
Joins that Generalize: Text Classification Using WHIRL

William W. Cohen
AT&T Labs-Research

180 Park Avenue
Florham Park NJ 07932

wcohen@research.att.com

Abstract

WHIRL is an extension of relational databases that can per-
form “soft joins” based on the similarity of textual identi-
fiers; these soft joins extend the traditional operation of join-
ing tables based on the equivalence of atomic values. This
paper evaluates WHIRL on a number of inductive classifi-
cation tasks using data from the World Wide Web. We show
that although WHIRL is designed for more general similarity-
based reasoning tasks, it is competitive with mature inductive
classification systems on these classification tasks. In par-
ticular, WHIRL generally achieves lower generalization er-
ror than C4.5, RIPPER, and several nearest-neighbor meth-
ods. WHIRL is also fast-p to 500 times faster than C4.5
on some benchmark problems. We also show that WHIRL
can be efficiently used to select from a large pool of unla-
beled items those that can be classified correctly with high
confidence.

Introduction
Consider the problem of exploratory analysis of data ob-
tained from the Internet. Assuming that one has already nar-
rowed the set of available information sources to a manage-
able size, and developed some sort of automatic procedure
for extracting data from the sites of interest, what remains
is still a difficult problem. There are several operations that
one would like to support on the resulting data, including
standard relation database management system (DBMS) op-
erations, since some information is in the form of data; text
retrieval, since some information is in the form of text; and
text categorization. Since data can be collected from many
sources, one must also support the (non-standard) DBMS
operation of data integration (Monge and Elkan 1997;
Hemandez and Stolfo 1995).

As an example of data integration, suppose you have
two relations, place(univ,state), which contains univer-
sity names and the states in which they are located, and
job(uuiv,dept), which contains university departments that
are hiring. Suppose further that you are interested in job
openings located in a particular state. Normally a user could
join the two relations to answer this query. However, what
if the relations were extracted from two different and un-
related Web sites? The same university may be referred to
Copyright @ 1998, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Haym Hirsh
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903

hirsh@cs.rutgers.edu

as “Rutgers University” in one relation, and “Rutgers, the
State University of New Jersey” in another. To solve this
problem traditional databases would require some form of
key normalization or data cleaning on the relations before
they could be joined.

An alternative approach is taken by the database man-
agement system (DBMS) WHIRL (Cohen 1998a; 1998b).
WHIRL is a conventional DBMS that has been extended to
use statistical similarity metrics developed in the informa-
tion retrieval community to compare and reason about the
similarity of pieces of text. These metrics can be used to
implement “similarity joins”, an extension of regular joins
in which tuples are constructed based on the similarity of
values, rather than on equality. Constructed tuples are then
presented to the user in an ordered list, with tuples contain-
ing the most similar pairs of fields coming first.

As an example, the relations described above could be
integrated using the WHIRL query

SELECT place.univ as ul, place.state,
job.uuiv as u2, job.dept

FROM place, job WHERE place.uuiv~job.univ
where place.univNjob.univ indicates that these items must
be similar. The result of this query is a table with columns
~1, state, u2, and dept, and rows sorted by the similarity of
~1 and ~2. Thus rows in which ~l=d? (i.e., the rows that
would be in a standard equijoin of the two relations) will ap-
pear first in this table, followed by rows for which ul and ~2
are similar, but not identical (such as the pair “Rutgers Uni-
versity” and “Rutgers, the State University of New Jersey”).

Although WHIRL was designed to query heterogeneous
sources of information, WHIRL can also be used in a
straight-forward manner for traditional text retrieval and re-
lational data operations. Less obviously, WHIRL can be
used for inductive classification of text. To see this, note
that a simple form of rote learning can be implemented with
a conventional DBMS. Assume we are given training data in
the form of a relation train(inst,label) associating instances
inst with labels label from some fixed set. (For example,
instances might be news headlines, and labels might be sub-
ject categories from the set {business, sports, other}.) To
classify an unlabeled object X one can store X as the only
element of a relation test(inst) and use the SQL query:

SELECT test .inst ,train.label
FROM train,test WHERE test.inst=train.inst

KDD-98 169

From: KDD-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

In a conventional DBMS this retrieves the correct label for
any X that has been explicitly stored in the training set train.
However, if one replaces the equality condition test.inst=
train.inst with the similarity condition, test.instNtrain.inst,
the resulting WHIRL query will find training instances that
are similar to X, and associate their labels with X. More
precisely, the answer to the corresponding similarity join
will be a table

Every tuple in this table associates a label Li with X.
Each Li is in the table because there were some instances
Y. 51 ,. . . ,Yi, in the training data that had label Li and were
similar to X. As we will describe below, every tuple in the
table also has a “score”, which depends on the number of
these Yi j ’ s and their similarities to X. This method can thus
be viewed as a sort of nearest neighbor classification algo-
rithm.

Elsewhere we have evaluated WHIRL’on data integration
tasks (Cohen 1998a). In this paper we show that WHIRL
is also well-suited to inductive text classification, a task we
would also like a general data manipulation system such as
WHIRL to support.

An Overview of WHIRL
We assume the reader is familiar with relational databases
and the SQL query language. WHIRL extends SQL with
a new TEXT data type and a similarity operator XNY that
applies to any two items X and Y of type TEXT.’ Asso-
ciated with this similarity operator is a similarity function
SIM(X, Y), to be described shortly, whose range is [0, l],
with larger values representing greater similarity.

This paper focuses on queries of the form
SELECT test .inst ,train.label
FROM test,train WHERE test.inst~train.inst

and we therefore tailor our explanation to this class of
queries. Given a query of this form and a user-specified
parameter K, WHIRL will first find the set of K tuples
(Xi, yj, Lj) from the Cartesian product of test and train
such that SrM(Xi, Yj) is largest (where Lj is Yj’s label in
train). Thus, for example, if test contains a single element
X, then the resulting set of tuples corresponds directly to the
K nearest neighbors to X, plus their associated labels. Bach
of these tuples has a numeric score; in this case the score of
(Xi,~,~~)iSSimplySIM(Xi,Y$).

The next step for WHIRL is to SELECT test.inst,
train.label, i.e., to select the first and third columns of the
table of (Xi, Yj, Lj) tuples. In this projection step, tuples
with equal Xi and Lj but different Yj will be combined.

‘Other published descriptions used a Prolog-like notation for
the same language (Cohen 1998a; 1998b). We refer the reader to
these earlier papers for descriptions of the full scope of WHIRL
and efficient methods for evaluating general WHIRL queries.

The score for each new tuple (X, L) is

l-fi(l-Pj) (1)
j=l

where pi ,..., p, arethescoresofthentuples(X,Yi,L) ,...,
(X, Y,, L) that contain both X and L.

The similarity of each X and Y is assessed via the widely-
used “vector space” model of text (Salton 1989). Assume
a vocabulary T of atomic terms that appear in each docu-
ment.2 A TEXT object is represented as a vector of real
nufnbers v E 72 ITI, where each component corresponds to
a term. We denote with 21~ the component of v that corre-
sponds to t E T.

The general idea behind the vector-space representation
is that the magnitude of a component ut should be related
to the “importance” of t in the document represented by v,
with higher weights assigned to terms that arefrequent in the
document and infrequent in the collection as a whole; the lat-
ter often correspond to proper names and other particularly
informative terms. We use the TF-IDF weighting scheme
(Salton 1989) in which ut = log(T&J + 1) * log(ID&).
Here Z’FVIt is the number of t imes that t occurs in the docu-
ment represented by v, and IDFt = 5, where N is the total
number of records, and 7~~ is the total number of records that
contain the term t in the given field. The similarity of two
document vectors v and w is then given by the formula

m f(v,w) = c tET vt ’ w t
llvll * llwll

This measure is large if the two vectors share many “im-
portant” terms, and small otherwise. Notice that due to the
normalizing term S1&? (v, w) is always between zero and
one.

By combining graph search methods with indexing and
pruning methods from information retrieval, WHIRL can be
implemented fairly efficiently. Details of the implementa-
tion and a full description of the semantics of WHIRL can
be found elsewhere (Cohen 1998a).

Experimental Results
To evaluate WHIRL as a tool for Web-based text classifica-
tion tasks, we created nine benchmark problems, listed in
Table 1, from pages found on the World Wide Web. Al-
though they vary in domain and size, all were generated in
a straight-forward fashion from the relevant pages, and all
associate text - typically short, name-like strings - with
labels from a relatively small set3 The table gives a sum-
mary description of each domain, the number of classes and
number of terms found in each problem, and the number of
training and testing examples used in our text classification

2Currently, T contains all “word stems” (morphologically in-
spired prefixes) produced by the Porter (1980) stemming algorithm
on texts appearing in the database.

3Although much work in this area has focused on longer doc-
uments, we focus on short text i tems that more typically appear in
such data integration tasks.

170 Cohen

experiments. On smaller problems we used lo-fold cross-
validation (“lOcv”), and on larger problems a single holdout
set of the specified size was used. In the case of the cdroms
and netvet domains, duplicate instances with different labels
were removed.

Using WHIRL for Inductive Classification
To label each new test example, the example was placed in
a table by itself, and a similarity join was performed with
it and the training-set table. This results in a table where
the test example is the tist item of each tuple, and every
label that occurred for any of the top K most similar text
items in the training-set table appears as the second item of
some tuple. We used Ii’ = 30, based on exploratory anal-
ysis of a small number of datasets, plus the experience of
Yang and Chute (1994) with a related classifier (see below).
The highest-scoring label was used as the test item’s classi-
fication. If the table was empty, the most frequent class was
used.

We compared WHIRL to several baseline learning al-
gorithms. C4.5 (Quinlan 1994) is a feature-vector based
decision-tree learner. We used as binary-valued features the
same set of terms used in WHIRL’s vectors; however, for
tractability reasons, only terms that appeared at least 3 times
in the training set were used as features. RIPPER (Cohen
1995) is a rule learning system that has been used for text
categorization (Cohen and Singer 1996). We used RIPPER s
set-valued features (Cohen 1996) to represent the instances;
this is functionally equivalent to using all terms as binary
features, but more efficient. No feature selection was per-
formed with RIPPER. l-NN finds the nearest item in the
training-set table (using the vector-space similarity measure
SIM) and gives the test item that item’s label. We aIso used
Yang and Chute’s (1994) distance-weighted k-NN method,
hereafter called K-NNs. This is closely related to WHIRL,
but combines the scores of the the K nearest neighbors dif-
ferently, selecting the label L that maximizes c pi. Finally,
I<-NNM is like Yang and Chute’s method, but picks the la-
bel L that is most frequent among the I{ nearest neighbors.

The accuracy of WHIRL and each baseline method, as
well as the accuracy of the “default rule” (always labeling
an item with the most frequent class in the training data)
are shown in Table 2; the highest accuracy for each prob-
lem is shown in boldface. The same information is also
shown graphically in Figure 1, where each point represents
one of the nine test problems.4 With respect to accuracy
WHIRL uniformly outperforms K -NNM , outperforms both
l-NN and C4.5 eight of nine times, and outperforms RIP-
PER seven of nine times. WHIRL was never significantly
worse than any other learner on any individual problem.5

4The y-value of a point indicates the accuracy of WHIRJ., on
a problem, and the x-value indicates the accuracy of a compet-
ing method; points that lie above the line y = x are cases where
WHJRL was better. The upper graph compares WHIRL to C4.5
and RIPPER, and the lower graph compares WHIRL to the nearest-
neighbor methods.

5We used McNemar’s test to test for significant differences on
the problems for which a single holdout was used, and a paired
t-test on the folds of the cross-validation when 1Ocv was used.

100

80

60

40

Relative accuracy

20
Accuraz of seconYk3am*r

80 100

Relative accuracy

(lNN,wEX 7
(KNN-sunyhiri + 1
(KNN-mal,whirl) q

0 20
AccuraEj of seconsdqearnf3r

80 I&

Figure 1: Scatterplots of learner accuracies

The algorithm that comes closest to WHIRL is K-NNs.
WHIRL outperforms K-NNs eight of nine times, but all of
these eight differences are small. However, five are statisti-
cally significant, indicating that WHIRL represents a small
but statistically real improvement over K-BINS.

Using WHIRL for Selective Classification
Although the error rates are still quite high on some tasks,
this is not too surprising given the nature of the data. For
example, consider the problem of labeling company names
with the industry in which they operate (as in Mine and
hcoarse). It is fairly easy to guess the business of “Wat-
son Pharmaceuticals, Inc.“, but correctly labeling “Adolph
Coors Company” or “AT&T” requires domain knowledge.

Of course, in many applications, it is not necessary to la-
bel every test instance; often it is enough to find a subset
of the test data that can be reliably labeled. For example,
in constructing a mailing list, it is not necessary determine
if every household in the US is likely to buy the adver-
tised product; one needs only to find a relatively small set
of households that are likely customers. The basic problem
can be stated as follows: given M test cases, give labels to
N of these, for N < M, where N is set by the user. We call
this problem selective classifcation.

One way to perform selective classification is to use a
learner’s hypothesis to make a prediction on each test item,
and then pick the N items predicted with highest confidence.
Associating a confidence with a learner’s prediction is usu-

KDD-98 171

problem #train #/test
memos 334 1Ocv
cdroms 798 1Ocv
birdcom 914 1ocv
birdsci 914 1Ocv
hcoarse 1875 600
hfine 1875 600
books 3501 1800
species 3119 1600
netvet 3596 2000

memos
cdrom
birdcom
birdsci
hcoarse
hfine
books
species
netvet

1 average

#classes I #terms I text-valued field I label -ion- document title
1133 CDRom game name
674 common name of bird

1738 common + scientific name of bird
2098 company name
2098 company name
7019 book title
7231 animal name
5460 URL title

Table 1: Description
default RIPPER C4.5

19.8 50.9 57.5
26.4 38.3 39.2
42.8 88.8 79.6
42.8 91.0 83.3
11.3 28.0 30.2
4.4 16.5 17.2
5.7 42.3 52.2

51.8 90.6 89.4
22.4 67.1 68.8

25.24 57.52 57.41

If benchmark problems

40.5 43.0
70.4 78.9
82.8 81.5
20.2 29.5
12.7 17.8
53.0 54.7
87.5 90.7
50.9 64.8

-7mRy
64.4

47.2
82.3
89.2
32.7
21.0
60.1
93.6
67.8

I I

53.76 1 56.64 1 62.00

category
category
phylogenic order
phylogenic order
industry (coarse grain)
industry (fine grain)
subject heading
phylum
category

WHIRL
66.5

47.5
83.9
90.3
32.9
20.8
61.4
943
68.1

62.90

Table 2: Experimental results for accuracy

ally straightforward.6
However, WHIRL also suggests another approach to se-

lective classification. One can again use the query
SELECT test .inst ,train.label
FROM traintest WHERE test.instNtrain.inst

but let test contain all unlabeled test cases, rather than a sin-
gle test case. The result of this query will be a table of tuples
(Xi, Lj) where Xi is a test case and Lj is a label associated
with one or more training instances that are similar to Xi.
In implementing this approach we used the score of a tu-
ple (as computed by WHIRL) as a measure of confidence.
To avoid returning the same example multiple times with
a different labels, we also discarded pairs (X, L) such that
(X, L’) (with L’ # L) also appears in the table with a higher
score; this guarantees that each example is labeled at most
once.

Rather than uniformly selecting K nearest neighbors
for each test example, this approach (henceforth the “join
method”) finds the K pairs of training and test examples
that are most similar, and then projects the final table from
this intermediate result. Hence, the join method is not iden-
tical to repeating a K-NN style classification for every test
query (for any value of Ii’).

An advantage of the join method is that since only one
query is executed for all the test instances, the join method
is simpler and faster than using repeated K-NN queries. Ta-
ble 3 compares the efficiency of the baseline learners to the
efficiency of the join method. In each case we report the

6For C4.5 and RIPPER, a confidence measure can be obtained
using the proportion of each class of the training examples that
reached the terminal node or rule used for classifying the test case.
For nearest-neighbor approaches a confidence measure can be ob-
tained from the score associated with the method’s combination
rule.

172 Cohen

combined time to learn and classify the test cases. The left-
hand side of the table gives the absolute runtime for each
method, and the right-hand side gives the runtime for the
baseline learners as a multiple of the runtime of the join
method. The join method is much faster than symbolic
methods, with average speedups of nearly 200 for C4.5 -
with 500 in the best case - and average speedups of nearly
30 for RIPPER - with 60 in the best case. It is also sig-
nificantly faster than the straight-forward WHIRL approach,
or even using l-NN on this task.7 This speedup is obtained
even though the size K of the intermediate table must be
fairly large, since it is shared by all test instances. We used
I< = 5000 in the experiments below, and from preliminary
experiments K = 1000 appears to give measurably worse
performance.

A potential disadvantage of the join method is that test
cases which are not near any training cases will not be given
any classification; for the five larger problems, for example,
only l/4 to l/2 of the test examples receive labels. In se-
lective classification, however, this is not a problem. If one
considers only the N top-scoring classifications for small
N, there is no apparent loss in accuracy in using the join
method rather than WHIRL; indeed, there appears to be a
slight gain. The upper graph in Figure 2 plots the error on
the N selected predictions (also known as the precision at
rank N) against N for the join method, and compares this
to the baseline learners that perform best, according to this
metric. All points are averages across all nine datasets. On
average, the join method tends to outperform WHIRL for N
less than about 200; after this point WHIRL’s performance
begins to dominate. Generally, the join method is very com-
petitive with C4.5 and RIPPER.* However, these averages

‘Runtimes for the K-NIV variants are comparable to WHIRL’s.
*RIPPER performs better than the join method, on average, for

0.95

0.9

0.85

0.8

0.75

0.7

0.85

0.6

Table 3: Run time of selected learning methods

Average over all datasets

0.55 ’ ’ ’ * ’ ’ ’ n ’ * ’
50 100 150 200 patkNOO 350 400 450 500

Precision at N=l 00
I I I I n

$.-
.O_

1
50 60 Pre%ion 80 100

of other
IearneY’

Figure 2: Experimental results for selective classification

conceal a lot of individual variation; while the join method
is best on average, there are many individual cases for which
its per formance is not best. This is shown in the lower scatter
plot in Figure 2.g

Summary
WHIRL extends relational databases to reason about the
similarity of text-valued fields using information-retrieval
technology. This paper evaluates WHIRL on inductive clas-
sification tasks, where it can be appl ied in a very natural
way - in fact, a single unlabeled example can be classi-
fied using one simple WHIRL query, and a closely related
WHIRL query can be used to “selectively classify” a pool
values of N < 60, but the difference is small; for instance, the join
method averages only 1.3 more errors than RIPPER for N = 50.

‘Each point here compares the join method with some other
baseline method at N = 100, a point at which all four methods are
close in average performance.

of examples. Our experiments show that, despite its greater
generality, WHIRL is extremely competit ive with state-of-
the-art methods for inductive classification. WHIRL is fast,
s ince special indexing methods can be used to find the neigh-
bors of an instance, and no time is spent building a model.
WHIRL was also shown to be general ly superior in general-
ization performance to existing methods.

References
W . W . Cohen. 1995. Fast effective rule induction. In Machine
Learning: Proceedings of the Twelfth International Conference.
Morgan Kaufmann.
W . W . Cohen. 1996. Learning with set-valued features. In Pro-
ceedings of the Thirteenth National Conference on Artiflciul In-
telligence. AAAI Press.
W . W . Cohen. 1998. Integration of heterogeneous databases with-
out common domains using queries based on textual similarity.
In Proceedings of the I998 ACM SIGMOD International Confer-
ence on Management of Data. ACM Press.
W . W . Cohen. 1998. A Web-based information system that rea-
sons with structured collections of text. In Proceedings of the
Second International ACM Conference on Autonomous Agents.
ACM Press.
W . W . Cohen and Y. Singer. 1996. Context-sensitive learning
methods for text categorization. In Proceedings of the 19th An-
nual International ACM Conference on Research and Develop-
ment in Information Retrieval, pages 307-3 15. ACM Press.
M. Hernandez and S. Stolfo. The merge/purge problem for large
databases. In Proceedings of the 1995 ACM SIGMOD, May 1995.
A. Monge and C. Elkan. An efficient domain-independent algo-
rithm for detecting approximately duplicate database records. In
The proceedings of the SIGMOD I997 workshop on data mining
and knowledge discovery, May 1997.
M. F. Porter. 1980. An algorithm for suffix stripping. Program,
14(3):13&137.
J. R. Quinlan. 1994. C4.5: Programs for machine learning. Mor-
gan Kaufmann.
G. Salton, editor. 1989. Automatic Text Processing. Addison Wes-
ley.
Y. Yang and C.G. Chute. 1994. An example-based mapping
method for text classification and retrieval. ACM Transactions
on Information Systems, 12(3).

KDD-98 173

