the following:

(1) The intermediate relations RI ~ and

Rl~~ are created along with S1; the tu-

ples of R1 that participate in the semi-

join are placed in RI ~, whereas those

with no match in S are placed in RI ~m.

(2) The semijoin conditions in the cre-

ation of Rll using RI ~~ is the opposite

of the condition on all other semijoin and

join operations in the algorithm. The join

condition on all other semijoins and joins

is r(a)ds(b).

(3) The relation Rll is created to reduce

the size of R1 to the minimum needed to

perform the join.

Performance

The performance of a two-way semijoin is

evaluated on the basis of the amount of

reduction in the relations on which it

operates. Simulation results indicate that

it is more powerful than ordinary semi-

joins [Kang and Roussopoulos 1987a]. The

cost of executing two-way semijoins is

comparable to executing two back-to-back

semijoins. It will, however, always be

less since the relation fragment sent back

to the first site is the smallest possible.

Applicability

Most query-processing algorithms based

on semijoins can be modified to use two-

way semijoins instead. Simulation exper-

iments indicate that the response time

improves significantly [Kang and

Roussopoulos 198’7a].

5.2.3 Bloomjoin

A bloomjoin uses bloom filters to filter

out tuples that do not participate in a

join [Mackert and. Lehman 1986]. We

consider it a special implementation ap-

proach for a semijoin rather than a new

join algorithm. A bloom filter is a large

vector of bits that are initially set to O

[Bloom 19701. For a given relation, a

bloom filter is created in the following

steps:

(1) Apply a hash function to the join at-

tributes. The resulting hash value

points to a bit in the bit array.

(2) Set the bit pointed to by the hash

value to 1.

Once the bloom filter has been created

for a relation, it can be used to determine

whether a given attribute value is pre-

sent in the relation. In the case of the

join operation, a bloom filter is created

for one of the relations. Next, the join

attributes from the second relation are

hashed. If the hash value points to a bit

set to 1 in the bloom filter, the corre-

sponding tuple is likely to have a match

in the first relation.

ACM Computmg Surveys, Vol 24, No. 1, March 1992

96 “ P. Mishra and M. H. Eich

Algorithm ter on S and joining the two reduced

Assume that relations R and S reside at
relations. This double reduction is simi -

sites 1 and 2, respectively. The major
lar to the operating principle of two-way

steps in the process of joining R and S
semijoins described earlier.

are

generate bloom filter for S;

send filter to site 1;

for each r do

hash join attributes;

if hash value addresses a bit set to 1

then put r in R1

else discard s;

send RI to site 2;

join R1 and S;

Note that the same hash function must

be used on both relations.

Discussion

Bloomjoins have also been called hashed

semijoins [Mackert and Lehman 1986].

Although the principle behind bloomjoins

and semijoins is similar, bloomjoins have

certain advantages over regular semi-

joins. Bloomjoins consist of one join oper-

ation and one bloom filter creation,

whereas regular semijoins involve one

join step and one semijoin. Local process-

ing costs of bloomjoins are less because

the creation of a bloom filter is cheaper

than that of a semijoin. Less data are

transmitted between sites because bloom

filters are smaller than the set of join

attributes transmitted in semijoin

operations.

An attendant disadvantage is that

some tuples survive filtration due to the

collision feature of hashing. Therefore,

the cardinality of a relation reduced by

filtration is likely to be higher than that

reduced by a semijoin.

Performance

The bloom filter can be created on the

relation with the fewest distinct values

of the join attributes or on the smaller

relation. The former strategy results in a

more selective filter, but the latter is

more practical since the former requires

that the DBMS maintain a detailed and

accurate statistical database profile.

The final join load can be reduced even

further by reducing R with a bloom fil-

Applicability

Bloomjoins can be used in distributed

systems with a high-speed underlying

network, where local processing costs ap

preach data distribution costs. In such

situations, semijoins are more expensive

since they attempt to reduce the amount

of data transmitted at the expense of

increased local processing. A bloom fil-

ter-based semijoin algorithm with very

low communication costs has been pro-

posed in Mullin [1990]. Its only limita-

tion is that, at present, because of its

hash technique it is only used to support

natural joins.

5.3 Summary

In the above discussion it is seen that

reducing communication data volume

achieved by reducing the join load is the

primary objective. The algorithms are

largely based on semijoin-like principles.

This is true of most distributed query-

processing strategies. The exact algo-

rithms depend on the factors introduced

in Section 5.1. In many cases, generation

of optimal solutions is prohibitively ex-

pensive. As a result, heuristic procedures

are fairly widespread.

6. HARDWARE SUPPORT FOR JOINS

The growing popularity of database sys-

tems has highlighted the need for fast

query response. The large sizes of

database files has made the task diffi-

cult. Processing large data files is a

time-consuming activity that involves

large amounts of 1/0. This problem is

magnified in the case of joins because at

least two relations must be processed. In

many cases, much of the 1/0 effort does

not serve a purpose and should be

avoided. The aim is to reduce 1/0

whether it is done by reducing the num-

ber of file scans, by partitioning, or by

other means.

ACM Computing Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases o 97

The idea that implementation of func-

tions in hardware results in substantial

gains in speed leads to the design and

development of database machines. Nu-

merous database machines using varied

hardware technologies, ranging from

general multiprocessors, to specially de-

signed processors, to achieve response

time reduction, have been proposed, and

some have been prototype [Ozkarahan

1986; Su 1988]. Some commercially

available machines are Britton Lee’s IDM

[Britton Lee, Inc. 19811, Intel’s2 iDBl?

[Intel Corporation 1982], and Teradata’s

DBC [Ehrensberger 1984], which runs as

a backend on some IBM 3 mainframes.

Special-purpose database machines are

expensive to design and build. Therefore,

recent research has been aimed at the

implementation of database operations on

general-purpose multiprocessors [Dale et

al. 1989; Su 1988; Walton 19891.

Database machine architectures have

been surveyed extensively in Ozkarahan

[1986] and Su [1988].

6.1 Hardware Approaches

Several approaches that have been found

to be helpful in solving the problems as-

sociated with joining large data files are

discussed in this section.

6.1.7. Reduction of Data

A common feature of all database activi-

ties is the vast amount of data that must

be accessed, The size of the search space

can be reduced by means of the cellular

logic approach, of the data filter ap-

proach [Pramanik and Fotouhi 1985], or

by using a large staging memory [Raschid

et al. 19861.

In the data filter approach, a database

filter can be used to ease the 1/0 bottle-

neck by reducing the quantity of data

transferred from the disk to the main

memory [Pramanik 1986; Su 1988]. It is

2 Intel is a registered trademark of Intel Corpora-

tion.

3 IBM is a registered trademark of International

Business Machines Corporation,

located between the secondarv storage

devices and the main memor~. It pe~”-

forms all the conventional secondary de-

vice control functions, as well as two data

management functions, namely, data re -

duction and data transformation. Data

reduction refers to the operations like

select, which can be done by scanning a

file once. Data transformation functions

that some proposed filters can perform

are sorting of an input file and merging,

joining, and taking the difference of two

irmut files. Transformation is more diffi -.
cult than reduction; it may also involve

several scans of the input data.

6. 1.2 Fast Search

Searching through large data files has

been speeded up by using associative

memories, such as STARAN [Rudolph

1972] and ASLM IHurson 1981].

Associative memories have certain

properties that make them suitable for

database management systems [Su 1988].

The most important feature is that they

allow content-addressing and context-

addressing capabilities. Each memory

element has an associated processing

element. This increases the parallel pro-

cessing capability of the system. For in-

stance, the select operation becomes very

fast because a Iarge number of tuples can

be searched in parallel. This feature has

been used to speed up the execution of

the nested-loops join method.

6. 1,3 Fast Processing

Fast processing has been achieved by

means of architectural features such as

general multiprocessing [Baru and

Frieder 1986], pipelining [Richardson et

al. 1987; Tong and Yao 1982], and sys-

tolic arrays [Kung and Lehman 1980].

The efficiency of -join algorithms is in-

creased by parallel execution and, in

many cases, by parallel 1/0 as well. The

HyperKYKLOS architecture, for exam-

ple, consists of a multiple-tree topology

network built on top of a hypercube. It

allows the processing of joins using the

nested-loops join, sort-merge join, a

ACM Computmg Surveys, Vol 24, No 1, March 1992

98 ● P. Mishra and M. H. Eich

hash-based join method, or a semijoin-

based algorithm [Menezes et al. 1987].

6. 1.4 Others

(1)

(2)

(3)

6.2

Hardware sorters have speeded up the

sort-merge algorithm considerably,

such as in DELTA [Sakai et al. 1984].

Hardware implementations of hash-

ing units support joins indirectly.

Some architectures that use hashing

units are CAFS [Babb 1979], DBC

[Hsiao 19801, and GRACE

[Kitsuregawa et al. 1983].

Hardware for multiple search condi-

tions as in CAFS [Babb 1979].

Nested-Loops Join

In this section, the impact of hardware

support on the nested-loops join is

discussed.

6.2.1 Associative Memory

STARAN implements the nested-loops

algorithm using associative memories

[Rudolph 19721. The join operation is car-

ried out as a sequence of select opera-

tions as described below. One tuple from

the smaller relation is joined with all

appropriate tuples from the larger rela-

tion. These tuples are identified by per-

forming a select operation on the larger

relation. The join attributes and their

values for the tuple in the smaller rela-

tion are used as the search m-edicates.

The join attribute values are ~oaded into

the comparand register, while the larger

relation is loaded into the associative ar-

rays. In each step, the matching tuples

from the longer relation are concate-

nated with the tuple with which they are

currently being compared. This is fol -

lowed by a project operation on the result

relation to remove duplicate attributes.

Any duplicate tuples are automatically

deleted from the result as part of the

project operation. This method of per-

forming the join operation is expensive

(in terms of hardware costs) for joins with

low selectivities. This method. however.

has the main advantage of speed over

any software implementation.

Another system that executes an asso-

ciative version of the nested-loops method

is the associative parallel join module

[Hurson 19891. The steps in this algo-

rithm are as follows:

load R and S into associative modules;

presearch R and S to mark off nonrelevant

tuples;

for each r do

{ route r to concatenation unit;

compare r with all s in S module:

route matching s to concatenation unit;

concatenate tuples;

route concatenated tuples to result mod-

ule;

send acknowledge signal to R module};

If relation S’ is too large to fit in its

module, it must be split into several sub-

relations, each small enough to fit in the

module. The above steps are then per-

formed for each subrelation.

6.2.2 Special-Purpose Join Processor

The DBM (database machine) designed

at the University of Maryland uses a

specially designed join processor called

the join filter (JF) [Yao et al. 1981]. The

join filter is used to execute join opera-

tions. Its operation is controlled by a

timing and control logic unit. It is a two-

dimensional array of comparators that

receives data from two sources, namely,

the two relations being joined. It con-

tains a number of buffers for storing the

join values and a buffer for storing the

result. The R and S buffers are one-

dimensional buffers used to store the join

values of the two relations. Their con-

tents are simultaneously broadcast to the

corresponding rows and columns of com-

parators C. A bit matrix B is used to

record if values in a pair of R and S

buffers match. The B values are used to

generate the join result. The join result

is stored in an output buffer F in the

form of addresses of matched tuples. The

database filter (DF) consisting of a two-

dimensional array of parallel compara-

tors is central to the processing of joins.

This component is used to perform the

select and project operations.

The join operation is performed in the

join processor array in the following

ACM Computmg Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases ● 99

manner:

partition R into x subrelations;

project out join attributes in DF;

store join attributes of each subrelation in

R(X);

partition S into y subrelations;

project out join attributes in DF;

store join attributes of each subrelation in

S(y);

for each set of x-valuesdo

{ broadcast x-values along rows in com-
parator array;

broadcast addresses of tuples into F

buffers;
for each set of y-values do

{ broadcast y-values along columns in
comparator array;

broadcast addresses of tuples into F

buffers;

perform comparisons in all compara-

tors;
store results in B matrix;

for each bit in B matrix which is set

do

output tuple addresses from F

buffers} };

The efficiency of this system is tied to

the ratio between the size of the relations

being joined and the size of the join pro-

cessor array. It exploits the inherent

parallelism of the nested-loops join. A

potential drawback of the system lies in

the fact that duplicate tuples in the re-

sult relation are not removed as part of

the join process.

6.3 Sort-Merge Join

Examples of hardware implementations

of the sort-merge are given in this

section.

6.3.1 Hardware Sorters

The database machine DELTA sorts the

input relations in parallel and uses a

single merger to perform the merge phase

[Sakai et al. 19841.

6.3.2 Filtering

The sort-merge algorithm is used in the

database machine VERSO [Bancilhon et

al. 1983]. The relations are sorted on the

join attributes and loaded into 233the

filter buffers SBI and SB2. Tuple pairs

being tested for the join condition are

loaded into the registers Q1 and Q2. The

movement of the relations within the fil-

ter is controlled by an automaton pro-

gram, which is the compiled code of a

relational query. The filter control de-

tides when a tuple needs to be read in

from the filter buffers into the registers.

Tuples are read from the buffer into the

registers Q1 andl Q2 only if they will

actually be present in the result of the

join. The comparison steps in the algo-

rithm described below decide which tuple

to read in next and from which relation.

Tuples that do not have a match, or would

result in a duplicate in the result rela-

tion, are filtered out. The equijoin opera-

tion is performed as follows:

repeat

load a block frc,m R into SB1;

load a block from S into SY?2;

repeat

load r into Ql;

load s into Q2;

if r(a) = S(b) then join r and s;

r(a) < S(b) then load next r from

Ql;

r(a) > S(b) then load next s from

Q2;

until end-of-block is reached;

until either R or S is exhausted.

Note that the relations are sorted before

being fed into the filter.

6.4 Hash-Based Joins

Some hardware implementations of

hash-based joins tare described briefly in

this section.

6.4.1 Data Filtering

Data filtering is a form of implicit parti-

tioning. It consists of elimination of non-

matching tuples using Babb arrays as in

the database machine CAFS [Babb 19791.

A Babb array is a single bit-wide random

access memory (R,AM). There is a one-to-

one mapping between all distinct join

attribute values in a relation and the

addresses of the bits in the array. In the

simplest case, th,e attribute value itself

can be used as an address pointing to a

bit. For relations with a wide range of

ACM Computing Surveys, Vol. 24, No. 1, March 1992

100 “ P. Mishra and M. H. Eich

attribute values, however, a very large

store would be needed. Furthermore,

large parts of this array may not be used

at all if the number of distinct attribute

values in the relation is small. The map-

ping is usually obtained by hashing at-

tribute values and using the hash value

as the address. This method is used in

the algorithm described below.

The equijoin procedure using hashed

bit arrays is as follows [Su 1988]:

for each tuple r do

{hash join attribute

store attribute value in list PI

set corresponding bit in Babb array};

for each tuple s do

{hash join attribute

if corresponding bit is set in Babb array

then

store attribute value in list P2 };

for each attribute value in list P2 do

{if attribute value not in list PI then

delete from P2

else concatenate corresponding r and

~lace result in Q};

The above algorithm is based on the con-

cept of filtering. The lists PI and P2

must be matched in the merge step be-

cause of possibility of collisions.

6.4.2 Multyxocessmg

Most multiprocessor hash algorithms are

based on explicit partitioning, for exam-

ple, GRACE hash join. The hashing units

are used to partition the relations and

also to join the tuples in each partition

pair using the simple hash join. Most of

these algorithms have already been cie-

scribed in Section 2.

Teradata’s D13C/1012 is a commer-

cially available backend processor with

special access module processors (AMP)

for the execution of database operations.

The join strategy depends on whether

either of the relations has a primary in-

dex on the join attributes. If there are no

indexes, the larger relation is distributed

over the AMPs. The smaller relation is

broadcast to all sites, where it is joined

with the fragment of the larger relation

at that site using the simple nested-loop

or sort-merge join method. If one of the

relations has a primary index on the join

attribute, it is distributed across the

AMPs based on the hash values of the

index. The same hash function is then

applied to the other relation. The tuples

of this relation are then broadcast only to

the AMP, where they are likely to find a

match. Each AMP then performs its part

of the join operation. Other data place-

ment and processing details are dis-

cussed at length in Su [1988].

6.4.3 Pipelining

The hash loops join with pipelining and

multiprocessing has been implemented in

DBC [Hsiao 1980]. It uses multiple pro-

cessors by partitioning one of the input

relations across the processors. Each tu-

ple of the other input relation is succes-

sively sent to all the processors. Thus, at

any given time, all processors are pro-

cessing different tuples of the second

relation.

6.5 Summary

It is seen that most join algorithms im-

plemented in hardware perform simple

actions repetitively. Software implemen-

tations of the same algorithms would

generally be considered inefficient. Pre-

requisites that an algorithm must have

before it becomes a viable candidate for

hardware implementation are communi-

cation simplicity, space efficiency, scope

for parallelism, and regularity [Hurson

1986]. The speed of hardware compen-

sates for the brute force approach.

Simple implementations of the nested-

Ioops join, the parallel nested-loops join,

the sort-merge join, and the hash join are

found to be the underlying paradigm in

most cases. Algorithms based on semi-

joins have been used with great success.

7. OTHER JOIN ISSUES

The previous sections of this paper have

examined types of join operations and

techniques for implementation. In this

section we discuss various topics related

to the efficiency of join operations. These

ACM Computing Surveys, Vol 24, No 1, March 1992

Join Processing in Relational Databases “ 101

issues are related to multiple types of

algorithms and have merited research on

their own. Thus, we include a separate

discussion of them.

7.? Selectivity Factor

The selectivity factor [Piatetsky-Shapiro

and Connell 1984] or the ~“oin selection

factor [E1-Masri and Navathe 1989] is

defined as the ratio of the number of

tuples participating in the join to the

total number of tuples in the Cartesian

product of the relations. It is an impor-

tant factor in the cost of performing joins.

A high selectivity factor requires a larger

number of tuple comparisons, produces a

larger result relation, and requires more

1/0 than does a low selectivity factor.

Thus, a high selectivity factor implies a

more expensive join. In this section, join

algorithms are evaluated based on the

effect of selectivity on the performance.

Based on the actual execution cost,

some algorithms may be preferred over

others for different levels of selectivity.

The nested-loops method is considered the

most inefficient method to use in the case

of low join selectivities. This is because

most of the comparisons do not result in

a match, and the effort is wasted. The

hash join methods are significantly bet-

ter when the selectivity is low. The ad-

vantage that hash joins have over the

nested-loops method diminishes as the

selectivity factor increases. In this case,

exhaustive comparison is useful because

of the large number of tuples participant-

ing in the join. Furthermore, the nested-

loops method does not have the overhead

of doing hashing. In partition-based joins,

the selectivity of the join between tuples

in a partition should be higher than that

of the join between the two relations

when. treated as a whole.

The problem of estimation of selective -

ties to an acceptable ile~ee of accuracy

remains open even though it has been

studied in some detail in the past. The

general approach has been to study the

distribution of attribute values and to

find a useful way of storing such infor-

mation. The uniform assumption method

[Selinger 19791, the worst-case assump-

tion method [Epstein and Stonebraker

1980], and the perfect knowledge method

[Christodulakis 19851 are some ap-

proaches that hme been advocated. The

first method assumes that the values of

attributes are uniformly distributed

within the domain of the attribute. Such

an assumption simplifies processing but

is considered solmewhat unrealistic. The

worst-case assumption method assumes a

selectivity of one, that is, a Cartesian

product. This, too, is unrealistic. The

perfect knowledge method does not make

any assumptions about the distributions.

Instead, it relies on the calculation of

exact relation sizes at the time of pro-

cessing. This approach gives good re-

sults. The cost of calculating the storage

overhead and the cost of maintaining

such information are, however, consid-

ered prohibitive. The piecewise uniform

method [Bell et al. 1989] represents a

compromise between the above methods.

Another class of methods, called sam-

pling methods, does not require storing

and maintaining large amounts of statis-

tical data about relations [Lipton et al.

1990]. An adaptl~ve, random sampling al-

gorithm for estimating selectivities of

queries involving joins and selects is dis-

cussed in Lipton et al. [19901. It also

considers skewed data and very low

selectivities.

7.2 Optimal Nestiilg of Joins

When performing a join over several re-

lations, the order in which the joins is

performed may make a difference to the

overall efficien.c~. This problem of opti-

mal nesting of Jo,ms is usually considered

in the context of the overall problem of

query processing. The usual objective is

to reduce the size of intermediate rela-

tions the most. The optimal order is the

one that produces the fewest total num-

ber of intermediate tuples; thus the effect

of the selectivity factor is extremely

significant in the case of multiway

joins [Bell et al. 1989; Kumar and

Stonebraker 1987; Piatetsky-Shapiro and

Connell 1984]. An optimal ordering for

ACM Computing Surveys, Vol 24, No. 1, March 1992

102 “ P. Mishra and M. H. Eich

such joins is achieved by processing the

relations in the order of increasing selec-

tivities. The joins with the lowest selec-

tivities should be performed first. This

logic also applies to the case ofjoin pro-

cessing in distributed environments

where semijoins are used to reduce the

size of the relations participating in the

join [Masuyama et al. 1987; Segev 1986].

The accuracy with which the size of

intermediate relations can be estimated

depends on the accuracy of the selectivity

factor. It has been found that inaccurate

estimates of the selectivity factor are

more likely to lead to the generation of

suboptimal query execution plans in the

case of distributed database systems

[Epstein and Stonebraker 1980] than in

the case of centralized databases [Kumar

and Stonebraker 1987].

In this context, it must be mentioned

that the problem of large intermediate

result relations can be avoided by

pipelining the process of joining several

relations [Bitten 1987]. If the results

generated by one join are directly fed to

the next join stage, there is no need to

store intermediate relations.

7.3 Hash Joins

In most situations, hash joins have gen-

erally been found to be the most efficient

method. The efficiency of hash joins is

reduced by partition overflow in the case

of hash-partitioned joins. Hash table

collisions are a problem in all hash

joins. The problems are discussed in the

following sections.

7.3.1 Partition Overflow

Partition overflow is said to occur when a

partition becomes too large to fit into the

available main memory. The number of

partitions, and therefore the size of the

partitions, into which a relation must be

split is determined by the amount of main

memory available and the size of the

input relation. There is, however, no easy

way of guaranteeing that each of the

partitions will be small enough to fit into

the staging memory. This is because the

number of tuples that will hash to a

given range of values cannot be accu-

rately estimated in advance. In most

cases, the number of partitions is stati-

cally determined before the partitioning

process even begins.

It has been suggested [Gerber 19861

that most cases of partition overflow can

be avoided by creating more partitions

than appears to be necessary. In other

words, it may be possible to avoid parti-

tion overflow by creating a large number

of small partitions. A small partition is

more likely to fit into the available mem-

ory in its entirety. If the exact amount of

available memory is known, the parti-

tion size should be created so the largest

partition possible without overflow is

used.

Another suggested solution proposes

that a family of hash split functions be

maintained [Gerber 19861. The efficiency

with which a given hash function can

randomize tuples across partitions for

specific attributes can be precomputed

and stored. This information can be used

at the time of partitioning. It must be

remembered that this information is sub-

ject to change depending on the modifica-

tions to the database. These strategies

are examples of static partitioning. If all

attempts at preventing partition over-

flow fail, the only solution may be to

detect overflow and be prepared to resplit

the relation using another hash function.

Based on this principle, redistribution of

tuples is sometimes done at runtime to

balance the processing load for each

partition. This is known as dynamic

partitioning [Su 1988]. The subject of

partitioning is detailed in Section 7.5.

The GRACE hash join avoids partition

overflow by means of a strategy called

partition or bucket tuning. It is based on

the fact that, inspite of the best attempts,

not all partitions are of a size such that

they will fit exactly into the amount of

main memory available. The main idea

behind this approach is that partitions

that are too large can be divided into

smaller divisions as and when needed.

Recall that the GRACE hash join first

divides each of the relations into parti-

tions. Then tuples within each of the

ACM Computmg Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases ● 103

partitions are joined. These two separate

parts of the algorithm are referred to as

stages. When the second stage is per-

formed, the partitions chosen for staging

are based on the best-fit criterion. This

method of staging partitions avoids the

problem of partition overflow. It has been

called the dynamic destaging strategy

[~akayama. et al. 1988]. The effect of

tuple distribution within buckets and

bucket size tuning on this algorithm has

been reported in ~itsuregawa [1989cI.

7.3.2 Hash Table Collisions

In hash-based join methods, collisions

must be kept at a minimum to reduce the

cost of the probing operation during the

join stage [Gerber 19861. It is well known

that there is no way of avoiding colli-

sions altogether. As a result, standard

methods of dealing with hash collisions

have been developed. Most methods in-

volve the overhead of maintaining lists

of values that hash to the same entry in

the hash table.

A unique method of handling collision

has been implemented in the CAFS ar-

chitecture [Babb 19791. It has been found

to be very useful inspite of the fact that

there is a small possibility of error. Each

attribute value is hashed by three differ-

ent hash functions. The hash value is

used to mark the appropriate bit in the

corresponding bit array store. The output

of the 3-bit array is logically ANDed.

The bit array is considered to have been

marked for a particular attribute value

only if the output of the AND operation

is 1.

7.3.3 likmequ~oins

Nonequijoins can be performed using

hash join techniques only if the hash

function maintains ordering of tuples.

Since such hash functions are rare, hash

joins are usually not associated with

equijoins, This, however, does not really

detract from the use of hash joins since

nonequijoins are uncommon; hash join

techniques remain among the most effi-

cient methods available.

7.4 Indexing and Clustering

The performance of some join methods is

affected by the presence of indexes on the

join attributes and whether or not the

index is clustered. For instance, it has

been shown that the performance of even

the nested-loops join method can be im-

proved substantially if the inner relation

is indexed on the join attributes [Blasgen

and Eswaran 1977]. In some cases, it

may even be advantageous to create in-

dexes dynamically [Omiecinski 1989].

Join methods using specialized data

structures, such as Be-trees or T-trees,

must necessarily have an index using the

data structure in question to be viable.

If both relaticms are clustered on the

join attributes, then the sort-merge

method is the best and requires the least

amount of 1/0 activity [Omiecinski 19891.

If the indexes are uncluttered, heuristics

can be used to devise efficient procedures

for implementing joins [Omiecinski 1989;

Omiecinski and Shonkwiler 19901.

7.5 Partitioning of Relations

In Section 2, it was observed that algo-

rithms based on partitioning of relations

are suitable for use on parallel systems.

Significant gains in performance, how-

ever, can be achieved only when the par-

titions are of approximately equal size.

Most performance results reported as-

sume equal-sized partitions. In practice

it is very difficult to create equal-sized

partitions. The reasons for this and the

resulting effect on the performance of

joins are discussed below.

7.5.1 Sources of Skewness

In most multiprocessor systems, rela -

tions are horizontally partitioned and

distributed across all storage units. In

response to queries, these partitioned

data are processed in parallel by a num-

ber of processors. Query response time is

determined by the time taken by individ-

ual processors. If all processors handle

equal amounts of data, the maximum

performance improvement is achieved;

otherwise, the time is determined by the

processor that handles the largest

ACM Computmg Surveys, VOI 24, No 1, March 1992

104 “ P. Mishra and M. H. Eich

volume of data. In practice the volume of

data handled by individual processors

varies. There are several reasons for this

[Lakshmi and Yu 1988, 1989; Walton

19891:

Skewed distribution of attribute

values. Horizontal partitioning, and

therefore distribution of data, is usually

done based on the values of some at-

tribute in the relation, For instance, the

attribute domain is divided into fixed-size

ranges, and tuples falling in a given

range are sent to a particular storage

location. If the values of the attribute in

question are present with uniform fre-

quency, the subrelations will be of equal

size. Such a uniform distribution is, how-

ever, rarely encountered in practice. As a

result, any distribution method based on

attribute values is bound to result in

unequal subrelations.

Result of select. Database queries

consist of various operations being per-

formed on a set of relations. A general

rule of query optimization is that the join

operation is performed after all select

operations. The selectivity of these oper-

ations may be different for different par-

titions. Thus, even if the partitions at all

locations were equal to begin with, the

subrelations that are input to the join

operation are likely to vary substantially

in size.

Result of hash function. Hash func-

tions are often used to distribute tuples

of a relation over several storage loca-

tions. This is an alternative that may be

chosen over the fixed-range distribution

discussed earlier. In the ideal case, the

hash function produces hash values that

are uniformly distributed. In such a situ-

ation, the relation being distributed is

divided into equal parts. This, however,

is usually not the case. Hash functions

usually contribute to the uneven distri-

bution of tuples.

7.5. Z Effect of Ske w on Jom Performance

It has been found that each of the factors

that can result in unequal-sized parti-

tions has an effect on join performance

and that different factors have different

effects [Walton 1989].

Speed up. The speed up of an algo-

rithm as result of parallelization is the

ratio of the execution times of the se-

quential and parallel versions of the al-

gorithm. Maximum speed up can be

achieved when the ioin mocessin~ load is. .
evenly distributed among all processing

sites. Otherwise, the site with the largest

load becomes the bottleneck. Partition-

ing has been the primary method of dis-

tributing the join load. In most cases, it

is assumed that the attribute values are

uniformly distributed in a relation. This

is usuallv not true. As a result. some

partition; are significantly larger than

others. This nonuniformity y in the sizes of

partitions limits the speed up [Lakshmi

and Yu 1988, 1989, 1990].

Scalability y. An algorithm is said to be

scalable if its performance increases ap-

proximately in proportion to the number

of processors; that is, the speed up of the

parallel version of an algorithm is ap-

proximately proportional to the number

of processors [Dale et al. 1989; Walton

1989]. In Lakshmi and Yu [1988], experi-

ments suggest that scalability is ad-

versely affected if the data are skewed.

Increasing the number of processors did

not result in a corresponding increase in

speed up. Initial results [Walton 1989]

indicate that although all types of skew

increase the execution time of ioins. the. .
amount of increase depends on the source

of skew. Further, it is possible to antici-

pate this problem and take steps to

resolve it; for example, by dynamic

redistribution of tuples before joining.

75.3 Cure for Skew

Ideally, each processor participating in a

join would have subrelations approxi-

mately equal to the subrelations at other

processors. Many database systems have

recomized the fact that this cannot be

take: for granted and have implemented

schemes that attempt to create equal-

ized partitions at all processors. A large

number of static partitioning options is

used for database partitioning [Ozkara -

ACM Computing Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases ~ 105

han 1986], for example, sorting, hash-

based data clustering, and dynamic

order-preserving partitioning [Ozkara -

han and Bozsahin 19881.

Most systems have static schemes that

distribute relations evenly across all

storage locations. An improvement can

be made on this by balancing the load at

the time of join execution. Balancing the

size of partitions at the time of execution

is also known as dynamic data distribu-

tion [Su 1988]. Experiments show that

arbitrary distribution of data followed by

dynamic redistribution at the time of

processing is a viable alternative to static

partitioning based on hashing [Wang and

Luk 1988] as long as the communication

network does not become a bottleneck.

Some static load distribution strategies

are as follows:

Round robin. Tuples are distributed

in a round-robin fashion based on the

value of some attribute.

Hashed. Tuples are stored at a partic-

ular location based on the result of

applying a hash function to a given

attribute. Obviously, the success of

this scheme depends on the efficiency

of the hash function.

Range partitioned. The domain of a

given attribute is split into ranges speci-

fied by the user. Each range maps to a

particular storage location, ?’uples whose

attribute values fall into a given range

are stored at the storage location deter-

mined by the mapping.

Uniform distribution. A relation is

divided into equal-sized parts based on

some attribute value. The relation seg-

ments are then distributed to the avail-

able disk drives.

Dynamic data redistribution during

execution is advantageous but can be

time consuming unless the degree of cor~-

nectivity between processors is high.

Thus far, only cube-connected systems

appear to have the degree of connectivity

needed to support dynamic redistribution

[SU 19881. A scheme for tuple balancing
at execution time in a cube-connected

database multicomputer is described in

Baru and Frieder [1989]. A parallel hash

join algorithm, called bucket-spreading

hash join, has been implemented in a

high-performance database server called

super database computer (SDC)

[Kitsuregawa and Ogawa 1990]. Buckets

are dynamically allocated to processors

based on their size. Again, SDC relies on

a highly functional network to perform

redistribution of data buckets without

burdening the processors. Other dynamic

load distribution schemes are discussed

in Hua and Lee [1990] and Ghande -

harizadeh and DeWitt [1990]. In Hua and

Lee [1990], the partitioning scheme is

based on the grid file structure. The hy-

brid-range scheme of Ghandeharizadeh

and DeWitt [1990] is a compromise be-

tween simple range partitioning and

hashed partition ing.

The idea of dynamic data partitioning

has been implemented by Tandem in its

NonStop SQL systems [Tandem Database

Group 1987]. Here, relations are horizon-

tally partitioned among processors with

a split table defining partitioning pred-

icates. Special separator and merge

operators are then used to parallelize

processing and scanning of the relation

partitions based on the join predicates

dynamically [DeWitt and Gray 1990]. The

result is a parallel scan and join occur-

ring at each site

7.6 Join-Type Processing in Nonrelational

Databases

Although the join operation is unique to

relational algebra and query languages

on relational databases, equivalent oper-

ations exist in other data models. In fact,

the use of join-type operations predates

what is currently thought of as database

systems. With the introduction of direct

access files [Harbron 1988], the capabil-

ity of linking two different files together

was provided. By using pointers between

such files, users were provided the abil-

ity to “join” the two files together in

predefine ways. Early bill-of-material

processors facilitated the easy processing

of these joined files by providing “chain-

chasing” operations.

ACM Computmg Surveys, Vol. 24, No. 1, March 1992

106 0 P. Mishra and M. H. Eich

With the development of the DBTG

(Database Task Group) database stan-

dard in 1971 [CODASYL], the DML (Data

Manipulation Language) operations re-

quired by network database systems were

defined. Many of these operations allow

the chasing of chains between records.

As with the early file systems, however,

only predefined chains (sets) with prede-

fine joins were allowed. Operations such

as FIND OWNER and FIND NEXT are

used to chase chains in network

databases. IBM’s IMS DBMS [1978] pro-

vides similar chain-chasing capabilities.

Since IMS is only hierarchical in nature,

however, the types of joining operations

that are allowed is somewhat reduced

from that of the DBTG network systems.

Operations such as GET NEXT and GET

NEXT WITHIN PARENT are provided.

Via the use of logical relationships and

logical databases, IMS provides the abil-

ity to combine segments from one physi-

cal database with segments from another

dynamically. To the user, it appears as if

the two segments are joined together into

one. IMS also facilitates path calls that

allow the joining of segments from mul-

tiple levels in the same database into one

segment. The concatenated key for IMS

is the key of all the joined segments.

Object-oriented databases also provide

operations similar to a join. The idea of a

class hierarchy that indicates inheri-

tance relationships (ISA) between object

classes must often be traversed [Atkin-

son et al. 1989]. Its traversal requires a

join-type operation to travel between the

levels in the structure, Since other rela-

tionships are also allowed between ob-

jects and object classes, other types of

join operations are often provided. The

ORION query model provides the ability

to follow the ISA relationship as well as

complex attribute relationships [Kim

1989]. As stated by Kim [1989], this type

of operation “is an implicit join of the

classes on a class-composition hierarchy

rooted at the target class of the query. ”

Unlike relational databases where for-

eign keys are often used to facilitate the

join, object-oriented database systems

may use the unique object identifier.

Special indexes may be built to provide a

fast retrieval of the joined objects [Bertino

and Kim 1989]. Complex attributes also

require a type of join operation to find

the actual primitive attribute values

[Banerjee et al. 19881.

Recently, many researchers have in-

vestigated the extension of relational

database systems to provide features

beyond those of the original relational

proposal and its associated relational

algebra. Starburst extensible DBMS pro-

vides a pointer-based access structure

[Carey et al. 1990; Shekita and Carey

19901. The purpose of these pointers is to

provide an efficient implementation tech-

nique for joins. The result is a pointer

structure similar to that provided by the

earlier network and hierarchical models.

An extension to the relational model to

handle temporal data and join processing

on it has been proposed [E1-Masri 1990].

The idea of a join has also been extended

to include non-lNF data. Postgres has

extended relations to include procedures

as data types [Stonebraker and Rowe

1986]. A MATCH operator that performs

join-type operations for pattern matching

has also been proposed [Held and Carlis

1987]. An experimental database system

called RAD, which allows comparisons

(and thus joins) between arbitrary ab-

stract data types, has been proposed

[Osborn and Heaven 1986]. These com-

parisons are provided by user-defined

procedures. Join algorithms have been

parallelized for nested relations

[Deshpande 1990].

8. CONCLUSIONS

A large number of algorithms for per-

forming the join operation is in use. It

has been found that many algorithms are

variants of others, often tailored to suit a

particular computing environment. For

instance, the hash-loops join is a variant

of the nested-loops join that takes advan-

tage of the presence of a hashed index on

the join attributes of the inner relation.

An algorithm and its derivatives may be

considered as a class of algorithms.

Some algorithms require preprocess-

ing, for example, sorting of relations in

ACM Computmg Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases ● 107

the sort-merge method. The efficiency of

the split-based algorithms is on account

of the join load reduction. Others require

special index structures to be viable

methods, for example, T-trees. The large

number of algorithms of each type indi-

cates that different computing environ-

ments demand different join methods.

This feature could have an effect on the

process of query optimization. In fact, the

proportion of query-processing literature

devoted to the optimization of the join

algorithm is larger than for any other

aspect of query processing. The purpose

of this survey has been to study

join algorithms, to provide a means of

classifying them, and to point to

query-processing techniques based on

particular join methods.

Join processing remains an area of ac-

tive research. New algorithms are being

devised for specific computing environ-

ments, parallel architectures [Baru et al.

1987; Lakshmi and Yu 1990; Nakayanna

1984; Su 1988], main memory databases

[DeWitt et al. 1984; Pucheral et al. 1990;

Shapiro 1986], and distributed databases

[Bandyopadhyay and Sengupta 1988;

Mullin 1990; Pramanik and Vineyard

1988]. They are usually variants or ex-

tensions of the basic methods reviewed

here. Optimization of queries involving

joins is also being studied in detail. For

example, queries involving joins using

large data files are examined in Kitsure -

gawa et al. [1989a] and Swami and Gupta

[19881. The issue of processing join

queries accessing a large number of rela-

tions is addressed in Ioannidis and Karng

[19901. Queries involving joins and outer-

joins are discussed in detail in [Rosenthal

and GaIindo-Legaria 1990]. A join-

processing method, called intelligent join,

consisting of determining which rela-

tions need to be joined in order to re-

spond to a query and the order in which

they could be joined has been proposed in

Cammarata et al. [1989]. The problem of

optimizing processor use and reducing

1/0 bandwidth requirements for join pro-

cessing on multiprocessors has been

studied in Murphy and Rotem [1989a,

1989b].

APPENDIX: NOTATION

Symbol Explanation

R

s

Q
n

m

r

s

a,

b,

r(a)

S(b)

s(a)

t(a)

t(b)

Input relation

Input relatlon

Result relation

Cardmality of R

Cardinality of S

[Note: It is assumed that n > m.]

Tuple in relation R

Tuple in relation S

All attributes of r

All attributes of s

Join attributes in relation R

Join attributes in relation S

Join attributes in relation S

This is necessary for an equijoin between

R and S

Join attribute columns in result relation

Q
Join attribute columns in result relation

Q

ACKNOWLEDGMENTS

The authors would like to thank the referees for

their valuable comments and recommendations for

improvements to early drafts of this paper. Special

thanks go to Salvatore March for his thorough

review of the paper ?nd to Masaru Kltsuregawa

for inspiring our partitioning classification and

Figure 9.

This material is based m part upon work sup-

ported by the Texas Advanced Research Program

(Advanced Technology Program) under Grant No.

2265.

REFERENCES

AGRAW.AL, R., DAR, S,, AND JAGADHH, H, V. 1989.

Composition of clatabase relations, In Proceed-

ings of Conference on Data Engineering, pp

102-108.

AIIO, A. V , BEERG C,, .4NrI ULLMAN, J. D, 1979.

The theory of joins in relational databases.

ACM Trans. Database Syst. 4, 3 (Sept ,),

ATKINSON, M., BANCILHON, F , DEWITT, D.,

DITTRICH, K., M,UER, D., AND ZDONIK, S 1989

The object-oriented database system manifesto.

In Proceedings of the Deductme and Object Ori-

ented Databases Con feren ce.

BABA, T., SAITO, H.j AND YAO, S. B, 1987, A net-

work algorithm for relational database opera-

tions In International Workshop on Database

Machines, pp. 257-270.

BABB, E. 1979. Implementing a relational

database by means of specialized hardware

ACM Trans. Database S.yst. 4, 1,1-29

BANCILHON, F., RICHARD, P., AND SCHOLL, M 1983.

VERSO: The relational database machine. In

Advanced Database Machzne Architecture,

D. Hsiao, Ed., Prentice-Hall, Englewood Cliffs,

N.J.

ACM Computmg Surveys, Vol 24, No. 1, March 1992

108 ● P. Mishra and M. H. Eich

BANDYOPADHYAY, S., AND SENGUPTA, A, 1988. A

robust protocol for parallel join operation in

distributed databases. In Proceedings oflnter-

natzonal Symposzum on Databases tn Parallel

and Dwtrtbuted Systems, pp. 97-106.

BANERJEE, J, KIM, W., AND KIM, K-C. 1988.

Queries m object-oriented databases In Pro-

ceedings of the 4th International Conference on

Data Engmeermg (Feb.),pp, 31-38.

BARU, C. K., AND FRIEDER, O. 1989, Database

operations in a cube-connected multicomputer

system. IEEE Trans. Comput. C-38, 6 (June),

920-927.

BARU, C K , FRIEDER, O., DANDLUR, D , AND SEGAL,

M. 1987 Join on a cube: Analysis, simulation

and implementation In Proceedz ngs of Inter-

national Workshop on Database Mach znes

(Dee), pp. 74-87

BEERI, C., AND VARDI, M. Y 1981. On the proper-

ties of jom dependencies. In Aduances m

Database Theory, vol. 1. Plenum Pubhshmg,

New York, pp. 25-72.

BELL, D A , LING, D H O., AND MCCLEAN, S.

1989. Pragmatic estimation of join sizes and

attribute correlations. In proceedings of Con-

ference on Data Engmeermg, pp. 76-84

BENTLEY, J. L. 1975. Multidimensional binary

search trees used for associative searching.

Commun. ACM, 18, 9 (Sept.), 509-516.

BENTLEY, J L. 1979 Multidimensional binary

search trees in database applications. IEEE

Trans. Softw. Eng. SE-5, 4 (July).

BENTLE~, J. L., AND KUNG, H. T. 1979. A tree

machme for searching problems. IEEE Confer-

ence on Parallel Processing, pp. 257-266.

BERNSTEIN, P. A , .4ND CHIU, D.-M. W. 1981. Us-

ing semi-joins to solve relational queries J

ACM28, 1 (Jan) 25-40

BERNSTEIN, P. A., AND GOODMAN, N 1979a The

theory of semijoins. Computer Corporation of

America Rep. 79-27, Cambridge, Mass.

BERNSTEIN, P A., AND GOODMAN, N. 1979b, In-

equality semijoins. Computer Corporation of

America Rep 79-28, Cambridge, Mass.

BERNSTEIN, P A , AND GOODMAN, N 1980 The

power of inequality semijoms Aiken Computa-

tion Lab Rep 12-80, Harvard Umv , Cam-

bridge, Mass.

BERTINO, E , AND KIM, W 1989 Indexing tech-

niques for queries on nested objects IEEE

Trans. Knowl. Data Eng 1, 2 (June), 196-214

BITTON, D., HANRAHAN, M. B., AND TURBYFILL, C.

1987. Performance of complex queries in mam

memory database systems. In Proceedings of

Conference on Data Engineering, pp. 72-81.

BITTON, D , BORAL, M , DEWITT, D J , AND WILKIN-

SON, W. K 1983 Parallel algorithms for the

execution of relational database operations

ACM Trans. Database Syst, 8, 3 (Sept.),

324-353.

BLASGEN, M. W , AND ESWARAN, K. P, 1977. Stor-

age and access in relational databases IBM

Syst. J. 16, 4, 363-377

BLOOM, B. H. 1970. Space/time trade-offs in hash

coding with allowable errors, Comm un. ACM

13, 7 (July), 422-426.

BRATBERGSENGEN, K 1984 Hashing methods and

relational algebra operations. In Proceedings

of Conference on Very Large Data Bases, pp.

323-333.

BRITTON LEE, INC. 1981 IDM 500: Intelhgent

Database Machzne Product Description.

CAMMARATA, S., RAMACHANDRA, P , AND SHANE, D

1989 Extending a relational database with

deferred referential integrity checking and m-

telhgent joins. In Proceedings of SIGMOD, pp

88-97.

CAREY, M., SHEIUTA, E., LAPIS, G., LINDSAY, B., AND

MCPHERSON, J. 1990. An incremental join at-

tachment for starburst. In Proceedings of the

16th VLDB Conference (Brisbane, Australia),

pp 662-673

CERI, S , GOTTLOB, G., AND PELAGATTI, G 1986

Taxonomy and formal properties of distributed

joins Inf Syst. 11.1, 25-40.

CHANG, J. M., AND Fu, K. S. 1980, A dynamic

clustering technique for physical database de-

sign, In Proceedings of SIGMOD, pp. 188-199.

CHEINEY, J -P , FAUDEMAY, P , AND MICHEL, R 1986.

An extension of access paths to improve joins

and selections In Proceedz ngs of Conference on

Data Engmeermg.

CHEN, J. S. J., AND LI, V. O. K 1989. Optimizing

joins in fragmented database systems on a

broadcast local network. IEEE Trans. Softw.

Eng. 15, 1 (Jan.), 26-38.

CHRISTODULAKIS, S 1985 Estimating block trans-

fer and join sizes In Proceedings of SIGMOD

CODASYL, 1971 Data Base Task Group Re-

port

CODD, E. F. 1970. A relational model of data for

large shared data banks Commun. ACM 13, 6

(June), 377-387.

CODD, E. F. 1972. Relational completeness of data

base sublanguages. In Data Base Systems

Prentice-Hall, Englewood Cliffs, N J., pp.

65-98.

CORNELL, D, W,, AND Yu, P. S. 1988, Site assign-

ment for relatlons and Jom operations m the

dmtrlbuted transaction processing envwon

ment In Proceedz ngs of Conference on Data

Engmeerzng, pp. 100-108

DALE. A. G., MADDIX, F F., JENEVEIN, R M., AND

WALTON, C. B. 1989. Scalability of parallel

joins on high performance multlcomputers.

Tech. Rep, TR-89-17, Dept. of Computer Sci-

ences, Univ. of Texas at Austin, Austin, Tx,

DATE, C J, 1983. The outer Jom In Proceedings

of In ternatlonal Conference on Databases (Cam-

bridge, England), pp. 76-106.

DAYAL, U 1985 Query processing in a multi-

database system. In Query Processing zn

ACM Computmg Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases 8 109

Database Systems, W. Kim, D. S. Reiner, and

D. S. Batory, Eds. Springer-Verlag, New York,

pp. 81-108.

DESAI, B. P. 1989. Performance of a composite

attribute and join index. IEEE Trans. Softw.

Eng. S,?15, 2 (Feb.), 143-152.

DESAI, B. C. 1990. An Introduction to Database

Systems. West Publishing Co, St. Paul, Minn.

DESHPANDE, V., LARSON, P.-A., AND MARTIN, T. P.

1990. Parallel join algorithms for nested rela-

tions on shared-memory multiprocessors. IEEE

Symposmm on Parallel and Distributed Pro-

cessing, pp. 344-351.

DEWITT, D., AND GERBER, R. J. 1985. Multiproces-

sor hash-based join algorithms. In Proceedings

of Conference on Very Large Data Bases, pp.

151-164.

DEWITT, D. J., AND GRAY, J. 1990. Parallel

database systems: The future of database pro-

cessing or a passing fad? SIGMOD Rec. 19, 4

(Dec.), 104-112.

DEWITT, D. J., KATZ, R. H., OLKEN, F., SHAPIRO, L.

D., STONEBRAKER, M. R., AFTD WOOD, D. 1984.

Implementation techniques for main memory

datab ase systems. Proceedings of SIGMOD,

pp. 1-8.

DUTKA, A. F., AND HANSON, H. H. 1989. Functa-

mentals of Data Normalization. Addison-Wes-

ley, Reading, Mass.

EHRENSBERGER, M. J. 1984. The DBC/1012

database computer’s systems-architecture,

components, and performance. In Minnow-

brook Workshop on Database Machines.

EL-MASRI, R., AND NAVATHE, S. B. 1989. Fzmda-

mentals of Database Systems. Benjamin/Cum-

mings, Menlo Park, Calif.

EL-MASRI, R., Wuu, G. T. J., AND KIM, Y.-J. 1990.

The time index: An access structure for tempo-

ral data. In Proceedings of the 16th VLDB

Conference (Aug., Brisbane, Australia), pp.

1-12.

EPSTEIN, R., AND STONEBRAKER, M, 1980. Analy-

sis of distributed database processing strate-

gies, In Proceedings of Conference on Very

Large Data Bases, pp. 92-101,

EPSTEIN, R. 1982, Query Processing Techniques

for Distributed, Relational Database Systems.

University Microfilms Internationalj Ann Ar-

bor, Mich.

FAGIN, R. 1979. Normal forms and relational

database operators. In Proceedings of SIG-

MOD.

F’OTOUHI, F., AND PRAMANIK, S. 1989. Optimal sec-

ondary storage access sequence for performing

relational join. IEEE Trans. Know. Data Eng.

1, 3 (Sept.), 318-328.

FUSHIMI, S., KITSUREGAWA, M., NAKAYAMA, M.,

TANAKA, H., AND MOTO-OKA, T. 1985. Algo-

rithm and performance evaluation of adaptive

multidimensional technique. In proceedings of

SIGMOD, pp. 308-318.

GARDARIN, G., AND VALDURIEZ, P. 1989. Rela-

t~onal Databases and Knowledge Bases. Addi -

son-Wesley, Reacling, Mass,

GERBER, R. J. 1986 Dataflow query processing

using multiprocessor hash-partitioned algo-

rithms. Computer Sciences Tech, Rep. No. 672,

Computer Sciences Dept., Univ. of Wisconsin,

Madison, Wise.

GHANDEHARIZADEH, S., AND DEWITT, D J. 1990

Hybrid-range partitioning strategy: A new

declustering strategy for multiprocessor

database machines. In proceedings of Confere-

nce on Very Large Data Bases, pp. 481-492,

GOODMAN, J. R 198;1. An investigation of multi-

processor structures and algorithms for

database management. Tech. Rep. UCB/ERL,

M81/33, Univ of California, Berkeley

GOUDA, M. G., AN~, D.AYAL, U, 1981. Optimal

semijoin schedules for query processing in local

distributed database systems, In Proceedings

of SIGMOD, pp. 164-173.

GOYAL, P., LI, H. F., REGENER, E., AND SADRI, F.

1988, Scheduling of page fetches in join oper-

ations using Bc-t,rees. In Proceedings of Confer-

ence on Data Engineering, pp. 304-310,

GRAEFE, G. 1989. Relational division: Four algo-

rithms and their performance. In Proceedings

of Conference on Data Engineering, pp. 94-101

GYSSENS, M. 1986. On the complexity of join de-

pendencies, ACM Trans. Database Syst. 11, 1

(Mar.), 81-108

HAGMANN, R. B. 1986, An observation on database

buffering performance metrics, In Proceedings

of Conference on Very Large Data Bases, pp.

289-293.

HARADA, L., NAKANO, M., KITSUREGAWA, M., AND

TAKAGI, M. 1990. Query processing method

for multi-attribute clustered relations. In Pro-

ceedings of Conference on Very Large Data

Bases, pp. 59-70.

HARBRON, T. R. 1988. Fde S-vstems Structures and

Algorithms. Prentice-Hall, Englewood Cliffs,

N.J.

HELD, J. P., AND CARLIS, J. V. 1987. MATCH: A

new high-level relational operator for pattern

matching Commun. ACM 30, 1 (Jan.), 62-75.

HSIAO, D. K. (ED.) 1!380. Collected Readings on a

Database Computer (DBC). The Ohio State

University, Columbus, Ohio

HUA, K. A., AND LEE,, C. 1990, An adaptive data

placement scheme for parallel database com-

puter systems. In Proceechngs of Conference on

Very Large Databases, pp. 493-506.

HURSCH, J. L. 1989 Relational joins: More than

meets the eye. Database Program. Design 2, 12

(Dec.), 64-70.

HURSON, A. R. 1981 An associative backend for

data base management. IEEE Workshop on

Computer Archit,~cture for Pattern Analysw and

Image Data Base Management, pp. 225-230.

HURSON, A. R. 1986. VLSI time/space complexity

ACM Computmg Surveys, Vol. 24, No, 1, March 1992

110 “ P. Mishra and M. H. Eich

of an associative parallel join module. In Infer-

nutzonal Conference on Parallel Processing, pp.

379-386

HURSON, A. R. ET AL. 1989. Performance evalua-

tion of an associate parallel]om module. Com -

put Syst. SCL. Eng, 4, 3 (July), 131-146

IBM 1978. IMS/VS General Information Manual

GH20-1260. White Plains. New York

INTEL CORPORATION. ~DBP DBMS Reference Man-

ual, Order No. 222100.

IOANNIDIS, Y E., AND KANG, Y 1990. Randomized

algorithms for optimizing large join queries In

proceedings of SIGMOD, pp. 312-321

KAMBAYASHI, Y 1985 Processing cyclic queries.

In Query Processing m Database Systems,

W. Kim, D. S, Remer, and D. S. Batory, Eds.

Sprmger-Verlag, New York, pp. 62-78.

KANG) H., .4ND ROUSSOPOULOS, N 1987a. Using

2-way semijoins in distributed query process-

ing In Proceedings of C’onferen ce on Data En-

gmeenng, pp. 644-651.

KANG, H., AND ROUSSOPULOS, N. 1987b. On the

cost-effectiveness of a semijoin in query pro-

cessing. In COMPSAC, pp. 531-537

KENT, W 1983 A simple guide to five normal

forms in relational database theory Commun.

ACM 26, 2 (Feb.)

KIM, W, 1980. A new way to compute the product

and jom of relation. In Proceedings of SIG-

MOD, pp. 179-187.

KIM, W 1989 A model of queries for object-ori-

ented databases In Proceedings of the 15th

International Conference on Very Large

Databases (Amsterdam), pp. 423-432.

KIM, W., REINER, D. S., AND BATORY, D. S. 1985.

Query Processing m Database Systems.

Springer-Verlag, New York.

KITSUREGAWA, M , TANAKA, H , AND MOTO-OKA, T

1983 Application of hash to database ma-

chine and its architecture. New Generation

Comput 1, 1

KITSUREGAWA, M., NAKANO, M., AND TAKAGI, M.

1989a. Query execution for large relations on

functional disk system. In proceedings of Con

ference on Data Engineering, pp. 159-167.

KITSUREGAWA, M , HARADA, L , AND TAKAGI, M

1989b. Join strategies on Kd-tree indexed re-

lations. In Proceedings of Conference on Data

Engzneermg, pp. 85-93

KITSUREGAWA, M., NAKAYAMA, M., AND TAKAGI, M.

1989c The effect of bucket size tuning in the

dynamic hybrid GRACE hash join method. In

Proceedings of Conference on Very Large Data

Bases, pp. 257-266

KITSUREGAWA, M., AND OGAWA, Y. 1990, Bucket

spreading parallel hash: A new, robust, paral-

lel hash join method. In proceedings of Confer-

ence on Very Large Data Bases, pp. 210–221.

KUMAR, A., AND STONEBRAKER, M. 1987. The ef-

fect of join selectivities on optimal nesting or-

der, SIGMOD Rec. 16, 1 (Mar.), 28-41.

KUNG, H. T , AND LEHMAN, P. L 1980. Systolic

(VLSI) arrays for relational database opera-

tions. In Proceedings of SIGMOD, pp 105-116.

LAKSHMI, M S., AND Yu, P. S. 1988 Effect of

skew on join performance m ,parallel architec-

tures In Proceedings of International Sympo-

sium on Databases m Parallel and Dwtrlbuted

Systems, pp. 107-117.

LAKSHMX, M S , AND Yu, P. S 1989 Limiting

factors of join performance on parallel proces-

sors. In Proceedings of Conference on Data En-

gzneerzng, pp 488-496

LAKSHMI, M. S,, AND Yu, P. S. 1990, Effectiveness

of parallel joins. IEEE Trans. Know. Data Eng.

2, 4 (Dec.), 410-424.

LEHMAN, T.j AND CAREY, M. 1986. Query process-

ing in main memory database systems. In Pro-

ceedings of SIGMOD, pp 239 –250

LIPTON, R. J , NAUGHTON, J. F., AND SCHNEIDER, A

D. 1990 Practical selectivity estimation

through adaptive sampling In Proceedings of

SIGMOD. pp. 1-11.

Lu, H , AND CAREY, M 1985. Some experimental

results on distributed join algorithms in a local

network In Proceedings of Conference on Very

Large Databases, pp 292-304

MACKERT, L F , AND LOHMAN, G. M 1986 R*

Optimizer: Validation and performance evalua-

tion for distributed queries. In Proceedings of

Conference on Very Large Data Bases, pp.

149-159,

MAIER, D. 1983. The Theory of Relational

Databases Computer Science Press, Rockville,

Md

MASUYAMA, S., IBARAKI, T , NISHIO, S , AND

HASEGAWA, T 1987 Shortest semijoin sched-

ule for a local area distributed database sys-

tem IEEE Trans. Softw. Eng. SE-1.3, 5 (May),

602-606

MENEZES, B. L., THADANI, K., DALE, A. G., AND

JENEVEIN, R 1987 Design of a HyperKYK-

LOS-based multiprocessor architecture for

high-performance join operations. In Interns

ttonal Workshop on Database Machines, pp.

74-87.

MIKKILINENI, K P., AND Su, S. Y. W 1988 An

evaluation of relational join algorithms in a

plpelined query processing environment. IEEE

Trans. Softw. Eng. 14, 6 (June), 838-848.

MULLIN, J. K. 1990. Optimal semijoins for dis-

tributed database systems. IEEE Trans. Softw.

Eng. 16, 5 (May), 558-560

MURPHY, M. C., AND ROTEM, D. 1989a. Effective

resource utilization for multiprocessor join exe-

cution. In Proceedings of Conference on Very

Large Data Bases, pp. 67-76.

MURPHY, M. C,, AND ROTEM, D. 1989b. Processor

scheduling for multiprocessor joins In Pro-

ceedings of Conference on Data Engineering,

pp. 140-148.

NAKAYAMA, T., HIRAKAWA, M., AND ICHIKAWA, T.

ACM Computmg Surveys, Vol. 24, No 1, March 1992

Join Process ingin Relational Databases ● 111

1984. Architecture andalgorithm for parallel

execution ofajoin operation. In Proceedings of

Conference on Data Engineering, pp 160-166.

NAKAYAMA, M., KITSUREGAWA, M., AND TAKAGI, M.

1988. Hash-partitioned join method using dy -

namic destaging strategy. Proceedings of Con-

ference on Very Large Databases, pp. 468-478.

OMIECINSKI, E! R. 1989. Heuristics for join pro-

cessing using nonclustered indexes. In IEEE

Trans. Softw. Eng. 15, 1 (Jan.), 18-25,

OMIECINSKI, E., AND SHONKWILER, R. 1990. Paral-

lel join processing using nonclustered indexes

for a shared memory environment. In IEEE

Symposium on Parallel and Dwtributed Pro-

cessing, pp. 144-159.

OSBORN, S. L., AND HEAVEN, T. E. 1986. The de-

sign of a relational database system. ACM

Trans. Database Syst. 11,3 (Sept.), 357-373,

OZKARAHAN, E. A. 1986. Database Machines and

Database Management. Prentice-Hall, Engle-

wood Cliffs, N.J.

OZKARAHAN, E. A., AND BOZSAHIN, H. 1988. Join

strategies using data space partitioning. New

Generation Comput. 16, 19-39.

OZSOYOGLU, G., MATos, V., AND OZSOYOGLU, Z. M.

1989. Query processing techniques in the

summary-table-by-example database query.

ACM Trans. Database Syst. 14, 4 (Dec.),

526-573.

PERRIZO, W., LIN, J. Y, Y., AND HOFFMAN, W. 1989,

Algorithms for distributed query processing in

broadcast local area networks. IEEE Trans.

Know. Data Eng. l,2(June),215-225.

PIATETSKY-SHAPIRO, G.j AND CONNELL, C. 1984.

Accurate estimation of the number of tuples

satisfying a condition. In Proceedings of SIG-

MOD, Pp. 256-276.

PRAMANIK, S. 1986. Performance analysis of a

database filter search hardware. IEEE Trans.

Comput. C3’5, 12 (Dec.), 1077-1082,

PRAMANIK, S., AND FOTOUHI, F. 1985. An index

database machine: An efficient m-way join pro-

cessor. In Proceedings of Hawaii International

Conference on System Sciences, vol. 1, pp.

330-338.

PRAMANIK, S., AND ITTNER, D. 1985. Use of graph-

theoretic models for optimal relational database

accesses to perform joins. ACM Trans.

Database Syst. 10, 1 (Mar.), 57-74.

PRAMANIK, S., AND VINEYARD, D. 1988. Optimiz-

ing join queries in distributed databases. IEEE

Trans. Softw. Eng. 14, 9 (Sept.), 1319-1326.

PUCHERAL, P., THEVENIN, J. M., AND VALDURIEZ, P.

1990. Efficient main-memory data manage-

ment using the DBGraph model. In Proceed-

ings of Conference on Very Large Data Bases.

RASGHID, L. ET AL. 1986. A special-function unit

for sorting and sort-based database operations.

IEEE Trans. Comput. C-35, 12 (Dec.),

1071-1077.

RICHARDSON, J. P., Lu, H., AND MIKKILINENI, K.

1987. Design and evaluation of parallel

pipelined join algorithms. In Proceedings of

SIGMOD, pp. 399-409.

ROBINSON, J. T. 1981. The KDB tree: A search

structure for large multidimensional dynamic

indexes. In proceedings of SIGMOD, pp 10-18.

ROSENTHAL, A., AND GALINDO-LEGARIA, C 1990.

Query graphs, implementing trees, and freely

reorderable outerjoins In Proceedings of SIG-

MOD, pp. 291-2!)9.

ROSENTHAL, A. AND REINER, D. 1984. Extending

the algebraic framework of query processing to

handle outerjoins. In Proceedings of Conference

on Very Large Data Bases, pp. 334-343

RUDOLPH, J, A. 1972R. A production implementa-

tion of an associative array processor In Pro-

ceedings of Fall Joint Computer Conference, pp.

229-241.

SACCO, G. M. 1984. Distributed query evaluation

in local area networks. In Proceedings of Con-

ference on Data Engineering, pp. 510-516.

SACCO, G. M., AND SCHKOLNICK, M. 1986. Buffer

management in relational database systems.

ACM Trans. Database Syst. 11, 4 (Dec.),

473-498.

SAKAI, H,, IWATA, K., KAMIYA, S., ABE, M., TANAKA,

A., SHIBAYAMA, !3., AND MURAKAMI, K, 1984.

Design and implementation of the relational

database engine. In Proceedings of Conference

on Fifth Generation Computer Systems, pp.

419-435.

SCHNEIDER, D. A., AND DEWITT, D. J. 1989. A

performance evaluation of four parallel join

algorithms in a shared-nothing multiprocessor

environment. In Proceedings of SIGMOD, pp

110-121.

SEGEV, A. 1986. optimization ofjoin operationsin

horizontally partitioned database systems.

ACM Trans. Database Syst, 11, 1 (Mar.), 48-80.

SELINGER, P. G., ASTRAHAN, M. M., CHAMBERLAIN,.

D. D., LOME, R. A., AND PRICE, T. G. 1979.

Access path selection in a relational database

management. In Proceedings of SIGMOD

SHAPIRO, L. 1986. Joinprocessing indatabasesys-

terns with large memories. ACM Trans.

Database Syst. 11, 3 (Sept.), 239-264.

SHEKITA, E. J., AND CAREY, M. J. 1990. Aperfor-

mance evaluation of pointer-based joins. In

Proceedings of1990ACMSIGMOD Conference

(May), pp. 300-311.

STONEBRAKER, M,, AND ROWE, L. A. 1986. The

postgres papers. Univ. of California at Berke-

ley Tech. Rep. UCB/ERL M86/85.

Su, S. Y. W. 1988. Database Computers: Princi-

ples, Architectures, and Techniques, McGraw-

Hill, New York.

SWAMI, A., AND GUPTA, A. 1988. Optimizmg large

join queries. In Proceedings of SIGMOD, pp.

8-17.

TANDEM DATABASE GFtOUP 1987. NonStop SQL:A

distributed, high-performance, high-reliability,

ACM Computing Surveys, Vol. 24, No. l, March 1992

112 “ P. Mishra and M. H. Eich

implementation of SQL In Workshop on Hzgh

Performance Transaction Systems (Asilomar,

Calif)

TONG, F., AND YAO, S. B., 1982. Performance

analysls of database]om processors In Na-

t~onal Computer Conference, pp. 627-637.

ULLMAN, J. D. 1988 Principles of Database and

Knowledge-Base Systems, vol. 1, Computer Sci-

ence press, Rockville, Md

VALDURIEZ, P. 1982 Semijoin algorithms for dis-

tributed databases. In 3rd International Symp-

osium on Distributed Databases

VALrJURIEZ, P 1986 Optimization of complex

database queries using join indices Database

Eng. 9, 4 (Dee), 10-16

VALDURIEZ, P. 1987. Jom indices ACM Trans.

Database Syst. 12, 2 (June), 218-246.

VALDURIEZ, P., AND BORAL, H. 1986. Evaluation of

recursive queries using Join indices. In Pro-

ceedings of Conference on Expert Database Sys-

tems

VALDURIEZ, P , AND GARDARIN, G. 1982 Multipro-

cessor join algorithms of relations In Improzl-

ing Usab dlty and Responsiveness. Academic

Press, New York, pp 219-237

VALDURIEZ, P , AND GARDARIN, G. 1984 Join and

semijoin algorithms for a multiprocessor

database machme ACM Trans. Database Syst.

9, 1 (Mar.), 133-161

VALDURIEZ, P., AND VIEMONT, Y. 1984. A new

multikey hashing scheme using predicate trees.

In Proceedings of SIGMOD.

VALDURIEZ, P , KHOSHAFIAN, S., AND COPELAND, G

1986 Implementation techniques of complex

objects. In Proceedings of Conference on Very

Large Data Bases

WALTON, C B 1989. Investigating skew and scal-

ability in parallel joins Tech Rep. TR-89-39,

Dept. of Computer Sciences, Univ of Texas at

Austin, Austin, Tx.

WANG, X., AND LUK, W S. 1988. Parallel Join

algorithms on a network of workstations. In

Proceedings of International Symposum on

Databases in Parallel and Dwtrtbuted Systems,

pp. 87-96.

WHANG, K -Y , WIEDERHOLD, G , AND SAGALOWICZ,

D. 1985 The property of separability and its

application to physical database design In

Query Processing m Database Systems, W Kim,

D. S Reiner, and D S. Batory, Eds. Sprmger-

Verlag, New York, pp. 297-317.

YAO, S B., TONG, F., AND SHENG Y. Z. 1981 The

eystem architecture of a data baee machine

(DBM). IEEE Database Eng. Bull. 42, 53-62.

Yoo, H., AND LAFORTUNE, S. 1989. An intelligent

search method for query optimization by semi-

joins IEEE Trans. Knowl. Data Eng. 1, 2

(June), 226-237

YOSHD.ZAWA, M , AND KAMBAYASHI, Y. 1984 Pro-

cessing mequahty queries based on generahzed

semi-joins. In Proceedings of Conference on

Very Large Data Bases, pp 416-428

Yu, C. T., CHANG, C. C., TEMPLETON, M., BRILL, D.,

.AND LUND, E, 1985. Query proceesmg m a

fragmented relational database system: Mer-

maid. IEEE Trans. Softu$. Eng. SE-11 8 (Aug,),

795-810.

Yu, C. T , GUH, K.-C., ZHANG, W , TEMPLETON, M ,

BRILL, D , AND CHEN, A L. P 1987 Algo-

rithms to process distributed queries in fast

local networks. IEEE Trans. Compuf. C-36, 10

(Oct.), 1153-1164.

ZELLER, H., AND GRAY, J. 1990. An adaptive hash

join algorithm for multluser environments In

Proceedings of Conference on Very Large Data

Bases, pp. 186-197

BIBLIOGRAPHY

BANCILHON, F., AND SCHOLL, M. 1980 Design of a

backend processor for a database machine In

Proceedings of SIGMOD.

BANERJEE, J , AND HSIAO, D K 1979 Concepts

and capabdlties of a database computer. ACM

Trans. Database S’yst. 4, 1 (Mar.).

BROWNSMITH, J D 1981 A simulation model of

the MICRONET computer system during join

processing In Proceedings of the Annual Sim-

ulation Symposium, pp. 1– 16.

BROWNSMITH, J D., AND Su, S. Y W 1980 Per-

formance analysis of the equijoin operation m

the MICRONET computer system In Proceed-

ings of ICC, pp 264-268.

CHASE) K. 1981 Join graphs and acyclic database

schemes. In Proceedz ngs of Conference on Very

Large Data Bases, pp 95-100

CHIU, C. M , AND Ho, Y C 1980 A methodology

for interpreting tree queries into optimal seml-

Jom expressions. In Proceedings of SIGMOD,

pp. 169-178.

CIACCIA, P., AND SCALAS, M R 1989. Optimiza-

tion strategies for relational disjunctive

queries. IEEE Trans Softw. Eng. 15, 10 (Oct.),

1217-1235

CODD, E. F. 1979, Extending the data base rela-

tional model to capture more meamng. ACM

Trans. Database Syst. 4, 4, 397-434.

DEWJTT, D. J 1979. DIRECT: A multiprocessor

organization for supporting relational database

management systems. IEEE Trans. Comput.

C-28, 6, 395-406.

DEWITT, D. J., NAUGHTON, J. F,, AND SCHNEIDER,

D. A. 1991. An evaluation of non-equijoin

algorithms Tech. Rep. 1011, Univ of

Wisconsin-Madison, Madison, WMC.

GARDY, D , AND PUECH, C 1989 On the effect of

join operations on relation sizes. ACM Trans.

Database Syst. 14, 4 (Dec.), 574-603.

GOTLIEB, L. R 1975 Computing joins of relations

In Proceedings of SIGMOD, pp 55-63.

GRAEFE, G. 1990. Encapsulation of parallelism in

ACM Computmg Surveys, Vol. 24, No 1, March 1992

Join Process ingin Relational Databases e 113

the VoIcano query processing systems, In Pro-

ceedingsof SIGMOD, 102-111.

GRAEFE, G. 1991. Heap-filter merge join: A new

algorithm forjoining medium-size inputs. IEEE

Trans. Soflw. Eng.17, 9(Sept.),979-982,

HONEYMAN, P. 1980. Extension joins. In Proceed-

ings of Conferences on Very Large Data Bases,

pp. 239-244.

HONG, Y. C. 1984. A pipeline and parallel archi-

tecture for supporting database management

systems. In Proceedings of Conference on Data

Engmeermg, pp. 152-159.

KAMIBAYASHI, N., AND SEO, K, 1982. SPIRIT-III:

An advanced relational database machine in-

troducing a novel data staging architecture

with tuple stream filters to preprocess rela-

tional algebra. In National Computer Confer-

ence Proceedings, pp. 605-616.

KELLER, A. 1985. Algorithms for translating view

updates into database updates for views involv-

ing select, In Proceedings of ACM Sympostum

on Principles of Database Systems, pp. 154–163.

KENT, W. 1979. Theentityjoin. In Proceedings of

Conference on Very large Data Bases, pp.
232-238.

LACROIX, M., AND PIROTTE, A. 1976. Generalized

joins. SIGMODRec. 8,3, 14-15.

Lu, H., TAN, K. L, AND SHAN, M.-C. 1990. Hash-

based join algorithms for multiprocessor com-

puters with shared memories. In Proceedings

of Conference on Very Large Data Bases, pp.

198-209.

MAIER, D., SAGIV, Y., AND YANNAKIS, M. 1981, On

the complexity of teeting implications of func-

tional and join dependencies. J. ACM28, 4,

680-695.

MENON, M, J. AND HSIAO, D. K 1983. Design and

analysis of join operations of database ma-

chines. In Aduanced Database Machine Arch i-

tecture, D. K. Hsiao, Ed. Prentice-Hall, Engle -

wood Cliffs, N. J., pp. 203-255.

MERRET, T. H. 1983, Why sort-merge gives the

best implementation of the natural joins. ACM

SIGMOD Rec. 13, 2 (Jan.), 39-51.

MERRET, T. H. 1984. Practical hardware for linear

execution of relational database operations.

ACM SIGMOD Rec. 14, 1 (Mar.) 39-44.

MERRETT, T, H., KAMBAYASHI, Y,, AND YASUURA, H.

1981. Scheduling of page fetches in join oper-

ations, In Proceedings of Conference on Very

Large Data Bases, pp. 488-497,

OMIECINSKI, E. R., AND LIN, E. T. 1989. Hash-

based and index-based join algorithms for cube

and ring connected multicomputers. IEEE

Trans. Knowl. Data Eng. 1, 3 (Sept.), 329-343

ONO, K., AND LOHMAN, G. M. 1990. Measuring

the complexity of join enumeration in query

optimization. In Proceedings of Conference on

Very Large Data Bases, pp. 314-325.

QADAH, G. Z, 1984. Evaluation of performance of

the equi-join operation on the Michigan rela-

tional database machine. In Proceedings of

Conference on Parallel Processing, pp. 260-265.

QADAH, G. Z. 1985. The equijoin operation on a

multiprocessor database machine. In Proceed-

ings of International Workshop on Database

Mach znes, Spri nger-Verlag, New York, pp.

35-67.

QADAH, G. Z., AND IRANI, K, B. 1985. A database

machine for very large databases. IEEE Trans.

Comput. C-34, 11, 1015-1025.

QADAH, G. Z., AND IRANI, K. B. 1988 The join

algorithm on a shared-memory multiprocessor

database machine. IEEE Trans. Softw. Eng.

14, 11 (Nov.), 1668-1683.

RISSANEN, J. 1979. Theory of joins for relational

databases: A tutorial survey. In Proceedings of

Sympos~um on Mathematical Foundations of

Computer Science, Lecture Notes in Computer

Science, vol. 64 Springer-Verlag, New York,

pp. 537-551.

ROSENTHAL, A. 1981. Note on the expected size of

a join. ACM SIGMOD Rec. 11, 4 (July), 19-25.

SCHNEIDER, D. A., AND D~WrrT, D. J. 1990.

Trade-offs in processing complex join queries

via hashing in multiprocessor database ma-

chines, In Proceedings of Conference on Very

Large Data Bases, pp. 469-480.

SCHUSTER, S. A., NGUYEN, H. B., OZKARAHAN,

E. A., AND SMITH, K. C. 1979. RAP.2: An

associative processor for databases and its ap-

plications. IEEE Trans. Comput. C-28, 6,

446-458,

SCIORE, E. 1982. A complete axiomatization for

full join dependencies. J. ACM 29, 2 (Apr.),

373-393.

SHAW, D. E ET AL 1981. The NON-VON database

machine: A brief” overview. Database Eng. 4, 2

SHULTZ, R., AND MILLER, I. 1987. Tree structured

multiple processor join methods, In Proceed-

ings of Conference on Data Engineering, pp.

190-199.

Su, S. Y. W., NGIJYEN, L. H., EMAN, A , AND

LIPOVSKI, G. J. 1979. The architectural fea-

tures and implementation techniques of multi-

cell CASSM. IEEE Trans. Comput. C-28, 6

(June), 430-445.

THO~, J. A., RAMAMOHANARAO, K., AND NAISH, L.

1986. A superjoin algorithm for deductive

databases, In Proceedings of Conference on

Very Large Databases, pp. 189-196,

VARDI, M. Y. 1980. Axiomatization of functional

and join dependencies in the relational model.

Weizman Institute M. SC. thesis, Rehovot,

Israel.

VARDI, M. Y. 1983. Inferring multlvalued depen-

dencies from functional and Join dependencies.

Acts Znf 19, 2, 305-324.

Received April 1990, final revision accepted July 1991

ACM Computing Surveys, Vol 24, No 1, March 1992

