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The lists of species obtained by purposive sampling by field ecologists
can be used to improve the sample-based estimation of species richness.
A new estimator is here proposed as a modification of the difference esti-
mator in which the species inclusion probabilities are estimated by means of
the species frequencies from incidence data. If the species list used to support
the estimation is complete the estimator guesses the true richness without er-
ror. In the case of incomplete lists, the estimator provides values invariably
greater than the number of species detected by the combination of sample-
based and purposive surveys. An asymptotically conservative estimator of
the mean squared error is also provided. A simulation study based on two
artificial communities is carried out in order to check the obvious increase in
accuracy and precision with respect to the widely applied estimators based
on the sole sample information. Finally, the proposed estimator is adopted to
estimate species richness in the Maremma Regional Park, Italy.

1. Introduction. The number of species in a biological assemblage or com-
munity, usually referred to as species richness, represents the simplest and most
direct indicator of ecological diversity and is largely used as the most convenient
proxy for other components of biodiversity [Gaston (1996)]. Since ecologists can-
not detect each single plant or animal in a region (especially large regions such
as parks, provinces, countries), species richness constitutes an unknown parameter
of the community under study, which can be evaluated by means of a purposive
survey of the study area, as traditionally performed by ecologists, or estimated
through probabilistic sampling.

In purposive sampling (often referred to as “preferential sampling”), plant or
animal species are recorded and listed by searching into specific sites or habitats
expected to have a larger number of species, high detection rates or high abun-
dances of rare species. On the other hand, in probabilistic sampling, plant or ani-
mal species are identified and listed only if present in the selected samples, such
as plots, traps, soil samples and hearing points.

In the following we will refer to plants, since they represent excellent model or-
ganisms, because of their sessile life, even if, mutatis mutandis, analogous reason-
ing could be applied to limited mobility animals. Palmer et al. [(2002), page 122]
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emphasize the appeal of purposive surveys carried out by experienced botanists
in completing plant species lists, who “generally have a strong intuition or ‘edu-
cated guess’ about where to direct one’s effort”. Moreover, Palmer et al. [(2002),
page 122] outline the drawbacks of sample-based strategies which “are likely to
miss the rare or unclassifiable habitats that are likely to contribute most to regional
diversity” and are unlikely to “outperform the guesses of experienced botanists”.
However, when species lists are compiled by subjectively searching for plants, no
probabilistic statement can be made about the accuracy and precision of species
richness estimators.

On the other hand, estimators of species richness obtained by probabilistic sam-
pling can be objectively evaluated through their sampling distributions, thus allow-
ing for reliable comparisons across areas [e.g., Colwell and Coddington (1994),
Hortal, Borges and Gaspar (2006), Cayuela, Gotelli and Colwell (2015)]. Also
Palmer et al. [(2002, page 122)] recognize the importance of probabilistic sam-
pling in comparing species richness throughout time and space, even if they point
out that “it would be unwise to dismiss the efficient, yet subjective, contributions
of the expert botanist”. Therefore, it is at once apparent that procedures exploiting
both the sources of information are highly advisable, although, to our knowledge,
no effort has been undertaken in this direction.

Under probabilistic sampling, the estimation of species richness can be per-
formed by using either abundance data or presence-absence data. Procedures based
on abundance data include the parametric estimators obtained from fitting the
species abundance distribution [e.g., Pielou (1977), and references therein] and
some nonparametric estimators, such as those proposed by Chao (1984) and Chao
and Lee (1992), usually referred to as Chao1 and ACE, respectively. Procedures
based on presence-absence data include the parametric estimators obtained from
the model-based extrapolation of species accumulation curve [e.g., Holdridge et al.
(1971), Palmer (1990), Colwell and Coddington (1994) and references therein], the
nonparametric estimators based on jackknife and bootstrap to compensate for the
underestimation associated with the number of observed species, as proposed by
Heltshe and Forrester (1983) and Smith and Van Belle (1984), and other estimators
such as those proposed by Chao (1987) and Lee and Chao (1994), usually referred
to as Chao2 and ICE, respectively [Gotelli and Chao (2013)]. Most of these re-
searches have been recently reviewed in Chao et al. (2014) as well as in Chao and
Colwell (2017). Most of these estimators and many case-oriented modifications
have been implemented in many easily accessible softwares, such as EstimateS
[Colwell (2013)] and vegan R package [Oksanen et al. (2016)] among others.

Estimators based on presence-absence data are certainly the most appropriate
for plants and some sessile animals, given the problems in recognizing individual
organisms, but can be suitable for animals too. Among these, the nonparametric
methods obtained by jackknifing or bootstrapping the number of observed species
seem to be more suitable than those based on extrapolating parametric species ac-
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cumulation curves [Colwell and Coddington (1994), Colwell et al. (2012), Gotelli
and Chao (2013)]. Regarding resampling estimators, it is worth noting that their
performance has been checked by means of empirical results [Heltshe and For-
rester (1983), Palmer (1990, 1991), Hellmann and Fowler (1999), Chiarucci et al.
(2003)], highlighting that the bias reduction does not seem as substantial as should
be expected. Theoretical studies on the properties of resampling estimators are
due to Cormack (1989), who proved the inadequacy of jackknife to reduce bias
when, as in the case of replicated plots or transects, the detection probabili-
ties remain constant in every replication (the so-called Mh model). Subsequently
D’Alessandro and Fattorini (2002) proved the design-based inadequacy of the re-
sampling procedures to reduce bias, especially in presence of very rare species. On
the other hand, the Chao2 and ICE estimators are more theoretically founded. The
Chao2 estimator derives from the Cauchy–Schwarz inequality and Good–Turing
formula and it results nearly unbiased when very rare/infrequent species have ap-
proximately the same detection probabilities [Chao and Colwell (2017)]. The ICE
estimator derives from a rigorous sample coverage theory.

However, in the EstimateS User’s Guide [Colwell (2013), Appendix B] it is
pointed out that “nonparametric estimators of species richness are minimum esti-
mators: their computed values should be viewed as lower bounds of total species
numbers”. Indeed, for hyper-diverse or severely under-sampled community, sam-
ple data do not contain sufficient information to provide accurate point estimates
of species richness. Unless some strong parametric assumptions are made, at best
one can only evaluate lower bounds because there may be many hard-to-detect
species. As pointed out by I. J. Good, “I don’ t believe it is usually possible to esti-
mate the number of unseen species... but only an approximate lower bound to that
number. This is because there is nearly always a good chance that there are a very
large number of rare species” [cited by Bunge and Fitzpatrick (1993), page 370].
Therefore, in most ecological and conservation applications, a precise lower bound
is preferable to nonaccurate point estimates.

The purpose of this paper is to exploit the use of information derived from
species lists compiled by experienced ecologists by means of purposive surveys,
henceforth referred to as the supporting list, to improve species richness estimates
arising from probabilistic sampling.

The use of auxiliary information to improve estimation has a long standing in
sample surveys. The most common way to exploit auxiliary information is the
so-called difference (D) estimator and its subsequent modifications, such as the
widely used generalized regression and ratio estimators [Särndal, Swensson and
Wretman (1992), Chapter 6]. In this paper, a modified version of the D estimator,
referred to as the empirical difference (ED) estimator, is proposed to take advan-
tage of the supporting lists together with a presumably asymptotically conserva-
tive estimator of its sampling error. In order to check the improvement provided
by list exploitation, the ED estimator, together with suitably modified Chao2 and
Lincoln–Petersen (LP) estimators, are compared with nonparametric estimators
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based on the sole presence-absence data, here considered as benchmark, by means
of a simulation study performed on two artificial incidence data sets.

Section 2 contains some notations, while the ED estimator is introduced in Sec-
tion 3 and a presumably asymptotically conservative estimator of its sampling error
is derived in Section 4. Section 5 is devoted to the simulation setting and results.
Details of the case study are reported in Section 6 while Section 7 is devoted to
discussion and concluding remarks.

2. Notation and setting. It should be pointed out that notations introduced
here are directed to statisticians and may sound unusual for ecologists. For this
reason, a key to the ecological meaning of the symbols adopted is provided in
Section SM1 of the Supplementary Material [Chiarucci et al. (2018)]. Consider
a plant community within a delineated study area. From a statistical point of
view the community constitutes a without-frame population of N plant individ-
uals spread over the area. Owing to the lack of frame, the most effective proba-
bilistic schemes for sampling plants differ from the traditional schemes and their
choice is mainly determined by practical considerations on the nature of the com-
munity to be sampled. For example, when dealing with a shrub population, line
intercept sampling may be suitable [e.g., Thompson (2002)] while, if the popu-
lation is formed by the trees in a forest or by the whole plant assemblage con-
taining very different species (e.g., all the vascular plants), plot sampling can be
adopted [e.g., Gregoire and Valentine (2008)]. Ideally referring to the plants by
their identifying numerical labels, the population can be represented by the set
U = {1, . . . ,N} while S ⊂ U denotes the sample of plants selected by means of a
suitable scheme ensuring that the first-order inclusion probabilities can be deter-
mined directly or by some field measurements [e.g., Fattorini (2007)] for (at least)
the selected plants.

If K species are present in the community, each group of individual plants
belonging to the same species may be viewed as a unit, in such a way that the
complete species list can be viewed as a population. Ideally, referring to species
by their identifying numerical labels, the complete list of species can be repre-
sented by the set C(U) = {1, . . . ,K}, henceforth denoted for brevity by C, while
K represents the species richness. Usually, the complete list of species is un-
known and K must be estimated by means of sample surveys or evaluated through
purposive surveys. It should be noticed that species constitute unknown assem-
blages of individual plants spread over the study area which cannot be sampled
directly.

Thus, the most effective way for sampling species is to sample individual plants,
or even plant ramets, in such a way that a species is sampled when at least one
plant of that species is sampled. Practically speaking, any sample of plants S ⊂ U
univocally determines the corresponding sample of species G(S) ⊂ C, henceforth
denoted for brevity by G. Hence, the sampling scheme adopted to select plants,
univocally determines the first-order inclusion probabilities of species θ1, . . . , θK .
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Even if the schemes are designed to quantify the inclusion probabilities of (at least)
the sampled plants, they do not allow for the quantification of species inclusion
probabilities. Indeed, the quantification of the θj s would entail the knowledge of
all the units belonging to each species together with their spatial distribution over
the study area [e.g., Fattorini (2007)].

Because a study area cannot be adequately sampled by means of only one plot
or transect, n independent replications of the sampling scheme [Barabesi and Fat-
torini (1998)] are usually performed, giving rise to n samples of plants S1, . . . ,Sn

which, in turn, give rise to n samples of species G1, . . . ,Gn. The set of the species
observed in the whole survey is G(n) = ⋃n

i=1 Gi and its size SOn is the number of
observed species. Owing to the independence of the replications, the probability
that species j enters the pooled sample G(n) (i.e., it is detected during the whole
sample survey) turns out to be τj = 1 − (1 − θj )

n.
For each replication i let zi = (zi1, . . . , ziK)T be the K-vector in which the j th

element zij is equal to 1 if the species j has been sampled and 0 otherwise. Usually,
z1, . . . , zn are organized into a 0–1 matrix of n columns and SOn rows, commonly
referred to as presence-absence or incidence data. The n vectors z1, . . . , zn are
independent realizations of the random vector Z = (Z1, . . . ,ZK)T with expecta-
tion θ = (θ1, . . . , θK)T . Now denote by x = ∑n

i=1 zi the realization of the random
vector X = (X1, . . . ,XK)T in which each marginal variable Xj has a binomial
distribution with parameters n and θj . Because xj is the number of replications
in which the species j has been sampled, xj = 0 for all the undetected species.
Thus, even if theoretically x is a K-vector, it contains an unknown number of
zeros [D’Alessandro and Fattorini (2002)].

3. The empirical difference estimator. Denoting by Y a variable such that
yj = 1 for each species j ∈ C, the species richness K can be written as K =∑

j∈C yj . Let L be the set of species detected by means of a purposive survey of
the study area, as traditionally performed by botanists, and let M be their number.
Obviously, L ⊂ C in such a way that M ≤ K .

In accordance with the approach leading to the D estimator [Chiarucci et al.
(2018)], the dichotomous variable Y 0 such that y0

j = 1 if j ∈ L and 0 otherwise
can be adopted as a proxy for the survey variable Y . The errors in predicting the yj s
by means of the y0

j s, that is, yj − y0
j = 1 − y0

j , are equal to 0 for any species j ∈ L

and to 1 otherwise. Accordingly, Y 0 is a good proxy for Y when the supporting
list is accurate. By using the proxy variable, the species richness can be rewritten
as K = ∑

j∈C y0
j + ∑

j∈C(yj − y0
j ) = M + ∑

j∈C(1 − y0
j ), where M is a known

constant (i.e., the number of species detected by means of purposive sampling)
while the second term is the unknown total of errors to be estimated from the
sample. If the probabilities of the species to enter the pooled sample G(n) were
known, the species richness could be estimated by means of the D estimator, which
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reduces to

(3.1) K̂D = M + ∑
j∈G(n)

1 − y0
j

τj

= M + ∑
j∈G(n)−L

1

τj

because the errors 1 − y0
j vanish for each j ∈ L.

As stated in the Appendix, the estimator K̂D would be unbiased with a closed-
form variance which could be unbiasedly estimated from the sample. Actually, the
τj s are unknown depending on the θj s and the estimator K̂D cannot be computed
from the available information. As suggested by Fattorini (2006, 2009), the fre-
quencies xj s in which the species enter the n samples can be adopted to estimate
the θj s by means of θ̂j = (xj + 1)/(n + 1). Therefore, the estimate of τj is given
by τ̂j = 1 − (n − xj )

n/(n + 1)n and, using the estimated probabilities into (3.1),
the ED estimator turns out to be

(3.2) K̂E = M + ∑
j∈G(n)−L

1

τ̂j

.

An alternative estimator of τj has been recently proposed by Chao and Colwell
(2017), page 25. As opposite to the D estimator, the ED estimator is biased with
expectation and variance which cannot be expressed in closed forms. However, the
ED estimator maintains the following appealing properties: first, its realizations are
never smaller than the cardinality of the set G(n) ∪ L, that is, the number of species
detected by the combination of purposive and sample surveys; furthermore, if the
supporting list is perfect, the ED estimator invariably estimates the true species
richness without error. Hence, besides the uncertainty due to the estimation of the
inclusion probabilities, the uncertainty of K̂E is completely due to the species in
the set C − L, that is, the species lost in the supporting list which can be partially
recovered by the sample survey. It should be noticed that if G(n) − L is the empty
set, no additional species is detected by the sample survey with respect to the list.
In other words, the sample survey has not provided any additional information; in
this case, the second term in equation (3.2) is 0 and the ED estimator coincides
with M .

4. Sampling error estimation. Because K̂E is a biased estimator, there is no
sense in estimating its variance. Indeed, as Särndal and Lundström [(2005), page 8]
point out, the bias of any estimator should be the main concern. Variance and its
estimation are of minor importance since “if an estimator is greatly biased, it is
poor consolation that its variance is low”. Rather, we should estimate the mean
squared error MSE(K̂E) = E{(K̂E − K)2} or, more meaningfully, the relative root
mean square error

RRMSE(K̂E) =
√

MSE(K̂E)/K.
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Because neither the mean nor the variance of K̂E can be expressed in a closed
form, we derived an upper bound for MSE(K̂E) to be subsequently estimated from
the available information, in such a way that the resulting estimator should be
presumably asymptotically conservative, that is, it should overestimate the actual
sampling error. In the Appendix it is proven that,

(4.1) MSE(K̂E) ≤ 2K
(
4e−1 + 1

) ∑
j∈C−L

{
1 − θj

(
1 − e−1)}n

in such a way that the right side of (4.1) can be estimated by

(4.2) MŜE(K̂E) = 2K̂E

(
4e−1 + 1

) ∑
j∈G(n)−L

{1 − θ̂j (1 − e−1)}n
τ̂j

which, at least asymptotically, should be a conservative estimator. Also in this case,
if G(n) − L is the empty set, the second term in equation (4.2) is 0 and the MSE
estimate turns out to be 0.

From (4.2), the estimator of RRMSE(K̂E) is given by

(4.3)

RRM̂SE(K̂E) =
√

MŜE(K̂E)

K̂E

=
√√√√√2(4e−1 + 1)

K̂E

∑
j∈G(n)−L

{1 − θ̂j (1 − e−1)}n
τ̂j

.

It is worth noting that inequality (4.1) suffices to prove that K̂E converges in
quadratic mean (and hence also in mean) to K because

lim
n→∞ 2K

(
4e−1 + 1

) ∑
j∈C

{
1 − θj

(
1 − e−1)}n(

1 − y0
j

) = 0.

Therefore, K̂E is a consistent estimator of K with bias and variance approaching
0 as the number of replications increases.

5. Simulation study.

5.1. Simulation setting. In order to check the improvement provided by the
exploitation of floristic list in the ED estimator with respect to the nonparametric
estimators based on the sole presence-absence data, a simulation study was per-
formed on two artificial plant communities.

Because plants communities in large areas are composed of coexisting species,
some of them overlapping and some others avoiding each other, the first artificial
community was constituted by K = 100 species, partitioned into 4 exhaustive and
mutually exclusive groups of 25 species with nested distributions.
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Accordingly, without specifying the sampling scheme (which could be plot
sampling, line intercept sampling or any other suitable environmental scheme),
within each group the θj s were assumed to decrease geometrically from a maxi-
mum of 0.25 with a decreasing factor of 0.8, and if species j was sampled, all the
species having first-order inclusion probabilities greater than θj were subsequently
sampled. The second-order inclusion probabilities, say θjh, vanished for all the
pairs (j, h) belonging to different groups while turned out to be θjh = min(θj , θh)

for all the pairs (j, h) belonging to the same group. In order to simulate species
sampling, for each replication i (i = 1, . . . , n) the vector zi was independently gen-
erated by means of the following algorithm: (i) a group of species was randomly
selected among the 4 groups; (ii) a random number u was generated from the
uniform distribution on (0,0.25) and all the species of the selected group having
first-order inclusion probability greater than u were included in the sample.

The second artificial community was composed by N = 250,000 forest trees
partitioned into K = 228 species settled on a rectangular region of size 1 ×
0.5 km2. As to the apportionment of abundance to species, the number of individ-
uals of the most abundant species was 40,000, two species had 20,000 individuals
each, four species had 10,000 individuals each, eight species had 5,000 individuals
each, sixteen species had 2,500 individuals each, thirty-two species had 1,250 in-
dividuals each, five had 1,000 individuals each, five had 500 individuals each, five
had 250 individuals each, five had 100 individuals each, five had 50 individuals
each, ten had 20 individuals each, ten had 10 individuals each, twenty had 5 indi-
viduals each. Finally, 100 species had only one individual each. Each individual, ir-
respective of its species, was randomly placed on the rectangle. The resulting com-
munity roughly resembled the structure of some tropical forests widely exploited
in ecological studies. For this population, the n independent vectors z1, . . . , zn

were generated presuming n circular plots of radius r = 13 m randomly located on
the study region in such a way that zij = 1 if at least one individual of the species
j was contained in plot i, while zij = 0 otherwise.

For both the artificial communities, nine types of supporting list were supposed.
The first three lists, denoted by L1, L2, L3, were artificially achieved deleting from
the communities the 1%, 5% and 10% of the rarest species, respectively. The fur-
ther three lists, denoted by L4, L5, L6, were achieved deleting from the communi-
ties the 1%, 5% and 10% of the most common species, respectively. Finally, the
last three lists, denoted by L7, L8, L9, were achieved deleting from the communi-
ties the 1%, 5% and 10% of both rarest and most common species, respectively.
It should be noticed that the lists missing the most common species are not so
unrealistic, because botanists often focused on searching the rarest species, some-
times neglecting the most common ones [Palmer et al. (2002)]. For each artificial
community and for n = 50,100,150, R = 10,000 presence-absence matrices were
generated as previously described.

From each generated matrix, the following nonparametric estimators were com-
puted: species observed (SOn), first-order jackknife (K̂jack1), second-order jack-
knife (K̂jack2), bootstrap (K̂boot), Chao2 (K̂Chao2) and ICE (K̂ICE). Moreover the



ESTIMATION OF SPECIES RICHNESS 1687

ED estimator K̂E was computed for each of the nine supporting lists. Finally, for
each list, the estimates of the sampling error were computed by means of (4.3).
Then, the relative bias (RB) and the relative root mean squared error (RRMSE)
were derived from the Monte Carlo distributions. Moreover, for each of the nine
lists, the expectations of the sampling error estimator were also computed.

5.2. Alternative floristic list exploitations. Besides the ED estimator, there
may be several ways to incorporate the floristic lists in the familiar estimators
of species richness. For example, the Chao2 estimator can be adapted treating the
floristic list as one sample and the pooled n-sample data as the second sample,
and then using equations (3a) or (3b) in Chao and Colwell (2017) to estimate the
variance. In a similar way, the list presence can be used in the framework of a
simple two-sample capture-recapture analysis, treating the floristic list as the first
“capture” sample, and treating the pooled n-plot data as the second “recapture”
sample. Then the well-known Lincoln–Petersen estimator can be computed to-
gether with its variance estimator [see, e.g., Seber (1982), page 60]. The estimator
is approximately unbiased under assumptions (a)–(f) in Seber (1982), page 59. For
both the estimators and for the nine lists L1–L9, the RB and RRMSE were derived
from the Monte Carlo distributions together with the expectation of the estimators
of their sampling errors.

5.3. Simulation results. Table 1 reports the percentage values of RB and
RRMSE for each nonparametric estimator and for the ED, Chao2 and LP esti-
mators corresponding to each supporting list when the first artificial community
is considered. Regarding the ED, Chao2 and LP estimators, values in brackets are
the expectations of the RRMSE estimators. Table 2 reports the same indicators
achieved from the second artificial community.

For n = 50, among the nonparametric estimators K̂Chao2 provides the best RB
for both the artificial communities, equal to −15% and −36% respectively, while
the ED estimator provides RBs invariably better than −10%. Obviously, the RBs
of the ED estimator strictly depend on the accuracy of the supporting lists with
better RBs achieved when the lists miss the most common species (lists L4, L5,
L6). In these cases, bias disappears in both the artificial communities.

Similar conclusions can be drawn regarding the RRMSEs, because the main part
of the sampling errors are due to bias. For n = 50, K̂jack2 provided the smallest
RRMSE (about 30%) in the first artificial community and K̂Chao2 provided the
smallest RRMSE (about 39%) in the second artificial community, while the ED
estimator provides RRMSEs invariably smaller than 10% for both the artificial
communities. Also in this case, the smallest values of RRMSE for the ED estimator
are achieved when the lists miss the most common species.

As the number of replications increases to 100 and 150, the RBs and RRM-
SEs decrease for all the nonparametric estimators. The decrease is less marked
in the second artificial community, owing to the massive presence of rare species
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TABLE 1
Percentage values of relative bias (RB) and relative root mean squared error (RRMSE) for each

nonparametric estimator and for the ED, Chao2 and LP estimators corresponding to each
supporting list in the case of the first artificial community. Values in brackets are the

expectations of the relative root mean squared error estimators

Estimator n = 50 n = 100 n = 150

RB RRMSE RB RRMSE RB RRMSE

Species observed −42.9 44.0 −31.9 33.2 −25.4 26.8
First-order jackknife −26.1 30.9 −16.0 21.7 −10.2 16.9
Second-order jackknife −18.1 29.7 −8.7 22.8 −3.8 20.1
Bootstrap −35.1 37.3 −24.4 26.9 −18.2 21.0
Chao2 −14.9 49.5 −6.4 41.5 −2.2 38.5
ICE −25.7 33.9 −16.5 25.6 −11.2 21.3
ED exploiting L1 −0.9 1.0 (0.7) −0.9 0.9 (1.4) −0.8 0.9 (2.0)

ED exploiting L2 −4.6 4.7 (3.6) −4.3 4.4 (6.1) −4.0 4.2 (7.9)

ED exploiting L3 −9.2 9.3 (5.9) −8.4 8.6 (10.4) −7.7 8.0 (14.4)

ED exploiting L4 0.0 0.0 (0.4) 0.0 0.0 (0.0) 0.0 0.0 (0.0)

ED exploiting L5 0.0 0.0 (1.8) 0.0 0.0 (0.1) 0.0 0.0 (0.0)

ED exploiting L6 0.0 0.0 (3.8) 0.0 0.0 (0.5) 0.0 0.0 (0.0)

ED exploiting L7 −0.9 1.0 (1.1) −0.9 0.9 (1.4) −0.8 0.9 (2.0)

ED exploiting L8 −4.6 4.7 (5.0) −4.3 4.4 (6.2) −4.0 4.2 (7.9)

ED exploiting L9 −9.2 9.3 (8.9) −8.4 8.6 (10.6) −7.7 8.0 (14.4)

Chao2 exploiting L1 8.1 9.9 (3.8) 3.3 4.4 (2.4) 1.6 2.4 (1.7)

Chao2 exploiting L2 3.0 5.6 (3.6) −0.9 2.5 (2.2) −2.1 2.6 (1.6)

Chao2 exploiting L3 −3.0 4.8 (3.3) −5.9 6.2 (2.0) −6.3 6.6 (1.5)

Chao2 exploiting L4 10.0 11.8 (4.0) 4.8 5.7 (2.5) 2.8 3.5 (1.9)

Chao2 exploiting L5 12.9 15.0 (4.6) 6.3 7.4 (3.0) 3.9 4.7 (2.2)

Chao2 exploiting L6 17.4 20.2 (5.6) 8.7 10.1 (3.7) 5.6 6.5 (2.8)

Chao2 exploiting L7 8.7 10.5 (3.9) 3.7 4.8 (2.5) 1.9 2.7 (1.8)

Chao2 exploiting L8 6.0 8.8 (4.4) 0.7 3.2 (2.8) −1.0 2.2 (2.1)

Chao2 exploiting L9 3.2 7.9 (5.1) −2.5 4.1 (3.3) −4.0 4.6 (2.5)

LP exploiting L1 −0.9 1.0 (0.1) −0.9 1.0 (0.1) −0.8 0.9 (0.1)

LP exploiting L2 −4.5 4.6 (0.2) −4.2 4.4 (0.3) −3.9 4.1 (0.3)

LP exploiting L3 −8.9 9.1 (0.4) −8.2 8.5 (0.5) −7.5 7.8 (0.6)

LP exploiting L4 0.8 0.9 (1.2) 0.5 0.5 (0.8) 0.4 0.4 (0.7)

LP exploiting L5 4.4 4.7 (2.8) 2.7 2.9 (2.0) 1.9 2.1 (1.6)

LP exploiting L6 9.8 10.7 (4.3) 5.8 6.4 (3.0) 4.1 4.5 (2.4)

LP exploiting L7 −0.1 0.5 (1.2) −0.4 0.6 (0.9) −0.4 0.6 (0.7)

LP exploiting L8 −0.6 1.8 (2.8) −1.9 2.3 (2.0) −2.3 2.6 (1.6)

LP exploiting L9 −1.0 3.6 (4.2) −3.8 4.4 (2.9) −4.5 4.9 (2.3)

which renders ineffective the bias reduction induced by the nonparametric estima-
tors [D’Alessandro and Fattorini (2002)].

Regarding the ED estimator, the decreases in RBs and RRMESs are slight be-
cause the main source of bias and uncertainty are due to the accuracy of the sup-
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TABLE 2
Percentage values of relative bias (RB) and relative root mean squared error (RRMSE) for each

nonparametric estimator and for the ED, Chao2 and LP estimators corresponding to each
supporting list in the case of the second artificial community. Values in brackets are the

expectations of the relative root mean squared error estimators

Estimator n = 50 n = 100 n = 150

RB RRMSE RB RRMSE RB RRMSE

Species observed −52.7 52.7 −46.9 46.9 −45.9 46.0
First-order jackknife −45.4 45.5 −37.3 37.5 −36.1 36.5
Second-order jackknife −40.4 40.7 −30.9 31.3 −29.5 30.5
Bootstrap −49.7 49.7 −42.8 42.9 −41.7 42.0
Chao2 −35.7 39.2 −28.3 31.9 −27.3 31.2
ICE −40.1 40.7 −30.3 31.3 −29.3 30.8
ED exploiting L1 −0.8 0.8 (0.9) −0.8 0.8 (1.7) −0.8 0.8 (1.8)

ED exploiting L2 −4.5 4.6 (4.2) −4.3 4.3 (7.1) −4.2 4.2 (8.0)

ED exploiting L3 −9.5 9.5 (7,7) −8.9 9.0 (12.1) −8.8 8.8 (13.0)

ED exploiting L4 0.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0 0.0 (0.0)

ED exploiting L5 0.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0 0.0 (0.0)

ED exploiting L6 0.0 0.0 (0.0) 0.0 0.0 (0.0) 0.0 0.0 (0.0)

ED exploiting L7 −0.8 0.8 (0.9) −0.8 0.8 (1.7) −0.8 0.8 (1.8)

ED exploiting L8 −4.5 4.6 (4,2) −4.3 4.3 (7.1) −4.2 4.2 (8.0)

ED exploiting L9 −9.5 9.5 (7.7) −8.9 9.0 (12.1) −8.8 8.8 (13.0)

Chao2 exploiting L1 13.5 13.6 (3.4) 9.3 9.4 (2.8) 8.9 9.2 (2.7)

Chao2 exploiting L2 7.9 8.0 (3.3) 4.5 4.6 (2.7) 4.3 4.7 (2.6)

Chao2 exploiting L3 0.6 1.4 (3.1) −1.8 2.2 (2.5) −1.9 2.5 (2.4)

Chao2 exploiting L4 15.5 15.6 (3.6) 11.0 11.0 (2.9) 10.5 10.8 (2.8)

Chao2 exploiting L5 19.6 19.7 (4.1) 13.9 14.0 (3.3) 13.4 13.8 (3.2)

Chao2 exploiting L6 26.6 26.7 (5.0) 18.9 19.1 (4.0) 18.3 18.8 (3.9)

Chao2 exploiting L7 14.3 14.3 (3.5) 9.9 10.0 (2.9) 9.5 9.8 (2.8)

Chao2 exploiting L8 12.3 12.4 (3.9) 7.7 7.8 (3.2) 7.4 7.9 (3.1)

Chao2 exploiting L9 10.2 10.4 (4.6) 5.2 5.5 (3.8) 4.9 5.8 (3.7)

LP exploiting L1 −0.8 0.8 (0.1) −0.7 0.8 (0.1) −0.7 0.8 (0.1)

LP exploiting L2 −4.3 4.4 (0.3) −4.0 4.0 (0.5) −3.8 3.9 (0.5)

LP exploiting L3 −9.1 9.2 (0.6) −8.4 8.4 (0.7) −8.2 8.2 (0.8)

LP exploiting L4 1.0 1.0 (1.0) 0.8 0.8 (0.8) 0.8 0.8 (0.8)

LP exploiting L5 5.9 6.0 (2.4) 4.7 4.7 (2.0) 4.5 4.6 (1.9)

LP exploiting L6 14.2 14.2 (3.8) 10.9 10.9 (3.1) 10.6 10.7 (3.1)

LP exploiting L7 0.2 0.4 (1.0) 0.1 0.4 (0.8) 0.0 0.4 (0.8)

LP exploiting L8 1.2 1.4 (2.4) 0.3 1.0 (2.1) 0.4 1.1 (2.0)

LP exploiting L9 2.8 3.1 (3.8) 0.8 1.7 (3.2) 0.8 1.9 (3.1)

porting lists rather than to the sampling effort. However, the comparison with the
ED estimator leads to conclusions similar to those achieved for n = 50.

The sole occasion in which the nonparametric estimators outperform some of
the nine ED estimators is in the case of the first artificial community and n = 150
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when K̂Chao2 reaches a RB of −2.2% and K̂jack2 reaches a RB of −3.8%, while
the ED estimator performed with the lists missing the rarest species shows RBs of
−4% (lists L2, L8) and −7.7% (lists L3, L9).

Regarding the estimation of the RRMSE of the ED estimator, the estimator (4.3)
turns out to be conservative for both the artificial communities for n = 100,150,
while for n = 50 some underestimations occur when the lists miss the rarest
species. Regarding the use of floristic list in the Chao2 and LP estimators, as pro-
posed in Section 5.2, the LP estimators provides performance comparable to that
of the ED estimator when the lists miss the rarest species, behaves worse when the
lists miss the most common species, but behaves better when the lists miss both
common and rare species. As to the Chao2 estimator, the use of floristic lists in-
variably improves its precision with considerable reductions of the RRSMSE with
respect to the case in which only sample data are used. However it performs worse
than ED and LP estimators when the lists miss the most common species or both
common and rare species; when the lists miss the rarest species the Chao2 estima-
tor provides less than obvious results, with RB and RRMSE that decrease as the
fraction of lost species increases. Regarding the estimation of the sampling errors,
for both the estimators the simulation results demonstrate a tendency to underes-
timate their uncertainty, thus involving an overevaluation of their actual precision.
Probably, this issue necessitates further investigations.

6. Field study at Maremma Regional Park. A sample survey was planned
within the territory of the Maremma Regional Park to estimate the species richness
of vascular plants. The Maremma Regional Park is a protected area of 9400 ha lo-
cated along the Tuscan coastline, Italy, and covered by different types of Mediter-
ranean vegetation, but also by pastures and agricultural areas. The sample sur-
vey was performed during the spring-summer period of 2006–2007 by means of
n = 90 random plots of size 100 m2. Each plot was 10 m × 10 m and was centred
in the random point once located with a high precision GPS. To facilitate plant
recording, each plot was divided into 16 smaller (2.5 m × 2.5 m) subplots. Plants
were identified at species level using floras [e.g., Pignatti (1982)] and monographs.
Nomenclature was standardised according to Conti et al. (2005). The number of
species observed in the 90 plots was SO90 = 608.

Besides the sample survey, a floristic list was compiled by Arrigoni (2003)
recording plant species in the same area during a period of almost two decades. The
floristic list achieved from such a purposive survey contained M = 846 species.
Among these, 492 species were present in the list and were observed in the plots,
while 116 were observed in the plots and missed by the list and 354 were present in
the list but missed by the plots. On the whole, a total of 962 species were observed,
which constituted the minimum number of species living in the park. Obviously
any estimate of species richness should be greater than 962. The incidence data of
the 90 plots for the 962 observed species, together with the floristic list, are avail-
able in Chiarucci et al. (2018). From the sole incidence data, the nonparametric
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estimates of species richness turned out to be K̂jack1 = 801.82, K̂jack2 = 883.25,
K̂boot = 698.38, K̂Chao2 = 776.49 and K̂ICE = 797.83. All were smaller than the
minimum number of species living in the park.

On the other hand, exploiting the information provided by the floristic list, the
ED estimate was K̂ED = 973.51. Moreover, one can treat the floristic list as the
first list and the pooled 90-plot data as the second list. In this two-list case, the
number of singletons was 470, the number of doubletons was 492, leading to
K̂Chao2 = 962 + (1/2)(470 × 470)/(2 × 492) = 1074.25. Likewise, one may treat
the floristic list as the first capture sample and the pooled 90-plot data as the second
recapture sample. Since there were 492 recaptures, the Lincoln–Petersen estimate
was K̂LP = (608 + 1) × (846 + 1)/(492 + 1) − 1 = 1045.29. These two estimates
are very close and higher than the ED estimate. The estimate of the RRMSE of ED
based on (4.3) turned out to be 36.3%, which denoted a high level of uncertainty,
probably due to an imperfect supporting list as well as to the inadequacy of the
sampling effort limited to 90 plots that covered an area of less than 0.01% of the
park area. On the other hand, the estimate of RRMSE of Chao2 and LP turned
out to be 1.5% and 1.3%. These low values were almost certainly due to the ten-
dency of these estimators to underevaluate the sampling error, as demonstrated in
the simulation study.

7. Discussion. Estimating species richness is one of the most relevant and
most problematic issues in biodiversity studies [Colwell and Coddington (1994),
Gotelli and Colwell (2001), Chiarucci, Bacaro and Scheiner (2011), Colwell et al.
(2012), Gotelli and Chao (2013)]. The number of species is often considered one
of the most direct and useful measure of biodiversity and it is widely used both for
theoretical and applied topics [e.g., see Howard et al. (1998), Gotelli et al. (2009),
Wilson et al. (2012)]. Theoretically, the number of species can be easily censused
in a small area, as it is the case of the number of plant species growing in a rel-
atively small plot, but estimation methods are mandatory on larger areas, such as
parks or regions, and for those organisms that cannot be exhaustively censused,
such as the soil fauna species [Nichols and Conroy (1996), Skov and Lawes-
son (2000), Gotelli and Colwell (2001)]. Therefore, the development of reliable
species richness estimators is still a major challenge for present day ecology. This
is also demonstrated by the massive use of nonparametric estimators performed by
field ecologists and practitioners to get more reliable estimates with respect to the
recorded number of species.

Despite the relevance of species richness estimation, and the large use of some
nonparametric estimators, there is no theoretical consensus on the reliability of
such methods. In particular, a great discrepancy among the performance of the
nonparametric estimators based on incidence data has been reported [Heltshe and
Forrester (1983), Palmer (1990, 1991), Walther and Morand (1998), Hellmann and
Fowler (1999), Skov and Lawesson (2000), Chiarucci et al. (2003), Melo (2004),
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Walther and Moore (2005)]. The paper by D’Alessandro and Fattorini (2002), de-
spite being not well recognized in the ecological literature, proved how the limits
of the jackknife and bootstrap estimators are due to the inclusion probabilities of
rare species that make their performance unsatisfactory. In a recent paper, Xu et al.
(2012) used a large data set to compare different estimators and found that non-
parametric estimators (Chao1, ACE, Chao2, first- and second-order jackknife and
bootstrap estimators) underestimated the real number of species, while area-based
estimators (Ugland’s method, Shen and He’s method, Power-law model, Exponen-
tial model, Logistic model, MaxEnt method) overestimated this number. One of
the authors of this paper, in commenting on the paper by Xu et al. (2012), titled
“Estimating species richness: still a longway off!” [Chiarucci (2012)] to remark
how difficult the estimation of species richness is on field data. Similar examples
are also available in recent literature.

The exploitation of supporting species lists is likely to provide a totally new
perspective in the issue of estimating species richness in large areas, by combining
the data obtained by a probabilistic sampling with those arising from purposive
sampling. The information contained in species lists compiled by field ecologists
by means of purposive surveys is typically very difficult to use, since the methods
adopted for collecting such data are not well formalised and are highly variable
in time and space [Palmer et al. (2002), Diekmann, Kühne and Isermann (2007),
Fattorini (2013)]. However, it is well known that probabilistic sampling is likely
to miss most of the rare and ecologically most important species, as well as some
of the sites with the highest species richness [Palmer et al. (2002), Hédl (2007),
Diekmann, Kühne and Isermann (2007)]. Thus, the possibility of using informa-
tion recorded in purposive sampling, that can be specifically devoted to survey
sites giving a high contribution to the species richness of the region, can be seen
as a powerful challenge for theoretical and empirical ecologists, as well as for
conservation biologists and practitioners.

Now, by using the ED estimator, the lists of species can be used to improve the
design-based estimates and if the supporting list is complete the estimator guesses
the true richness with no error. Moreover, in the case of incomplete supporting lists,
the ED estimator provides estimates that are invariably greater than the number of
species detected combining sample-based and purposive surveys. A presumably
asymptotically conservative estimator of the mean squared error is also provided.
About this aspect, it should be noticed that most papers dealing with species rich-
ness estimation propose estimators of the sampling variances rather than of the
mean squared errors. However, in the framework of species richness estimation,
in which estimators are usually affected by a large amount of negative bias, the
estimation of variance is irrelevant, because the major part of the sampling error
is due to bias rather than to variance (see Tables 1 and 2). At least to our knowl-
edge, this is the first attempt to estimate mean squared error in species richness
estimation.
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Simulation results evidence the relevant improvement in bias and precision pro-
vided by the proposed estimator with respect to nonparametric estimators, espe-
cially when the supporting list is accurate. Also in this case, the rare species are
the key problem. If the supporting list misses some rare species, they are unlikely
to be recovered in the sample-based survey. Thus the resulting estimator is neg-
atively biased for a quantity approximately equal to the number of rare species
missed in the list. Moreover, for the same reason, the summand in (4.2) is likely to
be 0, thus involving a possible underestimation of the mean squared error. On the
other hand, if the supporting list misses some common species, they are likely to
be recovered in the sample-based surveys and bias disappears.

Practically speaking, the proposed estimator is likely to be effective when ef-
forts in compiling lists are mostly directed toward habitats that are likely to host
rare species. If most of them are detected, the ED estimator can represent an effi-
cient solution. Thus, at least for a sufficiently large number of replications (plots
or transects), the ED estimator is able to merge the information acquired from op-
portunistic surveys with a statistically sound inference on the true species richness,
which is not possible when the nonparametric estimators are adopted.

Relevant improvement in accuracy and precision are also achieved by incorpo-
rating purposive list in the Chao2 and LP estimators, even if the estimation of their
sampling errors necessitates further investigations. An added value of the use, in
the real world, of the purposive list in the estimation of species richness is that the
lists of species traditionally compiled by field ecologists with only descriptive aims
assume a new value, as a potential tool to improve the performance of a statisti-
cal estimation of species richness. Therefore, the work done by field ecologists, or
even citizien science group, in preparing species lists will be now considered in a
more scientifically sound way and can assume a major relevance. In this new sce-
nario, particular care must be taken in selecting the list to be exploited, especially
when the lists are cumulative over many years [Palmer et al. (2002)]. In such cases,
the purposive lists may include species that were, but are not any more present in
the area (e.g., species extirpated due to habitat conversion) or species that were not
considered by the ecologist for the list since they were introduced. In addition, tax-
onomical problems (e.g., synonyms of species that were split into two or species
that were merged) can affect the matching of the purposive with the sample-based
lists. All these drawbacks are likely to deteriorate the performance of estimators
exploiting floristic lists and need special attention.

As a concluding remark, we would like to point out that our purpose was to en-
courage the exploitation of the information contained in purposive lists when they
are available to improve the sample-based estimation of species richness, rather
than to criticize the estimators based on the sole sample information that, when
no list is available, provide useful lower bounds. Our proposal completely follows
the spirit in which auxiliary information should be used in sample surveys [e.g.,
Särndal, Swensson and Wretman (1992), page 21]. The ED estimator of species
richness exactly works in this direction.
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APPENDIX: AN UPPER BOUND FOR THE MEAN SQUARED ERROR OF
THE EMPIRICAL DIFFERENCE ESTIMATOR

The absolute difference between K̂E and K is bounded by
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Finally, because log(1 − x) < −x for x < 1, it follows that(
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Since (a + b)2 ≤ 2a2 + 2b2, it follows that
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Because z1j , . . . , znj are independent random variables, it follows that
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Moreover, since each zij is a Bernoulli random variable with parameter θj , it holds
that

E
{
exp(−zij )

} = e−1θj + 1 − θj = 1 − θj

(
1 − e−1)

from which it ultimately holds that

MSE(K̂E) ≤ 2K

[
4e−1

∑
j∈C

{
1 − θj

(
1 − e−1)}n(

1 − y0
j

)
+ ∑

j∈C

(1 − θj )
n(

1 − y0
j

)]

≤ 2K

[
4e−1

∑
j∈C

{
1 − θj

(
1 − e−1)}n(

1 − y0
j

)
+ ∑

j∈C

{
1 − θj

(
1 − e−1)}n(

1 − y0
j

)]

≤ 2K
(
4e−1 + 1

) ∑
j∈C

{
1 − θj

(
1 − e−1)}n(

1 − y0
j

)
.

Acknowledgements. We thank Prof. Luca Pratelli from the Naval Academy
of Livorno (Italy) for his suggestions on the whole paper and his support in the
derivation of the results of the Appendix. We are also indebted to two anonymous
reviewers for their comments that greatly improved the previous draft of this pa-
per and for suggesting to incorporate purposive lists in the Chao2 and Lincoln-
Pertersen estimators.

SUPPLEMENTARY MATERIAL

Supplement to “Joining the incompatible: Exploiting purposive lists
for the sample-based estimation of species richness” (DOI: 10.1214/17-
AOAS1126SUPP; .zip). The Supplementary Material contains a table explain-
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the incidence data and the floristic list adopted to estimate the species richness of
vascular plants in the Maremma Regional Park, Italy, is also available.
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