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Joint Angle and Delay Estimation
Using Shift-Invariance Techniques
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Abstract—In a multipath communication scenario, it is of-
ten relevant to estimate the directions and relative delays of
each multipath ray. We derive a closed-form subspace-based
method for the simultaneous estimation of these parameters
from an estimated channel impulse response, using knowledge
of the transmitted pulse shape function. The algorithm uses a
two-dimensional (2-D) ESPRIT-like shift-invariance technique to
separate and estimate the phase shifts due to delay and direction
of incidence with automatic pairing of the two parameter sets.
Improved resolution is obtained by enlarging the data matrix
with shifted and conjugated copies of itself.

Index Terms— Array signal processing, direction/time-of-
arrival estimation, joint diagonalization, 2-D ESPRIT.

I. INTRODUCTION

SOURCE localization is one of the recurring problems
in signal processing. In general, it can involve the joint

estimation of frequencies, Doppler shifts, directions of arrival
(azimuth/elevation) and time/time-difference of arrival, and as
such, it is the central issue in many radar or sonar applications.
In mobile communications, source localization by the base sta-
tion is of interest for advanced handover schemes, emergency
localization, and potentially many user services for which a
GPS receiver is impractical (see [2] for a recent discussion in
this area).

In a multipath scenario, source localization by the base
station involves the estimation of the directions and relative
delays of each multipath ray. It is often assumed that the
directions and delays of the paths do not change quickly,
as fading affects only their powers, so that it makes sense
to estimate these parameters. This information can then be
used to adjust a space–time (RAKE) receiver in the uplink,
although for this purpose, it is not really necessary to determine
the parameters themselves: estimation of the independent
space–time manifold components suffices (see, e.g., [3] and
[4]). However, the parameters are essential for space–time
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selective transmission in the downlink, especially in FDD
systems; the space–time manifold is frequency dependent and
quickly varies because of independent fading of the rays,
but the angle and delay parameters are relatively stationary.
Knowledge of these parameters can be used for effective
transmit diversity as well.

In this paper, we derive an algorithm for the joint high-
resolution estimation of multipath angles and delays, assuming
linearly modulated sources with a known pulse shape function
and no appreciable Doppler shifts. An extensive literature on
source localization exists, and hence, it is essential to list the
conditions on the mobile communications scenario that we
shall consider.

1) The number of sources is small. For convenience, we
consider only one source in a multipath environment,
but this is no limitation.

2) The multipath environment is modeled by a discrete
number of rays, each parameterized by a delay, complex
amplitude (fading), and angle. This leaves out diffuse
scattering.

3) A channel estimate is available. For communication
applications, this typically implies that the source signals
are (known) digital sequences that are linearly modu-
lated by known pulse shape functions.

4) Doppler shifts and residual carriers of sources are ne-
glected.

5) The source signals are received by a narrowband phased
array consisting of at least two antennas spaced at half
wavelength or closer.

6) The data received by the antennas is sampled at or
above the Nyquist rate. For digital sources, this typically
implies fractional sampling by a factor of two.

The Doppler condition restricts the delay estimation by plac-
ing a limit on the number of samples that can be processed in
one batch. Similarly, the narrowband assumption in 5) entails
that a delay across the array can be modeled as a phase shift.
This puts a limit on the processing bandwidth; it should be
much less than the carrier frequency so that the wavelengths at
both ends of the band are roughly the same. In communication
applications, the condition that the sources are known is not
strict since the algorithm can be used in tandem with a blind
channel estimator. In the case of multiple sources with training
available, we can get independent channel estimates of each
source, which reduces the problem to the single-source case.

Active radar applications are viable as well, provided again
that the Doppler shifts are small in comparison to the pulse
bandwidth, which in turn should be much smaller than the
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carrier frequency. If both azimuth and elevation are to be
estimated, then the antenna array must have a two- (or three-)
dimensional (2-D or 3-D) configuration.

As mentioned, the angle/delay estimation problem is, in fact,
a radar problem, and as such, many algorithms have already
been proposed. Here, we are interested in high-resolution joint
estimation algorithms, which work in situations where the
number of parameters to be estimated is relatively small.
Joint estimation can resolve a larger number of rays than
1-D estimation and is preferred to avoid exceptions and
maintain resolution in cases where two or more rays have equal
directions of arrival (DOA’s) or delays. Various approaches
to similar joint estimation problems with known pulse shape
have recently been proposed [5]–[10]. These approaches often
require computationally unattractive ML searches and/or need
accurate initial points and do not always work properly for rays
with nearly equal directions or delays. The method proposed
by Ogawaet al. [9] is a 2-D (windowed) MUSIC algorithm,
and the method by Waxet al. [8] performs a successive ML
optimization for an increasing number of rays, using lower
order results as initial points. The method by Swindlehurst
et al. [6], [7] that is applicable to our scenario consists of
an iterative ML scheme (IQML) that requires initialization.
For this, an ESPRIT-type harmonic retrieval algorithm was
proposed, which bears some resemblance to the algorithm in
this paper, but it is nonjoint and restricts the total number of
rays to be less than the number of antennas.

The algorithm we develop herein transforms the data by
a DFT and a deconvolution by the known pulse shape func-
tion, which maps delays into phase shifts in the frequency
domain. This is, of course, a classical approach and has
been considered, e.g., in [6]–[8] as well. New here is the
observation that by stacking the result into a Hankel matrix,
the problem is reduced to one that can be solved using 2-D
ESPRIT techniques [11], [12], which were developed for joint
azimuth-elevation estimation. Thus, the algorithm is closed-
form and computationally attractive, and angles and delays
are jointly estimated and automatically paired. Many of the
tricks developed for ESPRIT and DOA estimation, such as
forward-backward averaging, spatial smoothing [13], and real
processing [12], [14], are readily incorporated into the current
algorithm. The number of rays may be larger than the number
of antennas, which overcomes a limitation of the nonjoint 1-D
ESPRIT method mentioned in [6] for initialization of a joint
iterative ML optimization.

A second difference to several other approaches is that we
propose to first estimate the channel matrix and subsequently
deconvolve the pulse-shape function via the DFT, rather than
directly deconvolve the observed modulated data. This should
lead to better results if the number of samples is small because
there are no edge effects. Finally, the algorithm has an elegant
extension to the estimation of delays and both azimuth and
elevation angles. This results in a joint diagonalization problem
of three matrices. Similar generalizations occur if we have a
nonuniform array with multiple baselines.

The structure of the paper is as follows. The data and
channel model are described in Section II. Section III contains
a detailed derivation of the basic steps of the algorithm, includ-

ing various processing techniques to improve the numerical
accuracy and to deal with closely spaced rays. Identifiability
of the DOA’s and delays using the proposed technique is
addressed in Section IV, whereas Section V briefly explores
how the algorithm can be adapted to use antenna arrays
other than ULA’s. The Craḿer–Rao bound (CRB) of the
estimates is given in Section VI, and Section VII illustrates
the performance using computer simulations.

Notation: Vectors are denoted by boldface, matrices by
capitals. * denotes matrix complex conjugate transpose,is the
matrix pseudo-inverse (Moore–Penrose inverse),denotes
complex conjugate. is the identity matrix and
a zero matrix with columns and an appropriate number of
rows. is the Kronecker product, andis the “Khatri–Rao”
product, which is a column-wise Kronecker product:

.

II. DATA MODEL

A. Channel Model Estimation

We derive a data model for the reception of a single source
in a multipath scenario. Assume that we transmit a digital
sequence over a channel and measure the response
using antennas (cf. Fig. 1).1 The noiseless received data
in general has the form

... (1)

where is the symbol rate, which will be normalized to
from now on. A commonly used multiray propagation model
for specular multipath writes the impulse response as

(2)

where is a known pulse shape function by which
is modulated. In this model, there aredistinct propagation
paths, each parameterized by a triple , where

DOA;
path delay;

C complex path attenuation (fading).

The vector-valued function is the array response vector
for an array of antenna elements to a signal from direction

.
Suppose that has finite duration and is zero outside an

interval , where is the (integer) channel length mea-
sured in symbol periods. We assume that the received data
is sampled at a rate of times the symbol rate. Using either
training sequences (known ) or blind channel estimation
techniques (e.g., [15], [16]), it is possible to estimate ,

, at least up to a scalar. Specifically,
suppose we start sampling at and collect samples of

1The assumption of digital sources is not at all essential but chosen because
it gives a useful normalization to several parameters in the time/frequency
domain.
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Fig. 1. Multiray propagation channel.

during symbol periods; then, (1) implies that

where

...

...
...

...

...
...

...
...

...
...

...

If is known for , and ,
then a least-squares estimate of is , where

. If is unknown, then it can be estimated
from the rank of if or else from the rank of a
Hankel matrix constructed from [15]. As long as is
known, it is safe to overestimate as this will simply extend

by zero columns. Alternatively, if is unknown, then
blind channel estimation techniques can estimate, and both

and , up to a scalar by using the Toeplitz structure of
under certain additional conditions that are not of interest to
us here.

It is, at this point, convenient to recollect the estimated
impulse response samples into an matrix

The channel model (2) can then be written as

...
... (3)

where , and
is an -dimensional row vector containing the samples of

.

B. Channel Model Transformation

In the delay estimation algorithm, we make use of the fact
that a Fourier transform maps a delay to a certain phase
progression. Collect the samples of the known waveform
into a row vector

and let , where denotes the DFT matrix of size
defined by

...
...

...

(4)

If is an integer multiple of , then it is straightforward
to see that the Fourier transform of the sampled version of

is given by

diag (5)

The same holds true for any if is bandlimited and
sampled at or above the Nyquist rate. This is not in full
agreement with the FIR assumption we made earlier, which
requires that is nonzero only in a finite interval so
that is finite. Because of this truncation,
the spectrum of widens, and sampling at a rate
introduces some aliasing due to spectral folding. This gives
extra terms in (5) that will eventually lead to a bias in the
delay estimate. In typical situations, however, the extra terms
are small. For example, for , a raised-cosine pulse shape
with roll-off factor (excess bandwidth) truncated at a
length leads to a model mismatch in (5) of maximally
6% for any , with a corresponding delay estimation error of
less than 0.002. The error becomes even smaller for larger,

, or . Hence, in comparison to estimation errors that will
occur in the presence of noise, this bias will not be of any
significance.

Thus, we will assume that is bandlimited and sampled
at such a rate that (5) is “valid” even if is not an integer
multiple of . We can then write the Fourier-transformed
data model

as

diag

where is the Vandermonde matrix

...
...

...
...
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(a) (b)

Fig. 2. Definition of parameters. (a) Time domain. (b) Frequency domain.

(With abuse of notation, we usually omit the size index of;
although it will vary at several places, its size is always clear
from context.)

The next step is to do a deconvolution of by dividing
by diag . Obviously, this can be done only on intervals

where is nonzero. To be specific, assume that is
bandlimited with normalized bandwidth (that is, its
Fourier transform is nonzero only for angular frequencies

), and assume that . Then, has at
most nonzero entries, and we can limit our attention
to this interval. For a raised-cosine pulse shape with roll-
off factor (excess bandwidth), we have ;
see Fig. 2. Usually, however, we would select a somewhat
smaller number, , say, since the entries at the border can be
relatively small as well, and their inversion can blow up the
noise. Indeed, in the case of a raised-cosine pulse, we advise
to set and select only the center frequency samples.

Let be the corresponding selection matrix
for . For later use, we require that the selected frequencies
appear in increasing order, which with the definition of the
DFT in (4) usually means that the final samples of

should be moved up front: has the form

If there are no other (intermittent) zero entries, we can factor
diag out of and obtain

diag (6)

which satisfies the model

(7)

If the number of multipaths is not larger than the number
of antennas , then it is possible to estimate the’s
and, hence, the delays from the shift-invariance structure
of , independent of the structure of. This is essentially

the ESPRIT algorithm [17] as applied to harmonic analysis.
However, in general, the number of antennas is limited and
might not satisfy the condition . We can avoid this
problem by constructing a Hankel matrix out of. It then
becomes sufficient to have , as we will explain in
Section III.

To estimate the DOA’s , we need to know the array
manifold structure. For simplicity, we will assume a uniform
linear array (ULA) consisting of omnidirectional elements with
equal interelement spacings so that we can use the ESPRIT
algorithm to estimate the DOA’s as well. Any other array
configuration on which the ESPRIT algorithm works can be
used here. A 2-D configuration is considered in Section V.

It is clear that angles and delays can be estimated inde-
pendently of each other by directly working on the rows and
columns of . However, this does not give a pairing of angles
to corresponding delays and might result in poor resolution
for closely spaced angles and delays. The algorithm derived
in Section III provides a joint estimate, using ideas from 2-D
DOA estimation (viz., [11], [12]).

C. Remarks

In the above deconvolution approach, we first estimate
from and and then do a DFT and divide out the pulse
shape in the frequency domain. A small model mismatch
occurs because of the spectral aliasing after truncation of the
pulse shape (governed by , and ). Another method of
deconvolution would be to do a Fourier transform directly on

and on the remodulated source and divide
these to obtain . This is the approach followed in [6]. This
direct method is computationally cheaper and does not need
an estimate of , but the accuracy is limited by the fact that
the first or last symbols are not taken into account correctly.
This effect is averaged out as more sample periods are taken
into account.

Note that it is safe to overestimate. This will extend
with additional zero columns. After Fourier transformation,
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has more nonzero samples than before but satisfies the same
model. The new samples interpolate the old ones. Hence, (7)
is still valid for a larger .

III. JOINT ANGLE AND DELAY ESTIMATION

A. Algorithm Outline

Our objective is to estimate from the shift-
invariance properties present in the data model . We
first outline the procedure and then introduce improvements
to arrive at the final algorithm.

Let us assume that our antenna array is a uniform linear
array consisting of omnidirectional antennas spaced at a
distance of wavelengths. Then, , where

diag

...
...

In analogy, we can define (for some)

diag

...
...

The main idea now is as follows. From , we construct a
Hankel matrix by left shifting and stacking copies of .
In particular, for , define the left-shifted matrix

. (The notation indicates
taking columns through of a matrix.) Then, we define by

... (8)

The motivation for this step is that has a factorization

...
(9)

where denotes the Khatri–Rao product, i.e., a column-wise
Kronecker product. Hence, if we can choose the stacking
parameter such that both and and
if all factors are full rank, then has rank , which means that
we can estimate up to an factor at the right. Detection
of is possible if there is an such that becomes singular,
which requires that at least one of these inequalities is a strict
inequality.

The estimation of and from is based on exploiting
the various shift-invariant structures present in. Define the

selection matrices

To estimate , we take submatrices consisting of the first and,
respectively, last rows of , i.e., ,

, whereas to estimate, we stack, for all blocks
, its first and, respectively, last rows: ,

. These data matrices have the structure

(10)

where , . If dimensions are such
that these are low-rank factorizations, then we can apply the
2-D ESPRIT algorithm [11], [12] to estimate and . In
particular, since

the are given by the rank reducing numbers of the pencil
, whereas the are the rank reducing numbers of
. These are the same as the nonzero eigenvalues of

and .
The correct pairing of each with its corresponding

follows from the fact that and have the same
eigenvectors, which is caused by the common factor(the
eigenvectors are in fact scalings of the columns of). In
particular, these matrices satisfy a model of the form

The challenge of joint estimation is to find a matrixthat best
diagonalizesboth matrices. Various (suboptimal) approaches
are possible, which are described in Section III-E.

B. Data Extensions

If two rays have the same delays, thenin (9) becomes
rank deficient. As a result, the rank of is instead of .
The two corresponding vectors will be combined, and the
angles cannot be identified correctly. This is entirely similar to
the problem with coherent signals in the usual DOA problem,
where it was solved using “spatial smoothing.” This technique
can be nicely integrated with our approach, as follows.

For integers , , define

...
...

as equal-sized submatrices of. As a generalization of (8),
redefine as

...
...
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has a factorization

...
(11)

( is similar, as before, but now has only rows.)
The computation of and from proceeds as before. If

, then we can have two rays with equal delays and
still, will be full rank. More generally, if rays can have
equal delays, then we need to set to ensure the rank
of . Naturally, this will reduce the number of rows of
accordingly. To be able to estimate the corresponding angles
using shift invariance of , we need to have at least
rows because the multiplication by does not add resolution
in this case. Hence, antennas are needed.

A second technique to extend the data matrix is known
as forward-backward averaging and uses the fact that the
eigenvalues are on the unit circle, along with the
symmetric structures of and . Let denote the exchange
matrix that reverses the ordering of rows, and define

(12)

of size , where indicates
complex conjugate. Since

, it
follows that has a factorization

(13)

The computation of and proceeds as before. Thus, we
can double the number of columns of the data, which gives
a significant improvement in accuracy. It also provides some
protection against loss of rank in case of equal delays; even
if , the multiplication by ensures that
usually we can tolerate two rays with equal delays. It is not
entirely sufficient that the two angles are different because of
the phase aliasing that occurs in . However, since
and also play a role (this includes initial phase offsets),
we may assume in practice that has full rank if two delays
are the same. In general, to be able to identifyrays with equal
delays, we need and , i.e., .

We will assume from now on that and are selected
such that we can identify all rays. The implied conditions
on and are discussed in Section IV.

C. Rank Reduction

In the presence of noise, will be of full rank rather
than rank . As with most subspace-based parameter es-
timation algorithms, we first have to reduce to its -
dimensional principal column span. This reduction constitutes
the main computational expense but is necessary because
noise increases the rank of the matrix pencils in (10), and
thus, spurious eigenvalues are introduced. To avoid this, it is
standard practice to modify the algorithm such that the pencil
problem involves matrices of size .

There are several techniques to do the rank reduction. The
most accurate is perhaps to ensure that in (10)

have the same row span row and pairwise the same column
span col and col . This corresponds to a total
least squares solution and requires three subspace estimates.
Computationally less demanding, and almost equally accurate
in practice, is the following LS procedure, which forces a
common row span but implicitly projects and onto the
column spans of and , respectively.

Let

be a singular value decomposition (SVD) of , where and
are unitary matrices, and is a diagonal matrix containing

the singular values of in nonincreasing order [18]. The
number of rays can be estimated from this SVD as the
number of singular values larger than a certain noise level.
Let be the first columns of ; it forms a basis of the
estimated -dimensional column span of . Without noise,
we have for some nonsingular matrix .

Define

These matrices have noise-perturbed models ,
, etc. To arrive at an pencil problem, the

number of rows of each of these matrices has to be reduced
to as well. Again, this can be done in various ways. A
numerically pleasing way is to compute a QR factorization of

and to apply the factor to as well; this corresponds
to a LS projection of the column span of onto that of .
Thus, introduce the factorizations as

The four original data matrices have now been reduced to
equivalent data matrices, satisfying

(14)

for certain nonsingular matrices , , and .

D. Real Processing

Similar as in [12] and [14], we can use the structure of
to do a transformation to a real matrix, which us allows

to keep the SVD of and all subsequent operations in
the real domain, with obvious computational and numerical
advantages. This is possible because every entry incan
be combined with its complex conjugate by simple unitary
column and row transformations, which do not depend on the
data. The details are in [12] and [14] and need not be repeated
here.

Suffice it to say that we can transform to a real matrix
and compute a real-transformation offrom this matrix. We
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can also transform and to real
matrices and and compute these in terms of the
real-transformed using transformed selection matrices and
QR factorizations as before. The real-valued matrices that we
obtain this way satisfy the model

(15)

for certain new real-valued nonsingular matrices , ,
and . Here, , ;
the generalized eigenvalues are real-valued and, in fact, are the
Cayley transformations of , .

E. Joint Diagonalization

The final step of the algorithm is to estimateand from
(14) or (15). In essence, we have to find a square invertible
matrix to simultaneously diagonalize two matrices

(16)

and similar for the real-valued decompositions. The fact that
the same matrix is used gives a coupling between the two
eigenvalue problems; theth entry of corresponds to theth
entry of . Numerically more favorable is to determine Schur
decompositions

(17)

where is a unitary matrix, and and are upper
triangular. and are given by the diagonals of these
matrices.

A problem with using the Cayley transformation of unit-
modulus to real-valued eigenvalues is that eigenvalues close
to are mapped to . This occurs for relatively large
delays or angles close to for half-wavelength
spaced antenna elements. Hence, unlike the complex-valued
case, and can be badly conditioned. In view of
this, it is numerically advisablenot to form and

but to work on the original pencils and to compute
the generalized Schur decompositions

(18)

where , , and are unitary, and all matrices are
upper triangular. After these generalized Schur decompositions
have been determined, we obtain estimates of the param-
eter values by setting diag diag ,
diag diag .

A number of techniques have been proposed to solve such
problems in the presence of noise. All of these are suboptimal.

Method “ ”: The method proposed in [12] is the easiest
to describe. After real-transformations, bothand are real.
Hence, we can diagonalize

[Alternatively, we can work with the Schur decomposition
in (17).] Thus, the real part of the eigenvalues gives, and

the imaginary part gives . This method usually works fine
and guarantees that only a singleis used. The problem is
that it does not guarantee that is a real matrix. Hence,
in critical cases, it might happen that becomes complex
so that is complex. The imaginary part of
this term gives a contribution to the estimate of. Similarly,
the real part of gives a contribution to .
A second problem is that the method cannot be extended to
cases with more than two matrices, as occurs, e.g., in the joint
estimation of delays and both azimuth and elevation. Finally,
it is not easily modified to work with generalized eigenvalues;
clearly, it is not correct to compute a generalized eigenvalue
decomposition of .

Method “ ”: A second method is described in [11] and
was later called the algebraically coupled matrix pencil
(ACMP). It works with the Schur decomposition (17) or
generalized Schur decomposition (18). In essence, the method
first computes a Schur decomposition of the first matrix

When we apply to ,
this produces, in the presence of noise, an “almost-upper”
matrix that is approximately equal to . The method then
continues to compute the exact eigenvalue decomposition of
the second matrix using Jacobi rotations [19]. Since the
matrix is already close to upper, each Jacobi rotation is either
close to an identity matrix or to a permutation. This is easily
detected, and in the latter case, a permutation is also applied to
the estimate of . The algorithm works well, although it would
fail in the theoretical case ofexactlyrepeated eigenvalues of
the first matrix. It is easily extended to more than two matrix
pencils. The method has as feature that the true eigenvalues
of each matrix pencil are obtained as parameter estimates. It
is suboptimal because slightlydifferent matrices are used to
diagonalize each pencil.

An alternative but similar way to couple the two eigenvalue
problems is to independently compute diagonalizing matrices

and for and , respectively, and follow
the observation that should be close to a permutation
matrix (in the case of distinct eigenvalues).

Method “ ”: A third method is similar to the one pro-
posed in [20] and can be called a “super”-generalized Schur
method as it tries to compute a (Schur) decomposition for
more than two matrix pencils. It is an attempt to find unitary

, , and to make all four matrices in (18) as much
upper triangular as possible by a straightforward extension
of the usual iteration [18]. This leads to the following
algorithm outline (cf., [20]):

Initialize by a Schur decomposition of ,
for

a) Find (unitary) to minimize

b) Find (unitary) to minimize

c) find (unitary) to minimize

.

Here, denotes the Frobenius norm of the strictly
lower triangular part of a matrix. It is hard to find the exact
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minimizers in every step, but this is also not necessary; we can
find good approximate solutions and rely on the outer loop to
provide convergence. There are several approximate solutions,
e.g., based on Householder rotations [20] or Givens rotations
[21].

It should be said that unlike in [20], the convergence
properties of this iteration have been disappointing so far.
Without accurate starting point (as obtained by the initial
Schur decomposition), the convergence can be very slow and
usually stalls in a local minimum. This is probably because
it corresponds to anunshifted iteration. With an accurate
starting point, the performance of this method is slightly better
than the previous two methods, which indicates that there is
some advantage in a truly joint estimation approach.

IV. I DENTIFIABILITY

To identify and from (13) and (10), necessary condi-
tions are that the submatrices and of are “tall,”
whereas is “wide,” i.e.,

a)

b)

c)

Subject to these conditions, we can try to maximize the
number of rays that can be identified for given and
by optimizing over and . This is analytically feasible
only if we assume continuous parameters, which after some
calculations then produces

if

if

(19)

The first range corresponds to a region where conditions a)
and c) are satisfied with equality, whereas the second range
has conditions b) and c) satisfied with equality. There is a small
third range in between, where all three conditions are satisfied
with equality. Although this can be solved analytically, the
equations are awkward and, hence, omitted. The actual max-
ima are slightly smaller because and can take only
integer values; see Fig. 3. The general behavior, however, is
quite accurately captured by the equations.

For identifiability, it is not sufficient that the dimensions of
the factors , , and are at least ; they should also
be of full rank . The Vandermonde structure of these factors
ensures that this is the case if all angles and all delays are
different. As discussed before, ifdelays are equal (but with
different angles), then the corresponding columns of are
all the same so that the corresponding columns of have
to span a rank- subspace; its size should be at leastrows.
Hence, we need to enable identification. A similar

Fig. 3. Maximal number of rays that can be identified. The curved lines
are the analytically computed contours of the maxima, assuming continuous
parameters.

rank condition holds on ; here, we need to ensure
the rank [almost—we assume that the are
different]. Altogether, this gives the following necessary and
(almost) sufficient conditions for identifiability of rays with
at most equal delays: Equation (19) holds, and

With these additional constraints, can we still identify the
same maximal number of rays? Suppose ; then, the
smaller of the two in (19) is

. Hence, can be reached, and the
maxima reported in Fig. 3 do not change, provided .

Similarly, suppose rays have equal angles but different
delays. Then, the corresponding columns of are the same.
To ensure the rank of , we need . For , we
need . Hence, rays with at most equal
angles are identifiable if and (almost) only if (19) holds, and

Suppose ; then, the smaller of the two in
(19) is .
Again, we can still reach the same maximal number of rays
as before, provided .

One way to increase the maximal number of rays could be to
increase the pulse shape length since .
Another way to increase is to zero-pad prior to the
DFT. This results in extra samples in the frequency domain
that fit the same model as before and interpolate the previous
samples. In principle, this means that even with
antennas, we can estimate an arbitrarily large number of rays.
In actuality, however, the amount of noise that can be tolerated
becomes exceedingly small. The underlying problem is that
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increasing in this way does not improve the conditioning of
, whereas every additional ray within the same resolution

cell deteriorates the conditioning of roughly by an order
of magnitude. Very quickly, even the modeling errors [i.e.,
aliasing due to the FIR assumption on ] destroy the
required accuracy. As another way to view this, note that
for increasing the eigenvalues are compressed to a
decreasingly small sector of the unit circle.

V. OTHER ARRAY CONFIGURATIONS

A. Two-Dimensional Angle Estimation

In this section, we indicate an extension to delay plus both
azimuth and elevation estimation using a 2-D antenna array.
For simplicity of exposition, we will consider only one type
of array, consisting of two ULA’s oriented in two different
directions, e.g., in an shape or a shape. Extensions to
more general 2-D arrays on which the ESPRIT algorithm
works are straightforward to derive, see, e.g., [12]. The main
issues are the preservation of shift-invariance properties and
the correct pairing of the estimated path parameters using a
coupled eigenvalue method.

Thus, consider a sensor array consisting of a ULA with
elements spaced wavelengths in one direction and a ULA
of elements spaced wavelengths in a complementary
direction. The two arrays should be close to each other,
preferably in a centro-symmetric-shape. The array response
matrix is replaced by

...
...

...
...

where , and , where and are
the direction cosine variables relative to the orientations of the
two arrays. is a diagonal unimodular matrix that accounts
for the phase offset between the first elements of both arrays.

In the construction of , we need to keep track of the
partitioning of . The shifts in frequency domain are unaltered,
but the spatial shifts lead to significant complications that
we wish to avoid here. Hence, let us assume that only the
frequency shifts are taken. With shifts, this then leads to
as in (8) before, satisfying the model2

(20)

2If an array element is shared by both subarrays, then in the above
equations, it appears repeated. In computing the SVD ofH, the duplicate
rows should be suppressed.

Forward–backward averaging can be applied if the array is
centrosymmetric. In that case, we can define

The selection matrices need redefinition:

Proceeding similar to the ULA case, we let ,
, etc. Due to the preserved shift-invariance

structure, these data matrices then admit factorizations similar
to (10):

(21)

where diag . The parameter triples
are given by the rank-reducing numbers of each of

the pencils , , and , respectively.
Proceeding as before, we eventually have to solve three
coupled eigenvalue problems that share the same (right)
eigenvectors. Either joint eigenvalue estimation method “”
or “ ” in Section III-E is applicable.

B. General Arrays with Identical Elements

Because the above even works for and , the
array geometry is essentially arbitrary. Indeed, for a general
array, every available baseline pair generates a block in the

matrix and can be used to estimate a direction cosine with
respect to this baseline, provided the antenna elements of the
pair are identical. If there are multiple identical baseline pairs
(the array is redundant), then these can be combined in larger
blocks.

To illustrate this with an example, consider a uniform
hexagonal array (Fig. 4). For the construction of, we simply
work with the array response vector and its
corresponding matrix , which gives (20) as before. Since the
array is centrosymmetric, we can define

so that , assuming zero phase at the center of the
array. As before, we set

The difference is in the definition of the selection matrices.
There are nine different baselines. The corresponding baseline
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Fig. 4. Uniform circular array.

blocks pairs are defined by

Along with a selection matrix for , we finally obtain up to 10
coupled matrix pencils, all having the same right eigenvectors.
Obviously, a truly joint procedure such as method “” can
now have definite advantages.

There are several issues remaining here. The number of
rays that can be estimated is limited by the smallest submatrix
that we take. If we discard baseline pairs 7–9, then we obtain

. Since we did not consider spatial
smoothing but did do forward–backward averaging, we can
have no more than two rays with equal delays. Finally, a
discussion on how to combine the various phase difference
estimates into a single azimuth-elevation estimate is omitted
here. For each ray, it involves the least-squares estimation
of the direction vector , which is
linearly related to the phase differences expressed in radians.
Combinatorial problems due to aliasing arise if some baselines
have a larger length than half the wavelength.

VI. CRAMÉR–RAO BOUND

The CRB provides a lower bound on the variance of any
unbiased estimator. The CRB depends on whether the path
fadings are modeled as unknown deterministic quantities or as
random variables with a known distribution. We first consider
the deterministic assumption, which will produce a bound on

the angle/delay estimates in the presence of random noise
but constant (unknown) fadings. In this case, we do not
have to assign a distribution to the fadings. If we apply
the “vec” operation to the noise-perturbed model in (3) and
with some abuse of notation call the resulting vector “,”
we obtain vec , where ,

, and is the noise on the channel estimates.
To relate this to the noise on the data matrix, let us assume
that the latter noise has a zero-mean white complex Gaussian
distribution with variance . The channel estimates are given
by , and if the training signals have
perfect autocorrelation properties [ ], then the
estimation noise on the channel is zero-mean white complex
Gaussian with variance .

The CRB for DOA estimation without delay spread was
derived in [22]. The model therein is the familiar

with the noise assumed
Gaussian and spatially and temporally uncorrelated and
some unknown deterministic sequence. We can readily adapt
the results in [22] to our model. Omitting the details, we have

CRB real (22)

where , , and
. Here, prime denotes differentiation, where

each column is differentiated with respect to the corresponding
parameter, and all matrices are evaluated at the true parameter
values:

and similar for . The diagonal elements of the
CRB define the minimal variance that can be obtained for an
unbiased estimate of the corresponding parameter.

For a Rayleigh-fading channel, the path fadingshave a
zero-mean complex Gaussian distribution, with some covari-
ance matrix . The CRB in this case has been developed
in [5] as

CRB

real (23)

where

element-wise matrix product (Schur–Hadamard
product);

matrix of ones;
covariance matrix of the channel estimates, given
by .

VII. SIMULATION RESULTS

In this section, we illustrate the performance of the algo-
rithm, referred to as shift-invariance joint angle and delay
estimation (SIJADE). We assume one source emitting signals
that arrive at an array of sensors via paths.
We also assume the communication protocol uses training
bits, from which the channel is estimated using least squares.
We collect samples of during symbol periods.
The pulse shape function is a raised cosine with 0.35 excess
bandwidth, truncated to a length of symbols. In the
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Fig. 5. Standard deviation of estimates versus noise.

Fig. 6. Standard deviation of estimates versus angle/delay separation.

basic setup, we choose angles of arrival , time
delays , constant fading amplitudes [1, 0.8], and
randomly selected but constant fading phases. The stacking
parameters are and , the oversampling rate is

, and the noise power is 15 dB (which translates to
an SNR of roughly 16–18 dB, varying with fading phases).
In subsequent simulations, some of these parameters are
varied. The experimental standard deviation of the estimates
is based on 500 Monte Carlo runs and is compared against the
deterministic CRB. As explained in Section II-B, the estimates
of the algorithm are slightly biased, but since this is usually
an order of magnitude smaller than the standard deviation
of the estimates, a comparison with the CRB is meaningful.
The diagonalization method used in the final step is either
method “ ” or method “ ”: the results of these methods
are almost always indistinguishable except in critical cases,
as demonstrated later in this section.

1) Basic SIJADE Performance:Fig. 5 shows the experi-
mental variance of the angle and delay estimates as a function
of the noise power . All parameters are as listed above.
The two curves in each figure correspond to each of the two
rays (for the CRB as well). It is seen that the difference
in performance compared with the CRB is approximately
3–5 dB. The bias of the estimates was at least an order of
magnitude smaller than their standard deviation.

2) Resolution of SIJADE:The achievable resolution is il-
lustrated in Fig. 6 by varying the angle and delay of the second
ray, keeping the angle and delay of the first ray fixed at ,

. The same parameters as before were used. As expected,
for “well-separated” delays, the resolution of the angles is only
limited by the amount of noise, whereas the resolution of the
delays suffers whenever the’s are close since with two an-
tennas, we cannot resolve two equal-delay rays using ESPRIT.

3) Influence of the Stacking Parameters and : For
well-conditioned scenarios, the precise values of and
are not critical, as long as they allow the estimation ofrays.
The choice of the stacking parameters matters more when the
paths are not well separated in space or time.

For close angles, such as in Fig. 7(a), the delay estimation
is much influenced by the choice of , whereas the angle
estimation is not (and thus is not shown here). Increasing

usually results in better performance. This is because the
angle-delay matrix [ ] in (11) or (13)
gets taller so that its columns are more linearly independent
from each other, resulting in increased accuracy of the angle
and delay estimates. However, the delay matrix in (13)
gets less wide, and as we increase past a certain point,
the performance starts to degrade again because the rows are
insufficiently independent. [This does not show very well in
Fig. 7(a) because the delays are well separated.] Note from the
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(a) (b)

Fig. 7. Standard deviation of estimates versus choice ofm1, m2.

Fig. 8. Standard deviation of estimates versus estimated channel length.

Fig. 9. Impact of diagonalization method (critical case).

graph that the optimal value of is 6. Interestingly, Fig. 3
predicts that precisely this setting allows a maximal number
of rays to be estimated in the case and .

Similar conclusions follow from Fig. 7(b), where the delays
are close. In this case, the angle estimation is affected by the
choice of , whereas the delay estimation is not. Increasing

from 1 to 2 marginally improves the accuracy of angle

estimation, but too large an will take a toll on the
conditioning of since its columns become shorter and will
not be as “independent.” Note from the graph that the optimal
value of is 2, which is also the optimal setting in Fig. 3
for and .

4) Choice of Channel Length: Fig. 8 looks into the ef-
fect of estimating the channel length incorrectly. The true
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Fig. 10. Comparison with other joint angle-delay methods.

Fig. 11. Comparison with other joint angle-delay methods (critical case).

channel length is 8. It is seen that when we increase the
estimate of the channel length, the performance slowly
degrades. This is because more noise enters into the tail of
the channel estimate and, hence, into the data matrix. The
performance degradation is smooth. A small overestimation
of is certainly acceptable. Underestimatingis much more
serious since this affects the validity of the model.

5) Influence of Joint Diagonalization Method:Usually, the
performance of the algorithm is not influenced very much
by the choice of the joint diagonalization method in the
final estimation of the parameters (methods “,” “ ,” “ ”
in Section III-E). However, there are critical cases where
the difference is clear. One such case, where the delays
are very closely spaced, is depicted in Fig. 9. Method “”
performs poorly in estimating the delays. This is because in
the critical case the eigenvector matrixbecomes complex so
that and are no longer real
valued. Hence the real and imaginary parts of the eigenvalues
are mixed, causing the angle and delay estimates to be mixed
as well. (Since the delays are quite close, this does not show up
in the angle estimates.) The difference between method “”
and “ ” is usually not significant.

6) Comparison to Other Algorithms:Finally, we compare
SIJADE to a few other angle-delay estimation algorithms. We
will focus on a variant of the algorithm by Swindlehurst [7],

which is based on IQML (cf., [23]) and the method in [24],
which is known as 2-D IQML. In both cases, we start from
the model as derived in Section II.3 The IQML
method of [7] estimates the delays from the Vandermonde
structure of while disregarding the structure in. After

has been found, can be computed (up to scaling by
) as , and the angle (or angles) corresponding to each

delay are estimated by an ML search on each column of
by fitting to the closest vectors in the array manifold. Two-
dimensional IQML is a generalization of IQML, originally
for joint azimuth-elevation estimation, and uses the model

. It tries to simultaneously fit the Vandermonde
structures of both and . Two-dimensional IQML requires
that , so that we let the number of antennas be
in the comparison. Results as a function of SNR are shown in
Fig. 10. The performance of all three algorithms is comparable
in this well-conditioned case. The computational complexity
of IQML-based algorithms is quite high since they are iterative
and need to compute eigenvalues at each iteration.

Fig. 11 compares the three algorithms in a more critical
case where the delay spread is small. For the chosen parameter
values, the signal singular values ofare only slightly above

3The way to arrive at this model is not the same in all algorithms, but
here, we do not wish to compare discrepancies caused by different methods
of deconvolution.



418 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 2, FEBRUARY 1998

the noise level. Because the IQML and 2-D IQML algorithms
as described in [7] and [24] do not work with an extended
matrix, the fact that is almost singular makes the algorithms
fail. They lack sufficient resolution for delays that are closely
spaced.

VIII. C ONCLUSION

We have described an algorithm that jointly estimates the
directions of arrival and time delays of multiple paths using an
estimate of the channel impulse response. The SIJADE algo-
rithm is closed form and can estimate the parameters of more
paths than the number of antennas. The usual “smoothing”
techniques available to ESPRIT can be elegantly incorporated
and improve the resolution of closely separated rays.

A limitation of the algorithm is that it starts from impulse
response data. If we have input-output data available, as is
typically the case, then the estimation of first the impulse
response and second the parameters is inherently suboptimal.
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