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Abstract

The need to characterize normal and pathological human movement has consistently

driven researchers to develop new tracking devices and to improve movement anal-

ysis systems. Movement has traditionally been captured by either optical, magnetic,

mechanical, structured light, or acoustic systems. All of these systems have inherent

limitations. Optical systems are costly, require fixed cameras in a controlled environ-

ment, and suffer from problems of occlusion. Similarly, acoustic and structured light

systems suffer from the occlusion problem. Magnetic and radio frequency systems

suffer from electromagnetic disturbances, noise and multipath problems. Mechanical

systems have physical constraints that limit the natural body movement.

Recently, the availability of low-cost wearable inertial sensors containing ac-

celerometers, gyroscopes, and magnetometers has provided an alternative means to

overcome the limitations of other motion capture systems. Inertial sensors can be

used to track human movement in and outside of a laboratory, cannot be occluded,

and are low cost. To calculate changes in orientation, researchers often integrate the

angular velocity. However, a relatively small error or drift in the measured angular

velocity leads to large integration errors. This restricts the time of accurate measure-

ment and tracking to a few seconds. To compensate that drift, complementary data

from accelerometers and magnetometers are normally integrated in tracking systems

that utilize the Kalman filter (KF) or the extended Kalman filter (EKF) to fuse the

nonlinear inertial data. Orientation estimates are only accurate for brief moments

when the body is not moving and acceleration is only due to gravity. Moreover, suc-
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cess of using magnetometers to compensate drift about the vertical axis is limited by

magnetic field disturbance.

We combine kinematic models designed for control of robotic arms with state

space methods to estimate angles of the human shoulder and elbow using two wire-

less wearable inertial measurement units. The same method can be used to track

movement of other joints using a minimal sensor configuration with one sensor on

each segment. Each limb is modeled as one kinematic chain. Velocity and accel-

eration are recursively tracked and propagated from one limb segment to another

using Newton-Euler equations implemented in state space form. To mitigate the ef-

fect of sensor drift on the tracking accuracy, our system incorporates natural physical

constraints on the range of motion for each joint, models gyroscope and accelerom-

eter random drift, and uses zero-velocity updates. The combined effect of imposing

physical constraints on state estimates and modeling the sensor random drift results

in superior joint angles estimates. The tracker utilizes the unscented Kalman filter

(UKF) which is an improvement to the EKF. This removes the need for linearization

of the system equations which introduces tracking errors.

We validate the performance of the inertial tracking system over long durations

of slow, normal, and fast movements. Joint angles obtained from our inertial tracker

are compared to those obtained from an optical tracking system and a high-precision

industrial robot arm. Results show an excellent agreement between joint angles esti-

mated by the inertial tracker and those obtained from the two reference systems.
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1 Introduction

The need to characterize normal and pathological human movement has consistently

driven researchers to develop new tracking devices and to improve movement anal-

ysis systems. Interest in tracking human movement has been motivated by the wide

array of its applications. Research groups from various disciplines study human

movement to better understand human motor function, to develop treatment methods

aimed at strengthening the mobility of individuals with motor functional limitations,

and to develop techniques for improving athletes’ performance. Movement has nor-

mally been captured by either optical, mechanical, magnetic, acoustic, or inertial

sensing systems. Although each of these systems has its own advantages, they all

suffer from various limitations. The focus of this research is primarily on using in-

ertial sensing systems to track human motion. More specifically, we use wireless

inertial measurement units to track human joint angles.

This chapter discusses some of the common applications of movement tracking

in Section 1.1 and Section 1.2. Section 1.3 introduces some of the major motion

capture technologies, and discusses their advantages and limitations. The objective

and significance of this research are discussed in Section 1.5, and an overview of the

rest of the dissertation is presented in Section 1.6.
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1.1 Biomedical Applications

Human movement tracking has many applications in the medical field including diag-

nosis of neurological movement disorders, assessment of treatment, as well as reha-

bilitation from injury that may have compromised an individual’s mobility. To assess

the disorder and the degree of motor impairment, clinicians frequently use various

clinical rating scales [88]. However, these rating scales are subjective, momentary,

coarse and fail to capture subtle changes in patients’ motor state which varies consid-

erably and continuously throughout the day [60, 79]. On the other hand, continuous

and objective measurements of a patient’s daily physical activities can be used to

study the degree of motor impairment, activity fluctuation during the day, and to as-

sess the effect of different treatments and therapies. These measurements can also be

used in rehabilitation to help restore motor functions of individuals who suffer from

stroke or traumatic brain injury [131].

Among the common neurological problems that affect human motor functions are

Parkinson’s disease (PD), essential tremor (ET), Huntington’s disease (HD), multiple

sclerosis (MS), stroke, traumatic brain injury, and spinal cord injuries.

The incidence of Parkinson’s disease is about 0.3% in the United State’s popula-

tion [92] and is approximately 1% in individuals over the age of sixty [107]. Accord-

ing to the Parkinson’s Disease Foundation, 60, 000 Americans are newly diagnosed

with PD each year. Cardinal motor symptoms of PD include rigidity and freezing

in place, slowed movements (bradykinesia), shaking in an arm or leg when it is not

being moved (rest tremor), small shuffling steps (gait), as well as postural instabil-

ity [69]. Levodopa is the primary drug treatment for PD, however its long-term use

is limited by motor complications and involuntary movements known as Levodopa-

induced dyskinesia [93]. There is no specific laboratory blood analysis or marker

for PD, and diagnosis is performed by clinicians with a standard neurological ex-

amination. This involves various simple tests of reactions, reflexes and movements,
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as well as mental tasks. Clinicians use rating scales such as the Unified Parkinsons

Disease Rating Scale (UPDRS) [37] to score and follow the progression of the dis-

ease. Several studies have recently shown that some motor symptoms of PD can

be measured with inertial sensors during clinical assessments with prescribed ac-

tivities [115, 32, 106, 105]. El-Gohary et al. showed that wearable inertial sensors

can be used to develop metrics for objective measurements of tremor [34] and of

Levodopa-induced dyskinesia in subjects with PD [21]. Zwartjes et al. developed an

inertial ambulatory monitoring system that provides a complete motor assessment of

tremor, bradykinesia, and hypokinesia [134]. Huang et al. used inertial sensors on

the arms of PD patients to measure arm swing. They reported that subjects exhibit

asymmetric and reduced arm swing, and that asymmetric arm swing can easily be

detected early in the disease’s progression [61].

Essential tremor is another common neurological disorder among adults and is

estimated to affect up to 4% of the population [12]. It is characterized by an involun-

tary and rhythmic tremor of patients’ limbs, most typically the hands and arms [30].

Elble et al. successfully used inertial measurement units with a triaxial accelerometer

to measure wrist tremor in patients with ET [35]. Badke studied the effects of chang-

ing head position and orientation on head tremor in subjects with ET using angular

velocity [9].

The frequency of Huntington’s disease varies among different populations rang-

ing from an estimated 4 to 10 individuals per 100,000 [62]. Major symptoms include

involuntary and jerky movements that may affect the arms, legs or trunk. Other mo-

tor disturbances include repetitive and sustained muscle contractions and abnormal

movement patterns which impair initiation and execution of movements [104]. Del-

val et al. used video motion analysis to study gait disturbance in subjects with HD,

and observed a clear decrease in gait speed, an increase in stride time [28], and a

reduction in the range of joint angles [29].
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Stroke is a leading cause of motor impairment particularly in the elderly popu-

lation [85]. More than 1,100,000 Americans have reported difficulties with motor

functional limitations following a stroke [59, 49]. Therapies developed for motor

rehabilitation after a stroke require lengthy and repetitive training to promote motor

relearning and recovery [18, 41, 99]. Abdullah et al. demonstrated that monitoring

position and orientation of upper limb movement during robot-assisted therapy could

be used to help therapists quantify the resistance force at each joint and the trajectory

of each prescribed rehabilitation exercise [1].

Multiple Sclerosis is a chronic disabling disease that affects the central nervous

system. Studies estimated that 400,000 patients suffered from MS in North America,

and approximately 1.1 million people worldwide in 2007 [53]. Balance and gait

limitations are some of the common symptoms of MS. Spain et al. used body-worn

inertial sensors to detect differences in balance and gait between individuals with

MS, with healthy controls [112]. The study showed that during gait, MS patients had

greater trunk angular range of motion. The study also showed that individuals with

MS had significantly greater sway during quiet stance.

Movement capture and analysis has also been used to detect body posture and

postural instability in elderly subjects. The older population, persons 65 years or

older, represented 13.1% of the US population in the year 2010 and are expected to

grow to be 19% of the population by 2030 [43]. Hayes et al. used inertial sensors

to study limb motions and joint kinematics during swing phase of human gait [56].

Periods of sitting, standing, lying, and walking can be used to evaluate the quality of

life of elderly and subjects with chronic diseases such as arthritis and cardiovascular

diseases [87].
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1.2 Sports and Virtual Reality Applications

Among other applications, movement analysis has become a standard tool used in

professional sports to monitor, analyze and improve athletic performance by rec-

ognizing and fine-tuning the quality of the athlete’s movement. Most actions during

running, kicking, jumping or throwing are rotational and involve the hip, knee, ankle,

shoulder, elbow and wrist joints. Wright et al. used goniometers to measure elbow

range of motion including flexion, extension, supination, and pronation in profes-

sional baseball pitchers [123]. In his thesis, Lapinski successfully used wearable

sensors to capture physical activities during athletic performance [72].

In-depth analysis of the changes in joint angles with changes in athlete pos-

ture may be useful for fine-tuning athlete specific techniques to improve perfor-

mance [68, 13] and reduce potential injuries [84]. The key to success of compre-

hensive analysis is the ability to capture greatest to smallest movement executions

over multiple degrees of freedom [16]. Werner et al. examined the relationship be-

tween elbow stress in professional baseball pitchers and the kinematic parameters of

pitching mechanics [118]. They concluded that 97% of the variance in elbow stress

was related to factors that depend on shoulder abduction angle and angular velocity,

shoulder external rotation torque and elbow flexion angle. By optimizing these vari-

ables, clinicians and coaches could help reduce athletes’ elbow stress and shoulder

injuries.

In virtual reality applications, computer graphics systems use movement analysis

to provide position and orientation control in a head-mounted display [36, 4, 117].

Heinz et al. used wearable inertial sensors for real-time task recognition in gaming

applications [57].
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1.3 Motion Capture Technologies

The primary challenge in human movement tracking and analysis is to design de-

vices and algorithms that can accurately monitor movement regardless of the activity.

Human movement can be measured using a wide variety of techniques and sensors

including optical, mechanical, magnetic, acoustic, or wearable inertial sensing sys-

tems. The measured data is then processed using tracking algorithms either on-line

or off-line to estimate the body kinematics.

Optical systems rely on measurements of reflected or emitted light. Motion is

captured by placing active or passive reflective markers on the body. Cameras are

used to record the markers’ positions, and different algorithms are used to compute

the position and orientation of the body [101]. Optical systems are the most com-

mon and accurate in tracking movement. However, all optical systems suffer from a

major disadvantage: there must be a clear line of sight between the source and the

sensor. The systems are costly, can only be used in a laboratory environment, and are

susceptible to skin movement artifact, all of which limit their usage [117].

Mechanical motion capture systems typically involve an articulated series of

metal or plastic pieces linked together with electromechanical transducers such as

potentiometers. As the individual moves, the articulated mechanical parts change

shape causing the the transducers to move. Mechanical sensors can provide very

precise and accurate pose estimates free of occlusion for a single joint. However,

they can be cumbersome, hard to use for monitoring daily activities, and can only

allow limited range of motion.

Magnetic motion capture systems utilize sensors placed on the body to measure

the magnetic fields generated by magnetometers or current induced in an electro-

magnetic coil when a changing magnetic field passes through the coil [89]. Three

orthogonally oriented magnetic sensors in a single sensor unit can provide a 3D vec-

tor indicating the units orientation with respect to excitation [91]. Besides their range
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Figure 1.1: Optical motion systems utilize digital cameras to capture markers attached to

different body segments. During his performance in “The Polar Express” movie, Tom Hanks

wore 152 markers on his face and 48 body markers. The body and facial motion were cap-

tured by 72 cameras [71].

limitations, magnetic systems have negative reaction to metal or magnetic fields in

the environment. The most common approach to addressing these distortions is to

ensure that the surroundings contain no objects that might cause magnetic distur-

bance [124]. This limits their use to restricted areas where disturbances can be elim-

inated.

Acoustic motion capture systems are often used in robots for navigation and ob-

stacle avoidance [125]. The systems use emitters and receivers of sound waves [58].

The emitters send out ultrasonic pulses and the delay it takes for these pulses to reach

the receivers is used to calculate the distance between the emitter and the receiver.
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Figure 1.2: Example of mechanical sensor device (Gypsy). An electromechanical suit man-

ufactured by Animazoo that contains a combination of 37 potentiometers and 2 gyroscopes.

Published with permission from Animazoo UK Ltd, Brighton, UK.

Acoustic systems require a line of sight between the emitters and the receivers, and

are sensitive to perturbations such as humidity, temperature changes and wind.

Inertial measurement systems continue to change rapidly and there have been

significant advances in reducing their cost and size in the last few years [11]. Inertial

sensors have been widely used to overcome the limitations of other motion capture

systems described above. Inertial sensors include, but are not limited to, accelerom-

eters which are used to measure the translational acceleration in addition to gravity,

and gyroscopes to measure angular velocities. The sensors can be attached to various

body segments and can be used in and outside of a laboratory. Detected movement

signals can be continuously recorded while subjects perform daily activities either in

the clinic or at home over an extended period of time. Inertial measurement units

offer practical and relatively low-cost systems for data acquisition. Collected data

can be processed off-line or during real-time movement. More importantly, rapid ad-

vance in measurement units and tracking algorithms will soon enable individuals to

quantify their own movement, and to receive feedback to assess their improvement
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Figure 1.3: Opal Inertial measurement units used in this research (APDM Inc., Portland,

Oregon, USA). Each unit contains triaxial accelerometers, gyroscopes, and magnetometers.

with exercise and treatment.

1.4 Inertial Measurement Unit

In this research, we collect inertial data from Opal wireless inertial measurement

units (IMU) that can both log kinematic data and stream it in real-time continuously

for over 8 hours (APDM Inc., Portland, Oregon). Opals use a wireless network to

transmit data to a computer to analyze data in real-time. The system maintains time-

synchronization of ≤ 10 µs between Opals. The devices can also record data contin-

uously and store it on an on-board memory for up to 16 hours. The device contains

triaxial accelerometers, triaxial gyroscopes, and triaxial magnetometers. All chan-

nels are sampled at 128 Hz with 14 bits of resolution. The range of the accelerometers

is ±6 g and the range of the gyroscopes is ±2000 deg/s.
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Figure 1.4: Reflective markers and Opal inertial sensors placement on the arm of one of the

subjects.

Fig. 1.4 shows an example of Opal sensors attached to the upper arm and forearm

during data recording. Each unit has an elastic strap to fit tightly to the arm. The

figure also shows reflective markers which are part of the motion capture system

used in this study as a reference system (Motion Analysis Corporation, Santa Rosa,

California).

1.5 Objectives and Significance

To overcome many of the limitations associated with conventional motion measure-

ment techniques, researchers are increasingly using inertial sensors for tracking and

analyzing human motion. Traditionally, the orientation of a body is estimated by

integrating the angular rates measured by gyroscopes attached to the moving ob-

ject, starting from a known initial orientation [14]. Position is obtained by perform-

ing double integration of the translational acceleration measured by accelerometers.

However, small and inexpensive inertial sensors suffer from a random bias drift that

builds up over time. Integrating sensor measurements with the added growing drift
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makes it impossible to accurately determine body position and orientation for more

than a few seconds. To reduce the effect of gyroscope drift on orientation estimates,

some research groups use accelerometers and magnetometers in a complementary

filter. In these systems, accelerometers are used to estimate inclination during static

periods, and magnetometers are used to measure orientation around the vertical axis.

However, this restricts accurate tracking to limited circumstances when the body is

stationary and the surroundings are free of magnetic field disturbances.

The main objective of the research presented in this dissertation is to overcome

the technological and methodological difficulties and limitations associated with pre-

vious human joint tracking techniques by developing an algorithm that utilizes wire-

less wearable inertial sensors to directly and continuously estimate human joint an-

gles in real-time or off-line with high accuracy for slow, normal and fast complex

movement with a minimal number of sensors. The algorithm combines kinematic

models designed for control of robots with state space methods to accurately esti-

mate human joint angles.

The success of the proposed technique in capturing motion and tracking dynamics

of the human joints could be significant and its potential impact can be summarized

as follows:

• Early diagnosis of motor function impairment: the proposed method has the

potential to make it substantially easier for physicians to diagnose motor dis-

ability at an early stage of the disease.

• Therapy optimization: the proposed algorithm can be integrated in small and

unobtrusive continuous movement tracking systems to provide valuable in-

formation to physicians. This continuous monitoring will help physicians to

determine more accurate drug therapy dosages tailored for individuals with

variable responses to therapy.
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• Physical medicine and rehabilitation: the proposed algorithm can be integrated

in patients’ continuous monitoring systems. This continuous monitoring will

help clinicians in assessing progress of individuals undergoing physical reha-

bilitation in their domestic environment.

• Home biofeedback: the proposed inertial tracker can help detect subtle changes

in individuals’ range of motion. The tracking algorithm can be incorporated

in systems to provide feedback on performance of patients working to restore

damaged motor functions.

• Evaluation of new medication: the proposed method could be applied to quan-

titatively evaluate the efficacy of new medications.

1.6 Dissertation Overview

The remaining of this dissertation is organized as follows:

Chapter 2 (Literature Review) introduces the common and latest inertial tracking

systems and algorithms to track human movement, and discusses their limitations.

Section 2.1 reviews some of the tracking algorithms and how they are used with dif-

ferent sensor configuration to study human movement. Limitations of these systems

and algorithms and how they are overcome in our proposed research are presented in

Section 2.3.

Chapter 3 (Kinematics of Human Motion) introduces the methods used in

robotics to describe rigid bodies and joint configurations, kinematic chains and the

Denavit-Hartenberg convention. The recursive algorithm for propagation of angular

velocity and acceleration in kinematic chains known as Newton-Euler equations is

introduced in Section 3.3. The application of these methods is illustrated by intro-

ducing models of the human arm and shoulder.
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Chapter 4 (State Space) is a brief introduction to state space models and filtering.

Section 4.1 introduces the problem of estimation of unobserved joint angles from

noisy measurements of triaxial accelerometers and gyroscopes. Section 4.2 deals

with modeling the dynamics of human joint movement and its application to the

shoulder and elbow joint angles. Section 4.4 introduces validation results obtained

by applying the proposed angle tracker to synthetic data generated by the model

developed in Chapter 3.

In Chapter 5 (Performance Assessment), we evaluate the performance of the in-

ertial tracking system using an optical reference tracking system. Section 5.2, intro-

duces validation results obtained by applying the angle tracker to shoulder and elbow

data collected from 8 subjects while performing various arm movements.

Chapter 6 (Modified Arm Model) introduces an improvement to the kinematic

model developed in Chapter 4 to mitigate the effects of sensors drift. The new model

incorporates physical constraints on the range of motion for each joint, and uses

zero-velocity updates to minimize tracking errors. Performance of the tracker with

the modified model is presented in Section 6.5. Joint angles calculated by the inertial

tracker are compared to those obtained from a high precision industrial robot arm

with six degrees of freedom, during 15-minute recordings for slow, regular and fast-

speed movement of the arm.

In Chapter 7 (Particle Filter), we use a particle filter to solve the nonlinear es-

timation problem. Using the robot arm reference system, the performance of the

particle filter-based tracker is compared to both the unscented and extended Kalman

filter-based trackers to analyze the tradeoff between the improved performance and

increased computational cost.

Chapter 8 (Summary And Conclusion) summarizes the study presented in this

dissertation, its significance and contributions.
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2 Literature Review

There are a large number of publications on tracking human movement using in-

ertial sensors for different applications. This chapter reviews some of the relevant

studies with a focus on sensor configuration, tracking algorithm and their success

and limitations in measuring limb kinematics. Section 2.1 reviews some of the con-

ventional and novel inertial tracking algorithms, in the order they were published.

Shortcomings and limitations of these tracking systems and algorithms are discussed

in Section 2.2. Section 2.3 summarizes how these limitations are addressed in the

proposed research.

2.1 Inertial Sensors Algorithms

Recent advances in Microelectromechanical systems (MEMS) have resulted in a sig-

nificant reduction in the size and cost of inertial sensors. These advances, and the

need to overcome shortcomings of other motion capture systems have led to an up-

surge in research and publications on the use of wearable inertial sensors for tracking

human movement.

Most studies using inertial sensors combine accelerometers and gyroscopes in

wearable sensor systems. Traditionally, body orientation has been estimated by inte-

grating the angular rate measured by gyroscopes, starting from a known initial ori-

entation. Similarly, position is obtained by double integration of the translational ac-

celeration measured by accelerometers. However, there is a significant problem with
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the integration of inertial sensor measurements. Inaccuracies inherent in the mea-

surements quickly accumulate and degrade tracking accuracy. Roetenberg showed

that integration of noisy gyroscope data resulted in a drift of 10 − 25◦ after one

minute [96]. Double integration of noisy accelerometer measurements results in a

position error that grows cubically in time [46].

Willemsen et al. developed a technique to measure human joint flexion/extension

angle. The system calculated the knee angle directly without integration from eight

uniaxial accelerometers attached to subject’s thigh and leg [120]. The lower limb

was molded as a double pendulum, with the knee as a hinge joint allowing for

planar rotation. The system was only accurate during slow movement [119]. To

estimate knee joint angles, Williamson et al. used two inertial measurement units

(IMUs) with gyroscopes and accelerometers attached to the thigh and shank. Knee

flexion/extension was calculated as the difference between thigh and shank tilt an-

gles [121]. Other researchers estimated joint angles by integrating gyroscopes and

accelerometers [114, 2]. Using a single gyroscope on the shank, Tong and Granat

reported an angle error of 5◦. Similarly, Mayagoitia et al. estimated shank and thigh

inclination angles by integrating accelerometers and gyroscopes data [80]. They used

eight accelerometers and two gyroscopes, and reported an error of less than 3◦ for

shank inclination angles.

To correct the drift of gyroscopes in head tracking, Foxlin et al. used occasional

measurements from gravimetric tilt sensing and a complimentary Kalman filter [45].

A complimentary Kalman filter operates on the errors between orientation angle es-

timated by integrating gyroscope data and tilt angles from sensors. The error signals

drive the Kalman filter that estimates the errors in orientation. This technique has the

drawback that any head accelerations corrupts the performance of the tilt sensor, and

the Kalman filter incorporates the corrupted data into the orientation estimate. To

circumvent this problem in a subsequent paper [44], drift correction was performed
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only during stationary periods when it was assumed that accelerometers were sens-

ing only gravitational acceleration. Thus, the algorithm requires that all head motion

stop in order to correct inertial drift errors.

Luinge et al. showed that orientation obtained by integrating gyroscope rota-

tional rate can be improved by fusion with inclination information obtained from

accelerometers [77, 74]. In their system, the orientation obtained by integrating an-

gular rate was split into tilt and orientation around the vertical axis. Gravitational

acceleration was used to calculate tilt during static periods. The difference between

gyroscope and accelerometer tilt was used as an input to a Kalman filter to obtain

a more accurate tilt angle. Estimates were then combined with rotation around the

vertical axis to produce more accurate orientation angles. However, results show that

estimates were accurate for only brief periods when the subject was not moving and

when acceleration measurements were only due to gravity [75, 76].

In a gyroscope-free system, Giansanti et al. used multiple accelerometers to de-

termine limb orientation and position [48]. They showed that, orientation estimation

error was 10◦ for a short observation interval of one second. In a second study, they

combined gyroscopes with accelerometers to track position and orientation during a

prescribed three task protocol: stand-to-sit, sit-to-stand and gait-initiation [47]. Esti-

mation errors were minimal, however they restricted the application to simple tasks

and limited the performance assessment to a short duration of four seconds.

Bachmann et al. used accelerometers and magnetometers in a quaternion-based

complementary filter to compensate the drift in orientation obtained from angular ve-

locity [8, 5]. The system combined a triaxial accelerometer, a triaxial gyroscope and

a triaxial magnetometer assembled to produce a sensor module referred to as Mag-

netic, Angular Rate and Gravity sensor (MARG). In a subsequent study, Bachmann

et al. investigated the effect of electrical appliances and furniture made of ferromag-

netic materials on the accuracy of orientation tracking using MARG systems [7, 6].
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They observed errors that ranged from 12◦ to 16◦ and stated that these errors can

be avoided by maintaining an approximate distance of two feet from the source of

disturbance. This limits the success of their tracking system and restricts its use to

custom laboratory environment.

Roetenberg et al. argued that errors due to magnetic field disturbance could be

compensated by adequate model-based sensor fusion [97]. They developed a Kalman

filter that operated on two inputs to estimate orientation of human body segments.

The first is the difference between inclination from accelerometers and gyroscopes.

The second input is the difference between inclination from magnetometers and gy-

roscopes. They included gyroscope bias error, orientation error, and magnetic distur-

bance as part of the process model. The filter was tested under static and dynamic

conditions with ferromagnetic materials close to the sensor. Results show that ori-

entation estimates improved significantly when the magnetic interference correction

was used. However, the authors reported that the tracker was tested under controlled

and limited conditions, and accuracy of orientation angle estimates could change with

faster and more complex movements. In a subsequent study, Roetenberg et al. com-

bined a body-mounted magnetic system with gyroscopes and accelerometers to track

position and orientation using a complementary Kalman filter [98]. Orientation and

position obtained by single and double integration of gyroscope and accelerometer

data were updated with magnetic measurements to improve accuracy. The tracker

was tested without metals in the vicinity, and errors were expected to grow if ferro-

magnetic materials were anywhere close to the magnetic system.

Sabatini et al. used a single measurement unit containing a biaxial accelerometer

and one gyroscope to perform gait analysis [102]. Cyclical features of human gait

were exploited to estimate stride length, walking speed, and incline from an IMU

attached to the foot. Transition from one gait phase to the next was determined

using the pitch angle obtained by integrating the gyroscope data. Position of the
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sensed point on the foot was obtained by double integration of the 2D acceleration

data during the foot swing phase. Since the accelerometers could not be used to

detect rotations about the vertical axis, the algorithm assumed that motion is planar,

in the sagittal plane only. In a subsequent study, Sabatini developed a quaternion-

based orientation tracking algorithm using triaxial gyroscopes, accelerometers and

magnetometers [103]. In his extended Kalman filter (EKF) tracker, he represented

rotation using quaternions rather than Euler angles to avoid trigonometric functions

and singularity issues, and to improve computational efficiency.

Yun et al. used MARG sensors and a quaternion-based EKF to track human body

orientation [126]. A rotary tilt table with two degrees of freedom (DOFs) was used to

assess the performance of the tracker. The sensors were rotated around the x-axis at

a slow rate of 60◦/ s. The authors reported a maximum error of 9◦ for the roll angle

during a dynamic period of less than 2 s [127]. The algorithm was also tested with

human arm movement, but there was no reference system and tracking results were

not reported. In a recent study, Yun et al. presented a simplified algorithm for 3 DOF

orientation estimation using only accelerometers and magnetic measurements [128].

The gyroscope-free system was only suitable for tracking orientation of a static or

slow moving body.

In a series of studies, Zhou et al. used two wearable inertial sensors containing

gyroscopes and accelerometers to track human arm movement in a home-based re-

habilitation system [129, 133]. They used Euler angles and forward kinematics to

localize the wrist and elbow. Three subjects were asked to perform a set of tasks

while keeping the shoulder still. Each task lasted 20 s and included reaching for a

target, letting the arm to mimic drinking, and flexing the elbow. Results showed a

high correlation between position estimates from the inertial tracker and estimates

from a reference optical tracking system [130, 132].

Bergmann et al. developed a portable inertial system for measuring the thigh,
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knee and ankle joint angles [15]. They used six IMUs and tested their system on

subjects during stair climbing. Performance of their system was compared to that

of an optical reference system, and they reported an average root mean square error

of 4◦. However, their system was used to track only flexion/extension angles around

one axis. In similar studies, Liu and Bagala et al. used wearable inertial sensors

containing only triaxial accelerometers to estimate thigh, shank and knee angles.

The study was limited to measuring only flexion/extension, and adduction/abduction

during limited activities [73, 10].

To reduce the effect of sensor drift on orientation and position estimates, some

tracking algorithms imposed limb physical constraints to confine estimates within

natural range of motion. Dejnabadi et al. developed an algorithm to estimate uniax-

ial joint angles based on two sensor modules mounted on the shank and thigh. Each

module contained two accelerometers and one gyroscope [26]. They incorporated

anatomical limb constraints in the tracking system, and reported a reduction in es-

timation errors. The algorithm was validated by measuring knee flexion/extension

angles of subjects during gait [27]. Favre et al. extended their earlier work [39], and

corrected knee angle estimates based on known joint anatomical constraints using in-

clination data from accelerometers during static periods [38]. Luinge et al. success-

fully used physical constraints in the elbow to measure forearm orientation relative

to the upper arm [78]. They minimized the error around the vertical axis by using

the knowledge that elbow joints do not permit abduction/adduction. Despite the im-

provement in orientation estimates, they still reported an average error of 20◦. Cooper

et al. also used biomechanical constraints to estimate knee joint flexion/extension

with 2 IMU’s containing triaxial accelerometers and gyroscopes. Performance of the

algorithm was evaluated with data obtained from 7 healthy subjects during walking

and running. An average measurement error ranged from 0.7◦ for slow walking to

3.4◦ for running [22]. However, the algorithm used a simplified model of the knee
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joint to only measure a single angle.

2.2 Limitations of Previous Studies

As summarized in the previous section, success of inertial tracking algorithms is

limited due to various factors. A typical approach in most studies discussed above

involves integrating angular velocity from gyroscopes to obtain orientation, and fus-

ing accelerometer measurements into a Kalman filter to correct the accumulation in

integration drift. In these studies, orientation estimates were accurate for brief peri-

ods when acceleration was only due to gravity, and accelerometers could be used as

inclinometers. Other studies utilized magnetometers to update estimates of orienta-

tion angles around the vertical axis. However, using these sensors in the vicinity of

magnetic field disturbances lead to large orientation errors [20, 55, 7].

Use of the linear Kalman filter in highly nonlinear dynamics introduces more

tracking errors. In some algorithms, researchers use the extended Kalman filter

(EKF) to linearize the process and measurement models. The EKF is based upon

linearizing the state transition and observation matrix with a first-order Taylor ex-

pansion [64]. It models the state variables with first and second order moments,

which is most appropriate when the distribution is Gaussian. The linearization leads

to poor performance if the dynamics are highly nonlinear [116]. The EKF also re-

quires calculation of Jacobian matrices, which can be tedious, error prone, and time

consuming.

Another factor limiting the success of inertial tracking algorithms is the number

of measurement units required to track complex human movement. Large number

of sensors increases the state and observation model dimensions. Consequently, in-

crease of model dimensions and the highly nonlinear dynamic equations make the

filter algorithms computationally expensive and prone to stability problems.
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2.3 Addressing The Limitations

Contrary to previous studies, the research presented in this dissertation demonstrates

the feasibility of tracking human joint angles with minimal configuration of inertial

measurement units including triaxial gyroscopes and accelerometers. As explained

in Section 4.5, joint angles are directly estimated using a new tracking algorithm that

does not require magnetic sensors. In addition to eliminating errors due to magnetic

disturbances, this reduces the size of process and measurement models, and conse-

quently reduces the tracker’s computational cost. The algorithm utilizes both gravity

and translational acceleration, together with rotational rate, making it suitable for

tracking slow and fast movement with excellent accuracy. The algorithm incorpo-

rates prior knowledge of physical constraints and human natural range of motion to

obtain better joint angle estimates. Another performance improvement is achieved by

modeling sensor drift in the system model to mitigate the effect of random drift dur-

ing long tracking periods. Furthermore, we employ zero-velocity updates to reduce

the effect of gyroscope drift on estimated joint angles around the vertical axis.

The tracking system presented in this research combines the well-established

kinematic models designed for control of robots with state space methods to directly

estimate the joint angles from wireless wearable inertial sensors. A novel state space

model is used as an integral part of the tracking system. The observation model

is based on the Newton-Euler dynamics utilized in the control of robotic arms [23].

Physical constraints and human natural range of motion are incorporated in the model

to enhance the tracker’s performance, and to obtain accurate angle estimates during

long tracking periods.

The tracker utilizes an improvement to the EKF, namely the unscented Kalman

filter (UKF). The UKF removes the need for linearization while providing estimates

that capture the statistics of the target distribution more accurately than the EKF [70].

The UKF approximates the distribution rather than the nonlinearity, therefore it is
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accurate to at least the second order and to the third order, if the input is Gaus-

sian [63]. The UKF eliminates the need for Jacobian matrices and for inverse matrix

calculation in EKF. A superior solution to the highly nonlinear and possibly non-

Gaussian estimation problem is to use sequential Monte Carlo methods, commonly

known as particle filters. A particle filter (PF) is often used as an alternative to the

EKF or UKF with the advantage of better tracking if used with sufficient number

of particles. However, increasing the number of particles dramatically increases the

computational cost, especially with observation and process model having large di-

mensions. In Chapter 7, we evaluate the performance of a PF tracker, and compare it

to that of the EKF and UKF in estimating joint angles.
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3 Kinematics of Human Motion

Kinematics is the study of body motion without consideration to the force that caused

it. Kinematic analysis involves the description of movement to determine how fast a

body is moving, or how far it travels. An example is the observation of leg movement,

its velocity and acceleration during walking. Biomechanical models of the human

body are one of the tools utilized in tracking and analyzing human movement. The

goal of this chapter is to provide a description of the systematic procedures used to

develop a biomechanical model of the human body. Section 3.1 provides a definition

of the basic human joint angles to be estimated with our inertial tracker. Section 3.2

introduces a model for the human arm used to track shoulder and elbow joint angles.

In Section 3.3, we examine kinematics of human motion by studying the propagation

of velocity and acceleration in the arm. Emphasis on modeling the arm movement

is only for the purpose of illustration. The technique established in this study could

easily be generalized to study the motion of the head, trunk, legs or any other human

motor function mechanism.

3.1 Basic Movement Description

There are six basic movements that occur in different joints of the human body [54].

To describe these movements, we define the relative joint angles between two seg-

ments. Description of joint movement is typically expressed relative to a starting

position. This position is referred to as the fundamental position. In this position,
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the human body is upright with the head facing forward, arms at the side of the trunk

with the palms facing in toward the trunk, and the legs together with the feet pointing

forward.

The first pair of the six basic movements are flexion and extension. These move-

ments occur in many joints in the body, including head, trunk, shoulder, elbow, hip

and knee. Flexion is a bending movement that decreases the joint relative angle be-

tween two adjacent segments. Lifting the forearm up at the elbow is an example of

elbow flexion. Extension is a straightening movement that increases the joint relative

angle between two adjacent segments.

The second pair of movements are abduction and adduction. These movements

are not as common as flexion and extension. They occur in the scapula, shoulder,

wrist, and hip joints. Abduction is a movement away from the midline of the body.

Raising an arm out to the side of the body is an example of abduction. Adduction,

on the other hand, is the return movement of the segment back toward the midline of

the body.

The third and last pair of basic movements are segment internal and external ro-

tation. They occur in the head, trunk, shoulder, hip and knee joints. Internal rotation

occurs when the segment rotates about the vertical axis toward the midline of the

body. External rotation is the opposite movement away from the body midline.

Besides the six basic movements described above, there are a few other special-

ized movements at various parts of the body. While they are technically among the

basic movements, they are given special names. One of these movements analyzed

in this study is forearm pronation and supination. They occur as the distal end of

the radius rotates over and back at the radioulnar joint. While the elbow is flexed,

supination occurs in the forearm when the palm rotates to face upward. Pronation is

the opposite movement to bring the palm back to face downward.

To track these complex movements, we use a common convention to develop a
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Figure 3.1: The arm is modeled with 5 degrees of freedom. Three at the shoulder to allow

for flexion/extension, abduction/adduction and internal/external rotation. The fourth allows

elbow flexion/extension, and the last allows forearm pronation/supination.

biomechanical model of human body segments. This is a well-established convention

in robotics, and is presented in the following sections.

3.2 Kinematic Chains and Model Development

The human body can be represented as a system of rigid segments connected in

chains by joints. The rigid segments are referred to as links, and each two adjacent

links are connected by a joint. A series of rigid links is referred to as a kinematic

chain. An example of a simple kinematic chain is the human arm. Shoulder, elbow

and wrist joints are connected by two links: the upper arm and forearm.

The elbow joint is normally modeled as a hinge with one degree of freedom

(DOF) which allows bending and straightening of the elbow (flexion and extension).

Forearm supination and pronation is controlled by the radioulnar joint between the

elbow and the wrist. The shoulder and the shoulder girdle make up one of the most
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complex joint groups of the human body [42]. This complex joint is typically sim-

plified as a ball-and-socket joint with three DOFs. It allows the arm to move away

from or toward the median plane of the body (abduction or adduction). Flexion and

extension of the shoulder allows the arm to move up and down and is similar to that

of the elbow. The shoulder also allows the arm to rotate away or toward the center of

the body (external and internal rotation). These 3 DOFs are also commonly known

as roll, pitch and yaw angles.

Figure 3.1 shows the arm model with five DOFs of the shoulder and elbow joints.

The forearm is a link connecting the wrist and elbow joints, and the upper arm con-

nects the elbow and shoulder joints. Craig [23] suggested that if a joint has n DOFs,

it can be modeled as n joints of one DOF connected with n− 1 links of zero length.

Therefore, the shoulder joint could be modeled as three joints connected by two

links of zero length. As shown in Figure 3.1, one inertial measurement unit (IMU)

is attached to the upper arm, and a second unit is attached to the forearm above the

wrist joint. Flexion of the wrist joint is not captured by the sensors and will not be

considered in this model.

3.2.1 Denavit-Hartenberg Convention

To obtain a standard procedure for describing position and orientation angle of each

link relative to its adjacent links, it is customary to attach a frame or coordinate

system rigidly to each link. The position and orientation of one frame is then de-

scribed with respect to its neighbor and eventually with respect to the reference

frame. The convention of attaching frames to different links was proposed by Denavit

and Hartenberg in 1955 and has been used since then in the analysis and control of

robotic manipulators [23]. The procedure of attaching frames to links in a kinematic

chain is as follows:

1. Assign a base coordinate system to some stationary reference: X0, Y0, Z0,
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2. Attach a coordinate system to each of the links extending out of the reference.

Frame Xi, Yi, Zi is attached to link i using the following conventions:

a) Align Zi with the axis of rotation of the ith joint,

b) Establish Xi along the common perpendicular of both Zi and Zi+1, and

c) Establish Yi to complete the system according to the right-hand rule.

3. For the last link with frame {n}, assign Xn freely.

X3 

 

Z2 

Z5 

Y0, Y1 
Y2 

Y4 

Y5 

Forearm 

Upper arm 

Shoulder 

Elbow Wrist 

Frame 1 Frame 2 Frame 3 

Frame 4 Frame 5 

X0, X1 Z0, Z1 Z3 

Y3 

X2 

X4 
X5 

Z4 

Figure 3.2: Diagram of the arm model with Frame 0 as the static reference frame. Frames 1

through 3 represent shoulder flexion/extension, abduction/adduction and internal/external ro-

tation, respectively. Frames 4 through 5 represent the elbow flexion/extension and forearm

pronation/supination.

The reference frame {0} does not move and it simplifies calculations to align Z0

along Z1, and to locate frame {0} to coincide with the initial position and orienta-
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tion of frame {1}. Similarly, for the last link with frame {n}, the direction of Xn

is chosen so that it aligns with the initial direction of Xn−1, and the origin of frame

{n} is chosen to coincide with the origin of frame {n − 1} to cause as many link-

age parameters to become zero as will be seen in the following section. Figure 3.2

shows the reference frame {0} at the center of the shoulder joint. Frames {1 − 3}

represent shoulder flexion/extension, abduction/adduction and internal/external rota-

tion respectively. Frames {4− 5} represent the elbow flexion/extension and forearm

pronation/supination.

To determine the relative location of each two adjacent coordinate systems, we

use four parameters known as Denavit-Hartenberg Parameters.

3.2.2 Denavit-Hartenberg Parameters

For each pair of consecutive links, represented by their associated coordinate system,

there are four parameters needed to determine the relative location of these two sys-

tems. The first parameter is the link length ai which is the shortest distance from Zi

to Zi+1 measured along the common normal Xi. This is not necessarily the anatomic

length of the body segment. It is rather the biomechanical length measured along

the common normal of the two axes of rotation. The second parameter is the link

twist αi which is the angle from Zi to Zi+1 measured about the Xi axis as shown in

Figure 3.3. The third parameter is the distance from Xi−1 to Xi measured along the

Zi axis, and is known as the link offset di. The last and fourth parameter is the joint

angle θi and it is the angle from Xi−1 to Xi measured about the Zi axis as shown in

Figure 3.4.

Table 3.1 shows the Denavit-Hartenberg parameters used to derive the arm links

transformation. These individual transformations are used to solve for the velocity

and acceleration of link i relative to its neighboring link i + 1 in the Netwon-Euler

equations in section 3.3.
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Figure 3.3: The kinematic function of a link is to maintain a fixed relationship between the

two joint axes. Each link is characterized by two constants. The link length ai is the distance

from Zi to Zi+1 measured along their common normal Xi. The link twist αi is the angle

from Zi to Zi+1 measured about the Xi axis.

Figure 3.4: Neighboring links have a common joint axis Z . One parameter that defines the

distance along this axis is called the link offset di, the distance from Xi−1 to Xi measured

along the Zi axis. The amount of rotation measured about the Zi axis is called joint angle θi
and it is the angle from Xi−1 to Xi.
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Frame αi−1 ai−1 di θi
1 0 0 0 θ1
2 π/2 0 0 θ2 + π/2
3 π/2 0 lu θ3 + π/2
4 π/2 0 0 θ4 + π/2
5 −π/2 0 lf θ5

Table 3.1: Denavit-Hartenberg parameters for the shoulder and arm model. The parameter lu
is upper arm length and lf is the forearm length. The parameters ai, αi and di are constant,

while θi is the joint variable that changes when link i rotates with respect to link i− 1.

3.2.3 Link Transformations

To relate the ith frame to its adjacent frame (i−1), we perform four transformations:

1. Rotate about Xi an angle αi−1 to make the two coordinate systems coincide.

2. Translate along Xi a distance ai−1 to bring the two origins together.

3. Rotate about Zi an angle θi to align Xi and Xi−1.

4. Translate along Zi a distance di to bring Xi and Xi−1 into coincidence.

Each of these four operations can be expressed by a basic rotation-translation matrix,

and the product of these four transformation matrices yields a composite matrix i−1
i T ,

known as the Denavit-Hartenberg transformation matrix which defines frame {i} to

its adjacent frame {i− 1},

i−1
i T = Rx(αi−1) Dx(ai−1) Rz(θi) Dz(di) (3.1)

where Rx and Rz are the rotation matrices about X and Z-axis respectively, Dx and

Dz are the translation matrices about X and Z-axis respectively.
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i−1
i T =

















1 0 0 0

0 cos(αi−1) − sin(αi−1) 0
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0 0 0 1
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multiplying out, we obtain the transformation matrix i−1
i T that defines frame {i} to

its neighboring frame {i− 1}:

i−1
i T =

















cos(θi) − sin(θi) 0 ai−1

sin(θi) cos(αi−1) cos(θi) cos(αi−1) − sin(αi−1) − sin(αi−1)di

sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi−1) cos(αi−1)di

0 0 0 1

















(3.2)

3.3 Velocity and Acceleration Propagation

To formulate the dynamic equations of the arm during movement, we use three of

the Newton-Euler equations of motion. These forward recursive equations are used

to propagate angular velocity, and angular and linear acceleration from the reference

coordinate system through the different links of the body. Each link in motion has

some angular velocity as well as angular and linear acceleration (ω, ω̇, v̇).
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3.3.1 Netwon-Euler Equations

The velocity i+1ωi+1 of link i + 1 is that of link i plus the new velocity component

added by joint i+ 1.

iωi+1 =
iωi +

i
i+1R θ̇i+1

i+1Zi+1 (3.3)

Equation (3.3) made use of the rotation matrix which is the upper left 3×3 of Denavit-

Hartenberg matrix in equation (3.2) to relate frame {i} to frame {i + 1} in order to

represent added rotational components due to motion at the joint in frame {i}. If

we multiply both sides of the equation by i+1
i R, we can find the description of the

angular velocity of link i+ 1 with respect to frame {i+ 1}

i+1ωi+1 =
i+1
i R iωi + θ̇i+1

i+1Zi+1 (3.4)

The angular acceleration of link i+ 1 is

i+1ω̇i+1 =
i+1
i R iω̇i +

i+1
i R iωi × θ̇i+1

i+1Zi+1 + θ̈i+1
i+1Zi+1 (3.5)

and the linear acceleration is given by

i+1v̇i+1 =
i+1
i R

[

iω̇i ×
iPi+1 +

iωi × (iωi ×
iPi+1) +

iv̇i
]

(3.6)

where the single and double dot notation is used to represent first and second deriva-

tives with respect to time. iPi+1 is the position vector of the frame {i + 1} and it

is the upper right 3 × 1 vector of the Denavit-Hartenberg matrix. The mathematical

operation × in the above equation denotes a cross-product of two vectors and not a

scalar multiplication.

Equation (3.4), (3.5) and (3.6) are fundamental to the development of the dynamic

equations of the arm movement in this research. The equations are used recursively

to propagate the angular velocity, and acceleration from the stationary reference sys-

tem at the center of the shoulder through the links of the upper arm and forearm
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connected by the elbow joint. The dynamic equations of the arm will be presented in

the following chapter.

The rotation matrices i+1
i R are needed in order to utilize these forward recursive

equations. They can be obtained by taking the transpose of the upper left 3 × 3

transformation matrix and the Denavit-Hartenberg parameters shown in Table 3.1.

i+1
i R =











cos(θi) sin(θi) cos(αi−1) sin(θi) sin(αi−1)

− sin(θi) cos(θi) cos(αi−1) cos(θi) sin(αi−1)

0 − sin(αi−1) cos(αi−1)











(3.7)

We initialize the rotation velocity and acceleration as follows: ω0 = ω̇0 = (0, 0, 0)T .

Linear velocity is initialized with v̇0 = (gx, gy, gz)
T , where g is gravity.

3.4 Summary

In this chapter, we described joint configuration, Denavit-Hartenberg convention and

parameters, and kinematic chains of the human body. This convention is used exten-

sively in robotics, and is used in this study to model the dynamics of human move-

ment. The arm kinematic model, with shoulder and elbow joints, was introduced

based on a set of assumptions involving the known functional and anatomical fea-

tures of the shoulder and elbow. A recursive algorithm for computing joint velocities

and accelerations was introduced as part of the Newton-Euler equations. These equa-

tions and the arm model are utilized in the following chapter to develop the process

and observation equations required in the state space framework to estimate shoulder

and elbow joint angles.



34

4 Joint Angles Estimation

In this chapter, we consider the problem of estimating unobserved states from noisy

measurements. The main objective in this chapter is to model the sensor measure-

ments as a function of joint angles. The joint angle tracking problem is expressed in

a novel state space form, which incorporates a state model representing joint angles

and their derivatives, and an observation model representing sensor measurements.

The observation model is developed using Newton-Euler dynamics and kinematic

chains described in Chapter 3. Section 4.1 introduces an overview of the estimation

problem in the state space framework. A state model which describes the dynamics

of human joint movements is presented in Section 4.2. Measurement equations of

the inertial sensors are described in Section 4.3. To validate the state and observation

models, we examine the inertial tracker performance with synthetic data generated

from measurement equations of the shoulder and elbow. Validation results of the

proposed tracker are presented in Section 4.4.

4.1 Estimation and Filtering

In estimation theory, filtering is associated with the estimation of some unobserved

states of a dynamic system using a sequence of noisy measurements collected from

that system [95]. The states contain relevant information required to describe the sys-

tem dynamics, and their values affect the distribution of the measured data. Shoulder

joint angles and their time-derivatives are an example of unobserved states, and could
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be estimated using gyroscope and accelerometer sensor measurements collected on

the arm.

The primary goal is to estimate a state x(n) at some time n, given a sequence of

observations {yn}|
N−1
0 . All relevant information about the state could be estimated

within a Bayesian framework [66]. The state and observations are considered as

stochastic processes. The solution is found as a recursive expression for the posterior

probability density function of the state, conditioned on the observed measurements.

The probability density function has all statistical information required to provide

a complete description of the state. Furthermore, if the the system is linear and

Gaussian, only the state mean and covariance are need to completely describe the

density function.

When the system is linear and noise is white, the recursive Kalman filter provides

an optimal solution to the estimation problem [65]. The solution is statistically op-

timal with respect to any quadratic function of the estimation error [51]. In many

practical estimation problems, the state or observation models are nonlinear, and use

of the linear Kalman filter may result in large estimation errors. The most common

approach to solving the nonlinear estimation problem is the Extended Kalman filter

(EKF). It is based upon linearizing the state and observation models with a first-order

Taylor expansion [81]. It models the state variables with first and second order mo-

ments, which is most appropriate when the distribution is Gaussian. If the system

dynamics are highly nonlinear, this linearization provides insufficient description of

the system, and consequently introduces errors due to neglecting higher order terms.

The EKF also requires calculation of Jacobian matrices, which can be difficult, error

prone, and time consuming.

The unscented Kalman filter (UKF) provides a better alternative to the EKF, as it

removes the need for linearization while providing estimates that capture the statistics

of the state distribution more accurately [63]. The UKF uses a deterministic sampling
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approach to approximate the state distribution with a minimal set of deterministically

chosen sample points. These sample points completely capture the true posterior

mean and covariance accurately to the 3rd order for any nonlinearity [116].

When system models are nonlinear and non-Gaussian, the mean and covariance

provide an incomplete description of the probability density function of the state.

Therefore, and since their introduction, particle filters have successfully been used

to provide superior solutions to the nonlinear and non-Gaussian estimation prob-

lem [50]. In particle filter (PF) algorithms, also known as Sequential Monte Carlo

Methods, the state posterior distribution is approximated with a set of weighted ran-

dom particles. Particle filters often provide a superior alternative to other nonlinear

estimators when the system is non-Gaussian, and the state dimensions are low [19].

However, there exist systems with sufficiently high-dimensional space and complex

distributions that require a large number of particles to obtain a reasonable approxi-

mation. Particle filters have computational requirements that are orders of magnitude

larger than the Extended or unscented Kalman filter.

4.2 State Space Models

To use the Kalman filter or any of the state space-based estimators, it is necessary to

express the relationship between the variables of interest and the observed data in a

state space form:

x(n+ 1) = f [x(n), u(n)] (4.1)

y(n) = h [x(n), v(n)] (4.2)

where x(n) represents the unobserved state of the system, and y(n) is the observed

or measured data. The state and measurement noise are given by u(n) and v(n),

respectively. They are assumed to be white noise with zero mean. The functions

f [·] and h[·] are the nonlinear state and observation dynamics and are assumed to
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be known. Equations (4.1) and (4.2) are also known as the process and observation

equations, and they comprise the statistical state space model.

4.2.1 State Model

The first step in solving the estimation problem is modeling the evolution of the

system. In this research, we propose a new state model to describe the dynamics of

human joint movement. The states of the dynamic system are modeled as follows:

θi(n+ 1) = θi(n) + Tsθ̇i(n) +
1

2
Ts

2θ̈i(n) (4.3)

θ̇i(n+ 1) = θ̇i(n) + Tsθ̈i(n) (4.4)

θ̈i(n+ 1) = αθ̈i(n) + uθ̈i
(n) (4.5)

where θi(n) represents the ith angle at time n. The rate of change in the ith angle

is represented by angular velocity θ̇i, and the rate of change of the angular velocity

is represented by angular acceleration θ̈i. The sampling interval is Ts = f−1
s , and

uθ̈i
(n) is a white noise process with zero mean and variance qθ̈i . The angular ac-

celeration is modeled as a first order autoregressive model. Autoregressive models

are normally used to model many signals with an underlying autoregressive structure

such as speech and seismic signals. The constant α has a an absolute value of < 1

and controls how the present acceleration depends on the previous one. If α = 1,

then the model becomes a random walk and the signal becomes non-stationary. If

α = 0, then the angular acceleration is modeled as white noise.
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4.2.2 Observation Model

The observation model describes the measurement obtained by the triaxial gyroscope

for the angular rate and the triaxial accelerometer for the translational acceleration

y(n) =
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where ωx, ωy and ωz is the angular velocity along the X , Y and Z axes respectively.

The gyroscope noise along the different axes are described by vgx, vgy and vgz. Simi-

larly, the translational accelerations and their noise along the three axes are v̇x, v̇y and

v̇z, vax, vay and vaz respectively. It should be noted that the acceleration measurement

vector includes translational accelerations and the effect gravity.

4.2.3 Nonlinear State Estimator

The state and observation models of the shoulder and elbow joints are highly nonlin-

ear, and the inertial tracker could be implemented with one of the nonlinear estima-

tion algorithms described in Section 4.1. Tracking algorithms and results presented

in this chapter, and in Chapters 5 and 6 utilize the unscented Kalman filter. The

UKF has nearly the same computational requirements as the EKF [83], but uses a

more accurate method to characterize the propagation of the state variable distribu-

tion through the nonlinear models [63]. Another advantage of the UKF is that it does

not require the calculation of Jacobian matrices. In our application, the calculation of

the Jacobian matrices, especially that of the measurement model, is quite involved.

In Chapter 7, we evaluate the performance of the UKF tracker, and compare it to that

of the EKF and PF in estimating joint angles of a 6-axis robot arm.
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Table 4.1: User-specified parameters and sample rate for the unscented Kalman filter-based

joint angle tracker. I represents an identity matrix.

Name Symbol Value

Variance of gyroscope measurement white Gaussian noise σvg
2 .0001

Variance of accelerometer measurement white Gaussian noise σva
2 .0064

Variance of process white Gaussian noise σu
2 1.00

Initial state covariance matrix P I
Angular acceleration process parameter α 1

Sample rate fs 128 Hz

Forearm length lf 25 cm

Upper arm length lu 25 cm

The UKF has two user-specified parameters, Q and R, which represent the pro-

cess noise covariance and the measurement noise covariance. Since we assume white

Gaussian noise, we set the off-diagonal entries of the two matrices to zeros. The di-

agonal elements of R are determined empirically and account for the uncertainty in

the measurement data. We approximate the measurement noise based on short static

periods at both ends of sensor measurements. We used 0.001 and 0.01 for gyroscope

and accelerometer noise variance. Q is the process noise covariance matrix, and its

diagonal elements are used as tuning parameters. These parameters control the trade-

off between certainty in the process model representing accurate motion dynamics,

and how precisely the model tracks the sensor measurements. For all of results re-

ported in this study, the angle acceleration was modeled as an autoregressive model

with α = .95. Table 4.1 lists the different parameters that were used to generate the

tracking results.

4.3 Model Validation Using Synthetic Data

To validate the shoulder and elbow dynamic models and to examine the performance

of the proposed tracker, we use synthetic data based on the state and measurement

models. We use synthetic data to set a baseline for the inertial tracking algorithm
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presented in this research. Use of synthetic data allows us to control the measurement

drift and bias due to sensor imperfections. Error due to these imperfections will be

taken into account in the observation model presented in Chapter 6.

4.3.1 Elbow and Forearm Model

If we control the shoulder to keep the upper arm stationary, we obtain a model for the

forearm and elbow joint. The observation equations were created with an algorithm

that applies the Newton-Euler recursive equations with the parameters in Table 3.1.

Equations of the inertial measurement unit placed on the forearm are:

ωx = θ̇1cθ2

ωy = −θ̇1sθ2

ωz = θ̇2

v̇x = −lf [θ̇
2
1sθ

2
2 − θ̇22] + gcθ1sθ2

v̇y = −lf [θ̇
2
1sθ2cθ2 + θ̈2] + gcθ1cθ2

v̇z = lf [θ̈1sθ2 + 2θ̇1θ̇2cθ2]− gsθ1

where (ωx, ωy, ωz, v̇x, v̇y, v̇z) are gyroscope and accelerometer data at time n. The

time index n was dropped for ease of readability. The ith angle is θi, the rate of

change in the ith angle is represented by angular velocity θ̇i, and the rate of change

of the angular velocity is represented by acceleration θ̈i. The parameter lf is the

distance between the elbow joint center and the measurement unit placed on the

forearm, near the wrist. And finally, sθ = sin(θ), and cθ = cos(θ). In this model,

elbow flexion/extension is presented by θ1, and the forearm supination/pronation is

presented by θ2.
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4.3.2 Shoulder Model

Equations of the measurement unit placed on the upper arm to estimate shoulder joint

angles are:

ωx = θ̇3 + θ̇1sθ2

ωy = θ̇1cθ2sθ3 − θ̇2cθ3

ωz = θ̇1cθ2cθ3 + θ̇2sθ3

v̇x = −lu[θ̇
2
1cθ

2
2 + θ̇22]− gcθ1cθ2

v̇y = lu[cθ2sθ2sθ3θ̇
2
1 − 2θ̇2cθ3sθ2θ̇1 + θ̈2sθ3 + θ̈1cθ2cθ3] + g[cθ3sθ1 + cθ1sθ2sθ3]

v̇z = lu[cθ2cθ3sθ2θ̇
2
1 + 2θ̇2sθ2sθ3θ̇1 + θ̈2cθ3 − θ̈1cθ2sθ3]− g[sθ1sθ3 + cθ1cθ3sθ2]

where lu is the distance between the shoulder joint center to the measurement unit

placed on the upper arm.

4.4 Results

We used the root mean squared error (RMSE) to quantify the difference between the

actual and estimated angles. If the error between the actual and the estimated angle

is defined as follows:

e(n) = θ(n)− θ̂(n) (4.6)

then the RMSE is

RMSE =

√

√

√

√

1

k

k
∑

n=1

e2(n) (4.7)

where k represents the number of samples in the error.

The RMSE for both angles of elbow flexion/extension and forearm supina-

tion/pronation was 0.2◦. Table 4.2 shows the correlation coefficient and RMSE be-

tween true and estimated angles.
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Table 4.2: Average correlation r, and root mean squared error RMSE between true and esti-

mated arm angles.

Task r RMSE(◦)
Elbow Flexion/Extension 1.0 0.2

Forearm Supination/Pronation 1.0 0.2

Shoulder Flexion/Extension 1.0 0.3

Shoulder Abduction/Adduction 1.0 0.2

Shoulder Internal/External Rotation 1.0 0.2

Elbow and forearm angle tracking results are shown in Figure 4.1. Solid

blue lines represent true elbow flexion/extension (top panel) and forearm supina-

tion/pronation (bottom panel). Dotted lines represent the corresponding angles es-

timated by the inertial tracker. The agreement between estimated and true angles

is excellent. Figure 4.2 shows the estimation error between the true and estimated

elbow and forearm angles.

Figure 4.3 shows shoulder joint angle tracking results, where the solid blue

line represents actual shoulder flexion/extension, adduction/abduction, and exter-

nal/internal rotation angles. The dotted red line represents the corresponding angles

estimated by the inertial tracker. Figure 4.4 shows the estimation error between the

true and estimated shoulder angles. Maximum peak-to-peak error of 1.5◦ occurs at

peak flexion angles of 120◦.
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Figure 4.1: Synthetic elbow and forearm angles (solid lines), and their estimates (dotted).
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Figure 4.2: Error between true and estimated elbow flexion/extension angles (top) with

RMSE = 0.2◦, and forearm supination/pronation (bottom) with RMSE = 0.2◦.
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Figure 4.3: Synthetic shoulder angles (solid lines), and their estimates (dotted).
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Figure 4.4: Angle estimation error of shoulder internal/external with RMSE = 0.2◦, adduc-

tion/abduction with RMSE = 0.2◦, and flexion/extension with RMSE = 0.3◦.
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4.5 Summary

In this chapter, we presented a brief discussion of the estimation problem in the state

space form, where two models are required to analyze a dynamic system. We de-

veloped a novel state model representing joint angles and their derivatives. A novel

observation model was developed using Newton-Euler dynamics and the arm kine-

matic chains. We used the unscented Kalman filter to implement the nonlinear state

space inertial tracker. Performance of the tracker was examined using synthetic data

to estimate shoulder and elbow joint angles. The algorithm and model assessment

resulted in excellent tracking with very small errors and perfect correlation between

true and estimated joint angles. On average, the RMS angle error was ≤ 0.3 degrees

for all shoulder and elbow angles.
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5 Performance Assessment

The algorithm and results introduced in this chapter were published in the IEEE

Transactions on Biomedical Engineering [33]. In this chapter, we investigate the

performance of our inertial tracking algorithm by comparing the estimated angles to

those obtained form an optical tracking reference system. The reference system and

the study protocol used to collect data from eight volunteer subjects are described in

Section 5.1. A description of the full arm measurement model is presented in 5.2. We

analyze normal and fast movement of the subjects performing both simple planar and

more complex arm movement. Tracking results and a discussion of the performance

are presented in Sections 5.3 and 5.4.

5.1 Study Protocol

As discussed in Chapter 1, optical systems have widely been used to assess human

movements. Although they suffer from many limitations including extensive set-

up and calibration, restriction to indoor use and high cost, optical systems are the

most common and accurate in tracking human movement [67]. Therefore, we use

an optical tracker as a reference system to evaluate the performance of our inertial

tracking algorithm.

Success and limitations of previous tracking algorithms using inertial sensors

were discussed in Chapter 2. Most of these algorithms were only applicable under

limited circumstances. Some studies restricted the application to simple planar tasks.
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In other studies, the estimation was accurate for only brief periods. Others reported

large orientation errors due to limitations of the inertial devices used to capture the

motion.

To compare the performance of the inertial and optical tracking systems, we col-

lected two data sets from a total of 8 subjects performing tasks described in Table 5.1.

The study was conducted in the Balance Disorders Laboratory at Oregon Health &

Science University (OHSU). The laboratory is equipped with a motion capture sys-

tem with eight high-speed infrared cameras (Motion Analysis Corporation, Santa

Rosa, California, USA). The cameras recorded the position of 14 reflective markers

placed on the sternum, upper arm, forearm, shoulder, elbow and wrist, as shown in

Fig. 5.1.

Figure 5.1: Reflective markers and Opal inertial measurement units placement on the upper

arm and forearm of one of the subjects.

Elbow and forearm angles were obtained from 3D positions of the markers placed

on the upper arm and forearm, based on the algorithm described in [52]. Similarly,

shoulder angles were obtained from positions of the reflective markers placed on

the shoulder and upper arm. One Opal inertial measurement unit (IMU), containing

triaxial accelerometers and gyroscopes, was placed on the upper arm approximately

halfway between the shoulder and elbow joints. Another Opal unit was placed on the
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forearm, near the wrist. Opal is a miniature wireless inertial measurement unit that

streams kinematic data in real-time (APDM, Inc., Portland, OR). The units maintain

time-synchronization of ≤ 10 µ s. Each IMU was attached to the arm with a strap

band centered within a cluster of 4 markers. A stationary calibration period of 3 s at

the initial pose preceded each movement task. The calibration period served multiple

purposes. The first was to align the inertial and optical reference systems. The second

was to calculate the variance of sensor measurement noise. The stationary period was

also used to calculate the gyroscope constant bias. This bias was removed from the

gyroscope data before calculating the joint angles.

Inertial and optical reference systems were synchronized to start and stop record-

ing simultaneously using an access point. Inertial data was originally sampled at

128 Hz, and the Vicon optical data at 60 Hz. Angles calculated from inertial sensors

were then re-sampled to 60 Hz for comparison with angles obtained from the optical

system.

5.1.1 Data Collection

Subjects were asked to perform a set of arm movements involving only rotation of the

shoulder and elbow joints. During the prescribed tasks, subjects were instructed to

keep the rest of the body stationary, especially the trunk. We collected two different

data measurements from eight subjects. For the first data set, four subjects were

asked to repeat simple planar articulations. Planar movement included only one of

the five angles at a time. Each recording lasted 18 s, including a stationary calibration

period of 3 s at the initial pose as shown in Fig. 5.1. Subjects were informed of when

to start and stop by the sound of a metronome which was also used to guide subjects’

movement rate. Recording was stopped between each task while subjects returned to

the initial pose. Articulations were performed at a comfortable rate similar to that of

daily activities with an average rotation rate of 180◦/ s. To verify the performance of
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the algorithm in tracking fast movement, we asked the subjects to perform the same

tasks at a faster pace. This articulation was performed at an average rate of 420◦/ s.

In the second data set, to obtain a longer measurement recording, the other four

subjects performed the same tasks described in Table 5.1 continuously without stop-

ping the recording between tasks. Subjects started with the simple planar articula-

tions, and ended with more complex movement in order to involve both the shoulder

and elbow angles simultaneously. These movements included having the subjects

start with their arm at their side, reaching to touch their nose with their index finger,

bringing their arm back to the starting position, and repeating five times. Subjects

were also asked to mimic reaching for an imaginary doorknob and turning it, repeat-

ing this entire motion five times as well. On average, the continuous recording lasted

2 minutes. Each recording was repeated 3 times by each subject with two brief rest

periods.

5.2 Shoulder and Elbow Measurement Model

The discrete time state space model was introduced in Chapter 4. Our state model

equations are given by:

θi(n+ 1) = θi(n) + Tsθ̇i(n) +
1
2
T 2
s θ̈i(n) (5.1)

θ̇i(n+ 1) = θ̇i(n) + Tsθ̈i(n) (5.2)

θ̈i(n+ 1) = αθ̈i(n) + uθ̈i
(n) (5.3)

where i = {1, . . . , 5} of the five angles, θi(n) is the ith angle at time n. Angles

θ1 through θ3 represent shoulder flexion/extension, abduction/adduction, and inter-

nal/external rotation, respectively. The angle θ4 represents elbow flexion/extension,

and θ5 represents forearm supination/pronation. Similarly, θ̇i and θ̈i are the time

derivatives of the ith angle θ, and they represent angular velocity and angular accel-

eration.
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Observation equations of the IMU placed on the upper arm were introduced in

Section 4.3.2. Equations of the forearm measurement unit depend on the 5 joint an-

gles, and are presented below. These large measurement equations were generated

with an algorithm that algebraically applies the arm kinematic model parameters to

Newton-Euler equations. We developed a recursive routine using symbolic math ma-

nipulation in the Matlab programming environment (The MathWorks, Inc., Natick,

MA, USA) to generate the following measurement equations:
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ωx = cθ5(cθ4(θ̇2cθ3 + θ̇1cθ3cθ2) + cθ4(θ̇3 − θ̇1cθ2))− sθ5(θ̇4 − θ̇2cθ3 + θ̇1cθ2cθ3)

ωy = −cθ5(θ̇4 − θ̇2cθ3 + θ̇1cθ2cθ3)− sθ5(cθ4(θ̇2cθ3 + θ̇1cθ3cθ2) + cθ4(θ̇3 − θ̇1cθ2))

ωz = θ̇5 − cθ4(θ̇2cθ3 + θ̇1cθ3cθ2) + cθ4(θ̇3 − θ̇1cθ2)

v̇x = −cθ5(cθ4(cθ3(lu(θ̈1cθ2 + θ̇1θ̇2cθ2) + gsθ1 + luθ̇1θ̇2cθ2) + cθ3(lucθ2cθ2θ̇
2
1 − luθ̈2

+ gcθ1cθ2)) + cθ4(luθ̇
2
1cθ

2
2 + luθ̇

2
2 + gcθ1cθ2) + lf(θ̈4 − θ̈2cθ3 + cθ3(θ̈1cθ2 + θ̇1θ̇2cθ2)

+ θ̇3(θ̇2cθ3 + θ̇1cθ3cθ2)) + lf(cθ4(θ̇2cθ3 + θ̇1cθ3cθ2) + cθ4(θ̇3 − θ̇1cθ2))(cθ4(θ̇2cθ3

+ θ̇1cθ3cθ2)− cθ4(θ̇3 − θ̇1cθ2)))− sθ5(lf(cθ4(θ̈3 − θ̈1cθ2 + θ̇1θ̇2cθ2)− θ̇4(cθ4(θ̇2cθ3

+ θ̇1cθ3cθ2)− cθ4(θ̇3 − θ̇1cθ2)) + cθ4(cθ3(θ̈1cθ2 + θ̇1θ̇2cθ2) + θ̇3(θ̇2cθ3 − θ̇1cθ2cθ3)

+ θ̈2cθ3))− cθ3(lucθ2cθ2θ̇
2
1 − luθ̈2 + gcθ1cθ2) + cθ3(lu(θ̈1cθ2 + θ̇1θ̇2cθ2) + gsθ1

+ luθ̇1θ̇2cθ2)− lf(cθ4(θ̇2cθ3 + θ̇1cθ3cθ2)− cθ4(θ̇3 − θ̇1cθ2))(θ̇4 − θ̇2cθ3 + θ̇1cθ2cθ3))

v̇y = sθ5(cθ4(cθ3(lu(θ̈1cθ2 + θ̇1θ̇2cθ2) + gsθ1 + luθ̇1θ̇2cθ2) + cθ3(lucθ2cθ2θ̇
2
1 − luθ̈2

+ gcθ1cθ2)) + cθ4(luθ̇
2
1cθ

2
2 + luθ̇

2
2 + gcθ1cθ2) + lf(θ̈4 − θ̈2cθ3 + cθ3(θ̈1cθ2 + θ̇1θ̇2cθ2)

+ θ̇3(θ̇2cθ3 + θ̇1cθ3cθ2)) + lf(cθ4(θ̇2cθ3 + θ̇1cθ3cθ2) + cθ4(θ̇3 − θ̇1cθ2))(cθ4(θ̇2cθ3

+ θ̇1cθ3cθ2)− cθ4(θ̇3 − θ̇1cθ2)))− cθ5(lf(cθ4(θ̈3 − θ̈1cθ2 + θ̇1θ̇2cθ2)− θ̇4(cθ4(θ̇2cθ3

+ θ̇1cθ3cθ2)− cθ4(θ̇3 − θ̇1cθ2)) + cθ4(cθ3(θ̈1cθ2 + θ̇1θ̇2cθ2) + θ̇3(θ̇2cθ3 − θ̇1cθ2cθ3)

+ θ̈2cθ3))− cθ3(lucθ2cθ2θ̇
2
1 − luθ̈2 + gcθ1cθ2) + cθ3(lu(θ̈1cθ2 + θ̇1θ̇2cθ2) + gsθ1

+ luθ̇1θ̇2cθ2)− lf(cθ4(θ̇2cθ3 + θ̇1cθ3cθ2)− cθ4(θ̇3 − θ̇1cθ2))(θ̇4 − θ̇2cθ3 + θ̇1cθ2cθ3))

v̇z = cθ4(cθ3(lu(θ̈1cθ2 + θ̇1θ̇2cθ2) + gsθ1 + luθ̇1θ̇2cθ2) + cθ3(lucθ2cθ2θ̇
2
1 − luθ̈2

+ gcθ1cθ2))− lf(θ̇4 − θ̇2cθ3 + θ̇1cθ2cθ3)
2 − lf(cθ4(θ̇2cθ3 + θ̇1cθ3cθ2)

+ cθ4(θ̇3 − θ̇1cθ2))
2 − cθ4(luθ̇

2
1cθ

2
2 + luθ̇

2
2 + gcθ1cθ2)

where lf is the distance between the elbow joint and the IMU placed on the fore-

arm. Similarly, lu is the distance between the shoulder joint and the IMU placed on

the upper arm.
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5.3 Results

To quantify the tracking performance and compare angle estimates from both sys-

tems, we calculated the correlation coefficient r, and the RMSE between angle es-

timates from the inertial and optical tracking systems. On average, the correlation

coefficient was r ≥ 0.97 for all tasks among all subjects. Table 5.1 shows the av-

erage correlation coefficients, average RMSE across subjects for all tasks, and the

average peak-to-peak error between inertial and optical angles.

Table 5.1: Average correlation r, RMSE, and peak-to-peak error between optical and inertial

angles of shoulder and elbow joints.

Task r RMSE(◦) Peak Error(◦)
Elbow Flexion/Extension 0.98 6.5 9.8

Forearm Supination/Pronation 0.95 5.5 7.8

Shoulder Flexion/Extension 0.98 5.5 7.9

Shoulder Abduction/Adduction 0.99 4.4 8.1

Fig. 5.2 shows elbow and forearm angles for one of the subjects performing sim-

ple planar rotation at normal daily life movement rate. The top panel of the figure

shows elbow flexion/extension estimates using the inertial tracker (solid blue line)

and the optical system (dashed red line). Similarly, the bottom panel of the fig-

ure shows forearm supination/pronation estimates from both tracking systems. The

agreement between angle estimates from both systems is excellent, consequently the

red line representing optical angles is concealed by the blue line representing inertial

angles in Fig. 5.2. The difference between elbow and forearm angle estimates from

both tracking systems is presented in Fig. 5.3. The figure shows small errors for both

angles, with slightly larger errors for estimates of the forearm supination/pronation

angles.
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Figure 5.2: Elbow and forearm angle estimates by the optical system (dashed red line) com-

pared to inertial angles estimate (solid blue line).
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Figure 5.3: Difference between estimates using optical and inertial trackers.
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Figure 5.4: Shoulder angle estimates by the optical system (dashed red line) compared to

inertial angles estimate (solid blue line).
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Figure 5.5: Difference between estimates using optical and inertial trackers.
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Fig. 5.4 shows shoulder angles during simple planar rotation at normal daily life

movement rate. The top panel of the figure shows shoulder flexion/extension angle

estimates using both inertial (solid blue line) and optical systems (dashed red line).

The bottom panel shows the shoulder abduction/adduction angle estimates. The error

between shoulder angle estimates from both tracking systems is shown in Fig. 5.5.

Error is consistently small for both shoulder angles, and is slightly smaller than those

of the elbow and forearm. Table 5.2 shows the average result for each task among

subjects performing complex movements.

Table 5.2: Average correlation r, average RMSE and peak-to-peak average error between op-

tical and inertial estimates of shoulder, elbow and forearm angles during prescribed activities

at normal movement rate.

Task r RMSE(◦) Peak Error(◦)
Touching nose 0.94 6.5 9.8

Reaching for a doorknob 0.95 5.5 8.8

Fig. 5.6 shows elbow and shoulder flexion/extension angles obtained from the

inertial and reference tracking systems for one of the subjects performing the task

of repeated arm extension and flexion in order to touch the nose. The error be-

tween the two tracking systems is presented in Fig. 5.7. Both figures show that the

difference between angle estimates from both systems, especially for shoulder flex-

ion/extension, are slightly larger than what was obtained for the same angles during

simple planar movement.

Subjects performed the same arm rotations described in Table 5.1 at a faster rota-

tion rate of 420◦/ s. Fig. 5.8 shows the estimated inertial shoulder angles compared

to those obtained from the optical system. We obtained an average RMSE of less

than 8◦ and an average peak-to-peak error of less than 12◦ among the 8 subjects for

all tasks. The error between the two tracking systems is presented in Fig. 5.9.
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Figure 5.6: Elbow (top) and shoulder (bottom) flexion/extension angle estimates while sub-

ject repeatedly extends arm, then touches the nose with the index finger.
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Figure 5.7: Estimate errors of Elbow (top) and shoulder (bottom) flexion/extension.
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Figure 5.8: Shoulder flexion/extension and abduction/adduction angles during fast move-

ment. Inertial (solid blue line) and optical angle estimates (dashed red line).
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Figure 5.9: Difference between estimates using optical and inertial trackers.
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5.4 Discussion

We combined the kinematic models developed in Chapter 4 with the unscented

Kalman filter to estimate shoulder, elbow and forearm angles. Two wireless wear-

able inertial measurement units were used to track human arm kinematics. Each

measurement unit contained triaxial gyroscopes and accelerometers. We used an

optical motion tracker as a reference system to assess the performance of our iner-

tial tracker. We compared shoulder and elbow joint angles estimated by the inertial

system to those estimated by the optical system. Two different data measurements

from 8 subjects were used to evaluate the tracking performance. In the first data set,

each subject performed 15 seconds of shoulder and elbow planar rotation at daily

life movement speed with an average rotation rate of 180◦/ s. Root mean squared

error (RMSE) between angle estimates ranged from 4.4◦ to 6.5◦ with a correlation

coefficient r ≥ 0.97. This is a very reasonable error range compared to what was

achieved by Bachmann et al. who reported an error range of 12◦ − 16◦ [7].

Due to the modeling structure of measurement equations with kinematic chains,

estimation accuracy of the distal angles are affected by the accuracy of the proximal

angles [82]. In other words, error in shoulder angles may result in additional error

in elbow angles. This might explain the slightly larger error in elbow and forearm

angle estimates. Table 5.1 shows that maximum estimation error occurred at elbow

flexion/extension and forearm supination/pronation angles.

Many of the inertial tracking studies discussed in previous chapters limited their

performance assessment to slow movement. Contrary to these studies, we evaluated

the performance of our algorithm in tracking fast movement with an average rotation

rate of 420◦/ s. The RMSE for the shoulder, elbow and forearm angles was less

than 8◦ on average, with correlation coefficient of r ≥ 0.95.

Although tracking errors were minimal in most of the assessment results, perfor-

mance accuracy might have been reduced by inertial sensor bias. Bias consists of a
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deterministic and a random parts. The deterministic bias refers to the offset in mea-

surements even when they are stationary. The deterministic offset of the Gyroscopes

was estimated from a three second stationary calibration period, and was removed

from the gyroscope data before calculating the angles. The random bias or drift

refers to the rate at which inertial sensor error accumulates with time. Gyroscope

and accelerometer random drift can be estimated when modeled as a random process

in the system equations. However, this increases the process model dimension by

adding 6 more states for each measurement unit. This in turn, increases the compu-

tational cost of the tracker. The effect of modeling sensor drift will be analyzed in

Chapter 6.

Some of the estimation error might also be attributed to markers moving inde-

pendently of each other, especially during fast movement. Marker placement over

anatomical landmarks can create skin artifacts [25]. The motion of the skin-mounted

markers is a major source of error in the kinematic measurement of human move-

ment. Another common problem in motion capture is marker occlusion. When a

significant proportion of marker data was missing in any of the recordings, the entire

recording had to be discarded. In addition to an extensive set-up time, a few record-

ings were stopped and had to be repeated to ensure that all markers were visible by

the cameras. Six of 56 recordings were discarded due to missing marker data. Vicon

optical data was sampled at 60 Hz. When one or two markers were non-visible for 6

frames or less, the occluded marker positions were estimated using interpolation.

Our tracking algorithm utilizes both translational and gravitational components

of acceleration. This results in accurate tracking performance during fast and slow

movements. However, one of the limitations of this study and of all of tracking algo-

rithms discussed in the introduction, is the use of short movement for performance

assessment. Although we used longer periods than most other studies, our contin-

uos recordings lasted only 2 minutes for 4 of the 8 subjects. In the next chapter, we
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use long recordings of 15 minutes with a second reference system to study the effect

of modifying the kinematic model. To reduce the effect of sensor drift on the esti-

mated angles, we use a modified model in Chapter 6. The model incorporates prior

knowledge of physical constraints and human natural range of motion, as well as a

gyroscope and accelerometer drift model. The combined effect of imposing physical

constraints and modeling the sensor drift is investigated in the next chapter.
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6 Modified Arm Model

One of the major sources of error in estimating body kinematics using inertial sensors

is the inherent bias and random drift of accelerometers and gyroscopes. Bias is a

constant sensor output when it is not undergoing any movement. When integrated,

bias causes a position or orientation error that grows with time. The constant bias

can easily be estimated and subtracted from the sensor output. This is achieved by

recording a few seconds while sensors are stationary, then averaging and subtracting

that constant bias.

Random drift is a more critical source of error in accelerometers and gyroscopes.

When integrated, this random drift introduces angle error that grows proportionally

with time. In Chapter 2, we introduced some of the algorithms that were developed

in attempt to reduce the effect of sensor drift on the accuracy of angle estimates.

The most common approach is to use sensor fusion, where additional sensors such

as magnetometers are used to update and correct the estimated angles. However, we

showed in Section 2.1 that these additional sensors have their own drawbacks and the

systems are only applicable under limited circumstances. Other tracking algorithms

utilize domain knowledge about human movement to reduce the effect of drift by

restricting estimates within an acceptable range. Another approach to reducing the

effect of sensor drift is the use of zero-velocity updates. This technique has been

successfully used in gait analysis and pedestrian navigation studies, where stationary

stance periods are detected and used to reset the angular rate to zero [113].

In this chapter, we introduce modified process and measurement models to mit-
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igate the effect of sensor drift and to increase the tracking accuracy. The modi-

fied tracker incorporates gyroscope and accelerometer random drift models in Sec-

tion 6.2, utilizes physical constraints and human natural range of motion in Sec-

tion 6.3, and applies zero-velocity updates to provide periodic correction to the error

in angle estimates in Section 6.4. Effect of each individual modification is analyzed

separately and compared to baseline performance results of Section 6.1.1. The three

techniques are then combined in one algorithm and evaluated in tracking joint angles

during long movement periods in Section 6.5. We quantify the performance of our

UKF-based algorithm by comparing the angle estimates to those obtained directly

form a 6-axis high-precision industrial robot arm during 15-minute recordings of

slow, medium and fast-speed movement.

6.1 Robot Arm Joint Angles

To evaluate the performance of the modified inertial tracking system, we use an in-

dustrial Epson C3 robot arm (Epson Robots, Carson, California) with six degrees of

freedom. The robot arm is a high speed, and a very high precision industrial robot

that is used for assembly of medical devices and parts. Three Opal sensors (APDM,

Portland, OR), each containing triaxial accelerometers and gyroscopes, are placed

on the upper arm, forearm and wrist of the robot as shown in Fig. 6.1. Table 6.1

shows the Epson C3 range of motion and operating speed of the six joints. Iner-

tial sensor data and robot data were synchronized by calculating the lag time using

cross-correlation analysis.

Typically, the human shoulder joint is modeled as a ball-and-socket joint with

three degrees of freedom (DOFs). However, for the purpose of quantifying the per-

formance of our algorithm, we model the shoulder with only two DOFs to match

those of the industrial robot used in this chapter for comparison. Fig. 6.2 shows the

arm model with the stationary base reference frame 0 at the center of the shoulder
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Table 6.1: Maximum operating speed and motion range for the robot arm.

Task Rate Max. Motion Range

Shoulder Internal/External Rotation 450 ◦/ s ±180◦

Shoulder Flexion/Extension 450 ◦/ s −160◦ ∼ +65◦

Elbow Flexion/Extension 514 ◦/ s −51◦ ∼ +225◦

Forearm Supination/Pronation 553 ◦/ s ±200◦

Wrist Flexion/Extension 553 ◦/ s ±135◦

Wrist Twist 720 ◦/ s ±360◦

joint. Frame 1 represents shoulder internal/external rotation, and frame 2 represents

shoulder flexion/extension. The robot elbow joint is a hinge joint that allows move-

ment in one plane, flexion/extension, represented by frame 3. The fourth joint is a

pivot joint that allows for the forearm pronation/supination, and is represented by

frame 4. Frames 5 and 6 represent wrist flexion/extension, and wrist twist respec-

tively.

Figure 6.1: Opal inertial sensors placement on Epson C3 robot arm.

Table 6.2 shows the D-H parameters, where αi−1 is the angle to rotate to make
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Figure 6.2: Diagram of the arm model with Frame 0 as the static reference at the base.

Frames 1 and 2 represent shoulder internal/external rotation, and flexion/extension. Frame 3

represents elbow flexion/extension. Frame 4 represents forearm pronation/supination. Wrist

flexion/extension, and wrist twist are represented by frames 5 and 6 respectively.

the two coordinate systems coincide, lu is the length of the upper arm, ai is the link

length between joint axis Zi and Zi+1 along Xi, and θi is the ith angle of rotation.

Table 6.2: Denavit-Hartenberg parameters for the 6 DOFs arm model.

Frame αi−1 ai−1 di θi
1 0 0 0 θ1
2 π/2 a1 0 θ2 + π/2
3 0 lu 0 θ3
4 π/2 0 0 θ4
5 −π/2 0 0 θ5
6 π/2 0 0 θ6
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6.1.1 Baseline Performance Results

In this section, we present baseline performance results that will be used to assess the

performance improvement introduced by employing the drift reduction techniques.

Planar and complex robot arm movements were collected in three data sets at three

different rotational rates. Each data set lasted at least 15 minutes. Each recording

started and ended with a stationary period of 3 seconds at the initial pose. This

period was used to estimate the gyroscope deterministic bias offset. The stationary

gyroscope average measurement was removed before calculating the angles [122].

The rest of each recording was designed to include simple planar rotation about each

of the six joints, followed by one second of a stationary period, and ending with more

complex movements involving shoulder, elbow and wrist joints simultaneously. This

arm trajectory was repeated a few times to obtain a continuous 15-minute recording

of robot arm movement to closely mimic human arm movement performing daily

activities at different speeds.

Firstly, we introduce tracking results for the data set of the arm movement at slow

speed. We define robot slow speed as one fourth of the arm maximum rotational

rate shown in Table 6.1. Slow rotation rate for each joint is show in Table 6.3.

Table 6.3: Average rotational rate, correlation r, and RMSE in angle estimates.

Task Rate(◦/ s ) r RMSE(◦)
Shoulder Internal/External Rotation 112 0.92 25.0

Shoulder Flexion/Extension 112 1.00 1.1

Elbow Flexion/Extension 128 1.00 1.1

Forearm Supination/Pronation 138 1.00 1.4

Wrist Flexion/Extension 138 1.00 1.2

Wrist Twist 180 1.00 1.8

Fig. 6.3 shows an example of the gyroscope sensor unit placed on the wrist. Fig. 6.5

and 6.6 show the last two minutes of elbow and wrist true angles and their estimates.

Estimation error for the entire recording is shown in Fig. 6.7 and 6.8.
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Figure 6.3: Rotational rate data during the last minute from the gyroscope sensor unit placed

on the wrist.
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Figure 6.4: Acceleration data during the last minute from the sensor unit placed on the wrist.
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Figure 6.5: Wrist angles during the last 2 minutes at an average rotation rate of 160 ◦/ s.
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Figure 6.6: Elbow angles during the last 2 minutes at an average rotation rate of 130 ◦/ s.
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Figure 6.7: Wrist joint angle error between true and inertial estimates.
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Figure 6.8: Elbow joint angle error between true and inertial estimates.
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Figure 6.9: Shoulder angles during the first 2 minutes at an average rotation rate of 112 ◦/ s.
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Figure 6.10: Shoulder angles during the last 2 minutes at an average rotation rate of 112 ◦/ s.
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Fig. 6.9 and 6.10 show the first and last two minutes of shoulder joint angles,

respectively. Table 6.3 shows a comparison between the true robot joint angles and

their estimates using the inertial tracker. A perfect correlation and very small er-

ror between inertial estimates and the true robot wrist and elbow joint angles were

obtained during planar and more complex movement at the slow rotation rate. Sim-

ilarly, shoulder flexion/extension angle estimates perfectly matched the true robot

angles. On the other hand, Fig. 6.10 shows the effect of sensor random drift around

the vertical axis, with an increased heading error after 15 minutes, compared to the

negligible heading error during the first 2 minutes in Fig. 6.9.

Second and third data sets were collected of the arm movement at medium and

fast rotational speed, which were defined as one half and full range of the maximum

rotational rate shown in Table 6.1. That is, a rotational rate of 225 − 360◦/ s during

medium speed, and a rate range of 450−720◦/ s during fast movement. We obtained

a correlation coefficient r ≥ 0.98 for all six joint angles. Consistent with the re-

sults obtained for movement during slow rotation, estimation errors between inertial

estimates and true robot joint angles were less than 4◦. Error in shoulder rotation

estimates was still higher than in other join angles, although it dropped from 25◦ to

less than 10◦. Table 6.4 shows tracking results during medium and fast rotation.

Table 6.4: RMSE between inertial and true robot angles during medium and fast rotation.

Task Medium(◦) Fast (◦)
Shoulder Internal/External Rotation 8.1 9.6

Shoulder Flexion/Extension 2.4 2.5

Elbow Flexion/Extension 2.6 3.3

Forearm Supination/Pronation 2.1 2.4

Wrist Flexion/Extension 2.2 2.9

Wrist Twist 3.9 3.8

Fig. 6.11 and 6.12 show the last two minutes of elbow and wrist movements

during medium speed. Fig. 6.13 and 6.14 show first and last two minutes of shoulder



CHAPTER 6. MODIFIED ARM MODEL 72

angles.
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Figure 6.11: Wrist angles during the last 2 minutes at an average rotation rate of 320 ◦/ s.
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Figure 6.12: Elbow angles during the last 2 minutes at an average rotation rate of 260 ◦/ s.
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Figure 6.13: Shoulder angles during the first 2 minutes at a rotation rate of 225 ◦/ s.
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Figure 6.14: Shoulder angles during the last 2 minutes at a rotation rate of 225 ◦/ s.
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6.2 Modeling Sensor Random Drift

In this section, we modify the process model to include accelerometer and gyroscope

sensors random bias. To reduce the effect of random drift on shoulder rotation angle

estimates, we model the bias of the sensors of the IMU placed on the shoulder. Bias

is modeled as a random walk, adding 6 more dimensions to the process model:

θi(n+ 1) = θi(n) + Tsθ̇i(n) +
1
2
T 2
s θ̈i(n)

θ̇i(n+ 1) = θ̇i(n) + Tsθ̈i(n)

θ̈i(n+ 1) = αθ̈i(n) + uθ̈i
(n)

...

bω(n+ 1) = bω(n) + ubω(n)

ba(n+ 1) = ba(n) + uba(n)

The 3D gyroscope bias bω and 3D accelerometer bias ba are random walk with

zero-mean white noise ubω and uba. The observation equation for the inertial mea-

surement unit placed on the upper arm is given below:

ω̇x = θ̇1 cos(θ2) + bωx

ω̇y = −θ̇1 sin(θ2) + bωy

ω̇z = θ̇2 + bωz

v̇x = a1 sin(θ2)θ̇1
2
+ g cos(θ2)− θ̇1

2
a2 sin(θ2)

2 − θ̇2
2
a2 + bax

v̇y = a1 cos(θ2)θ̇1
2
− g sin(θ2)− θ̇1

2
a2 cos(θ2) sin(θ2) + θ̈2a2 + bay

v̇z = a1a2 cos(θ2)θ̇1θ̇2 + θ̈1a2 sin(θ2) + θ̇1θ̇2a2 cos(θ2)− a1θ̈1 + baz

where (ωx, ωy, ωz) are the triaxial gyroscope data, and (v̇x, v̇y, v̇z) are the triaxial

accelerometer data at time n, θi(n) is the ith angle at time n, θ̇i is the angular velocity,

and θ̈i is the angular acceleration. The distance between elbow flexion joint and the

device is a2. The time index n was dropped from the measurement equations for ease
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of readability. Observation equations for the forearm and wrist sensors are too long

to be shown here.

6.2.1 Results

Table 6.5 shows a comparison between the true robot joint angles and their esti-

mates using the inertial tracker with the modified kinematic equations. The table

also includes baseline RMSE during slow arm movement for comparison purposes.

Results show a very small errors between inertial estimates and true robot wrist and

elbow joint angles. Similarly, shoulder flexion and extension angle estimates per-

fectly matched the true robot angles. The RMSE of the shoulder internal/external

rotation angle dropped from 25.0◦ to 5.2◦.

Table 6.5: RMSE of inertial angle estimates using the modified dynamic equations with bias

estimates, compared to baseline results of angles during slow rotation.

Task RMSE(◦) Baseline RMSE(◦)
Shoulder Internal/External Rotation 5.2 25.0

Shoulder Flexion/Extension 0.9 1.1

Elbow Flexion/Extension 1.1 1.1

Forearm Supination/Pronation 1.4 1.4

Wrist Flexion/Extension 1.3 1.2

Wrist Twist 1.8 1.8

Fig. 6.15 shows the last two minutes of a 15 minute recording of simple planar

and more complex robot shoulder joint angles. Shoulder angle estimation error of

the last two minutes is shown in Fig. 6.16. Both figures and results in Table 6.5 show

that the new model dramatically decreased shoulder internal/external rotation angle

errors from 25.0◦ to 5.2◦, with an increased correlation from 0.92 to 0.99.
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Figure 6.15: Shoulder angles during the last two minutes at a rotation rate of 112 ◦/ s.
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Figure 6.16: Shoulder angle error between true and estimates during the last 2 minutes.
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6.3 Anatomical Constraints in Shoulder and Elbow

In an attempt to circumvent the sensor drift problem and its effect on the accuracy of

joint angle tracking, we use our knowledge of physical constraints and human natural

range of motion to restrict angle estimates within acceptable range for different joints

in the human body. Range of motion (ROM) refers to the amount of normal volun-

tary movement that a particular joint or body part can move, measured in degrees.

Natural ROM is greatly determined by many factors such as age, gender, and bone

structure. Researchers in medicine reported differences in joint range of motion in

men and women. Studies have traditionally found females to have greater mobility

and increased flexibility in all joints and angles except wrist and knee flexion [111].

Studies in sports reported increased ROM among athletes due to adaptive changes

that lead to alterations in joint motion range [17]. On average, natural range of elbow

flexion is between zero and 145◦. The range of forearm supination is between zero

and 85◦, and between zero and 80◦ for the forearm pronation. Wrist flexion/extension

natural range is ±75◦. Human shoulder rotation around the humerus bone cannot

exceed 90◦. Similarly, shoulder cannot attain more than 180◦ of abduction or flex-

ion [42].

The state space framework provides a convenient means of incorporating prior

knowledge of the dynamic system. There are many ways to incorporate state con-

straints into the nonlinear state estimators [109]. In this chapter, constraints are in-

corporated in the unscented Kalman filter algorithm during the time update step. The

UKF uses a deterministic sampling technique known as the unscented transform to

pick a set of sample points around the mean of the states. These points, known as

sigma points, are then propagated through the nonlinear transition function to calcu-

late the predicted states and their covariance. At this step, we restrict the predicted

angle states within the natural range of motion region. The constrained predicted es-

timates are then used to update sigma points before they are propagated through the



CHAPTER 6. MODIFIED ARM MODEL 78

nonlinear measurement function to update the measurement estimates. During the

measurement update, the constraints may be violated due to the linearization. How-

ever, these violations are rare and small in magnitude. The updated sigma points

are also used to calculate Kalman gain, which in turn is used to calculate the state

estimates. The result is a filter which more accurately captures the true states, and

measurement mean and covariance.

6.3.1 Results

Table 6.6 shows a comparison between the true robot joint angles and their esti-

mates using the inertial tracker with the modified kinematic equations. Results show

that incorporating robot range of motion constraints greatly improved shoulder inter-

nal/external rotation angle estimates. The RMSE was dropped from 25.0◦, obtained

for baseline shoulder rotation, to 7.8◦ for joint angle estimate with constraints. A

perfect correlation and smaller errors were obtained between inertial estimates and

true robot wrist, elbow, and forearm angles compared to the baseline results of the

robot arm angles during slow rotation. Similar improvement was obtained for the

other two data sets.

Table 6.6: RMSE of inertial angle estimates using algorithm with physical constraints com-

pared to baseline results during slow rotation.

Task RMSE(◦) Baseline RMSE(◦)
Shoulder Internal/External Rotation 7.8 25.0

Shoulder Flexion/Extension 0.8 1.1

Elbow Flexion/Extension 0.9 1.1

Forearm Supination/Pronation 1.3 1.4

Wrist Flexion/Extension 1.1 1.2

Wrist Twist 1.7 1.8
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6.4 Zero-Velocity Updates

Another approach to reducing the effect of gyroscope drift on the estimated angles

especially around the vertical axis during long movement periods is the use of zero-

velocity updates (ZVU). This technique has been successfully used in a few ambula-

tory gait analysis and pedestrian navigation studies. During walking cycles, human

feet alternate between a moving stride and a stationary stance phase when the foot

is on the ground. In their tracking algorithm, Feliz et al. detected each stationary

phase and used it to reset the angular rate to zero [40]. Resetting the inertial data to

zero is refereed to as hard velocity update. Foxlin detected the stationary phase when

gyroscope and accelerometer data stayed below a prescribed threshold for at least

0.15 seconds. He applied zero-velocity updates as pseudo-measurements in an EKF

navigation error corrector [46]. This is classified as soft zero-velocity updates [110].

Zero-velocity updates is well suited and has been used for bounding the error growth

of foot-mounted inertial sensors [108]. To the best of our knowledge, no study has

used this approach in tracking joint angles or orientation of upper extremities.

In this chapter, we apply soft zero-velocity updates to update estimates of the

gyroscope around the vertical axis. Since our algorithm uses gravity to estimate

the attitude, and we only lack an absolute reference for heading about the vertical

axis, we employ ZVU only around the vertical axis. When the rotational rate around

the vertical axis stays below a threshold of 3◦/ s for at least 0.25 seconds, move-

ment is considered stationary and the measurement equation is augmented with a

pseudo-measurement of gyroscope vertical axis random noise. Instead of applying

hard update by resetting the velocity to zero, using pseudo-measurements into the

UKF provides additional benefits. Besides the more accurate angle estimates around

the vertical axis, the filter provides an estimate of the gyroscope bias and corrects

rotational rate estimates. Thus, the filter corrects estimates of heading angle, and

consequently other distal arm angles.
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6.4.1 Results

Table 6.7 shows a comparison between the true robot joint angles and their estimates

using the inertial tracker with the modified kinematic equations. Results show that in-

corporating using zero-velocity update and the periodic correction improved shoulder

internal/external rotation angle estimates. The RMSE was dropped from 25.0◦ ob-

tained for baseline shoulder rotation to 12.2◦ for the joint estimate employing ZVU.

Negligible errors were obtained between inertial estimates and true robot wrist, el-

bow, and forearm angles compared to the baseline results of the robot arm angles

during slow rotation. Similar improvement was obtained for the other two data sets.

Table 6.7: RMSE of inertial angle estimates using zero-velocity updates compared to baseline

results during slow rotation.

Task RMSE(◦) Baseline RMSE(◦)
Shoulder Internal/External Rotation 12.2 25.0

Shoulder Flexion/Extension 0.9 1.1

Elbow Flexion/Extension 1.0 1.1

Forearm Supination/Pronation 1.4 1.4

Wrist Flexion/Extension 1.4 1.2

Wrist Twist 1.8 1.8

6.5 Modified Model with Bias, Constraints, and Zero-Velocity Updates

We combine the three techniques discussed above into one modified arm model to ac-

count for sensor random drift, and to employ physical constraints and zero-velocity

updates. The assessment of the modified inertial tracker performance in this sec-

tion is based on the 15-minute recording of the arm rotating at medium rotational

speed. Results will be compared to medium-speed baseline results discussed in Sec-

tion 6.1.1.
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6.5.1 Results

Table 6.8 shows a comparison between the true robot joint angles and their estimates

using the inertial tracker with the modified kinematic equations. Results show im-

proved tracking and a reduced RMSE for all angles. The RMSE dropped from 8.1◦

obtained for baseline shoulder internal/external rotation to 5.9◦. A perfect correlation

and smaller errors were obtained between inertial estimates and true robot elbow and

shoulder flexion/extension angles. No apparent improvement to wrist angle tracking

results. This is not surprising, since the three different approaches used to mitigate

the effect of sensor random drift were applied to the measurement model of only

the IMU placed on the upper arm. This unit measures only movement of the robot

shoulder relative to the stationary robot base.

Table 6.8: RMSE of inertial angle estimates with modified arm model compared to baseline

results during medium-speed arm rotation.

Task RMSE(◦) Baseline RMSE(◦)
Shoulder Internal/External Rotation 5.9 8.1

Shoulder Flexion/Extension 2.1 2.4

Elbow Flexion/Extension 2.3 2.6

Forearm Supination/Pronation 2.1 2.1

Wrist Flexion/Extension 2.2 2.2

Wrist Twist 3.9 3.9

Fig. 6.17 and 6.18 show the last two minutes of the robot elbow and wrist move-

ments at medium rotational rate. Shoulder angles during the first and last two minutes

are shown in Fig. 6.19 and 6.20. Careful inspection of the results in all figures, espe-

cially shoulder results, shows an excellent agreement between true and inertial angle

estimates.
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Figure 6.17: Wrist angles during the last 2 minutes at an average rotation rate of 318 ◦/ s.
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Figure 6.18: Elbow angles during the last 2 minutes at an average rotation rate of 266 ◦/ s.
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Figure 6.19: Shoulder angles of the first 2 minutes at an average rotation rate of 225 ◦/ s.
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Figure 6.20: Shoulder angles of the last 2 minutes at an average rotation rate of 225 ◦/ s.
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6.6 Discussion

Accelerometers and gyroscopes, as with most electronic sensors, are corrupted by

random noise. Many research groups have used magnetometers to compensate the

orientation error that occurs when integrating the angular rate. Fusion of magne-

tometers with inertial sensors offers enhanced performance only in the absence of

magnetic field disturbances. In this chapter, we incorporated sensor random drift into

the kinematic model, and used state space methods to employ zero-velocity updates

and physical constraints to obtain better estimates of joint angles. The state space

framework provides an elegant and efficient means of incorporating prior knowledge

of the dynamic system. Careful inclusion of the prior knowledge leads to improved

accuracy in tracking the system states.

We used the unscented Kalman filter with the modified system equations to es-

timate shoulder, elbow and wrist joint angles from an industrial robot arm with 6

degrees of freedom. Despite the different characteristics of human movement from

that of a robot, we argue that using a robot arm for assessment has many advan-

tages over the traditional optical systems. The different characteristics are mainly

due to the type and DOFs of a joint. The shoulder joint is normally modeled as a

ball-and-socket joint with 3 DOFs. However, the robot shoulder has only 2 DOFs,

which limits the comparison to only 6 DOFs, including those of the elbow and wrist

joints. Despite this limitation, using the robot arm for assessment provides many

advantages. Unlike motion capture systems which require estimation of joint angles

by processing marker positions and interpolation of missing markers data, the robot

system provides direct angle measurements with high precision. The arm movement

rate can be controlled to a desired rate ranging from slow to very fast, up to 720 ◦/ s.

Furthermore, the robot provides a wide range of motion that can easily mimic human

movement in performing various tasks.

Compared to true angles of the robot reference system, we achieved an average
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RMSE of less than 3◦ during slow arm movement at a rotational rate ≤ 180 ◦/ s.

The modified process model with accelerometer and gyroscope sensors random bias

resulted in a reduced maximum error of 5.2◦ for heading angles around the vertical

axis. This error is due to gyroscope drift accumulation after 15 minutes. This is a

reasonable error range compared to what was reported by Roetenberg who showed

that integration of noisy gyroscope data resulted in a drift between 10–25◦ after one

minute [96]. In contrast to many studies discussed in Chapter 2, we validated the

performance of our tracking algorithm during different movement speeds over long

durations of 15 minutes. Angle estimates during arm movement at medium rota-

tion rate ≤ 360 ◦/ s are very similar to those obtained during slow movement. On

average, the RMSE was 3.3◦, with a maximum error of 5.9◦ between true and esti-

mated internal/external shoulder rotation. The modified model resulted in a notable

improvement to estimates around the vertical axis, compared to the baseline results

shown in Fig. 6.10.

The error slightly increased during fast movement with an average RMSE of 3◦,

and a maximum error of 9.6◦ between true and estimated shoulder internal/external

rotation. Besides the effect of gyroscope drift on the accuracy of the estimated angles,

there was another source of noise that contributed to the larger error. Due to the very

fast arm movement, the table on which the arm is mounted was vibrating strongly,

adding more noise to the sensor measurements. Despite the slightly higher tracking

error during fast movement, we maintained a reasonable error range compared to

what was achieved by other studies which reported an error range of 12◦ − 16◦ [7].

The combined effect of imposing physical constraints on state estimates, mod-

eling sensor bias, and zero-velocity updates can be observed especially during the

last few minutes of the recording in Fig. 6.20. The effect of gyroscope drift on angle

estimates greatly decreased to an acceptable error range. The RMSE was dropped

from 25.0◦ obtained with the baseline shoulder rotation to 7.8◦ for estimates of the
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joint angles during slow rotation with an increased correlation from 0.92 to 0.99.

Similarly, the RMSE was dropped from 8.1◦ with the baseline shoulder rotation

to 5.9◦ for estimates of the joint angles during medium-speed rotation.
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7 Nonlinear State Estimation

All relevant information about the state x0:n up to and including time n can be ob-

tained from the posterior density function p(x0:n|y0:n). In Bayesian filtering, the state

x is assumed to be a hidden Markov process with an initial distribution p(x0). The

goal is to recursively estimate the distribution p(xn|z0:n), given all measurements

y1:n up to time n. It is assumed that the prior p(x0) is known at time n = 0 with no

measurement yo.

When the posterior density is Gaussian, the distribution is completely described

by the state mean and covariance. When the state and observation models are linear

and have Gaussian distribution, the recursive Kalman filter provides an optimal so-

lution to the estimation problem. The solution is statistically optimal with respect to

any quadratic function of estimation error. If the Gaussian assumption is relaxed, the

Kalman filter is still a minimum variance estimator [94].

In practical situations, many systems of interest are nonlinear, and use of the

linear Kalman filter may result in large estimation errors. A common approach to

solving the nonlinear problem is to approximate the nonlinear functions, then apply

the Kalman filter recursions to the linearized system. Approximation techniques for

estimation of nonlinear systems include stochastic model approximation, function

approximation and moment approximation [100]. In stochastic approximation, the

nonlinear system is approximated by a simpler linear model. Function approximation

has widely been implemented using Taylor series expansion. This is the basic idea of

the extended Kalman filter (EKF), where the nonlinear functions are approximated
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by a first-order Taylor-series expansion. An example of the moment approximation

technique is the unscented transformation, which is a central scheme in the unscented

Kalman filter (UKF). The idea is to find a set of deterministic points in the state space

that can adequately approximate the first and second moments (mean and covariance)

of a distribution.

For non-Gaussian processes, the state mean and covariance are not sufficient to

describe the distribution. Monte Carlo methods can be used to approximate the poste-

rior density by a set of random samples, known as particles, with associated weights.

Sequential Monte Carlo methods, also known as particle filters (PFs), carry out this

approximation recursively to reduce the computational cost of the algorithm.

This chapter introduces a brief description of three nonlinear estimators: EKF,

UKF and PF, and evaluates their performance in tracking joint angles of the robot

arm.

7.1 Extended Kalman Filter

The basic idea of the extended Kalman filter is to approximate the nonlinear process

and measurement functions by a first-order Taylor-series expansion, then to apply the

Kalman filter recursions during the update step . In other words, the Kalman filter

and EKF have the same update equations.

The state and observations are governed by the following equations:

x(n+ 1) = fn [x(n), u(n)]

y(n) = hn [x(n), v(n)]

where x(n) represents the unobserved state of the system, and y(n) represents the

observed or measured data. The state and measurement noise are given by u(n) and

v(n), respectively. They are assumed to be white noise with zero mean, and known
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covariance matrices Q and R. The functions fn[·] and hn[·] are the nonlinear state

and observation dynamics and are assumed to be known.

7.1.1 Extended Kalman Filter Recursions

Given a vector of noisy measurements yn, estimation of the state xn is carried out in

two steps similar to the Kalman filter algorithm. The first step is the prediction of

x̂n|n−1 at time n conditioned on all measurements through time n− 1:

x̂n|n = f(x̂n−1|n−1) (7.1)

Pn|n = FnPn−1|n−1F
T
n +Qn (7.2)

where predicted states are propagated through the nonlinear function, whilst the pre-

dicted state error covariance Pn propagates through the Jacobian Fn:

Fn =
∂fn(x)

∂x

∣

∣

∣

∣

x=x̂n|n

(7.3)

Hn =
∂hn(x)

∂x

∣

∣

∣

∣

x=x̂n|n−1

(7.4)

Given the predicted state estimate and its associated covariance obtained from past

information, the filter calculates the Kalman gain Kn. This gain is used to obtain

an updated and potentially better state estimate, when a new measurement of time n

becomes available.

Kn = Pn|n−1H
T
n

(

HnPn|n−1H
T
n +Rn

)−1
(7.5)

ŷn|n−1 = h(x̂n|n−1) (7.6)

x̂n|n = x̂n|n−1 +Kn

(

yn − ŷn|n−1

)

(7.7)

x̂n+1|n = f(x̂n|n) (7.8)

Pn+1|n = FnPn|nF
T
n +Q (7.9)

The state estimate covariance is also updated to reflect the new information, resulting

in a reduced uncertainty.
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7.2 Unscented Kalman Filter

In the UKF, the state probability density is approximated by a deterministic sampling

of points which represent the distribution as Gaussian. The underlying idea is to

estimate the first and second order moments of the distribution from a set of 2ℓ + 1

points, called sigma points, with ℓ being the dimension of the state variable. Sigma

points are generated deterministically assuming accurate knowledge of the mean and

covariance matrix of the initial state.

7.2.1 Unscented Kalman Filter Recursions

Assuming we have an estimate of the mean x̂n and the state error covariance Pn at

time n, we can find the sigma points as follows:

χi
n = x̂ for i = 0 (7.10)

χi
n = x̂+

√

ℓxP for i = 1, . . . , ℓx (7.11)

χi
n = x̂−

√

ℓxP for i = ℓx + 1, . . . , 2ℓx (7.12)

The nonlinear functions are then applied to each of these sigma points as follows:

xi
n−1 = x̂n−1|n−1 + χi

n−1 (7.13)

x̂i
n = f(x̂i

n−1) (7.14)

x̂n|n−1 =
1

2ℓx

2ℓx
∑

i=1

x̂i
n (7.15)

Pχ,n|n−1 =
1

2ℓx

2ℓx
∑

i=1

(x̂i
n − x̂n|n−1)(x̂

i
n − x̂n|n−1)

T (7.16)
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The measurement update is carried out as follows:

yin = h(xi
n) (7.17)

ŷn|n−1 =
1

2ℓx

2ℓx
∑

i=1

yin (7.18)

Py =
1

2ℓx

2ℓx
∑

i=1

(yin − ŷn|n−1)(y
i
n − ŷn|n−1)

T +R (7.19)

Pxy =
1

2ℓx

2ℓx
∑

i=1

(x̂i
n − x̂n|n−1)(y

i
n − ŷn|n−1)

T (7.20)

Kn = PxyP
−1
y (7.21)

And finally, the UKF uses the Kalman gain Kn to calculate the state estimate and

covariance:

x̂n|n = x̂i
n|n−1 +Kn(yn − ŷn|n−1) (7.22)

Pχ,n|n = Pχ,n|n−1 −KnPyK
T
n (7.23)

It is argued that estimates of mean are accurate up to the third order when the

distribution is Gaussian. However, this is based on the assumption that the mean and

covariance of the initial state are known exactly. This is not true in practice, and

that claim might not hold. Nonetheless, implementation of the UKF is substantially

easier and requires no analytic derivation or Jacobian as in the EKF. However, the

major drawback of the UKF is the need to compute a matrix square root that requires

O(ℓ3x) operations.
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7.3 Particle Filters

The key idea in particle filtering is to represent the posterior density function of the

state by a set of random particles with associated weights, and to use these particles

to compute the state estimates. At time n, the true posterior density can be approxi-

mated as a sum of weighted impulses:

p(x0:n|y0:n) ≈

Np
∑

i=1

wi
nδ
(

x0:n − xi
0:n

)

(7.24)

where xi
o:n represents the particles with their associated weights wi

n, and Np is the

number of particles. Particles are randomly sampled from an importance density

q(x0:n|y0:n) using the principle of importance sampling [31]. The weights are up-

dated as follows:

wi
n =

p(yn|x
i
n)p(x

i
n|x

i
n−1)

q(xi
n|x

i
0:n−1, y0:n)

wi
n−1 (7.25)

where p(yn|x
i
n) is obtained from the measurement model, p(xi

n|x
i
n−1) from the pro-

cess model, and w(xi
n−1) is obtained from the previous time step n− 1. The weights

are then normalized such that
Np
∑

i=1

wi
n = 1.

Given that q(xi
n|x

i
0:n−1, y0:n) = q(xi

n|x
i
n−1, yn), the importance density only de-

pends on xn−1 and yn. Selection of the importance density is one of the filter design

decisions, and it is one of the factors that control the tracking performance. The most

common choice is the prior distribution,

q(xn|x0:n−1, y0:n) = p(xn|xn−1)

However, this choice is sensitive to outliers and might lead to poor tracking. An

optimal importance density is a function that results in particles contributing equally

to the state estimates, with associated wights which have a minimum variance [3].

This optimal density is given by:

q(xn|x0:n−1, y0:n) = p(xn|x
i
n−1, yn)
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However, this optimal density requires the ability to draw from p(xn|x
i
n−1, yn), which

can not be done. A suboptimal approach is to approximation the optimal density with

a Gaussian distribution. The importance weight are calculated recursively, and then

normalized as follows:

w̃i
n = p(yn|x

i
n)w

i
n−1 (7.26)

wi
n =

1
∑Np

i=1 w̃
i
n

wi
n−1 (7.27)

Computational cost of particle filters can be adjusted by increasing or decreasing

the number of particles. This, in turn, controls the tradeoff between accuracy of state

estimates and computation. The computation required at each time step is O(Np).

One of the drawbacks of the particle filters is known as the degeneracy problem,

when after a few iterations, all but a few of the particles have negligible weight.

This implies that a large computational effort is spent updating particles that have no

contribution to the state estimates. To avoid degeneracy, filters utilize a resampling

routine to replicate particles with large importance weights and eliminate the ones

with negligible weights. Although resampling increases the computation complexity

of the filter, it leads to better state estimates. Resampling is performed when the

variance of the weights reaches a pre-specified threshold. In other words, when the

effective sample size falls below the threshold. The effective sample size is defined

as:

Npe =

(

Np
∑

i=1

wi
n

)−1

The particle filter results presented in the following section were generated with

500 particles, and resampling was performed when the effective number fell below

125 particles.
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7.4 Results

Performance and comparison of the EKF, UKF and PF are based on a 30 s segment

of the robot arm data introduced in Chapter 6. Three inertial measurement units,

each containing triaxial accelerometers and gyroscopes, were placed on the upper

arm, forearm and wrist of the robot as shown in Fig. 6.1. A list of the user-specified

filter parameters used to generate the results introduced in this section is shown in

Table 7.1.

Table 7.1: User-specified parameters and sample rate used with the three filter. I represents

an identity matrix.

Name Symbol Value

Variance of gyroscope measurement noise σvg
2 .0001

Variance of accelerometer measurement noise σva
2 .01

Variance of process noise σu
2 10

Initial state covariance matrix P I
Angular acceleration process parameter α .95

Sample rate fs 128 Hz

True robot shoulder internal/external rotation and flexion/extension angles (dashed

red lines) and their estimated values (solid blue lines) using the UKF are shown in

Fig. 7.1. Similarly, true angles of the elbow, forearm and wrist, and their estimates

are shown in Fig. 7.3 and 7.5.

Fig. 7.2 shows the error between true shoulder rotation and estimates from the

three filters. Estimation errors are less than 3◦ for both of the shoulder inter-

nal/external rotation and flexion/extension angles. Unlike the EKF and PF, the UKF

error is consistently negligible and stays almost constant throughout the shoulder

flexion/extension segment.

The error between true elbow and forearm angles, and their estimates are shown

in Fig. 7.4. Estimates by the UKF are almost identical to the true elbow and forearm

angles, and the estimation error is consistently low. Comparable performance of
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Figure 7.1: True robot shoulder rotation and flexion, and their estimates using UKF.
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Figure 7.2: Error between true robot shoulder angles and estimates using EKF, UKF and PF.
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Figure 7.3: True robot elbow flexion and supination, and their estimates using UKF.
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Figure 7.4: Error between true robot elbow angles and estimates using EKF, UKF and PF.
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Figure 7.5: True robot wrist flexion and supination, and their estimates using UKF.
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Figure 7.6: Error between true robot wrist angles and estimates using EKF, UKF and PF.
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the PF and EKF in tracking elbow and forearm angles can also be seen in Fig. 7.4.

On the other hand, the PF estimation error of the wrist angles increased with time.

Fig. 7.6 shows that the PF initially wanders for a few seconds until it locks on the

wrist flexion state. The filter looses track of the angle states a few seconds later.

Increasing the number of particles from 500 to 2500 resulted in improving the PF

tracking. Table 7.2 shows the RMSE between the true robot joint angles and their

estimates using the EKF, UKF, and PF with 500 (PF500) and 2500 (PF2500) particles.

The number of floating-point operations (flops) employed in an algorithm is nor-

mally used to analyze the computational complexity of the algorithm. A flop is de-

fined as on of addition, subtraction, multiplication, or division of two floating-point

numbers. However, to compare the computational complexity by giving the number

of flops employed in each of the three filters, we run into a few problems. There are

certain steps in the filters algorithm that cannot be measured using flops, including

the cost of generating a random number and the cost of evaluating a certain nonlinear

function. Nonetheless, it is still possible to analyze the complexity by measuring the

absolute time required to execute the different filters. Along with the average error

among all angles, Table 7.2 compares the filters computational requirement time in

seconds.

Table 7.2: Root mean squared error (RMSE) in degrees between true robot arm angles and

estimates using the EKF, UKF and PF with 500 and 2500 particles.

Task EKF UKF PF500 PF2500

Shoulder Internal/External Rotation 2.9 2.9 2.4 0.7

Shoulder Flexion/Extension 2.3 2.1 2.9 1.5

Elbow Flexion/Extension 3.7 2.9 3.2 2.6

Forearm Supination/Pronation 2.2 1.7 2.3 1.3

Wrist Flexion/Extension 1.8 1.4 3.4 1.3

Wrist Twist 2.2 1.7 7.8 2.3

Average error (◦) 2.5 2.1 3.7 1.6

Execution time (s) 38 66 670 3430
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7.5 Discussion

Rather than approximating the nonlinear functions like the EKF, the UKF approx-

imates the probability distribution. Compared to the tracking performance by the

EKF, the UKF resulted in better estimates and a reduced error in five of the six robot

angles. The average error reduction was about 16% of the EKF average error. The

UKF performance improvement was achieved at the expense of an increased com-

putational requirement. The UKF recursions were executed in almost twice the time

of the EKF. Performance of the EKF and UKF is dependent on the choice of initial

state estimate and other parameters listened in Table 7.1. The same parameters were

used with the three filters. Unlike the EKF, the UKF does not require the evaluation

of the Jacobians of the functions fn[·] and hn[·]. Hence, the UKF represents a better

alternative to the EKF whenever a linearized model is not accurate enough or the

Jacobian computation becomes too cumbersome.

Compared to the particle filter with 500 particles, the UKF resulted in better esti-

mates and a reduced error in five of the six arm angles. On average, the RMSE of the

PF was 3.7◦ compared to 2.1◦ and 2.5◦ of the UKF and EKF, respectively. The UKF

average error was approximately 43% of the PF estimation error, and its recursions

were executed in less than one tenth of the execution time of the PF.

While the UKF estimates the mean and covariance of the state, the PF estimates

the PDF as the number of particles approaches infinity [24]. Given enough particles,

a particle filter performs better than a UKF, but this might be at the expense of un-

acceptable computational requirements. Increasing the number of particles and the

frequency of resampling improved tracking. The average RMSE dropped from 3.7◦

to 1.6◦, an error reduction of 57%. However, large number of particles and repeated

resampling increases the computational requirements of the filter. Moreover, with

repeated resampling, particles loose diversity, and tracking fails with only a few par-

ticles contributing to the state estimate. This problem is known as sample impover-
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ishment.

Various algorithms have recently been developed to improve the performance of

particle filters and to address sample degeneracy and the impoverishment problem.

Efforts have been devoted to selecting an appropriate importance density and to mod-

ification of the resampling process [50, 90, 86]. Cappè et al. provide an overview of

existing methods and recent advances in particle filters [19]. Utilizing one of the

modified particle filters results in improved performance in tracking joint angles.

However, particle filters are still limited by the computational requirements propor-

tional to the number of particles needed for reasonable tracking results. The number

of particles scales with the state dimension ℓ. This proves to be problematic, espe-

cially in human movement tracking applications. The state dimensions grow propor-

tionally with the number of angles included in the kinematic model of the body, and

the filter performance often deteriorates with the increased state dimensions.
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8 Summary And Conclusion

The objective of the research presented in this dissertation is to overcome the tech-

nological and methodological difficulties and limitations associated with existing

human joint tracking techniques. We developed an algorithm that utilizes wireless

wearable inertial sensors to directly and continuously estimate human joint angles.

Tracking is performed in real-time or off-line with high accuracy for slow, normal

and fast, as well as complex movement with a minimal number of inertial sensors.

The algorithm combines kinematic models designed for control of robots with state

space methods to accurately estimate human joint angles.

8.1 Summary

The need to characterize normal and pathological human movement has consistently

driven researchers to develop new and improved tracking systems. Interest in track-

ing human movement has been motivated by its wide array of applications including:

diagnosis of neurological movement disorders and assessment of treatment, rehabil-

itation from motor system injuries, as well as analysis of athletes’ performance in

professional sports, to name a few.

Human movement has traditionally been captured by either optical, mechanical,

magnetic, acoustic, or inertial systems. Although each of these systems has its own

advantages, they all suffer from various limitations and shortcomings. Optical sys-

tems are costly, require fixed cameras in a controlled environment, and suffer from
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problems of occlusion, similar to those in acoustic and structured light systems. Mag-

netic and radio frequency systems suffer from electromagnetic disturbances, noise

and multipath problems. Mechanical systems have physical constraints that limit

the natural body movement. These systems and their limitations were discused in

Chapter 1.

Inertial measurement units (IMUs), on the other hand, offer a practical and rel-

atively low-cost alternative to other motion capture systems. Wireless IMUs can be

attached to various body segments, and can be used in and outside of a laboratory.

Movement can continuously be recorded while subjects perform normal daily activ-

ities over an extended period, and data can be processed off-line or during real-time.

In Chapter 2, we reviewed some of the traditional and recently developed inertial

tracking algorithms and their limitations. In these algorithms, orientation estimates

are accurate for brief and static periods when accelerometers could be used as in-

clinometers. Studies using magnetometers reported large orientation errors when

sensors were in the vicinity of magnetic field disturbances. Another factor limiting

the success of some of these tracking algorithms is the number of measurement units

required to track complex human movement. Large numbers of sensors increase the

cost and the computational complexity of the system.

Contrary to previous studies, the research and performance evaluation presented

in this dissertation demonstrates the feasibility of tracking human joint angles with

a minimal configuration of IMUs including only triaxial gyroscopes and accelerom-

eters. As discussed in Chapter 4, joint angles are estimated using a new tracking

algorithm that does not require magnetic sensors. In addition to eliminating the er-

ror due to magnetic disturbances, this reduces the size of process and measurement

models, and consequently reduces the computational requirement of the algorithm.

The inertial tracker utilizes both gravity and translational acceleration, together with

rotational rate, making it suitable for tracking slow and fast movement with excellent
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accuracy. An integral part of the inertial tracker is a novel measurement model. The

model is based on Newton-Euler dynamics utilized in the control of robotic arms

introduced in Chapter 3.

To evaluate the system and tracking performance, we compared joint angles es-

timated by the inertial tracker to those estimated by an optical tracking reference

system. Shoulder and elbow movement data from 8 subjects were used to evalu-

ate the performance. Tracking results were evaluated in Chapter 5. On average,

the RMSE was less than 8 degrees for all shoulder and elbow angles. The average

correlation coefficient for all movement tasks among subjects was r ≥ 0.95. This

agreement between our inertial tracker and the optical reference system was obtained

for both regular and high-speed arm movement.

A major source of error in tracking human kinematics using inertial sensors is

inherent sensor bias and random drift. When gyroscope data is integrated, this drift

introduces an angle error that grows proportionally with time. In Chapter 6, we

introduced a modified process and measurement model to reduce the effect of sen-

sor drift and to increase the tracking accuracy. The modified tracker incorporates

gyroscope and accelerometer random drift models, utilizes physical constraints and

natural range of human motion, and applies zero-velocity updates to provide periodic

correction to the error in angle estimates. Joint angles calculated by the modified in-

ertial tracker were compared to those obtained from a high precision industrial robot

arm with six degrees of freedom, during 15-minute recordings for slow, regular and

high-speed movement. The combined effect of imposing physical constraints, mod-

eling sensor bias, and employing zero-velocity updates resulted in a considerable de-

crease in tracking error. The RMSE dropped from 25.0◦ obtained with the baseline

heading angle to 7.8◦ for estimates during slow rotation, an error reduction of 69%.

Similarly, the RMSE dropped from 8.1◦ with the baseline heading angle to 5.9◦, an

estimation error reduction of 27% for joint angles during medium-speed rotation.
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Using the robot arm for assessment provides many advantages. Unlike motion

capture systems, the robot system provides direct angle measurements with high pre-

cision. The arm movement rate can be controlled to a desired speed ranging from

slow to very fast, up to 720 ◦/ s. Furthermore, the robot provides a wide range of

motion that can easily mimic human movement in performing various tasks.

The tracker utilizes the unscented Kalman filter (UKF), which is an improvement

to the extended Kalman filter (EKF). The UKF removes the need for linearization

while providing estimates that capture the statistics of the target distribution more

accurately than the EKF [70]. The UKF approximates the distribution rather than the

nonlinearity, therefore it is accurate to at least the second order. Moreover, the UKF

eliminates the need for Jacobian matrices.

Particle filters (PFs), provide an alternative to the EKF and UKF in solving non-

linear and non-Gaussian estimation problems. In Chapter 7, we introduced a brief

description of the EKF, UK and PF, and evaluated their performance in tracking the

robot arm angles. Compared to the EKF, the UKF resulted in better estimates and a

slightly reduced error in five of the six robot arm angles. The average error reduc-

tion was approximately 16% of the EKF error. UKF performance improvement was

achieved at the expense of a little increase in execution time of the UKF recursions.

Similarly, the UKF resulted in a better joint angle tracking than the PF. The UKF

average error reduction was approximately 43% of the PF error. Furthermore, the ef-

ficient UKF recursions required less than one tenth of the PF execution time. Given

enough particles, a particle filter performs better than a UKF, but this might be at the

expense of unacceptable computational requirements.

8.2 Contributions

The key contribution of the research presented in this dissertation is the develop-

ment of an inertial joint angle tracker which overcomes the limitations of existing
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human joint tracking systems. The inertial tracker integrates a biomechanical model

of human limbs with state space methods to solve the kinematic problem. That is,

determining human joint angles given angular velocity and acceleration measure-

ments. The algorithm can be applied to any combination of inertial sensors, and can

efficiently be generalized to track movement of any combination of human limbs.

The implementation can use tracking algorithms that are either causal, real-time or

non-causal, offline smoothing with higher accuracy. Here are the contributions made

in this dissertation:

• Expression of a biomechanical model and integrating it with state space meth-

ods to track human movement. The inertial tracker combines a novel process

and measurement model with state space methods to track human joint angles

using wearable inertial sensors. The biomechanical model greatly reduces the

complexity of the tracking problem, resulting in an efficient tracking algorithm

that is capable of tracking complex human movement with great accuracy.

• Generalization of the state space model to account for sensor noise and drift.

The state space framework provides an elegant and efficient means of incorpo-

rating gyroscope and accelerometer random drift models into the process and

measurement equations to reduce the effect of sensor drift, and to increase the

tracking accuracy.

• Integration of biomechanical limits and prior knowledge of arm movement

constraints into the kinematic model and the tracking algorithm. To circumvent

the sensor drift problem and its effect on the accuracy of joint angle tracking,

we use prior knowledge of physical constraints and human natural range of

motion to restrict angle estimates within acceptable range for different joints

in the human body.
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• Using Zero-Velocity Updates to provide periodic correction to the error in an-

gle estimates. This is another approach to reducing the effect of gyroscope drift

on estimated angles, especially around the vertical axis during long movement

periods. This technique has been successfully used in a few ambulatory gait

analysis and pedestrian navigation studies. To the best of our knowledge, no

study has used this approach in tracking joint angles or the orientation of up-

per extremities. Rather than applying hard updates by resetting the velocity

to zero, we augment the measurement equations with a pseudo-measurements

vector. Besides the improved accuracy of angle estimates around the verti-

cal axis, the augmented vector provides an estimate of the gyroscope bias and

corrects rotational rate estimates. Therefore, the filter corrects estimates of

heading angle, and consequently other distal arm angles.

• Validation of the inertial tracking algorithm using two reliable reference sys-

tems. Joint angles obtained from the inertial tracker were compared to those

obtained from an optical tracking system and a high-precision industrial robot

arm. Optical systems are the most common and the most accurate in tracking

human movement. The robot system provides direct angle measurements with

high precision. The arm movement rate can be controlled to any desired speed,

up to 720 ◦/ s to assess the inertial algorithm in tracking slow, normal and fast,

as well as complex movement.

• Developing the inertial tracker with three different nonlinear estimators to de-

termine the most efficient tracking algorithm, and quantifying the tradeoff be-

tween the performance and computational requirements of the UKF, EKF and

PF.
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8.3 Conclusion

The results presented in this dissertation demonstrate that wearable inertial sensors

have the potential to achieve a level of accuracy that facilitates the study of normal

and pathological human movement. We combined kinematic models designed for

control of robotic arms with state space methods to directly and continuously esti-

mate human joint angles using wearable inertial sensors. These algorithms can be

applied to any combination of inertial sensors, and can be generalized to track any

limb movement. The state space framework enables one to efficiently model sensor

imperfections, to impose physical constraints on state estimates, and to track move-

ment in real-time or with improved accuracy offline. The agreement with an optical

motion system and a high-precision robot arm reference system was excellent. Un-

like other motion systems, which require fixed cameras in a controlled environment

and suffer from problems of occlusion, wearable inertial sensors can be used any-

where, cannot be occluded, and are low cost. Our proposed method uses a minimal

sensor configuration with one IMU on each segment. In addition, our method is very

accurate during long periods of movements at various rotational rates.
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Biomechatronic Exoskeletons, chapter 3, pages 47–85. John Wiley & Sons

Ltd, West Sussex, England, 2 edition, 2008. [cited at p. 26, 77]

[43] Donald Fowles and Saadia Greenberg. A Profile of Older Americans: 2011.

Technical report, Administration on Agin, U.S. Department of Health and Hu-

man Services, July 2011. [cited at p. 4]

[44] E. Foxlin, M. Harrington, and Yury Altshuler. Miniature 6-DOF inertial sys-

tem for tracking HMDs. In Helmet and Head-Mounted Displays III, volume

3362, pages 21422–21428, 1998. [cited at p. 15]

[45] Eric Foxlin. Inertial head-tracker fusion by a complementary separate-bias

Kalman Filter. In Proceedings of Virtual Reality Annual International Sympo-

sium, pages 185–194, 1996. [cited at p. 15]

[46] Eric Foxlin. Pedestrian Tracking with Shoe-Mounted Inertial Sensors. IEEE

Computer Graphics and Applications In Computer Graphics and Applica-

tions, 25(6):38–46, November 2005. [cited at p. 15, 79]



REFERENCES 115

[47] Daniele Giansanti, Giovanni Maccioni, and Velio Macellari. The Develop-

ment and Test of a Device for the Reconstruction of 3-D Position and Orien-

tation by Means of a Kinematic Sensor Assembly With Rate Gyroscopes and

Accelerometers. IEEE Transactions on Biomedical Engineering, 52(7):1271–

1277, July 2005. [cited at p. 16]

[48] Daniele Giansanti, Velio Macellari, Giovanni Maccioni, and Aurelio Cap-

pozzo. Is it Feasible to Reconstruct Body Segment 3-D Position and Ori-

entation Using Accelerometric Data? IEEE Transactions on Biomedical En-

gineering, 50(4):476–483, April 2003. [cited at p. 16]

[49] Joseph P. Giuffrida, Alan Lerner, Richard Steiner, and Janis Daly. Upper-

Extremity Stroke Therapy Task Discrimination Using Motion Sensors and

Electromyography. IEEE Transactions on Neural Systems and Rehabilitation

Engineering, 16(1):82–90, February 2008. [cited at p. 4]

[50] N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach to

nonlinear/non-Gaussian Bayesian state estimation. In Radar and Signal Pro-

cessing, IEE Proceedings-F, pages 107–113, April 1993. [cited at p. 36, 100]

[51] Mohinder S. Grewal and Angus P. Andrews. Kalman Filtering: Theory and

Practice Using MATLAB. John Wiley & Sons, Baltimore, MD, 2 edition,

2001. [cited at p. 35]

[52] E. S. Grood and W. J. Suntay. A joint Coordinate System for the Clinical

Description of Three-Dimensional Motions: Application to the Knee. ASME,

105:136–142, May 1983. [cited at p. 47]

[53] Kristin Gunderson. The Etiology of Multiple Sclerosis and Correlation of the

Distribution of the Disease with Migration and Settlement History of Northern



REFERENCES 116

Europeans. Master’s thesis, Georgia State University, Atlanta, Georgia, July

2007. [cited at p. 4]

[54] Joseph Hamill and Kathleen M. Knutzen. Biomechanical Basis of Human

Movement. Lippincott Willimas & Wilkins, New York, NY, 2 edition, 2003.

[cited at p. 23]

[55] Teatsuya Harada, Hiroto Uchino, Taketoshi Mori, and Tomomasa Sato.

Portable Absolute Orientation Estimation Device with Wireless Network

under Accelerated Situation. In Proceedings of the 2004 IEEE Inter-

national Conference on Robotics & Automation, pages 1412–1417, 2004.

[cited at p. 20]

[56] W. C. Hayes, J. D. Gran, M. L. Nagurka, J. M. Feldman, and Oatis. C. Leg

motion analysis during gait by multiaxial accelerometry: theoretical foun-

dations and preliminary validations. Journal of Biomechanical Engineering,

105(3):283–289, August 1983. [cited at p. 4]

[57] Ernst A. Heinz, Kai Kunze, Matthias Gruber, David Bannach, and Paul

Lukowicz. Using Wearable Sensors for Real-time Recognition Tasks in

Games of Martial Arts - An Initial Experiment. In ISWC ’05: Proceedings

of IEEE CIG’06, 2006. [cited at p. 5]

[58] T. Hermann, O. Honer, and H. and Ritter. Acoumotion - an interactive soni-

fication system for acoustic motion control. In Gesture in Human-Computer

Interaction and Simulation: 6th International Gesture Workshop, pages 312–

323, 2006. [cited at p. 7]

[59] Todd Hester, Richard Hughes, Delsey Sherril, and Bethany Knorr. Using

Wearable Sensors to Measure Abilities following Stroke. In Proceedings of



REFERENCES 117

the International Workshop on Wearable and Implantable Body Sensor Net-

works, 2006. [cited at p. 4]

[60] Jorrit I. Hoff, Bob J. van Hilten, and Raymund A. C. Roos. A review of the

assessment of dyskinesias. Movement Disorders, 14(5):737–743, Sep 1999.

[cited at p. 2]

[61] X. Huang, JM. Mahoney, MM. Lewis, Du. Guangwei, SJ. Piazza, and JP.

Cusumano. Both coordination and symmetry of arm swing are reduced in

Parkinson’s disease. Gait Posture, 35(3):373–377, March 2012. [cited at p. 3]

[62] Sara Imarisio, Jenny Carmichael, Viktor Korolchuck, Chien-Wen Chen, Shinji

Saiki, Claudia Rose, Gauri Krishna, Janet Davies, Evangelia Ttofi, Benjamin

Underwood, and David Rubinsztein. Huntington’s disease: from pathology

and genetics to potential therapies. Biochemical Journal, 1(412):191–209,

June 2008. [cited at p. 3]

[63] S. J. Julier and J. K. Uhlmann. Unscented filtering and nonlinear estima-

tion. In Processings of The IEEE, volume 92, pages 401–422, March 2004.

[cited at p. 22, 35, 38]

[64] T. Kailath, A. H. Sayed, and B. Hassibi. Linear Estimation. Prentice Hall,

2000. [cited at p. 20]

[65] R. E. Kalman. A new approach to linear filtering and prediction problems.

Transactions of the ASME - Journal of Basic Engineering, 82:35–45, 1960.

[cited at p. 35]

[66] Steven M. Kay. Fundamentals of Statistical Signal Processing, Estimation

Theory. Prentice Hall, 1993. [cited at p. 35]



REFERENCES 118
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