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Abstract 

WHIRL is an extension of relational databases that can per- 
form “soft joins” based on the similarity of textual identi- 
fiers; these soft joins extend the traditional operation of join- 
ing tables based on the equivalence of atomic values. This 
paper evaluates WHIRL on a number of inductive classifi- 
cation tasks using data from the World Wide Web. We show 
that although WHIRL is designed for more general similarity- 
based reasoning tasks, it is competitive with mature inductive 
classification systems on these classification tasks. In par- 
ticular, WHIRL generally achieves lower generalization er- 
ror than C4.5, RIPPER, and several nearest-neighbor meth- 
ods. WHIRL is also fast-p to 500 times faster than C4.5 
on some benchmark problems. We also show that WHIRL 
can be efficiently used to select from a large pool of unla- 
beled items those that can be classified correctly with high 
confidence. 

Introduction 
Consider the problem of exploratory analysis of data ob- 
tained from the Internet. Assuming that one has already nar- 
rowed the set of available information sources to a manage- 
able size, and developed some sort of automatic procedure 
for extracting data from the sites of interest, what remains 
is still a difficult problem. There are several operations that 
one would like to support on the resulting data, including 
standard relation database management system (DBMS) op- 
erations, since some information is in the form of data; text 
retrieval, since some information is in the form of text; and 
text categorization. Since data can be collected from many 
sources, one must also support the (non-standard) DBMS 
operation of data integration (Monge and Elkan 1997; 
Hemandez and Stolfo 1995). 

As an example of data integration, suppose you have 
two relations, place(univ,state), which contains univer- 
sity names and the states in which they are located, and 
job(uuiv,dept), which contains university departments that 
are hiring. Suppose further that you are interested in job 
openings located in a particular state. Normally a user could 
join the two relations to answer this query. However, what 
if the relations were extracted from two different and un- 
related Web sites? The same university may be referred to 
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as “Rutgers University” in one relation, and “Rutgers, the 
State University of New Jersey” in another. To solve this 
problem traditional databases would require some form of 
key normalization or data cleaning on the relations before 
they could be joined. 

An alternative approach is taken by the database man- 
agement system (DBMS) WHIRL (Cohen 1998a; 1998b). 
WHIRL is a conventional DBMS that has been extended to 
use statistical similarity metrics developed in the informa- 
tion retrieval community to compare and reason about the 
similarity of pieces of text. These metrics can be used to 
implement “similarity joins”, an extension of regular joins 
in which tuples are constructed based on the similarity of 
values, rather than on equality. Constructed tuples are then 
presented to the user in an ordered list, with tuples contain- 
ing the most similar pairs of fields coming first. 

As an example, the relations described above could be 
integrated using the WHIRL query 

SELECT place.univ as ul, place.state, 
job.uuiv as u2, job.dept 

FROM place, job WHERE place.uuiv~job.univ 
where place.univNjob.univ indicates that these items must 
be similar. The result of this query is a table with columns 
~1, state, u2, and dept, and rows sorted by the similarity of 
~1 and ~2. Thus rows in which ~l=d? (i.e., the rows that 
would be in a standard equijoin of the two relations) will ap- 
pear first in this table, followed by rows for which ul and ~2 
are similar, but not identical (such as the pair “Rutgers Uni- 
versity” and “Rutgers, the State University of New Jersey”). 

Although WHIRL was designed to query heterogeneous 
sources of information, WHIRL can also be used in a 
straight-forward manner for traditional text retrieval and re- 
lational data operations. Less obviously, WHIRL can be 
used for inductive classification of text. To see this, note 
that a simple form of rote learning can be implemented with 
a conventional DBMS. Assume we are given training data in 
the form of a relation train(inst,label) associating instances 
inst with labels label from some fixed set. (For example, 
instances might be news headlines, and labels might be sub- 
ject categories from the set {business, sports, other}.) To 
classify an unlabeled object X one can store X as the only 
element of a relation test(inst) and use the SQL query: 

SELECT test .inst ,train.label 
FROM train,test WHERE test.inst=train.inst 
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In a conventional DBMS this retrieves the correct label for 
any X that has been explicitly stored in the training set train. 
However, if one replaces the equality condition test.inst= 
train.inst with the similarity condition, test.instNtrain.inst, 
the resulting WHIRL query will find training instances that 
are similar to X, and associate their labels with X. More 
precisely, the answer to the corresponding similarity join 
will be a table 

Every tuple in this table associates a label Li with X. 
Each Li is in the table because there were some instances 
Y. 51 ,. . . ,Yi, in the training data that had label Li and were 
similar to X. As we will describe below, every tuple in the 
table also has a “score”, which depends on the number of 
these Yi j ’ s and their similarities to X. This method can thus 
be viewed as a sort of nearest neighbor classification algo- 
rithm. 

Elsewhere we have evaluated WHIRL’on data integration 
tasks (Cohen 1998a). In this paper we show that WHIRL 
is also well-suited to inductive text classification, a task we 
would also like a general data manipulation system such as 
WHIRL to support. 

An Overview of WHIRL 
We assume the reader is familiar with relational databases 
and the SQL query language. WHIRL extends SQL with 
a new TEXT data type and a similarity operator XNY that 
applies to any two items X and Y of type TEXT.’ Asso- 
ciated with this similarity operator is a similarity function 
SIM(X, Y), to be described shortly, whose range is [0, l], 
with larger values representing greater similarity. 

This paper focuses on queries of the form 
SELECT test .inst ,train.label 
FROM test,train WHERE test.inst~train.inst 

and we therefore tailor our explanation to this class of 
queries. Given a query of this form and a user-specified 
parameter K, WHIRL will first find the set of K tuples 
(Xi, yj, Lj) from the Cartesian product of test and train 
such that SrM(Xi, Yj) is largest (where Lj is Yj’s label in 
train). Thus, for example, if test contains a single element 
X, then the resulting set of tuples corresponds directly to the 
K nearest neighbors to X, plus their associated labels. Bach 
of these tuples has a numeric score; in this case the score of 
(Xi,~,~~)iSSimplySIM(Xi,Y$). 

The next step for WHIRL is to SELECT test.inst, 
train.label, i.e., to select the first and third columns of the 
table of (Xi, Yj, Lj) tuples. In this projection step, tuples 
with equal Xi and Lj but different Yj will be combined. 

‘Other published descriptions used a Prolog-like notation for 
the same language (Cohen 1998a; 1998b). We refer the reader to 
these earlier papers for descriptions of the full scope of WHIRL 
and efficient methods for evaluating general WHIRL queries. 

The score for each new tuple (X, L) is 

l-fi(l-Pj) (1) 
j=l 

where pi ,..., p, arethescoresofthentuples(X,Yi,L) ,..., 
(X, Y,, L) that contain both X and L. 

The similarity of each X and Y is assessed via the widely- 
used “vector space” model of text (Salton 1989). Assume 
a vocabulary T of atomic terms that appear in each docu- 
ment.2 A TEXT object is represented as a vector of real 
nufnbers v E 72 ITI, where each component corresponds to 
a term. We denote with 21~ the component of v that corre- 
sponds to t E T. 

The general idea behind the vector-space representation 
is that the magnitude of a component ut should be related 
to the “importance” of t in the document represented by v, 
with higher weights assigned to terms that arefrequent in the 
document and infrequent in the collection as a whole; the lat- 
ter often correspond to proper names and other particularly 
informative terms. We use the TF-IDF weighting scheme 
(Salton 1989) in which ut = log( T&J + 1) * log( ID&). 
Here Z’FVIt is the number of t imes that t occurs in the docu- 
ment represented by v, and IDFt = 5, where N is the total 
number of records, and 7~~ is the total number of records that 
contain the term t in the given field. The similarity of two 
document vectors v and w is then given by the formula 

m f(v,w) = c tET vt ’ w t 
llvll * llwll 

This measure is large if the two vectors share many “im- 
portant” terms, and small otherwise. Notice that due to the 
normalizing term S1&? (v, w) is always between zero and 
one. 

By combining graph search methods with indexing and 
pruning methods from information retrieval, WHIRL can be 
implemented fairly efficiently. Details of the implementa- 
tion and a full description of the semantics of WHIRL can 
be found elsewhere (Cohen 1998a). 

Experimental Results 
To evaluate WHIRL as a tool for Web-based text classifica- 
tion tasks, we created nine benchmark problems, listed in 
Table 1, from pages found on the World Wide Web. Al- 
though they vary in domain and size, all were generated in 
a straight-forward fashion from the relevant pages, and all 
associate text - typically short, name-like strings - with 
labels from a relatively small set3 The table gives a sum- 
mary description of each domain, the number of classes and 
number of terms found in each problem, and the number of 
training and testing examples used in our text classification 

2Currently, T  contains all “word stems” (morphologically in- 
spired prefixes) produced by the Porter (1980) stemming algorithm 
on texts appearing in the database. 

3Although much work in this area has focused on longer doc- 
uments, we focus on short text i tems that more typically appear in 
such data integration tasks. 
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experiments. On smaller problems we used lo-fold cross- 
validation (“lOcv”), and on larger problems a single holdout 
set of the specified size was used. In the case of the cdroms 
and netvet domains, duplicate instances with different labels 
were removed. 

Using WHIRL for Inductive Classification 
To label each new test example, the example was placed in 
a table by itself, and a similarity join was performed with 
it and the training-set table. This results in a table where 
the test example is the tist item of each tuple, and every 
label that occurred for any of the top K most similar text 
items in the training-set table appears as the second item of 
some tuple. We used Ii’ = 30, based on exploratory anal- 
ysis of a small number of datasets, plus the experience of 
Yang and Chute (1994) with a related classifier (see below). 
The highest-scoring label was used as the test item’s classi- 
fication. If the table was empty, the most frequent class was 
used. 

We compared WHIRL to several baseline learning al- 
gorithms. C4.5 (Quinlan 1994) is a feature-vector based 
decision-tree learner. We used as binary-valued features the 
same set of terms used in WHIRL’s vectors; however, for 
tractability reasons, only terms that appeared at least 3 times 
in the training set were used as features. RIPPER (Cohen 
1995) is a rule learning system that has been used for text 
categorization (Cohen and Singer 1996). We used RIPPER s 
set-valued features (Cohen 1996) to represent the instances; 
this is functionally equivalent to using all terms as binary 
features, but more efficient. No feature selection was per- 
formed with RIPPER. l-NN finds the nearest item in the 
training-set table (using the vector-space similarity measure 
SIM) and gives the test item that item’s label. We aIso used 
Yang and Chute’s (1994) distance-weighted k-NN method, 
hereafter called K-NNs. This is closely related to WHIRL, 
but combines the scores of the the K nearest neighbors dif- 
ferently, selecting the label L that maximizes c pi. Finally, 
I<-NNM is like Yang and Chute’s method, but picks the la- 
bel L that is most frequent among the I{ nearest neighbors. 

The accuracy of WHIRL and each baseline method, as 
well as the accuracy of the “default rule” (always labeling 
an item with the most frequent class in the training data) 
are shown in Table 2; the highest accuracy for each prob- 
lem is shown in boldface. The same information is also 
shown graphically in Figure 1, where each point represents 
one of the nine test problems.4 With respect to accuracy 
WHIRL uniformly outperforms K -NNM , outperforms both 
l-NN and C4.5 eight of nine times, and outperforms RIP- 
PER seven of nine times. WHIRL was never significantly 
worse than any other learner on any individual problem.5 

4The y-value of a point indicates the accuracy of WHIRJ., on 
a problem, and the x-value indicates the accuracy of a compet- 
ing method; points that lie above the line y = x are cases where 
WHJRL was better. The upper graph compares WHIRL to C4.5 
and RIPPER, and the lower graph compares WHIRL to the nearest- 
neighbor methods. 

5We used McNemar’s test to test for significant differences on 
the problems for which a single holdout was used, and a paired 
t-test on the folds of the cross-validation when 1Ocv was used. 
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Figure 1: Scatterplots of learner accuracies 

The algorithm that comes closest to WHIRL is K-NNs. 
WHIRL outperforms K-NNs eight of nine times, but all of 
these eight differences are small. However, five are statisti- 
cally significant, indicating that WHIRL represents a small 
but statistically real improvement over K-BINS. 

Using WHIRL for Selective Classification 
Although the error rates are still quite high on some tasks, 
this is not too surprising given the nature of the data. For 
example, consider the problem of labeling company names 
with the industry in which they operate (as in Mine and 
hcoarse). It is fairly easy to guess the business of “Wat- 
son Pharmaceuticals, Inc.“, but correctly labeling “Adolph 
Coors Company” or “AT&T” requires domain knowledge. 

Of course, in many applications, it is not necessary to la- 
bel every test instance; often it is enough to find a subset 
of the test data that can be reliably labeled. For example, 
in constructing a mailing list, it is not necessary determine 
if every household in the US is likely to buy the adver- 
tised product; one needs only to find a relatively small set 
of households that are likely customers. The basic problem 
can be stated as follows: given M  test cases, give labels to 
N of these, for N < M, where N is set by the user. We call 
this problem selective classifcation. 

One way to perform selective classification is to use a 
learner’s hypothesis to make a prediction on each test item, 
and then pick the N items predicted with highest confidence. 
Associating a confidence with a learner’s prediction is usu- 
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problem #train #/test 
memos 334 1Ocv 
cdroms 798 1Ocv 
birdcom 914 1ocv 
birdsci 914 1Ocv 
hcoarse 1875 600 
hfine 1875 600 
books 3501 1800 
species 3119 1600 
netvet 3596 2000 

memos 
cdrom 
birdcom 
birdsci 
hcoarse 
hfine 
books 
species 
netvet 

1 average 

#classes I #terms I text-valued field I label -ion- document title 
1133 CDRom game name 
674 common name of bird 

1738 common + scientific name of bird 
2098 company name 
2098 company name 
7019 book title 
7231 animal name 
5460 URL title 

Table 1: Description 
default RIPPER C4.5 

19.8 50.9 57.5 
26.4 38.3 39.2 
42.8 88.8 79.6 
42.8 91.0 83.3 
11.3 28.0 30.2 
4.4 16.5 17.2 
5.7 42.3 52.2 

51.8 90.6 89.4 
22.4 67.1 68.8 

25.24 57.52 57.41 

If benchmark problems 

40.5 43.0 
70.4 78.9 
82.8 81.5 
20.2 29.5 
12.7 17.8 
53.0 54.7 
87.5 90.7 
50.9 64.8 

-7mRy 
64.4 

47.2 
82.3 
89.2 
32.7 
21.0 
60.1 
93.6 
67.8 

I  I  

53.76 1 56.64 1 62.00 

category 
category 
phylogenic order 
phylogenic order 
industry (coarse grain) 
industry (fine grain) 
subject heading 
phylum 
category 

WHIRL 
66.5 

47.5 
83.9 
90.3 
32.9 
20.8 
61.4 
943 
68.1 

62.90 

Table 2: Experimental results for accuracy 

ally straightforward.6 
However, WHIRL also suggests another approach to se- 

lective classification. One can again use the query 
SELECT test .inst ,train.label 
FROM traintest WHERE test.instNtrain.inst 

but let test contain all unlabeled test cases, rather than a sin- 
gle test case. The result of this query will be a table of tuples 
(Xi, Lj ) where Xi is a test case and Lj is a label associated 
with one or more training instances that are similar to Xi. 
In implementing this approach we used the score of a tu- 
ple (as computed by WHIRL) as a measure of confidence. 
To avoid returning the same example multiple times with 
a different labels, we also discarded pairs (X, L) such that 
(X, L’) (with L’ # L) also appears in the table with a higher 
score; this guarantees that each example is labeled at most 
once. 

Rather than uniformly selecting K nearest neighbors 
for each test example, this approach (henceforth the “join 
method”) finds the K pairs of training and test examples 
that are most similar, and then projects the final table from 
this intermediate result. Hence, the join method is not iden- 
tical to repeating a K-NN style classification for every test 
query (for any value of Ii’). 

An advantage of the join method is that since only one 
query is executed for all the test instances, the join method 
is simpler and faster than using repeated K-NN queries. Ta- 
ble 3 compares the efficiency of the baseline learners to the 
efficiency of the join method. In each case we report the 

6For C4.5 and RIPPER, a confidence measure can be obtained 
using the proportion of each class of the training examples that 
reached the terminal node or rule used for classifying the test case. 
For nearest-neighbor approaches a confidence measure can be ob- 
tained from the score associated with the method’s combination 
rule. 
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combined time to learn and classify the test cases. The left- 
hand side of the table gives the absolute runtime for each 
method, and the right-hand side gives the runtime for the 
baseline learners as a multiple of the runtime of the join 
method. The join method is much faster than symbolic 
methods, with average speedups of nearly 200 for C4.5 - 
with 500 in the best case - and average speedups of nearly 
30 for RIPPER - with 60 in the best case. It is also sig- 
nificantly faster than the straight-forward WHIRL approach, 
or even using l-NN on this task.7 This speedup is obtained 
even though the size K of the intermediate table must be 
fairly large, since it is shared by all test instances. We used 
I< = 5000 in the experiments below, and from preliminary 
experiments K = 1000 appears to give measurably worse 
performance. 

A potential disadvantage of the join method is that test 
cases which are not near any training cases will not be given 
any classification; for the five larger problems, for example, 
only l/4 to l/2 of the test examples receive labels. In se- 
lective classification, however, this is not a problem. If one 
considers only the N top-scoring classifications for small 
N, there is no apparent loss in accuracy in using the join 
method rather than WHIRL; indeed, there appears to be a 
slight gain. The upper graph in Figure 2 plots the error on 
the N selected predictions (also known as the precision at 
rank N) against N for the join method, and compares this 
to the baseline learners that perform best, according to this 
metric. All points are averages across all nine datasets. On 
average, the join method tends to outperform WHIRL for N 
less than about 200; after this point WHIRL’s performance 
begins to dominate. Generally, the join method is very com- 
petitive with C4.5 and RIPPER.* However, these averages 

‘Runtimes for the K-NIV variants are comparable to WHIRL’s. 
*RIPPER performs better than the join method, on average, for 
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Figure 2: Experimental results for selective classification 

conceal  a  lot of individual variation; while the join method 
is best on  average,  there are many individual cases for which 
its per formance is not best. This is shown in the lower scatter 
plot in Figure 2.g 

Summary 
WHIRL extends relational databases to reason about  the 
similarity of text-valued fields using information-retrieval 
technology. This paper  evaluates WHIRL on  inductive clas- 
sification tasks, where it can be  appl ied in a  very natural 
way - in fact, a  single unlabeled example can be  classi- 
fied using one  simple WHIRL query, and  a  closely related 
WHIRL query can be  used to “selectively classify” a  pool 
values of N < 60, but the difference is small; for instance, the join 
method averages only 1.3 more errors than RIPPER for N = 50. 

‘Each point here compares the join method with some other 
baseline method at N = 100, a point at which all four methods are 
close in average performance. 

of examples. Our  experiments show that, despite its greater 
generality, WHIRL is extremely competit ive with state-of- 
the-art methods for inductive classification. WHIRL is fast, 
s ince special indexing methods can be  used to find the neigh- 
bors of an  instance, and  no  time is spent  building a  model.  
WHIRL was also shown to be  general ly superior in general-  
ization performance to existing methods.  
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