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Abstract

Interval-censored failure time data and panel count data are two types of incomplete data that 

commonly occur in event history studies and many methods have been developed for their analysis 

separately (Sun in The statistical analysis of interval-censored failure time data. Springer, New 

York, 2006; Sun and Zhao in The statistical analysis of panel count data. Springer, New York, 

2013). Sometimes one may be interested in or need to conduct their joint analysis such as in the 

clinical trials with composite endpoints, for which it does not seem to exist an established 

approach in the literature. In this paper, a sieve maximum likelihood approach is developed for the 

joint analysis and in the proposed method, Bernstein polynomials are used to approximate 

unknown functions. The asymptotic properties of the resulting estimators are established and in 

particular, the proposed estimators of regression parameters are shown to be semiparametrically 

efficient. In addition, an extensive simulation study was conducted and the proposed method is 

applied to a set of real data arising from a skin cancer study.
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1 Introduction

Interval-censored failure time data and panel count data are two types of incomplete data 

that commonly occur in event history studies (Sun 2006; Sun and Zhao 2013). The former 

concerns the occurrence rate of a failure event or the event that occurs only once or only 

whose first occurrence is of interest, while the latter provides information on the occurrence 

rate of a recurrent event. Furthermore, the former means that the occurrence time of the 

event is observed or known only to belong to an interval, while the latter means that one 

only observes the numbers of the occurrences of the event between some discrete 

observation times. A common feature behind them is that they typically involve or occur 

with a periodic follow-up observation scheme. In the following, we will focus on the 
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situations where the two types of the incomplete data occur together and discuss their joint 

analysis.

There exist many fields that often produce both interval-censored failure time data and panel 

count data together such as economic studies, medical studies, reliability experiments and 

social sciences. In an economic study, for example, one may have or need to analyze the data 

both on the length of holding a certain credit card and on employment changes. It is easy to 

see that such data are usually collected from periodic follow-up studies and thus given in the 

forms of interval-censored data and panel count data, respectively. An example from medical 

studies is clinical trials with two composite prime endpoints defined by a failure time event 

and a recurrent event. It is well-known that clinical trials usually employ periodic follow-up 

schemes and thus only interval-censored data and panel count data are available.

Many authors have discussed the analysis of either interval-censored failure time data or 

panel count data. For example, some early references on interval-censored data are given by 

Turnbull (1976) and Finkelstein (1986). The former discussed nonparametric estimation of a 

survival function based on interval-censored data and the latter investigated regression 

analysis of interval-censored data under the proportional hazards model. Some more recent 

references on interval-censored data include Huang and Rossini (1997), Banerjee and Sen 

(2007) and especially, Chen et al. (2012) and Sun (2006) give relatively complete reviews of 

the literature on interval-censored data. The authors who have investigated the analysis of 

panel count data include Groeneboom and Wellner (1992), Sun and Wei (2000), Wellner and 

Zhang (2000), and Zhang et al. (2005). Especially, Sun and Zhao (2013) provides a 

relatively complete review of the literature on them, and several authors have considered 

sieve estimation methods for either interval-censored or panel count data separately (Hua et 

al. 2014; Lu et al. 2009; Ma et al. 2015; Zhang et al. 2010). However, it does not seem to 

exist an established approach for joint analysis of the two types of data together. In the 

following, we will present a sieve maximum likelihood approach for the problem based on 

Bernstein polynomials.

To describe the approach, we will first introduce some notation and the models as well as the 

resulting likelihood function in Sect. 2. Section 3 presents the proposed sieve maximum 

likelihood estimation procedure and in the approach, Bernstein polynomials are employed to 

approximate the unknown baseline mean and baseline cumulative hazard functions. In 

addition, the asymptotic properties of the resulting estimators are established. In Sect. 4, we 

present some results obtained from an extensive simulation study for the assessment of the 

proposed method and they suggest that it works well for practical situations. Section 5 

provides an illustrative example and some discussion and concluding remarks are given in 

Sect. 6.

2 Notation, models and likelihood function

Consider an event history study that involves n independent subjects and two events of 

interest, a failure event and a recurrent event. For subject i, suppose that there exists a p-

dimensional vector of covariates denoted by Zi, and let Ti and Ni(t) denote the occurrence 

time of the failure event and the number of the occurrences of the recurrent event up to time 
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t, respectively, i = 1, 2, … , n. Also suppose that each subject is observed only at a sequence 

of time points denoted by si1 < si2 < ⋯ < si, mi
, where mi denotes the number of observations 

on subject i. Hence for each subject, one only observes

Xi = mi, Ni si j , δik = I Ti ∈ si, k − 1, si, k ;

j = 1, 2, …, mi, k = 1, 2, …, mi + 1 ,

where si0 = 0 and si, mi + 1 = ∞. That is, we only have interval-censored data on the Ti’s and 

panel count data on the Ni(t)’s.

To describe the effects of covariates on Ti and Ni(t) and the possible correlation between Ti 

and Ni(t), we will assume that there exists a latent variable ηi with mean 1 and unknown 

variance γ > 0. Suppose that given Zi and ηi, the cumulative hazard function of Ti has the 

form

Λ t |Zi, ηi = ηi Λ1(t)e
α′Zi, (1)

where Λ1 denotes an unknown baseline cumulative hazard function and α is a vector of 

regression parameters. That is, Ti follows the proportional hazards frailty model. For Ni(t), 
we will assume that it is a nonhomogeneous Poisson process with the proportional mean 

function

E Ni(t) |Zi, ηi = ηi Λ2(t)e
β′Zi, (2)

where Λ2 is an unknown, nondecreasing baseline mean function and β a vector of regression 

parameters as α. Note that it is easy to see that ηi represents a measure of the association 

between Ti and Ni(t) and ηi = 1 means that they are independent given covariates. In the 

following, we will assume that the frailty ηi is independent of {Zi, Ti, Ni(t)} and given Zi 

and ηi, Ti and Ni(t) are independent. Also it will be assumed that given Zi, {mi, sij; j = 1, 2, 

… , mi} and ηi, Ti, Ni(t) are independent, and the conditional distribution of {mi, sij; j = 1, 2, 

… , mi} given Zi does not involve the parameters in models (1) and (2).

Define θ = (α′, β′, γ, Λ1, Λ2). Then the likelihood function of θ is given by 

Ln(θ) = ∏i = 1
n L θ | Xi , where
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L θ Xi = Eη ∏
k = 1

mi + 1
e
−ηi Λ1 si, k − 1 e

α′Zi
− e

−ηi Λ1 si, k e
α′Zi

δik

× ∏
j = 1

mi
ηiΔΛ2 si j e

β′Zi
ΔNi si j

e
−ηiΔΛ2 si j e

β′Zi
,

with

ΔNi si j = Ni si j − Ni si, j − 1 , ΔNi si1 = Ni si1 ,

ΔΛ2 si j = Λ2 si j − Λ2 si, j − 1 , ΔΛ2 si1 = Λ2 si1 .

Note that if the ηi’s are assumed to follow the gamma distribution, the likelihood 

contribution L(θ|Xi) can be simplified to

L θ Xi = Qi ∏
k = 1

mi + 1
Ai, k − 1 − Ai, k

δik,

where

Qi =
Γ Ni + γ−1

Γ γ−1 ∏
j = 1

mi
ΔΛ2 si j

ΔNi si j γe
β′Zi

Ni
,

Ai0 = 1 + γ e
β′Zi Λ2 si, mi

−Ni − γ−1
, Ai, mi + 1 = 0,

Aik = 1 + γ e
β′Zi Λ2 si, mi

+ γ e
α′Zi Λ1 sik

−Ni − γ−1
, k = 1, 2, …, mi

with Ni = ∑i = 1
mi ΔNi si j = Ni si, mi

. In the following, for the simplicity, we will focus on the 

situation where the ηi’s follow the gamma distribution but the method developed below 

applies to general situations. In the next section, we will discuss the estimation of θ.
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3 Estimation and inference procedures

Now we will discuss the estimation of the parameters θ and for this, it is apparent that a 

natural way would be to maximize the likelihood function Ln(θ). On the other hand, it is 

easy to see that this would be difficult or not straightforward. Thus instead, by following 

Huang and Rossini (1997) and Ma et al. (2015) as well as others, we propose to employ the 

sieve maximum likelihood estimation approach. More specifically, define

Θ = θ = α′, β′, γ, Λ1, Λ2 ∈ ℬ ⊗ ℳ1 ⊗ ℳ2 ,

the parameter space of θ, and

Θn = θn = α′, β′, γ, Λ1n, Λ2n ∈ ℬ ⊗ ℳn
1 ⊗ ℳn

2 ,

the sieve space. In the above,

ℬ = α′, β′, γ α′, β′, γ ∈ R2p × R+, α + β + γ ≤ M

with M being a positive constant, ℳ j denotes the collection of all bounded and continuous 

non-decreasing, non-negative functions over the interval [cj, uj], and

ℳn
j = Λ jn(t) = ∑

k = 0

m
ϕ jkBk t, m, c j, u j : ∑

0 ≤ k ≤ m
ϕ jk ≤ Mn, 0 ≤ ϕ j0 ≤ ϕ j1 ≤ … ≤ ϕ jm

with

Bk t, m, c j, u j = m
k

t − c j
u j − c j

k
1 −

t − c j
u j − c j

m − k
, k = 0, …, m,

the Bernstein basis polynomials of degree m = o(nν) for some ν ∈ (0, 1), where 0 ⩽ cj < uj < 

∞ with [cj, uj] usually taken as the range of observed data, j = 1, 2.

It is easy to see that one can approximate Λj(t) by Λjn(t) with the coefficients ϕjk = Λj(cj + 

(k/m)(uj – cj)) or approximate the parameter space Θ by the Bernstein polynomials-based 

sieve space Θn. The use of Bernstein polynomials transfers an estimation problem about 

both finite-dimensional and infinite-dimensional parameters into a simpler estimation 

problem that involves only finite-dimensional parameters. Of course, one may use other 

approximations such as splines and piecewise linear functions (Huang and Rossini 1997; 

Ding and Nan 2011). One advantage of Bernstein polynomials is that they can naturally 

model the nonnegativity and monotonicity of Λ1 and Λ2 under the constraint 0 ≤ ϕj0 ≤ ϕj1 ≤ 

⋯ ≤ ϕjm, which can be easily removed through reparameterization in implementation 

(Lorentz 1986; Osman and Ghosh 2012). Also it is known that the Bernstein polynomial has 

the optimal shape preserving property among all approximation polynomials (Carnicer and 
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Peña 1993). Furthermore, although the use of Bernstein polynomials may seem to be 

complex, it actually can be relatively easily implemented as seen below and they do not 

require the specification of interior knots as spline functions. One can show that the size of 

the sieve space defined above can be controlled by Mn = O(na) with a being a positive 

constant (Lorentz 1986; Shen 1997).

For estimation of θ, define the sieve maximum likelihood estimator θn = αn′ , βn′ , γn, Λ1n, Λ2n ′

to be the value of θ that maximizes the log likelihood function ln(θ) = log {Ln(θ)} over the 

sieve space Θn. Let θ0 = α0′ , β0′ , γ0, Λ10, Λ20 ′ denote the true value of θ. For the asymptotic 

properties of θn, we need the following regularity conditions.

Condition 1 The covariate Z has a bounded support in Rp.

Condition 2 If there exist constant ξ0 and a0 such that ξ0′ Z = a0 almost surely, then a0 = ξ0 = 

0.

Condition 3 For j = 1, 2, the κth derivatives of Λj0(·), denoted by Λ j0
(κ)( ⋅ ), is Holder 

continuous such that Λ j0
(κ) t1 − Λ j0

(κ) t1 ≤ ℳ t1 − t2
η for some η ∈ (0, 1] and t1, t2 ∈ [c, u], 

where 0 < c < u < ∞ and ℳ are some constants. Define r = κ + η.

Condition 4 For any ε > 0, sup
d θ, θ0 ≥ ε

Pl(θ, X) < Pl θ0, X .

Condition 5 The matrix E SϑSϑ′  is finite and positive definite with ϑ = (α′, β′, γ′), where 

Sϑ is defined below.

Note that the conditions above are generally mild and satisfied in practical situations (Huang 

and Rossini 1997). In particular, Condition 2 is needed for the identifiability of the 

parameters, which is equivalently to the linear independence of the components of Z. The 

following theorems give the consistency, the rate of convergence and the asymptotic 

normality of the estimator.

Theorem 1 Suppose that the Conditions 1 – 4 described above hold. Then αn, βn and γn are 

strongly consistent, and as n → ∞,

Λ1n − Λ10 2 0, Λ2n − Λ20 2 0

almost surely, where ‖f (X)‖2 = (∫ | f |2dP)1/2 is defined as norm for a function f with P being 
the probability measure for X.

Theorem 2 Suppose that the Conditions 1 – 4 described above hold and r > 2 with r defined 
in Condition 3. Then as n → ∞, we have that
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‖Λ1n − Λ10‖2 + ‖Λ2n − Λ20‖2 = Op n−(1 − v)/2 + n−rv/2 .

Theorem 3 Suppose that the Conditions 1 – 5 described above hold and r > 2. Then as n → 
∞, we have

n ϑn − ϑ0 N(0, Σ)

in distribution and furthermore ϑn is semiparametrically efficient, where Σ is defined in the 

Appendix, ϑn = αn′ , βn′ , γn ′ and ϑ0 = α0′ , β0′ , γ0 ′.

The proof of the theorems above are sketched in the Appendix. To make use of the results 

above, it is apparent that one needs to estimate the covariance matrix of ϑn. One natural way 

would be to employ the inverse of the information matrix of the log likelihood function 

ln(θ). On the other hand, this is quite difficult because of the complicated form of the 

information matrix. To deal with, suggested by a referee, we adopt the following simple 

bootstrap procedure. Let B denote a prespecified positive integer. For each b, where 1 ≤ b ≤ 

B, draw a simple random sample of size n,

D b = mi
b , Ni

b si j
b , δik

b = I Ti ∈ si, k − 1
b , si, k

b ; j = 1, 2, …, mi
b , k = 1, 2, …, mi

b + 1, i = 1, 2, …n ,

with replacement from the observed data

D = mi, Ni si j , δik = I Ti ∈ si, k − 1, si, k ; j = 1, 2, …, mi, k = 1, 2, …, mi + 1, i = 1, 2, …n .

Let ϑn
(b) denote the proposed estimate of ϑ based on the data set D(b) defined above. Then a 

natural estimate of the covariance matrix of ϑn is given by

∑ = 1
B − 1 ∑

b = 1

B
ϑn

(b) − 1
B ∑

b = 1

B
ϑn

(b)
⊗ 2

.

For the choice of positive integer B, for a practical problem, one may start with some 

reasonable values and then increase them until the results are stable. For example, it is 

common to choose B = 100. For a simulation study, if using enough replications, one may 

actually only need to use smaller values to save the computational effort.

For the implementation of the estimation procedure proposed above, two issues need to be 

addressed. One is that there exist some restrictions on the parameters due to the 

nonnegativity and monotonicity of the functions Λ1 and Λ2, and for this, one can easily 

remove them by using some reparameterization. A natural way is to reparameterize the 

frailty variance parameter γ as exp(γ*) and the parameters {ϕj0, … , ϕjm} as the cumulative 
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sums of exp ϕ j0* , …, exp ϕ jm* , j = 1, 2, giving the total number parameters to be estimated 

being 2(p + m) + 3. Another issue is the selection of the degree m of the Bernstein 

polynomials for the parameter space Θn, which controls the roughness or smoothness of the 

approximation. It is apparent that a simple approach is to use several different values that are 

in the order o(nν) and compare the results. As an alternative, by following the BIC criterion 

commonly used for model selection (Burnham and Anderson 2003), one can choose the 

value of m that minimizes

BIC = − 2ln θn + (2(p + m) + 3)logn .

4 A simulation study

An extensive simulation study was conducted to assess the performance of the estimation 

procedure proposed in the previous sections, including the general performance and the 

robustness to some assumptions. In the study, we used the design similar to that used in Hua 

et al. (2014) and others and generated the covariate Zi’s and the latent variables ηi’s from the 

Bernoulli distribution with the probability of success 0.5 and the gamma distribution with 

mean 1 and variance γ, respectively. Furthermore, the total number of observation times mi 

was assumed to follow the uniform distribution over {1, 2, 3, 4, 5}, and given mi, the 

observation times sij’s were taken to be the order statistics of the mi random variables from 

the uniform distribution over (0.02, 5). Then given the Zi’s, ηi’s, mi’s and sij’s, the failure 

times Ti’s were generated under model (1) with Λ1(t) = t and the panel count data Ni(sij)’s 

under model (2) with Λ2(t) = t such that

Ni si, 1 Poisson ηiΛ2 si, 1 exp βZi ,

Ni si j − Ni si, j − 1 Poisson ηi Λ2 si j − Λ2 si, j − 1 exp βZi ,

for j = 2, … , mi, i = 1, … , n. The results given below are based on n = 200, B = 100 and 

1000 replications.

Table 1 presents the results obtained on estimation of the parameters α, β and γ with α0 = 

−0.5, 0 or 0.5, β0 = −0.5, 0 or 0.5, and γ0 = 1.2. Here we took [cj, uj] = [0.02, 5] and used m 
= [n1/2] = 3, largest the integer smaller than n1/4. The results include the estimated bias] 

(Bias) calculated as the average of the point estimates minus the true value, the sample 

standard errors (SSE) of the point estimates, the average of the bootstrap standard error 

estimates (BSE), and the 95% empirical coverage probability (CP). They suggest that the 

proposed estimator seems to be unbiased and the bootstrap variance estimation also seems to 

be appropriate. In addition, the normal approximation to the distribution of the proposed 

estimators appears to be reasonable. We also considered several other values for m and 

obtained similar results. In other words, the proposed estimator seems to be robust to the 

choice of m.
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Note that in the study above, we generated the latent variables ηi’s from the gamma 

distribution and a question of practical interest is the performance of the proposed method in 

the case of misspecified distributions for the latent variables. To investigate this, we repeated 

the simulation study above in which we generated the ηi’s from the log-normal distribution 

with the location parameter μ = −0.168 and the scale parameter σ2 = 0.336 but pretended 

they were from the gamma distribution. Table 2 gives the results obtained on estimation of 

the regression parameters α and β and they seem to yield similar conclusions as those given 

in Table 1. In other words, this suggests that the proposed estimation procedure seems to be 

robust to the misspecification of the distribution of the latent variables.

In the next scenario, we repeated the study that gave the results in Table 2 but generated the 

panel count data Ni(sij)’s from the mixed-Poisson processes. Specifically, we first generated 

a random sample {ν1, ν2, … , νn} from {−0.25, 0, 0.25} with P(νi = −0.25) = P(νi = 0.25) 

= 1/4 and P(νi = 0) 1/2. For each i, given νi, ηi and Zi, the Ni si j j = 1

mi
 were then generated 

from the Poisson process with the mean function ηi (1 − νi) Λ2(t) exp(βZi). The results 

obtained on estimation of the regression parameters are presented in Table 3 and indicate 

that the proposed estimation procedure seems to work well for the situations considered. In 

other words, the estimation procedure appears to be robust against the Poisson assumption.

5 An application

In this section, we apply the estimation procedure proposed in the previous sections to a set 

of real data arising from a skin cancer chemoprevention trial conducted by the University of 

Wisconsin Comprehensive Cancer Center in Madison, Wisconsin (Sun and Zhao 2013). It is 

a five-year double-blinded and placebo-controlled randomized Phase III clinical trial. The 

primary objective of this trial is to evaluate the effectiveness of 0.5g/m2/day PO 

difluoromethylornithine (DFMO) in reducing new skin cancers in a population of the 

patients with a history of non-melanoma skin cancers: basal cell carcinoma and squamous 

cell carcinoma. During the study, the patients were scheduled to be assessed or observed 

every 6 months for the development of new skin cancers. As expected, the real observation 

times differ from patient to patient and so as the follow-up times. The study consists of 291 

patients randomized to either the placebo group (147) or the DFMO group (144), and the 

data include the numbers of occurrences of both basal cell carcinoma and squamous cell 

carcinoma between observation times. On the time to the first recurrence of the squamous 

cell carcinoma and the overall recurrence process of the basal cell carcinoma, only interval-

censored data and panel count data are available, respectively. Note that both variables are 

important for characterizing the carcinoma recurrence process, and thus for assessing the 

treatment effect on the carcinoma recurrence process, one may want to consider both 

together.

For the study subject, in addition to the treatment indicator, we also have information on 

three baseline covariates, gender, age at the diagnosis and the number of prior skin cancers 

from the first diagnosis to randomization. For the analysis below, we will focus on the 290 

patients (147 in the placebo group and 143 in the DFMO group) with at least one 

observation. To apply the estimation approach proposed in the previous sections, for patient 
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i, let Ti denote the time to the first recurrence of squamous cell carcinoma and Ni(t) be the 

number of the basal cell carcinoma that have occurred up to time t, i = 1, … , 290. Also 

define the covariate Zi1 to be 1 if the ith patient was in the DFMO group and 0 otherwise, 

Zi2 and Zi3 to denote the number of prior skin cancers and the age of the patient, 

respectively, and Zi4 = 1 if patient i is female and 0 otherwise. Table 4 presents the analysis 

results given by the application of the proposed estimation procedure with m = 3, 4, 5, 6 and 

B = 1000, and they include the estimated covariate effects, the estimated standard error 

based on the bootstrap procedure (BSE) and the p-values for testing no covariate effects.

One can see from Table 4 that it seems that the DFMO treatment did not have any significant 

effect in reducing the risk of the first recurrence of squamous cell carcinoma and the 

recurrence process of basal cell carcinoma. Also both the first recurrence of squamous cell 

carcinoma and the recurrence process of basal cell carcinoma did not seem to be 

significantly related to the gender of the patient. However, both variables seem to be 

positively related to the number of prior skin cancers. The age of the patient seems to be 

positively related to the the first recurrence of squamous cell carcinoma but negatively 

related to the recurrence process of basal cell carcinoma. Note that the results also indicate 

that the time to the first squamous cell carcinoma recurrence and the overall recurrence of 

basal cell carcinoma were not significantly correlated. In addition, one can see that the 

results are similar for different values of m, which suggests that the proposed approach 

seems to be robust to the choice of m as expected.

6 Discussion and concluding remarks

This paper discussed joint regression analysis of interval-censored failure time data and 

panel count data. As mentioned above, a large literature exists for the analysis of either type 

of the data separately, but there does not seem to exist an established approach for their joint 

analysis. The proposed procedure allows one to combine two different sources together for 

the analysis or perform treatment comparison based on composite endpoints. The proposed 

method made use of the sieve approach and Bernstein polynomials and the resulting 

estimators of regression parameters are consistent, asymptotically normal and 

semiparametrically efficient. Also the simulation study suggested that it works well for 

practical situations.

Note that in the method described above, for the simplicity, we have assumed that the 

observation processes on the failure time and recurrent event process of interest are the 

same, but sometimes they could be different. In other words, the time observation times, say 

sik
(1),s, on the Ti’s and the time observation times, say si j

(2),s, on the Ni(t)’s are different. In this 

case, the observed data would have the form

Ni si j
(2) , δik = I Ti ∈ si, k − 1

(1) , si, k
(1)

and more complicated structures. However, one can still follow the idea used above to 

develop a similar estimation procedure as above.
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The proposed method relies on several assumptions or has some limitations, which also 

provide several directions for extensions. One is the Poisson process assumption on the 

underlying recurrent event process, which can be treated as a working assumption (Wellner 

and Zhang 2000). For this, note that the simulation study suggested that the estimation 

procedure is robust to it and also this has already been demonstrated theoretically by others 

under similar contexts. Also on the underlying recurrent event process, we only considered 

the situation where it follows the proportional mean model and it is apparent that it is useful 

to generalize the method to more general models. In the method, it has been assumed that 

the failure time of interest follows the proportional hazards model. Although this model is 

quite common, it would be helpful to develop similar methods for other commonly used 

models. Another assumption used above is that the observation process is noninformative 

and sometimes this may not be true (Sun and Zhao 2013). Note that for the latter, one faces 

three related processes, failure time process, the underlying recurrent event process and the 

observation processes, which is also a counting process. In other words, for the development 

of the corresponding inference method, one needs to model all three processes together.

Acknowledgements

The authors wish to thank the Editor-in-Chief, Dr. Mei-Ling Lee, an Associate Editor and two reviewers for their 
many helpful comments and suggestions. The work was partly supported by the National Nature Science 
Foundation of China grants 11471135 and 11571133 and the Central China Normal University grant MOE 
15ZD011 to the second author and the NIH grant R21CA198641 to the third author.

Appendix:

Proofs of the asymptotic properties of θn

In this Appendix, we will sketch the proofs for the results given in Theorems 1–3 by using 

the empirical process theory (van der Vaart and Wellner 1996) some techniques commonly 

used in nonparametric literature.

First let X = {X1, … , Xn} denote the observed data and define ℒn = l(θ, X):θ ∈ Θn .

Proof of Theorem 1 For any Proof of Theorem 1. For any θ1 = α1′, β1′, γ1, Λ1
1, Λ2

1 ′ and 

θ2 = α2′, β2′, γ2, Λ1
2, Λ2

2 ′ ∈ Θn, it is easy to show that

l θ1, X − l θ2, X ≤ K ‖α1 − α2‖ + ‖β1 − β2‖ + ‖γ1 − γ2‖ + ‖Λ1
1 − Λ1

2‖∞ + ‖Λ2
1 − Λ2

2‖∞

(1)

by the Taylor’s series expansion. According to the conclusion in page 94 of van der Vaart 

and Wellner (1996), we can show that the covering number of ℒn satisfies
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N ϵ, ℒn, L1 Pn ≤ N ϵ
3M , ℬ, ⋅ ⋅ N ϵ

3Mn
, ℳn

1, L∞ ⋅ N ϵ
3Mn

, ℳn
2, L∞ ≤ 9M2

ϵ

2p + 1

⋅
9Mn

2

ϵ

m + 1 9Mn
2

ϵ

m + 1
≤ K M4p + 2Mn

4m + 4ϵ
− pm,

where pm = 2p + 2m + 3. Then it follows from the inequality (31) of Pollard (1984)(page 31) 

that

sup
θ ∈ Θn

|Pnl(θ, X) − Pl(θ, X)| 0 (2)

in probability. Define Θϵ = {θ : d(θ, θ0) ≥ ϵ, θ ∈ Θn} and let J(θ, X) = −l(θ, X), 

ζ1n = sup
θ ∈ Θn

PnJ(θ, X) − PJ(θ, X) , and ζ2n = Pn J(θ0, X) − PJ(θ0, X). Then

inf
Θϵ

P J(θ, X) = inf
Θϵ

P J(θ, X) − PnJ(θ, X) + PnJ(θ, X) ≤ ζ1n + inf
Θϵ

PnJ(θ, X) .

If θn ∈ Θϵ, we have

inf
Θϵ

PnJ(θ, X) = PnJ θn, X ≤ PnJ θ0, X = ζ2n + PJ θ0, X .

By Condition 4, we have that inf
Θϵ

P J(θ, X) − P J θ0, X = δϵ > 0, Thus,

inf
Θϵ

P J(θ, X) ≤ ζ1n + ζ2n + P J θ0, X = ζn + PJ θ0, X

with ζn = ζ1n +ζ2n. Hence we obtain that ζn ≥ δϵ and furthermore θn ∈ Θϵ ⊆ ζn ≥ δϵ . By 

(2) and Strong Law of Large Numbers, we have ζ1n = o(1), ζ2n = o(1) and then ζn = o(1) 

almost surely. Therefore, ∪k = 1
∞ ∩n = k

∞ θn ∈ Θϵ ⊆ ∪k = 1
∞ ∩n = k

∞ ζn ≥ δϵ , which shows the 

strong consistency of θn.

Proof of Theorem 2 To establish the convergence rate, note that by the Theorem 1.6.2 of 

Lorentz (1986) or the proof of Theorem 2 in Osman and Ghosh (2012), if m = o(nν), there 

exist Bernstein polynomials Λ1n0 and Λ2n0 such that ‖Λ1n0 − Λ10‖∞ = O n
− Nv

2  and 

‖Λ2n0 − Λ20‖∞ = O n
− rv

2 , respectively. For any η, define the class 
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ℱη = l θn0, X − l(θ, X):θ ∈ Θn, d θ − θn0 < η  with θn0 = β0′ , α0′ , γ0′ , Λ1n0, Λ2n0 ′. Following 

the calculation of Shen and Wong (1994, p. 597), we can establish that 

logN[] ε, ℱη, ‖ ⋅ ‖2 ≤ CN log(η/ε) with N = 2(m + 1). Moreover, some algebraic calculations 

lead to ‖l θn0, X − l(θ, X)‖2
2 ≤ Cη2 for any l θn0, X − l(θ, X) ∈ ℱη. Therefore it follows from 

Lemma 3.4.2 of van der Vaart and Wellner (1996) that

EP‖n1/2 Pn − P ‖ℱη ≤ CJη ε, ℱη, ‖ ⋅ ‖2 1 +
Jη ε, ℱη, ‖ ⋅ ‖2

η2n1/2 , (3)

where Jη ε, ℱη, ‖ ⋅ ‖2 = ∫ 0
η 1 + logN[] ε, ℱη, ‖ ⋅ ‖2

1/2
dε ≤ C N1/2η.

Note that the right-hand side of (3) gives ϕn(η) = C(N1/2η + N/n1/2). Also it is easy to see 

that ϕn(η)/η decreases in η and rn
2ϕn 1/rn = rnN1/2 + rn

2N /n1/2 < 2n1/2, where r = N−1/2n1/2 = 

n(1−v)/2 with 0 < ν < 0.5. Hence n(1 − v)/2d θn, θn0 = Op(1) by Theorem 3.4.1 of van der 

Vaart and Wellner (1996). This, together with d(θn0, θ0) = Op(n−rν/2) , yields that 

d θn, θ0 = Op n−(1 − v)/2 + n−rv/2 . The choice of ν = 1/(1 + r) yields the rate of convergence 

d θn, θ0 = Op n−r /(2 + 2r) .

Proof of Theorem 3 As above, let θ0 denote the true value of parameter θ and define V to be 

the linear span of Θ − θ0. Also let l(θ, X) be the log-likelihood for a sample of size one and 

δn = n−(1−ν)/2+ n−rν/2. For any θ ∈ {θ ∈ Θ : ‖θ − θ0‖ = O(δn)}, define the first order 

directional derivative of l(θ, X) at the direction υ ∈ V as

l̇ (θ, X)[v] = dl(θ + sv, X)
ds |s = 0,

and the second order directional derivative as

l̈ (θ, X)[v, v] = dl̇ ((θ + sv, X))
ds |s = 0 = d2l(θ + sv + sv, X)

dsds |s = s = 0 .

Also define the Fisher inner product on the space V as

< v, v
, > = P l̇ (θ, X)[v]l̇ (θ, X)[v]

and the Fisher norm for υ ∈ V as ‖υ‖1/2 = < υ, υ >. Let V be the closed linear span of V 
under the Fisher norm. Then (V , ‖ ⋅ ‖) is a Hilbert space.

Furthermore, define the smooth functional of θ as

ψ(θ) = b1′ α + b2′ β + b3γ,
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where b = b1′ , b2′ , b3 ′ is any vector of 2p + 1 dimension with ‖b‖ ≤ 1. For any υ ∈ V, we 

denote

ψ̇ θ0 [v] =
dψ θ0 + sv

ds |s = 0 .

Note that ψ(θ) − ψ θ0 = ψ̇ θ0 θ − θ0 . It follows from the Riesz representation theorem that 

there exists v* ∈ V such that ψ̇ θ0 [v] = < v*, v > for all v ∈ V and v* 2 = ψ̇ θ0 . Thus it 

follows from the Cramér-Wold device that to prove Theorem 3, it suffices to show that

n1/2 < θn − θ0, v* > N 0, b′Σb  in distribution (4)

since b′ αn − α0 ′, βn − β0 ′, γn − γ0 ′ = ψ θn − ψ θ0 = ψ̇ θ0 θn − θ0 = < θn − θ0, v* >. In 

fact, (4) can be proved using the similar arguments of Theorem 1 of Shen (1997). For each 

component ϑq of ϑ, q = 1, 2, ⋯ , 2p + 1, we denote by ζq* = b1q* , b2q*  the solution to

inf
ζq

E lϑ ⋅ eq − lb1
b1q − lb2

b2q
2
,

where lϑ = lα′ , lβ′ , lγ ′, and eq is a (2p + 1)-dimensional vector of zeros except the q-th 

element equal to 1. lb1
b1  and lb2

b2  are the directional derivatives with respect to Λ1 and 

Λ2 and can be calculated as directional derivatives defined at the beginning of the proof of 

Theorem 3. Now let ζ* = ζ1*, ⋯, ζ2p + 1* . By the calculations of Chen et al. (2012), we have 

‖v*‖2 = ‖ψ̇ θ0 ‖ = supv ∈ V :‖v‖ > 0
ψ̇ θ0 [v]

‖v‖ = b′Σb, where Σ = E SϑSϑ′
−1, 

Sϑ = lϑ − lb1*
b1* − lb2*

b2* . Hence the semiparametric efficiency can be established by 

applying the result of Theorem 4 in Shen (1997), which completes the proof.
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Table 1

Estimation of regression parameters α and β and the variance parameter γ

(α0, β0) Parameters Bias SSE BSE CP

(0, 0) α −0.0115 0.2818 0.2800 94.3

β −0.0076 0.1793 0.1876 94.6

γ −0.0204 0.1247 0.1283 95.4

(0, 0.5) α −0.0179 0.2693 0.2625 94.4

β −0.0110 0.1680 0.1733 95.3

γ −0.0126 0.1240 0.1221 94.6

(0, −0.5) α 0.0130 0.2740 0.2746 94.4

β −0.0062 0.1749 0.1778 94.6

γ −0.0051 0.1375 0.1337 94.0

(0.5, 0) α −0.0119 0.2885 0.2992 94.7

β −0.0046 0.1792 0.1715 94.2

γ −0.0209 0.1229 0.1279 94.6

(0.5, 0.5) α 0.0099 0.2734 0.2790 94.8

β −0.0084 0.1637 0.1740 95.6

γ −0.0125 0.1252 0.1194 93.8

(0.5, −0.5) α 0.0161 0.2796 0.2865 94.4

β −0.0067 0.1746 0.1779 95.2

γ −0.0058 0.1361 0.1331 94.1

(−0.5, 0) α −0.0165 0.2855 0.2913 95.7

β −0.0111 0.1789 0.1815 95.3

γ −0.0205 0.1244 0.1289 95.6

(−0.5, 0.5) α −0.0009 0.2824 0.2875 94.9

β 0.0062 0.1738 0.1794 95.5

γ −0.0153 0.1224 0.1272 95.5

(−0.5, −0.5) α 0.0040 0.2750 0.2722 94.8

β −0.0062 0.1748 0.1779 94.8

γ −0.0038 0.1375 0.1346 94.0
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Table 2

Estimation of regression parameters α and β with misspecified frailty distribution

(α0, β0) Parameters Bias SSE BSE CP

(0, 0) α −0.0059 0.2002 0.2104 94.8

β −0.0020 0.1125 0.1162 94.4

(0, 0.5) α 0.0360 0.2324 0.2208 94.3

β −0.0022 0.1207 0.1133 93.3

(0, −0.5) α −0.0154 0.2104 0.2174 95.5

β 0.0009 0.1143 0.1137 94.6

(0.5, 0) α −0.0050 0.2096 0.2065 94.4

β 0.0001 0.1147 0.1076 93.2

(0.5, 0.5) α 0.0052 0.2318 0.2368 94.3

β 0.0031 0.1186 0.1186 94.3

(0.5, −0.5) α 0.0198 0.2282 0.2225 94.8

β −0.0163 0.1251 0.1214 95.0

(−0.5, 0) α −0.0054 0.2282 0.2403 95.7

β −0.0018 0.1249 0.1277 94.6

(−0.5, 0.5) α 0.0198 0.2282 0.2225 94.8

β −0.0163 0.1252 0.1264 95.1

(−0.5, −0.5) α −0.0168 0.2145 0.2078 93.8

β −0.0024 0.1221 0.1217 94.4
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Table 3

Estimation of regression parameters α and β with misspecified frailty distribution and based on the data from 

mixed Poisson processes

(α0, β0) Parameters Bias SSE BSE CP

(0, 0) α −0.0001 0.2167 0.2105 94.3

β 0.0014 0.1209 0.1154 94.2

(0, 0.5) α −0.0181 0.2099 0.2082 94.8

β −0.0030 0.1208 0.1293 95.2

(0, −0.5) α 0.0074 0.2146 0.2219 95.2

β 0.0043 0.1260 0.1239 95.2

(0.5, 0) α 0.0474 0.2290 0.2230 93.8

β 0.0087 0.1222 0.1156 92.8

(0.5, 0.5) α 0.0214 0.2094 0.2284 95.6

β −0.0054 0.1205 0.1146 93.9

(0.5, −0.5) α 0.0341 0.2285 0.2255 94.8

β 0.0026 0.1381 0.1435 95.1

(−0.5, 0) α −0.0400 0.2067 0.2093 94.6

β 0.0038 0.1220 0.1195 94.4

(−0.5, 0.5) α −0.0106 0.2075 0.2184 95.6

β −0.0004 0.1227 0.1204 94.3

(−0.5, −0.5) α −0.0232 0.2263 0.2172 93.4

β −0.0061 0.1216 0.1283 95.2
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Table 4

Joint analysis results of the skin cancer data

α1 α2 α3 α4 β1 β2 β3 β4 γ

m = 3

 Estimator −0.086 0.094 0.039 −0.335 −0.133 0.106 −0.015 −0.096 −0.294

 BSE 0.227 0.025 0.008 0.279 0.171 0.020 0.007 0.179 0.178

 p-value 0.707 0.000 0.000 0.230 0.438 0.000 0.038 0.529 0.098

m = 4

 Estimator −0.097 0.093 0.035 −0.347 −0.145 0.106 −0.017 −0.105 −0.299

 BSE 0.226 0.025 0.010 0.278 0.171 0.020 0.009 0.178 0.178

 p-value 0.666 0.000 0.000 0.212 0.400 0.000 0.042 0.554 0.092

m = 5

 Estimator −0.098 0.093 0.035 −0.347 −0.147 0.106 −0.018 −0.106 −0.299

 BSE 0.225 0.025 0.012 0.279 0.171 0.020 0.009 0.178 0.178

 p-value 0.664 0.000 0.002 0.213 0.390 0.000 0.049 0.550 0.091

m = 6

 Estimator −0.100 0.093 0.034 −0.350 −0.148 0.106 −0.018 −0.106 −0.299

 BSE 0.225 0.025 0.012 0.278 0.171 0.020 0.009 0.178 0.177

 p-value 0.654 0.000 0.004 0.208 0.389 0.000 0.051 0.551 0.091
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