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Genome-wide association is a promising approach to identify
common genetic variants that predispose to human disease1–4.
Because of the high cost of genotyping hundreds of thousands
of markers on thousands of subjects, genome-wide association
studies often follow a staged design in which a proportion
(psamples) of the available samples are genotyped on a large
number of markers in stage 1, and a proportion (psamples) of
these markers are later followed up by genotyping them on the
remaining samples in stage 2. The standard strategy for
analyzing such two-stage data is to view stage 2 as a
replication study and focus on findings that reach statistical
significance when stage 2 data are considered alone2. We
demonstrate that the alternative strategy of jointly analyzing
the data from both stages almost always results in increased
power to detect genetic association, despite the need to use
more stringent significance levels, even when effect sizes differ
between the two stages. We recommend joint analysis
for all two-stage genome-wide association studies, especially
when a relatively large proportion of the samples are
genotyped in stage 1 (psamples Z 0.30), and a relatively large
proportion of markers are selected for follow-up in stage 2
(pmarkers Z 0.01).

Genome-wide association studies are now underway5, enabled by
rapidly decreasing genotyping costs, massively multiplexed genotyping
technologies and the large-scale SNP discovery and genotyping efforts
of the SNP Consortium6, the HapMap project7 and Perlegen
Sciences8. These projects have identified and genotyped well over
1 million SNPs in several human populations, allowing investigators
to select a set of genetic markers that efficiently assays most common
human genetic variation9–11. Compared with one-stage designs that
genotype all samples on all markers, well-constructed two-stage
association designs maintain power while substantially reducing
genotyping requirements12–14.

The power of two-stage genome-wide association studies to identify
variants that predispose to disease depends on a number of factors
controlled by the investigator, including how markers are selected,
how samples are divided between stages 1 and 2, the proportion of
markers tested in stage 2 and the strategy used to test for association.

We focus on two-stage designs in which all M markers are genotyped
in a proportion of the samples (psamples) in stage 1, and results of
stage 1 are used to select a proportion of these M markers (pmarkers)
for follow-up on the remaining samples in stage 2. These samples
might be cases and controls for a genetic disease or individuals
measured for a quantitative trait. We assume initially that the M
markers are in linkage equilibrium.

Our purpose is to compare power for the standard replication-
based analysis strategy with the power of the alternative strategy of
joint analysis of all available samples. Both strategies can be tailored to
achieve any desired genome-wide false positive rate (type I error rate)
of agenome so that the number of false positives expected in the
genome-wide association scan is agenome. In the replication strategy,
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Figure 1 Power of a two-stage design for joint and replication-based analysis

with 1,000 cases and 1,000 controls genotyped on 300,000 independent

markers with agenome ¼ 0.05. Uses a multiplicative genetic model with

genotype relative risk (GRR) ¼ P (case|DD)/P (case|Dd) ¼ P (case|Dd)/

P (case|dd) ¼ 1.40 and prevalence of 0.10. The black line above each pair

of bars indicates the power of the one-stage design in which all 2,000

samples are genotyped on all 300,000 markers.
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genotype data from stage 2 samples are used to test for association
using the Bonferroni-corrected significance level of agenome/(pmarkers �
M). In the joint analysis strategy, test statistics from stages 1 and 2 are
combined, and a significance level of approximately agenome/M is used.
We show that joint analysis of the data almost always provides greater

power than replication-based analysis of only
stage 2 data, despite the more stringent sig-
nificance level required by joint analysis. Repli-
cation-based analysis is preferable only when
genetic effects are much larger in the stage 2
than in the stage 1 sample.

We compared the power of replication-
based and joint analysis strategies for
genome-wide association at agenome ¼ 0.05
for a wide range of sample sizes, proportions
of samples used in stage 1 (psamples)
and proportions of markers selected for
follow-up in stage 2 (pmarkers). We also
examined multiple genetic models, effect
sizes and frequencies of the variants pre-
disposing to disease (see Methods). We
determined the power of joint and
replication-based analyses for six two-stage
genome-wide association designs in which
psamples ¼ 50% or 30% (Fig. 1). In these
examples, joint analysis was often substan-
tially more powerful than replication-based
analysis, despite the need in joint analysis to
use a more stringent significance level. For
example, power for a two-stage design (Fig. 1)
increased from 26% for replication-based
analysis to 74% for joint analysis when

1,000 cases and 1,000 controls were split equally between the stages
(psamples ¼ 0.50), 10% of stage 1 markers were used for follow-up
in stage 2 (pmarkers ¼ 0.10), disease prevalence was 0.10, control
allele frequency was 0.50, disease model was multiplicative and
genotype relative risk (GRR) was 1.40.

Furthermore, the best strategy for analyzing
two-stage genome-wide association data did
not depend on proportion of samples used in
stage 1 (psamples) or the proportion of markers
selected for follow-up in stage 2 (pmarkers).
Joint analysis was always more powerful than
replication-based analysis in the examples dis-
played (Fig. 2) and often achieved power
comparable to that of the more genotyping-
intensive one-stage design. The advantage of
joint analysis decreased as the proportion of
samples psamples used in stage 1 decreased. For
small values of psamples, the power of joint and
replication-based analysis strategies was com-
parable, because when psamples was small, the
stage 1 information discarded by the replica-
tion-based analysis was modest. However, in
that setting, variants that predisposed to dis-
ease were less likely to be selected for stage 2
follow-up, and both two-stage strategies typi-
cally had much lower power than the corre-
sponding one-stage design.

The proportion of markers genotyped in
stage 2 affected the power of joint and repli-
cation-based analyses in markedly different
ways (Fig. 3). For joint analysis, as pmarkers

decreased, the probability of selecting for
follow-up a variant that predisposes to disease
also decreased, resulting in less power. In
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Figure 2 Power of a two-stage design for joint and replication-based analysis with 1,000 cases and
1,000 controls genotyped on 300,000 independent markers with agenome ¼ 0.05, using a GRR of 1.40

and prevalence of 0.10. Control risk allele frequency is 0.50 for the upper row and 0.25 for the lower

row. Horizontal black lines indicate the power of the one-stage design, in which all 2,000 samples are

genotyped on all 300,000 markers.
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Figure 3 Power of a two-stage design for joint and replication-based analysis with 1,000 cases and

1,000 controls genotyped on 300,000 independent markers with agenome ¼ 0.05, using a GRR of

1.40 and prevalence of 0.10. Control risk allele frequency is 0.50 for the upper row and 0.25 for the

lower row. The black line indicates the power of the one-stage design in which all 2,000 samples are

genotyped on all 300,000 markers.
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contrast, for replication-based analysis, power increased when fewer
markers were selected for follow-up. This behavior is due to two
competing effects: reducing pmarkers decreases the probability that a
variant that predisposes to disease will be selected for genotyping in
stage 2, but it increases the probability the variant will be found

significant if it is genotyped in stage 2 because
of the correspondingly less stringent signifi-
cance threshold.

A two-stage design using joint analysis can
achieve nearly the same power as the one-
stage design in which all samples are geno-
typed on all markers (Figs. 1–3) but with
much less genotyping (see also refs. 12–14 and
Table 1). For example, a one-stage design that
genotypes 1,000 cases and 1,000 controls on
300,000 markers (600 million genotypes) has
75% power to find a disease-predisposing
variant with GRR ¼ 1.40, prevalence 0.10
and risk allele frequency 0.50 in the controls.
Nearly identical power (72%) can be achieved
with only 34% as many genotypes by using
psamples ¼ 30% in stage 1 and pmarkers ¼ 5%
in stage 2. Note that for this sample size, both
two-stage strategies examined here and even
the corresponding one-stage design have low
power to detect rare alleles with modest
effects. Power calculations for arbitrary
sample sizes and genetic models can be
carried out using a tool available at our
website (see Methods).

We compared joint and replication-based analysis for two-stage
designs for a much broader set of genetic models, sample sizes and
false positive rates. In every case, when we calibrated the two strategies
to achieve the same genome-wide false positive rate (agenome) we
found that the joint analysis was more powerful (Supplementary

Tables 1 and 2 show additional examples).
This makes sense, as joint analysis makes full
use of stage 1 data, including the strength of
evidence for the observed stage 1 association,
whereas replication-based analysis uses only
the information that the stage 1 association
exceeds the threshold for follow-up but other-
wise ignores the strength of the stage 1
evidence. By this same argument, joint ana-
lysis is more powerful in the presence of
marker-marker linkage disequilibrium or
multiple variants that predispose to disease.

Another level of complexity is added when
heterogeneity in genetic effect size exists
between samples used in stages 1 and 2.
Such heterogeneity may arise for multiple
reasons: for example, if investigators prefer-
entially select cases from different geographic
regions for each stage, or if cases for one stage
have family histories of disease, whereas cases
for the other stage do not. Unless the risk
allele has a much larger effect in the stage 2
samples, joint analysis will remain more
powerful than replication-based analysis
(Fig. 4). Furthermore, note that because our
analysis is based on combining test statistics
rather than raw data across stages, it explicitly
allows for heterogeneity between stages; if
necessary, the statistics calculated for each
stage can also be adjusted for within-
stage heterogeneity15–21.

Table 1 Significance thresholds and power of joint analysis for two-stage genome-wide

association designs

Power

Proportion of

genotypesa

Significance threshold GRR ¼ 1.30 GRR ¼ 1.35 GRR ¼ 1.40

psamples pmarkers C1 C2 Cjoint Joint Rep Joint Rep Joint Rep

1.0 0 1.00 — — 5.23 0.26 — 0.51 — 0.75 —

0.50 0.10 0.55 1.64 4.65 5.23 0.26 0.08 0.51 0.17 0.75 0.31

0.05 0.53 1.96 4.50 5.23 0.26 0.09 0.51 0.21 0.75 0.36

0.01 0.51 2.58 4.15 5.23 0.26 0.14 0.50 0.29 0.74 0.48

0.40 0.10 0.46 1.64 4.65 5.23 0.26 0.12 0.51 0.27 0.75 0.46

0.05 0.43 1.96 4.50 5.23 0.26 0.14 0.50 0.30 0.74 0.51

0.01 0.41 2.58 4.15 5.20 0.24 0.17 0.48 0.36 0.71 0.58

0.30 0.10 0.37 1.64 4.65 5.22 0.25 0.17 0.50 0.36 0.73 0.58

0.05 0.34 1.96 4.50 5.21 0.24 0.18 0.48 0.37 0.72 0.60

0.01 0.31 2.58 4.15 5.16 0.21 0.18 0.42 0.37 0.64 0.58

0.20 0.10 0.28 1.64 4.65 5.19 0.23 0.19 0.46 0.39 0.68 0.62

0.05 0.24 1.96 4.50 5.16 0.21 0.18 0.42 0.38 0.63 0.59

0.01 0.21 2.58 4.15 5.06 0.15 0.14 0.31 0.29 0.47 0.46

Shown is analysis of 1,000 cases and 1,000 controls, M ¼ 300,000 markers, genome-wide significance level
agenome ¼ 0.05, multiplicative model, control risk allele frequency ¼ 0.40 and prevalence ¼ 0.10.
a(Number of genotypes required for two-stage design) / (number of genotypes required when all markers are genotyped
on all samples).

S
tage

1
G

R
R

Stage 2 GRR = 1.3

ofm
arkers

Stage 1 GRR = 1.3Stage 1 GRR = 1.5
Stage 2 GRR = 1.5

.10.
25

P
ow

er

Stage 1 GRR = 1.6
Stage 2 GRR = 1.2

Stage 1 GRR = 1.2
Stage 2 GRR = 1.6

πmarkers = 0.01πmarkers = 0.10 πmarkers = 0.01πmarkers = 0.10

πmarkers = 0.01πmarkers = 0.10 πmarkers = 0.01πmarkers = 0.10

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er

0.0

0.2

0.4

0.6

0.8

1.0

Joint Replication
Allele frequency

0.10 0.25 0.50 0.10 0.25 0.50
Allele frequency

0.10 0.25 0.50 0.10 0.25 0.50

Allele frequency
0.10 0.25 0.50 0.10 0.25 0.50

Allele frequency
0.10 0.25 0.50 0.10 0.25 0.50

Figure 4 Power of a two-stage design for joint and replication-based analyses in the presence of

between-stage heterogeneity with 1,000 cases and 1,000 controls genotyped on 300,000 independent

markers with agenome ¼ 0.05. The populations from which the stage 1 and 2 samples were drawn have

prevalence 0.10 and control risk allele frequency of 0.10, 0.25 or 0.50, and the same number of

samples are used for stages 1 and 2 (psamples ¼ 0.50). Graphs at left assume that the stage 1 samples

have the higher genotype relative risk, and graphs at right assume that the stage 2 samples have higher

genotype relative risk. The black line indicates the power of the one-stage design in which all 2,000

samples are genotyped on all 300,000 markers.
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We repeated our power calculations, allowing for heterogeneity
between stages, both in situations in which the effect size was stronger
in stage 1 (Fig. 4, left) and in which the effect size was stronger in stage
2 (Fig. 4, right). Regardless of the difference between the genotype
relative risks influencing the stage 1 and 2 samples, when the GRR is
greater in stage 1, joint analysis is far more powerful than replication-
based analysis. When the effect size is larger in stage 2, the replication-
based analysis can sometimes be marginally more powerful than joint
analysis. This can occur because replication-based analysis discards the
data from stage 1, and although information is lost, greater power is
achieved because the much stronger association in stage 2 samples is
not diluted by the modest association in stage 1 samples.

For simplicity, we have ignored any consequence of difference in
per-genotype cost for stage 1 and 2. Our investigation has focused on
analysis strategy only, and regardless of differences in per-genotype
costs for the two stages, joint analysis generally continues to be more
powerful than replication-based analysis. However, the most cost-
efficient allocation of samples to stages 1 and 2 will depend on
differences in per-genotype costs at each stage.

Genome-wide association studies are already underway5, and given
the high cost and exciting potential of these studies, it is important
that data be collected and analyzed efficiently. Two-stage and even
multistage designs are being used because they can achieve nearly the
same power as the one-stage design with substantially reduced
genotyping. Regardless of the two-stage design used, analyzing the
data from both stages jointly is almost always more powerful than
treating stage 2 as a replication study for stage 1, and in many cases
joint analysis results in substantially greater power. We suggest that for
two-stage genome-wide association studies, we should forget replica-
tion and instead use joint analysis as the standard analysis strategy.

METHODS
We assume N cases and N controls are available for genotyping and that a

proportion of these (psamples) are genotyped in stage 1. Equivalent arguments

hold for unequal numbers of cases and controls and other types of association

studies, such as those based on a sample of individuals measured for a

quantitative trait. Evidence for association at stage 1 is evaluated for each

of the M markers and used to select approximately (pmarkers � M) markers

for follow-up genotyping in the remaining ((1 – psamples) � N) cases and

((1 – psamples) � N) controls in stage 2. For simplicity, throughout the paper we

refer to pmarkers as the proportion of markers genotyped in stage 2. In practice,

though, we calculate power and critical values by requiring markers genotyped

in stage 1 to have P values o pmarkers, rather than selecting exactly pmarkers �M

markers for follow-up in each scan. The proportion of markers selected for

follow-up will vary for each scan but will be very close to pmarkers when the

number of disease-associated markers is small relative to pmarkers � M.

To evaluate evidence for association at stage 1, let p̂01 and p̂1 be the estimated

risk allele frequencies in cases and controls, respectively, and define the test

statistic

z1 ¼ p̂01 � p̂1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p̂01ð1 � p̂01Þ+ p̂1ð1 � p̂1Þ�=ð2NpsamplesÞ

p :

Under the null hypothesis of no association, and when a large number of

samples (N � psamples) is genotyped in stage 1, z1 follows a normal distribution

with mean 0 and variance 1; quantiles for this standard normal distribution can

be used to determine a threshold C1 for selecting markers for follow-up such

that P(|z1| 4 C1) ¼ pmarkers.

In a replication-based analysis, an analogous statistic z2 is calculated using

only stage 2 data and is compared with a new significance threshold C2. To

constitute a replication, we also require z1 and z2 to have the same sign,

resulting in identification of the same risk allele. The false positive rate for a

marker when using stage 1 and stage 2 significance thresholds of C1 and C2 is

simply amarker ¼ P(|z1| 4 C1) P(|z2| 4 C2, sign(z1) ¼ sign(z2)).

In a joint analysis, a new statistic that allows for between-stage heterogeneity,

zjoint ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
psamples

p
z1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � psamples

p
z2 ð1Þ

is compared with a significance threshold Cjoint. As zjoint incorporates stage 1

genotype data, z1 and zjoint are not independent even under the null hypothesis

of no association. The false positive rate corresponding to thresholds C1 and

Cjoint is amarker ¼ P(|z1| 4 C1 AND |zjoint| 4 Cjoint) ¼ P(|z1| 4 C1) P(|zjoint| 4
Cjoint | |z1| 4 C1), which can be calculated numerically by evaluating a simple

integral (see equation (2) below). Achieving the same nominal significance level

for replication and joint analysis generally requires quite different thresholds C2

and Cjoint (Table 1 and Supplementary Table 1). Note that equation (1) allows

evidence for association to be combined without assuming equal effect sizes

and allele frequencies for the two stages. A statistic based on combining the raw

data and assuming homogeneity between stages would result in slightly

increased power in homogeneous samples at the risk of possibly inflated error

rates or loss of power when there is heterogeneity between stages.

We next derive power estimates for the two analysis strategies. In all examples

presented in this paper, we set agenome ¼ 0.05 (in other words, the probability of

observing at least one false positive result in the overall analysis of 300,000

markers is controlled to be 0.05). For simplicity, we assume that all markers are

in linkage equilibrium so that the corresponding Bonferroni-corrected false

positive rate for each marker amarker ¼ 0.05/M. For a genome-wide scan with

300,000 markers, we set amarker ¼ agenome /300,000 ¼ 1.67 � 10�7.

If the samples are split evenly between the two stages (psamples ¼ 0.50) and a

false positive rate of 0.10 for stage 1 is used so that pmarkers ¼ 0.10, then

C1 ¼ 1.64, C2 ¼ 4.79 and Cjoint ¼ 5.23. A software tool is available on our

website (see below) to calculate C1, C2 and Cjoint using any combination of

number of markers M, number of samples N, psamples, pmarkers and agenome.

Stage 1. Power for stage 1 is the probability that a disease-predisposing variant

is selected for follow-up in stage 2. To calculate power for stage 1, we describe

the distribution of z1 as a function of the risk allele frequencies p and p¢ for

controls and cases. The statistic z1 in large samples follows an approximate

normal distribution with mean

m1 ¼ p0 � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p0ð1 � p0Þ+ pð1 � pÞ�=ð2NpsamplesÞ

p

and variance 1. Let F[x] be the cumulative distribution function for the

standard normal distribution evaluated at x. Then, under the null hypothesis of

no association, m1 ¼ 0 and C1 ¼ F–1(1 – pmarkers/2). The probability that

a marker is selected for stage 2 genotyping is P1 ¼ 1 � F½C1 � m1�+

F½�C1 � m1�.

Stage 2 for replication-based analysis. In a replication-based analysis, an

analogous statistic is calculated using stage 2 genotype data only. The statistic z2

in large samples follows an approximate normal distribution with mean

m2 ¼ p0 � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p0ð1 � p0Þ+ pð1 � pÞ�=½2Nð1 � psamplesÞ�

p

and variance 1. Under the null hypothesis of no association, m2 ¼ 0 and C2 ¼
F–1(1 – amarker/pmarkers), the critical value for the one-sided test of replication.

The probability a variant that predisposes a disease will be significantly

associated, given that it is selected for genotyping in stage 2, is

P2 ¼ ð1 � F½C2 � m2�Þ
1 � F½C1 � m1�

1 � F½C1 � m1�+F½�C1 � m1�

+ F½�C2 � m2�
F½�C1 � m1�

1 � F½C1 � m1�+F½�C1 � m1�

using a replication-based analysis. The power of the replication-based analysis

is the product P1P2.

Stage 2 for joint analysis. Conditional on the observed stage 1 statistic z1 ¼ a,

the statistic for joint analysis zjoint follows an approximate normal distribution

in large samples with mean

mjoint ¼
p0 � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½p0ð1 � p0Þ+ pð1 � pÞ�=ð2NÞ
p +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
psamples

p ða� m1Þ
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and variance (1 – psamples). Under the null hypothesis of no association,

mjoint ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffipsamples

p
a. The critical value Cjoint can be calculated iteratively

by finding the threshold that satisfies Pðjzjointj4CjointjTÞ ¼
amarker=ðMpmarkersÞ under the null hypothesis, where T is the event |z1| 4
C1. The probability of detecting association in stage 2 in a joint analysis is

Pjoint ¼ Pðjzjointj4CjointjTÞ

¼
Z�C1

�1

½Pðzjoint4Cjointjz1 ¼ xÞ+Pðzjointo� Cjointjz1 ¼ xÞ�f ðxjTÞdx

+

Z1

C1

½Pðzjoint4Cjointjz1 ¼ xÞ + Pðzjointo� Cjointjz1 ¼ xÞ�f ðxjTÞdx

ð2Þ

where f(x|T) is the probability density function z1 given that |z1| 4 C1. This

equation is also used to identify the critical value Cjoint by allowing z1 and zjoint

to follow their null distributions. The power of the joint analysis is P1Pjoint.

URLs. Power calculations for arbitrary sample sizes and genetic models can be

carried out using a tool available at our website (http://csg.sph.umich.edu).

Note: Supplementary information is available on the Nature Genetics website.
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CORR IGENDA

390 VOLUME 38 | NUMBER 3 | MARCH 2006 | NATURE GENETICS

Corrigendum: Joint analysis is more efficient than replication-based analysis 
for two-stage genome-wide association studies
Andrew D Skol, Laura J Scott, Gonçalo R Abecasis & Michael Boehnke
Nat. Genet. 38, 209–213 (2006).

In Table 1 of the versions of this article initially published online and in print, the significance thresholds for C2 were incorrect, and the 
significance thresholds for Cjoint in the case of πsamples = 0.20 were incorrect. The error has been corrected in the HTML and PDF versions of 
the article. This correction has been appended to the PDF version.

Table 1   Significance thresholds and power of joint analysis for two-stage genome-wide
association designs

Power

Proportion of

genotypesa

Significance threshold GRR = 1.30 GRR = 1.35 GRR = 1.40

πsamples πmarkers C1 C2 Cjoint Joint Rep Joint Rep Joint Rep

1.0 0 1.00 — — 5.23 0.26 — 0.51 — 0.75 —

0.50 0.10 0.55 1.64 4.65 5.23 0.26 0.08 0.51 0.17 0.75 0.31

0.05 0.53 1.96 4.50 5.23 0.26 0.09 0.51 0.21 0.75 0.36

0.01 0.51 2.58 4.15 5.23 0.26 0.14 0.50 0.29 0.74 0.48

0.40 0.10 0.46 1.64 4.65 5.23 0.26 0.12 0.51 0.27 0.75 0.46

0.05 0.43 1.96 4.50 5.23 0.26 0.14 0.50 0.30 0.74 0.51

0.01 0.41 2.58 4.15 5.20 0.24 0.17 0.48 0.36 0.71 0.58

0.30 0.10 0.37 1.64 4.65 5.22 0.25 0.17 0.50 0.36 0.73 0.58

0.05 0.34 1.96 4.50 5.21 0.24 0.18 0.48 0.37 0.72 0.60

0.01 0.31 2.58 4.15 5.16 0.21 0.18 0.42 0.37 0.64 0.58

0.20 0.10 0.28 1.64 4.65 5.19 0.23 0.19 0.46 0.39 0.68 0.62

0.05 0.24 1.96 4.50 5.16 0.21 0.18 0.42 0.38 0.63 0.59

0.01 0.21 2.58 4.15 5.06 0.15 0.14 0.31 0.29 0.47 0.46

Shown is analysis of 1,000 cases and 1,000 controls, M = 300,000 markers, genome-wide significance level

α genome = 0.05, multiplicative model, control risk allele frequency = 0.40 and prevalence = 0.10.
a(Number of genotypes required for two-stage design) / (number of genotypes required when all markers are genotyped
on all samples).
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