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Abstract

Both image segmentation and dense 3D modeling from

images represent an intrinsically ill-posed problem. Strong

regularizers are therefore required to constrain the solutions

from being ’too noisy’. Unfortunately, these priors generally

yield overly smooth reconstructions and/or segmentations

in certain regions whereas they fail in other areas to con-

strain the solution sufficiently. In this paper we argue that

image segmentation and dense 3D reconstruction contribute

valuable information to each other’s task. As a consequence,

we propose a rigorous mathematical framework to formu-

late and solve a joint segmentation and dense reconstruction

problem. Image segmentations provide geometric cues about

which surface orientations are more likely to appear at a

certain location in space whereas a dense 3D reconstruction

yields a suitable regularization for the segmentation problem

by lifting the labeling from 2D images to 3D space. We show

how appearance-based cues and 3D surface orientation pri-

ors can be learned from training data and subsequently used

for class-specific regularization. Experimental results on

several real data sets highlight the advantages of our joint

formulation.

1. Introduction

Even though remarkable progress has been made in recent

years, both image segmentation and dense 3D modeling from

images remain intrinsically ill-posed problems. The standard

approach to address this ill-posedness is to regularize the

solutions by introducing a respective prior. Traditionally, the

priors enforced in image segmentation approaches are stated

entirely in the 2D image domain (e.g. a contrast-sensitive

spatial smoothness assumption), whereas priors employed

for image-based reconstruction typically yield piece-wise

smooth surfaces in 3D as their solutions. In this paper we

demonstrate that joint image segmentation and dense 3D

reconstruction is beneficial for both tasks. While the ad-
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Figure 1: Top: Example of input image, standard image

classification result, depthmap. Bottom: Our proposed joint

optimization combines class segmentation and geometry

resulting in an accurately labeled 3D reconstruction

vantages of a joint formulation for segmentation and 3D

reconstruction have already been observed and utilized in

the literature, our main contribution is the introduction of

a rigorous mathematical framework to formulate and solve

this joint optimization task. We extend volumetric scene

reconstruction methods, which segment a volume of interest

into occupied and free-space regions, to a multi-label volu-

metric segmentation framework assigning object classes or

a free-space label to voxels. On the one hand, such a joint

approach is highly beneficial since the associated appear-

ance (and therefore a likely semantic category) of surface

elements can influence the spatial smoothness prior. Thus,

a class-specific regularizer guided by image appearances

can adaptively enforce spatial smoothness and preferred

orientations of 3D surfaces. On the other hand, densely re-

constructed models induce image segmentations which are

guaranteed to correspond only to geometrically meaningful

objects in 3D. Hence, the segmentation results are trivially

consistent across multiple images.

In a nutshell, we propose to learn appearance likelihoods

and class-specific geometry priors for surface orientations
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from training data in an initial step. These data-driven priors

can then be used to define unary and pairwise potentials in

a volumetric segmentation framework, complementary to

the measured evidence acquired from depth maps. While

optimizing over the label assignment in this volume, the

image-based appearance likelihoods, depth maps from com-

putational stereo, and geometric priors interact with each

other yielding an improved dense reconstruction and label-

ing. The remainder of the paper explains each step in detail,

and our mathematical framework is verified on several chal-

lenging real-world data sets.

2. Related Work

There is a vast literature on dense 3D modeling from

images. Here we sketch only a small subset of related lit-

erature, and refer e.g. to the Middlebury MVS evaluation

page [20] for a broader survey. Given a collection of depth

images (or equivalently densely sampled oriented 3D points)

the methods proposed in [13, 27, 23] essentially utilize the

surface area as regularization prior, and obtain the final sur-

face representation indirectly via volumetric optimization.

One main difference between [13] and [27, 23] is the utiliza-

tion of a combinatorial graph-cut formulation in the former,

whereas [27, 23] employ a continuously inspired numerical

scheme. The regularization prior in these works is isotropic,

i.e. independent of the surface normal (up to the impact

of the underlying discretization), corresponding to a total

variation (TV) regularizer in the volumetric representation.

The work of [10] utilizes an anisotropic TV prior for 3D

modeling in order to enforce the consistency of the surface

normals with a given normal field, thus better preserving

high frequency details in the final reconstruction. All of the

above mentioned work on volumetric 3D modeling from

images returns solely a binary decision on the occupancy

state of a voxel. Hence, these methods are unaware of typical

class-specific geometry, such as the normals of the ground

plane pointing upwards. These methods are therefore unable

to adjust the utilized smoothness prior in an object- or class-

specific way. This observation led to the initial motivation

for the present work. More specifically, it is notoriously dif-

ficult to faithfully reconstruct weakly or indirectly observed

parts of the scene such as the ground, which is usually cap-

tured in images at very slanted angles (at least in terrestrial

image data). [9] proposes to extend an adaptive volumetric

method for surface reconstruction in order not to miss impor-

tant parts of the scene in the final geometry. The assumption

in their method is that surfaces with weak evidence are likely

to be real surfaces if adjacent to strongly observed freespace.

A key property of our work is that weakly supported scene

geometry can be assisted by a class-specific smoothness

prior.

If only a single image is considered and direct depth cues

from multiple images are not available, assigning object cat-

egories to pixels yields crucial information about the 3D

scene layout [8, 19], e.g. by exploiting the fact that building

facades are usually vertical, and ground is typically horizon-

tal. These relations are generally not manually encoded, but

extracted from training data. Such known geometric rela-

tions between object categories can also be helpful for 2D

image segmentation, e.g. by assuming a particular layout for

indoor images [15], a tiered layout [6] or class-specific 2D

smoothness priors [22]. Utilizing appearance-based pixel

categories and stereo cues in a joint framework was pro-

posed in [11] in order to improve the quality of obtained

depth maps and semantic image segmentations. In our work,

we also aim on joint estimation of 3D scene geometry and

assignment of semantic categories, but use a completely dif-

ferent problem representation—which is intrinsically using

multiple images—and solution method. [18, 2] also present

joint segmentation and 3D reconstruction methods, but the

determined segments correspond to individual objects (in

terms of an underlying smooth geometry) rather than to se-

mantic categories. Furthermore, a method [1] using semantic

information for dense object reconstruction in form of shape

priors has been developed concurrently to our work.

3. Joint 3D Reconstruction and Classification

In this section we describe the underlying energy for-

mulation for our proposed joint surface reconstruction and

classification framework and its motivation. Similar to pre-

vious works on global surface reconstruction we lift the

problem from an explicit surface representation to an im-

plicit volumetric one. The increased memory consumption

is compensated by the advantages of allowing arbitrary but

closed and oriented topology for the resulting surface.

3.1. Continuous Formulation

We cast the ultimate goal of semantically guided shape

reconstruction as a volumetric labeling problem, where one

out of L+ 1 labels is assigned to each location z ∈ Ω in a

continuous volumetric domain Ω ⊂ R
3. In the following

we will use indices i and j for labels. Allowed labels are

“free/empty space” (with numeric value 0) and “occupied

space” with an associated semantic category (values from

{1, . . . , L}). The label assignments will be encoded with

L + 1 indicator functions xi : Ω → [0, 1], i ∈ {0, . . . , L}:

xi(z) = 1 iff label i is assigned at z ∈ Ω. Note that in

the following, the dependence of all quantities on the 3D

location z will be indicated with a subscript to be more

consistent with the later discrete formulation, i.e. xi(z) = xi
z .

With this notation in place, the convex relaxation of the

labeling problem in a continuous volumetric domain Ω reads

as

Econt(x,y) =

∫

Ω

∑

i

ρizx
i
z +

∑

i,j:i<j

φij
z (y

ij
z ) dz, (1)
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where yij : Ω → [−1, 1]3, i ∈ {0, . . . , L} with j > i
are “jump processes” satisfying a modified marginalization

constraint

∇zx
i =

∑

j:j>i

yij −
∑

j:j<i

yji. (2)

ρi : Ω → R encodes the local preference for a particular

label. Note that the smoothness term in Eq. 1 is an extension

of the standard length/area-based boundary regularizer to

Finsler metrics (see e.g. [16]) and the infinitesimal length

functions φij
z : R3 → R

+
0 are naturally extended from S

2 to

R
3, rendering φij

z a convex and positively 1-homogeneous

function. Such choice of φij
z generalizes the notion of total

variation to location and orientation dependent penalization

of segmentation boundaries. In addition to the marginaliza-

tion constraints in Eq. 2, the functions xi also need to satisfy

the normalization constraint,
∑

i x
i ≡ 1, and non-negativity

constraints. We refer to [25] for a detailed derivation and

theoretical interpretation of this energy. A minimizer (x,y)
induces a partition of Ω into free space and respective object

categories. The boundaries between the individual regions

form the 3D surfaces of interest.

3.2. Discretized Formulation

A disadvantage of this continuous energy formulation is

that the class of smoothness priors φij
s is restricted to metrics

under reasonable assumptions (see e.g. [12]). Consequently,

we focus our attention on discrete lattices (i.e. regular voxel

grids) as underlying domain where these restrictions do not

apply. Hence, Ω denotes a finite voxel grid with voxels

s ∈ Ω in the following. A discrete version of the continuous

energy in Eq. 1 not requiring a metric prior reads as [24]

Ediscr(x) =
∑

s∈Ω

(∑

i

ρisx
i
s +

∑

i,j:i<j

φij
s (x

ij
s − xji

s )
)

(3)

subject to the following marginalization, normalization and

non-negativity constraints,

xi
s =

∑

j

(xij
s )k, xi

s =
∑

j

(xji
s−ek

)k (k ∈ {1, 2, 3})

xs ∈ ∆, xij
s ≥ 0. (4)

ek ∈ R
3 denotes the k-th canonical basis vector and (·)k is

the k-th component of its argument. The discrete marginal-

ization constraints above follow from Eq. 2 by employing

a forward finite difference scheme for the spatial gradient.

The probability simplex of appropriate dimension is denoted

by ∆. The variables appearing in Eq. 3 have the following

interpretation in the context of joint surface reconstruction

and segmentation tasks:

• xi
s encodes whether label i (i.e. free space or one of the

solid object categories) is assigned at voxel s,

• xij
s − xji

s ∈ [−1, 1]3 represents the local surface orien-

tation if it is non-zero,

• ρis is the unary data term encoding the measured ev-

idence, i.e. the preference of voxel s for a particular

label i. This data term captures the evidence from two

sources: firstly, the measurements from a set of depth

maps, and secondly, appearance-based classification

scores from the input images as obtained from previ-

ously trained classifiers. Section 4 describes in detail

how this unary term is modeled.

• Finally, φij
s is the location and direction-dependent

smoothness prior indicating the local compatibility of a

boundary between label i and j. Hence, these priors en-

code the previously mentioned class-specific geometric

priors. Of highest importance is the directly observable

boundary between free space and any of the object cat-

egories. Modeling φij
s from training data is explained

in Section 5.

We will restrict ourselves to homogeneous priors in the fol-

lowing, i.e. the local smoothness contribution φij
s (x

ij
s − xji

s )
does not depend on s, and the objective in Eq. 3 slightly

simplifies to

Ediscr(x) =
∑

s∈Ω

(∑

i

ρisx
i
s +

∑

i,j:i<j

φij(xij
s − xji

s )
)

. (5)

The rationale behind the spatial homogeneity assumption

is that only the orientation of a boundary surface and the

affected labels are of importance, but not the precise location.

Once the values of ρis are determined and the smoothness

priors φij are known, the task of inference is to return an

optimal volumetric labeling. Since we employ a convex

problem stated in Eq. 3, any convex optimization suitable

for non-smooth programs can be utilized. After introducing

Lagrange multipliers for the constraints and after biconju-

gation of the smoothness term we are able to directly apply

the primal-dual algorithm proposed in [4]. We briefly out-

line the numerical scheme used in our experiments in the

supplementary material.

4. The Ray Likelihood and Its Approximation

In this section we describe how available depth maps

(with potentially missing depth values) and appearance-

based class likelihoods are converted into respective unaries

ρ for joint volumetric reconstruction and classification as

described in the previous section. A completely sound graph-

ical model relating image observations with occupancy states

of 3D voxels requires observation likelihoods corresponding

to clique potentials with entire rays in 3D forming cliques

(e.g. [14]). In the following we argue that—under suitable

smoothness assumptions on the solution—we can approx-

imate the higher-order clique potentials by suitable unary
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ones. We aim on factorizing the clique potential into only

unary terms such that the induced (higher-order) cost of a

particular boundary surface is approximated by the unaries.

Additionally we employ the usual assumption of indepen-

dence of observations across images. This means, that the

unary potentials described below based on color images (and

associated depth maps) are accumulated over all images to

obtain the effective unary potentials.

In the following we consider a particular pixel p in one of

the input images (respectively depth maps, since we assume

that depth images use color images as their reference views).

The pixel p induces a ray in 3D space, which leads to a

set of traversed voxels s ∈ ray(p) and the corresponding

latent variables xi
s and their associated unary potentials ρis.

Recall that i indexes one of the L + 1 semantic categories

{0, 1, . . . , L} with 0 corresponding to sky (i.e. free space)

and i indicating object category i, respectively. Our task is

to (approximately) model the likelihoods

P
(

d̂(p), Â(p) | {xi
s}s∈ray(p)

)

, (6)

where d̂(p) is the observed depth at pixel p (which may be

missing), and Â(p) encapsulates the local image appearance

in the neighborhood of p. Note that in terms of a graphical

model the respective potential, −logP
(
d̂, Â | {xi

s}s∈ray(p)

)
,

depends on the entire clique {s : s ∈ ray(p)}. Clearly, for

a particular ray the likelihoods of observing d̂(p) and Â(p)
only depend on the first crossing from freespace to occupied

space. Nevertheless, proper handling of voxel visibility links

all voxels along the ray to form a clique.

For notational convenience we will drop the dependence

on the pixel p, and also index voxels along ray(p) by their

depth with respect to the current view. We will substantially

simplify the potentials (and therefore the inference task) by

considering the following cases:

Observed depth: This is the case when d̂ in the depth

map is valid (i.e. not missing). In this case we assume that

Eq. 6 factorizes into

P
(
d̂, Â | voxel d is first crossing to i

)
= P (d̂ | d)P (Â | i),

where P (d̂ | d) captures the noise for inliers in the depth

sensing process and is usually a monotonically decreasing

function of |d − d̂|. P (Â | i) is induced by the confidence

of an appearance-based classifier for object category i.
We only define non-zero unaries for voxels along the ray

near the observed depth. Assume that the inlier noise of

depth estimation is bounded by δ, and we denote by d̂± δ
the voxels along the ray with distance δ and −δ, respectively.

We set the unary potentials

ρi
d̂+δ

= σclass i ρid =

{

0 for i = 0

η(d̂− d) for i > 0.
(7)

for voxels d near the observed depth, i.e. voxels d closer

to d̂ than δ. Here σclass i = − logP (Â | i) (with class 0

corresponding to sky). The function η : [−δ, δ] → R is

independent of the object category i and reflects the noise

assumptions of d̂. We choose η(d̂− d) = β sgn(d̂− d) for

β > 0, corresponding to an exponentially distributed noise

for depth inliers. Inserting unaries only near the observed

depth corresponds to truncating the cost function, hence

we assume exponentially distributed inliers and uniformly

distributed outlier depth values. See Fig. 2 for an illustration

of unaries along the ray.

σclass i

weight

0

β

surface

Figure 2: Unaries assigned to voxels along a particular line-

of-sight.

Since we enforce spatial smoothness of the labeling (i.e.

multiple crossings within the narrow band near d̂ are very

unlikely), we expect three possible configurations for voxels

in [d̂− δ, d̂+ δ] described below. For each configuration we

state the contribution of unary terms for the particular ray to

the complete energy.

1. In the labeling of interest we have that free-space tran-

sitions to a particular object class i at depth d. Hence,

x0
s = 1 for s ∈ [d̂− δ, d) and xi

s = 1 for s ∈ [d, d̂+ δ].
Summing the unaries according to Eq.7 over the voxels

in [d̂− δ, d̂+ δ] yields

σclass i +
∑

d′∈[d,d̂+δ]

η(d̂− d′),

i.e. the negative log-likelihood of observing the appear-

ance category i in the image and the one corresponding

to the depth noise assumption. Note that the second

term,
∑

d′ η(d̂− d′) will be non-positive and therefore

lower the overall energy. This beneficial term is not

appearing in the other cases below.

2. If all voxels in the particular range [d̂ − δ, d̂ + δ] are

freespace (x0
s = 1 for all the voxels in this range), then

the contribution to the total energy is just σsky. Since

a potential transition to a solid object class outside the

near band is not taken into account, this choice of unary

potentials implicitly encodes the assumption that that

freespace near the observed depth implies freespace

along the whole ray.

3. All voxels in the range are assigned to object label i (i.e.

xi
s = 1 for s ∈ [d̂ − δ, d̂ + δ]. This means that there
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was a transition from freespace to object type i earlier

along the ray. Thus, the contribution to the energy is

σclass i in this case.

Overall, our choice of unaries will faithfully approximate

the desired true data costs in most cases. Since camera

centers are in free-space by definition, we add a slight bias

towards free-space along the line-of-sight from the respec-

tive camera center to the observed depth (i.e. voxels in the

range [0, d̂ − δ]). This has also a positive influence on the

convergence speed.

Missing depth: If no depth was observed at a particular

pixel p, we cannot assign unaries along the corresponding ray.

Since missing depth values mostly occur in the sky regions

of images, we found the following modification helpful to

avoid “bleeding” of buildings etc. beyond their respective

silhouettes in the image: in case of missing depth we set the

unary potentials to

ρ0s = min {0, σsky −mini �=sky σi} (8)

and ρis = 0 for i > 0 for all voxels s along ray(p). This

choice of unaries favors freespace along the whole ray when-

ever depth is missing and sky is the most likely class label

in the image.

5. Training the Priors

In this section, we will explain how the appearance likeli-

hoods used in the unary potentials ρis and the class-specific

geometric priors φij are learned from training data. While

the appearance terms are based on classification scores of a

standard classifier, training of geometric priors from labeled

data is more involved. We first start describing the training

of the appearance likelihoods before discussing the training

procedure for smoothness priors.

5.1. Appearance Likelihoods

In order to get classification scores for the labels in the

input images we train a boosted decision tree classifier [7]

on manually labeled training data. In a first step, the training

images are segmented into super-pixels using the mean shift

segmentation algorithm1. Features are extracted for each

super-pixel. We use the default parameters as implemented

by [7], resulting in 225 dimensional feature vectors based on

color, intensity, geometry, texture and location. It should be

noted that the geometry and location features are extracted by

using 2-D information on the images (superpixel size, shape,

and relative position in the image) and they are not related

to the 3-D geometry of the scene. The extracted features and

ground truth annotations are fed into the boosted decision

tree. The classifier is trained over 5 classes: sky, building,

1OpenCV implementation

ground, vegetation, and clutter. We use 2 splits per decision

tree and 200 boosting rounds. We designed a training dataset

by taking 76 images from the CamVid dataset [3] and 101

images from the MSRC dataset. We also added 34 images

taken at street level of different buildings. These buildings

are not part of the evaluation data set.

Once the classifier is trained, it can be used to obtain

scores for each region of the input images. These scores

represent the log-likelihoods of each class for each region of

the image.

5.2. Class-Specific Geometric Priors

We use a parametric model for the functions φij
s appear-

ing in the smoothness term of Eq. 5. As already mentioned

we restrict ourselves to spatially homogeneous functions

φij
s = φij , and thus there is no dependency on the location

s. Note that the energy formulation in Eq. 5 naturally corre-

sponds to a negative log-probability. Hence, the functions

φij will be also interpreted as negative log-probabilities. Let

si↔j denote a transition event between labels i and j at some

voxel s, and let nij
s be the (unit-length) boundary normal at

this voxel. Instead of modeling φij directly, we use

P (nij
s ) = P (nij

s | si↔j)P (i ↔ j), (9)

where we applied the homogeneity assumption, i.e.

P (si↔j) = P (i ↔ j). The conditional probability,

P (nij
s | si↔j) is now modeled as a Gibbs probability mea-

sure

P (nij
s | si↔j) = exp

(
−ψij(nij

s )
)
/Zij , (10)

for a pos. 1-homogeneous function ψij . Zij is the respective

partition function, Zij def
=

∫

n∈S2
exp

(
−ψij(nij)

)
dn, and

S
2 is the 3-dimensional unit sphere. Consequently, φij in

Eq. 5 is now given by

φij(n) = ψij(n) + logZij − logP (i ↔ j) (11)

for a unit vector n ∈ S
2. Maximum-likelihood estimation is

used to fit the parameters to available training data, formally

θ = argmax
θ

∏

s

∏

i,j

P (nij
s | si↔j)P (i ↔ j), (12)

where the product goes over all training samples s and ψij

and Zij are functions of the parameters θij which are gath-

ered in θ = {θij | i, j ∈ {0, . . . , L}}. In our implemen-

tation, we estimate the discrete probabilities P (i ↔ j) of

observing a transition i ↔ j upfront by counting the relative

frequencies N ij/
∑

i,j N
ij of the respective type of bound-

aries from training data. Estimating first P (i ↔ j) has the

advantage that the ML-estimation in Eq. 12 decouples into

independent estimation problems of the form

θij = argmin
θij

Nij

∑

k=1

ψij(nij
k ; θ

ij) +N ijZij(θij), (13)
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Figure 3: A section of the cadastral city model used to train

the geometric priors.

where the summation goes over all the N ij transition sam-

ples nij
k between labels i and j. Since for many choices

of ψij the partition function cannot be solved analytically,

we use Monte Carlo integration to obtain an estimate for

Zij . Given the low dimensionality of θij (up to 4 compo-

nents, see Section 5.3 below) and the necessity of Monte

Carlo integration for the partition function, we use a simple

grid search to find an approximate minimizer θij . As train-

ing data we use a three dimensional cadastral city model

(see Fig. 3) which enables us to train ψij for the transitions

ground ↔ free space, ground ↔ building and building ↔
free space. Label transitions unobserved in the training data

are defined manually. At this point we need to address two

small technical issues:

Remark 1. φij is only specified for unit vectors n ∈ S
2,

but the argument in the energy model Eq. 5 are usually non-

normalized gradient directions yijs
def
= xij

s − xji
s ∈ [−1, 1]3.

However, remember that ψij is a convex and positively 1-

homogeneous function. Together with the fact that the area

of the surface element in finite difference discretizations is

captured exactly by ‖yijs ‖2, we derive the contribution of yijs
to the regularizer as

‖yijs ‖2φ
ij
(
yijs /‖yijs ‖2

)
= φij(yijs )

by the 1-homogeneity of φij . Therefore, the extension of

φij as given in Eq. 11 to arbitrary arguments y ∈ R
3 is

φij(y) = ψij(y) + ‖y‖2
(
logZij − logP (i ↔ j)

)

︸ ︷︷ ︸

def
=Cij

. (14)

Consequently, our smoothness prior φij will always be com-

posed of an anisotropic, direction-dependent component

ψij and an isotropic contribution proportional to Cij =
logZij − logP (i ↔ j). This also implies that there is no

need to explicitly model any isotropic component in ψij .

Remark 2. The function φij given in Eq. 14 above is posi-

tively 1-homogeneous if ψij is, but convexity can only be

guaranteed whenever Cij = logZij − logP (i ↔ j) ≥ 0 or

P (i ↔ j) ≤ Zij . This is in practice not a severe restriction,

since for a sufficiently fine discretization of the domain the

occurrence of a boundary surface is a very rare event and

therefore P (i ↔ j) ≪ 1.

5.3. Choices for ψij

We need to restrict ψij to be convex and positively 1-

homogeneous. One option is to parametrize ψij(n) =

ψij(n; θ) in the primal and to limit θ such that the resulting

ψij has these properties, but this may be difficult in gen-

eral. We choose a slightly different route and parametrize

the convex conjugate of ψij ,
(
ψij

)∗
,

(
ψij

)∗
(p) = max

n

{
pTn− ψij(n)

}
= ıW

ψij
(p),

i.e. the indicator function for a (convex) shape Wψij (which

will be called a Wulff shape [17] in the following). We find

it easier to model parametric convex Wulff shapes Wψij

rather than ψij directly. Below we describe the utilized

Wulff shapes and its parametrizations. Which Wulff shape

is picked for ψij (in addition to its continuous parameters)

is part of the ML estimation. The description below is for

Wulff shapes in a canonical position, since any ψ induced by

a rotated shape can be expressed using a canonical one,

ψ(n;R) = max
p∈R·Wψ

pTn = max
p∈Wψ

(Rp)Tn = ψ(RTn; I).

Given remark 1 above there is no need to model the Wulff

shape with an isotropic and an anisotropic component (i.e. as

Minkowski sum of a sphere and some other convex shape).

The Wulff shapes described below are designed to model

two frequent surface priors encountered in urban environ-

ments: one prior favors surface normals that are in alignment

with a specific direction (e.g. ground surface normals prefer

to be aligned with the vertical direction), and the second

Wulff shape favors surface normals orthogonal to a given

direction (such as facade surfaces having generally normals

perpendicular to the vertical direction). In order to obtain a

discriminative prior we assume that an approximate vertical

direction is provided. We refer to the supplementary material

for graphical illustrations of the Wulff shapes and induced

smoothness costs.

Line Segment This Wulff shape has only one parameter l
and is a line segment in z-direction centered at the origin with

length 2l (i.e. its endpoints are (0, 0, l)T and (0, 0,−l)T ).

This shape translates to a function ψ(n) = l|n3|, which is

convex as long l ≥ 0.

Half-sphere plus spherical cap This Wulff shape Wψ

consists of a half-sphere with radius r centered at the origin

in opposition to a spherical cap with height h. The corre-

sponding function ψ favors directions pointing upwards and

isotropically penalizes downward pointing normals. ψ can

be computed in closed form (with n = (n1, n2, n3)
T ),

ψ(n) =

⎧

⎪⎪⎨

⎪⎪⎩

r‖n‖ if n3 ≤ 0

‖n‖
(

r2

2h + h
2

)

− n3

(
r2

2h − h
2

)

if (∗)

r ‖( n1

n2
)‖ otherwise,
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where (∗) is n3 > 0 and n3(h
2 + r2) > (r2 − h2)/‖n‖. By

construction Wψ is convex (and therefore also ψ) as long as

r ≥ 0 and h ∈ [0, r].

6. Experiments

In this section we present the results obtained on four

challenging real world datasets. We compare our geometry

to a standard volumetric fusion (in particular “TV-Flux” [23])

and also illustrate the improvement of the class segmentation

compared to a single image best-cost segmentation.

We use the dataset castle P-30 from [21] and three addi-

tional urban datasets ranging from 127 to 195 images in the

dataset size. Camera poses where obtained with the publicly

available structure from motion pipeline [26]. The depth

maps are computed using plane sweep stereo matching for

each of the images with zero mean normalized cross correla-

tion (ZNCC) matching costs. Up to nine images are matched

to the reference view simultaneously with best K occlusion

handling. To get rid of the noise the raw depth maps are

filtered by discarding depth values with a ZNCC matching

score above 0.4. The class scores are obtained by using the

boosted decision tree classifier explained in Section 5.1. To

align the voxel grid with the scene we use the approach de-

scribed in [5]. We use a multi-threaded C++ implementation

to find a minimizer of Eq. 5 (running on a 48 cores).

Fig. 4 illustrates the results for all 4 datasets. As expected,

computational stereo in particular struggles with faithfully

capturing the ground, which is represented by relatively few

depth samples. Consequently, depth integration methods

with a generic surface prior such as TV-Flux easily remove

the ground and other weakly observed surfaces (due to the

well-known shrinking bias of the employed boundary regu-

larizer). In contrast, our proposed joint optimization leads

to more accurate geometry, and at the same time image seg-

mentation is clearly improved over a greedy best-cost class

assignment.

The third column in Fig. 4 illustrates that the most prob-

able class labels according to the trained appearance like-

lihoods especially confuses ground, building, and clutter

categories. Fusing appearance likelihood over multiple im-

ages and incorporating the surface geometry almost perfectly

disambiguates the assigned object classes. The joint deter-

mination of the right smoothness prior also enables our ap-

proach to fully reconstruct ground and all the facades as seen

in Fig. 4, 4th column. The ground is consistently missing

in the TV-Flux results, and partially the facades and roof

structure suffer from the generic smoothness assumption

Fig. 4, 5th column). We selected a weighting between data

fidelity and smoothness in the TV-Flux method such that

successfully reconstructed surfaces have a (visually) similar

level of smoothness than the results of our proposed method.

7. Conclusion

We present an approach for dense 3D scene reconstruction

from multiple images and simultaneous image segmentation.

This challenging problem is formulated as joint volumetric

inference task over multiple labels, which enables us to

utilize class-specific smoothness assumptions in order to

improve the quality of the obtained reconstruction. We use

a parametric representation for the respective smoothness

priors, which yields a compact representation for the priors

and—at the same time—allows to adjust the underlying

parameters from training data. We demonstrate the benefits

of our approach over standard smoothness assumptions for

volumetric scene reconstruction on several challenging data

sets.

Future work needs in particular to address the scalabil-

ity of the method. As a volumetric approach operating in

a regular voxel grid, our method shares the limitations in

terms of spatial resolution with most other volumetric ap-

proaches. Adaptive representations for volumetric data can

be a potential solution. We also plan to extend the number

of object categories to obtain a finer-grained segmentation.

Note that not all pairwise transitions between labels in 3D

are equally important or even occur in practice. This fact

can be utilized to improve the computational efficiency of

our proposed formulation.
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