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Joint Anomaly Detection and Spectral Unmixing for

Planetary Hyperspectral Images
Sina Nakhostin, Harold Clenet, Thomas Corpetti, and Nicolas Courty

Abstract—Hyperspectral images are commonly used in the
context of planetary exploration, especially for the analysis of
the composition of planets. As several instruments have been
sent throughout the Solar System, a huge quantity of data is
getting available for the research community. Among classical
problems in the analysis of hyperspectral images, a crucial one
is unsupervised non-linear spectral unmixing, which aims at
estimating the spectral signatures of elementary materials and
determining their relative contribution at a sub-pixel level. While
the unmixing problem is well studied for earth observation,
some of the traditional problems encountered with earth images
are somehow magnified in planetary exploration. Among them,
large image sizes, strong non-linearities in the mixing (often
different from those found in the earth images) and presence
of anomalies are usually impairing the unmixing algorithms.
This paper presents a new method that scales favorably with
the problem posed by this analysis. It performs an unsupervised
unmixing jointly with anomaly detection capacities, and has a
global linear complexity. Non linearities are handled by decom-
posing the hyperspectral data on an overcomplete set of spectra,
combined with a specific sparse projection, which guarantees the
interpretability of the analysis. A theoretical study is proposed on
synthetic datasets, and results are presented over the challenging
4-Vesta asteroid dataset.

Index Terms—Planetary Hyperspectral Unmixing, Anomaly
Detection, Manifold Learning, Non-negative Matrix Factoriza-
tion, Overcomplete Dictionary, Kernel based Learning.

I. INTRODUCTION

HYPERSPECTRAL (HS) remotely sensed images are of

prime interest in many scientific fields, since they enable

us to assess a dense spectrum (generally composed of several

hundreds of contiguous electromagnetic wavelengths) in each

pixel, making possible the identification of various materials

composing the scene [1]. For this reason, hyperspectral data

are vastly being used in earth observation (identifying land

cover, crops, ... see for example [2], [3]) as well as planetary

exploration (identification of minerals and rocks [4]). This

latter application is the one we focus in this paper.

To understand the processes that drive the formation and

evolution of planets, it is crucial to characterize their surface’s

composition. Visible-near infrared reflectance spectroscopy

has long been recognized as an extremely powerful tool to
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de Bretagne-Sud, Vannes, 56000 France e-mail: (sina.nakhostin@irisa.fr;
nicolas.courty@irisa.fr).

T. Corpetti is with the CNRS (IRISA, LETG RENNES COS-
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achieve this objective as it allows to determine rocks compo-

sition at both local and global scales [5]. Imaging spectroscopy

therefore, has been rapidly grown in planetary exploration, and

very soon dedicated instruments were sent toward other planets

in our Solar System [6]. Number of pioneering instruments

have followed resulting in huge amount of data available for

the scientific community.

From the computational point of view however, the process-

ing of hyperspectral images is particularly challenging when

considering planetary exploration, since unlike the earth, no

ground truth nor field campaigns exist except few particular

cases (i.e. Apollo landing sites for the Moon and rovers/landers

locations for Mars). Moreover, despite continuous spectral

and spatial resolution improvements of HS images, they still

suffer from a considerable low spatial resolution to observe

every single material. As a consequence a pixel generally

contains mixed information of several elements which are of

key interest when considering planetary processes, especially

magmatic rocks (i.e. rocks made of the minerals olivine and

pyroxenes) that are used to evidence igneous processes typical

of the crust or mantle. It should also be outlined that in

addition to observation conditions (e.g. illumination, shadows)

and to the nature of the surface itself (e.g. roughness, compo-

sition) which create non-linearities (as multiple scattering [7]

or intimate mixing [8]), olivine and pyroxenes can have a wide

range of chemical compositions, leading for each of them to a

non-linear spectral response (e.g. [9] and references therein).

Combined to this effect, rocks are themselves a combination

of minerals, implying to decompose the different spectra not

on a basis of pure materials but rather as a combination of

mixtures of materials.

Apart from these problems related to the specificity of

hyperspectral data and planetary contexts, let us also note that

anomalies often occur in the acquisition process of hyperspec-

tral images. Anomaly is referred to any pixel whose signature

is considerably different from its surrounding background.

Several factors give rise to anomalies : 1) Natural degradation

due to time spent in space (especially regarding missions far

away from the Solar System) where unrealistic responses can

appear progressively and randomly ; 2) Varying natures of

sensors used to cover the whole wavelength range which gen-

erate misregristrations ; 3) Correction of atmospheric effects

where for some planetary objects (e.g. Mars, Titan) residues

can affect spectra in specific wavelengths.

Although efficient pre-launch calibration procedures exist,

they are not sufficient to perfectly clean data. All these reasons

give rise to the necessity of efficient non-linear unmixing

procedures, robust to outliers, able to decompose mixed pixels
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into a number of pure reflectance spectra called endmembers.

This problem refers to an inverse procedure to determine

endmembers and estimate fractional abundances for each pixel

[10].

Traditionally, anomaly detection and spectral unmixing have

taken as separate subjects. A number of families of unmixing

techniques which aim at recovering abundances of endmem-

bers directly from the image (or from a separate dictionary

of acquired signatures) have been presented. Despite efficient

and sound existing methods (see [11]–[13] for an overview),

most techniques still suffer from degraded performances in

presence of anomalies. In such situations, endmembers are

often being incorrectly estimated and consequently, associated

fractional abundances are less meaningful. Therefore, together

with unmixing, an accurate detection of anomalies is crucial.

This constitutes the aim of this paper. Before describing our

methodological contribution, we now discuss into more details

about unmixing and anomaly detection.

A. Hyperspectral Unmixing

1) Overview:

A large number of algorithms have been proposed to deal with

HS unmixing (see [11], [12] for a comprehensive survey).

These algorithms, aim either at estimating endmembers and

the associated mixing abundances (unsupervised methods)

or they focus only on estimating abundance coefficients

on the assumption that endmembers are known (supervised

methods). The unmixing methods can also be classified based

on their a priori assumption on Linearity or Non-linearity

of the mixing procedure. Though unmixing algorithms with

linear assumption, show relatively good balance between

computational complexity and acceptable accuracy, the

underlying linear hypothesis is violated in many practical

cases [11]. Non-linear techniques have thus been developed to

cope with this difficulty including intimate mixtures, bilinear

models and other physics-based nonlinear mixing models in

order to give an approximate formulation of the real mixing

process.

For intimate mixtures, a number of models based on the

modeling of radiative transfer [14] have been derived. The

main advantage of such approaches is the interpretability of

the mixing process, since they involve real physical quantities

such as grain size, roughness, single-scattering albedo, etc.

However, such physical quantities, most of the time depend

on unknown parameters, related to photometry and optical

constants which yield a difficult estimation process. To relax

the dependency on physical parameters, analytical formula-

tions based on bilinear models have been successfully applied

to represent the multiple scattering phenomenon which is the

interactions of light with several materials. Efficient associated

techniques can be found in [15]–[18].

It worths mentioning that although many unmixing algo-

rithms assume one type of non-linearity in the mixing process,

some of them (see [19] as an example) do not take any

assumption on the type of nonlinearity in this process (as

those working on a feature space through the kernel-trick, as

detailed in the following paragraph). The current work belongs

to this family of methods. In the following we discuss about

endmember and abundance estimation.

2) Estimating endmembers and abundances:

To estimate the pure elements, also called endmemders, a

number of methods assume that at least one pure instance

per endmember is included in the data [20]–[22]. Various

techniques exist to extract them. They are either based on a

pixel purity index [20] or on the identification of the simplex

that encompasses data [23], [24]. This latter idea exploits the

property that a linear combination of some points is included

in the simplex, issued from these points; as a consequence

extreme points of the simplex correspond to endmembers. N-

Finder [21] is for example, issued from this representation

since the maximum volume of a simplex is defined by the

purest pixels in a dataset. Techniques based on non-negative

matrix factorization (NMF) [25]–[28] exploit also this property

and the simplex is sometimes computed through geodesic dis-

tances [29] or in Reproducing Kernel Hilbert Space (RKHS)

[30]. This kernel-trick procedure enables to project data in

a feature space (generally of high dimension), where the

linearity assumption is more relevant. This efficient strategy

has enabled to tackle a number of unsupervised, non-linear

unmixing processes (see [7], [8], [31]–[33]). Finally let us

point out VCA (Vertex Component Analysis [22]) which is

based on the idea that affine transformation of a simplex is

also a simplex. According to this method, endmembers are

being estimated iteratively by projecting data onto the direction

which is orthogonal to the subspace spanned by the previously

found endmembers, until the preset number of endmembers

is reached. Although efficient, all these techniques assume

the presence of pure elements in the image which is not

guaranteed in practice. Recent alternative approaches, based

on over complete dictionaries, have relaxed this assumption

[34], [35]. The general idea is to construct a set/dictionary of

endmembers/atoms larger than the effective number of pure

materials. This mainly enables to deal with the internal hetero-

geneity inside a particular material (which should corresponds

in only one endmember in classical approaches). As will be

shown in section II, our method relies on such geometrical

overcomplete dictionary extraction.

Once endmembers known, an optimization procedure is

often used to estimate the abundances in each pixel. It usually

takes the form ĝi = argming ||xi − ϕ(E,g)||22 where E

represents the endmembers and ϕ(E, ·) is a nonlinear function

that links the vector of abundances g to the current pixel xi

to unmix. Various mixing processes ϕ and penalization norms

have been proposed (see for example [7], [15], [17]).

Let us now discuss about anomaly detection.

B. Anomaly detection

As mentioned above, anomalies are likely to be present

in planetary hyperspectral data. Although noise can more or

less be efficiently managed with some dimesionality reduction

and denoising techniques, anomalies, because of their coherent

structure, still affect their precision. All techniques, relying on

endmember estimation directly from the image are sensitive
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to anomalies. For example, strategies based on extraction of a

simplex will embed anomalies that are most of the time outside

the simplex [22], [36], [37]. The identification of these existing

anomalies is then of prime importance.

Many anomaly detection techniques rely on statistical ap-

proaches where the goal is to identify among data, points with

strongly different statistics w.r.t the majority of data [1], [38],

these latter being viewed in a local context (local neighborhood

of the current test pixel) or global one (the whole scene).

On this basis, more or less advanced approaches have been

proposed as for example the use of a Gaussian Mixture Model

(GMM) [39] or Gaussian Markov Random Field [40] to model

the nominal distribution of data.

Let us finally outline that other approaches try to represent

data in other basis to better identify outliers, as in [41] where

a Discrete Wavelet Transform is used to represent points

whereas a kernel-PCA is exploited in [42] and [43].

C. Summary, goals of the paper

In this introduction we have discussed the necessity of

both unmixing HS images and the detection of anomalies.

Also interesting techniques have cited for solving each task.

However, to the best of our knowledge, the joint estimation

of anomalies and unmixing hyperspectral data has not been

proposed yet 1. In this work we introduce a technique

entitled SAGA+ (Sparse And Geometry Aware +) able to

jointly detect anomalies and perform spectral unmixing.

This Anomaly-Detection and Spectral Unmixing procedure

is unsupervised and defined in RKHS. The idea consists

of increasing the volume of the manifold hull in feature

space. SAGA+, in an iterative way, increases the volume of

the simplex by finding the purest pixels within the dataset,

while at the same time keeping track of the rate of change

of the sum of projection errors (SOPE) in order to exclude

anomalies from being taken as simplex vertexes.

The paper is organized as follows: Section II introduces

the Anomaly Detection and Spectral Unmixing model men-

tioned above and in section III, evaluation of the model and

comparison results using both synthetic and real datasets are

presented. Finally, section IV concludes this work with an

overall conclusion and pointers to possible future extensions.

II. SAGA+ : SIMPLEX VOLUME MAXIMIZATION AND

ANOMALY DETECTION

In this section the methodological contributions are pre-

sented. The spectral unmixing relies on a matrix factorization

technique denoted SAGA (Sparse And Geometry Aware) and

introduced in [30]. In the present contribution we add an

anomaly detection and removal approach to deal with afore-

mentioned issues, yielding an approach denoted ”SAGA+”.

SAGA is based on the geometrical concept of finding the

simplex that embeds data. This simplex is being computed in

a feature space associated to a kernel. As for anomalies, they

1Unfortunately, only after submitting this draft we became aware of a very
recent work [44], using Bayesian framework for joint anomaly detection and
spectral unmixing.

are tracked through their lack of representational capacity in

the dataset.

We first present the endmember extraction technique in

II-A and subsection II-B is devoted to anomaly detection.

Once endmembers extracted, abundances are estimated by

projecting data onto the endmembers. This procedure is

detailed in II-C. The overall process, entitled SAGA+ is

summarized in II-D. Before entering into details, let us

introduce some general notations:

The hyperspectral image contains D bands and N pixels

xi ∈ R
D, i = 1, ..., N . Data are represented in a D×N matrix

composed of N vectors X = [xT
1 , . . . ,x

T
N ]. The unmixing is

formalized as finding a representation of the form : X ≈ EG

where columns of E ∈ R
D×ℓ contain the ℓ endmembers and

G ∈ R
ℓ×N is the matrix, consisting of projections of each

pixel onto this endmember basis. In practice the interpretability

of matrix G is enhanced if each column is positive and

sums to 1, since in this case, each value Gij contains the

abundance of endmember i in pixel j. Such a Non-negative

Matrix Factorization (NMF) is the basic idea on which we rely.

To estimate the endmember matrix E, we rely on Column

Subspace Selection principles: As for each column of E is

selected an input pixel xi. This idea suggests that at least one

sample of each endmember is present in the data (since this

assumption is likely to be violated, in practice we rely on

overcomplete strategies, as will be explained). The following

section introduces the simplex approach to estimate matrix E.

A. SAGA principles: Exact Simplex Volume Maximization for

endmember extraction

As mentioned earlier, we rely on a Column Subspace

Selection procedure to construct the simplex that embeds the

volume generated by the data [45]. To this end we start from

the idea that the bigger this simplex is, the more likely it will

contain the other elements, and therefore the reconstruction

error of any projection onto the new simplex will be small

or null. The ℓ vertices of the simplex then correspond to the

endmembers.

In this study, we also claim that choosing an overcomplete

endmembers dictionnary will help in performing non-linear

unmixing. This point is illustrated in Figure 1. In the first

case (Figure 1(a)), the spectra are living in a perfectly linear

manifold. In this case, two endmembers (E1 and E2) are

sufficient and any spectrum can be described as a convex

combination of the two endmembers. This is referred to as the

linear mixing hypothesis. However, this ideal case is usually

different from reality, as illustrated on Figure 1(b), where the

spectra live on a non-linear manifold. If the linear assumption

is nonetheless assumed, then the spectra are projected on the 1-

simplex formed by the two endmembers, resulting in an error

in the corresponding abundancies. By choosing an appropriate

additional endmember (E3, blue circle in Figure 1(c)), one

can build a piece-wise linear approximation of the non-linear

manifold. The unknown spectra are now projected on the

corresponding 2-simplex. Note here that this projection is

naturally sparse, i.e. for all spectra only two endmembers are

required to describe perfectly the projection.
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Fig. 1: Overcomplete endmember dictionnary for non-linear

unmixing

However this comes at the price of having one endmember

that is in itself a mixture of the first two ones. There are then

two cases:

1) Either one wants only to estimate the mixture coeff-

cients over the two “pure” endmembers E1 and E2.

Assume for the example that E3 is a mixture of known

coefficients (0.4 and 0.6) of E1 and E2. Then for any

spectrum with decomposition g1 = 0.2, g2 = 0 and

g3 = 0.8, the corresponding abundance w.r.t. only E1
and E2 is now g1 = 0.2 + 0.8 × 0.4 = 0.52 and

g2 = 0 + 0.8 × 0.6 = 0.48. More generally, in the

case where λ pure endmembers are available and ℓ end-

members are chosen for the overcomplete dictionnary,

we suppose that we have access to a (generally sparse)

linear operator A of size (λ× ℓ), with prescribed sums

of rows = 1, that can be applied on any result of

unmixing w.r.t. the overcomplete dictionnary to get only

a decomposition over pure endmembers.

2) However, we agree that obtaining this mixing matrix

might not be a trivial task even for specialists. Never-

theless in some domains, as the one explored in this

paper, specialists are used either to work with spectra

obtained in laboratory that are already combination

of pure chemical elements. The decomposition on the

overcomplete basis, provided it can be interpreted, gives

in itself interesting insights on the underlying geological

process.

In addition of the overcomplete strategy, to deal with com-

plex manifolds issued from nonlinearities in X, it is possible

to project the data in a feature space H using a projection

function φ : R
D −→ H (working in the original space

is equivalent to choose the identity as projection function

φ). We represent this projected data as: Φ = φ(X) =
[φ(x1), φ(x2), . . . , φ(xN )].

Under the assumption that endmembers are invariant by

transformation in the feature space, the endmember extrac-

tion therefore can be written as finding an indicator matrix

W(ℓ) ∈ {0, 1}N×ℓ where:

φ(XW(ℓ)) = ΦW(ℓ). (1)

This gives rise to a simplicial convex hull in H, noted

∆ℓ(φ(E)), whose pre-image is a non-simplicial hull (the

manifold hull) in the original space.

The procedure first extracts the best 1-simplex ∆1 by

finding two instances from Φ that results in the minimum

projection error on this basis, then iteratively increases the

dimension of the simplex in H. At the (p)-th iteration the

algorithm selects φ(xi) such that the volume of the ∆p−1-

simplex is maximized, i.e.

i = argmax
q

V ol(∆p−1(ΦWp−1) ∪ φ(xq)), (2)

where the volume of ∆p simplex in this iteration is [30]:

V ol(∆p−1(ΦWp−1) ∪ φ(xq)) =

V ol(∆p−1)× dist(φ(xq)),ΦWp−1)

p− 1
.

(3)

In practice the optimal projection φ enabling to separate

complex data is unknown and potentially of high dimension.

Hopefully, thanks to the kernel theory [46], one can rely on

kernel functions k(xi,xj) = 〈φ(xi), φ(xj)〉 that allow to

rewrite the relation dist(φ(xq),ΦWp−1) in a closed form:

dist(φ(xq),ΦW(p−1)) = 1− (kTxq
·K−1

p−1 · kxq
), (4)

with K−1
p−1 is the inverse of the kernel matrix of the elements

of the manifold:

K−1
p−1 = (W(p−1)⊤Φ⊤ ·ΦW(p−1))−1 (5)

and kxi
is a vector of length p defined as

kxi
= [k(xi,xj)]xj∈XWp . It is worth noting that instead

of inverting the kernel matrix, in the implementation, for

the sake of more numerical stability we chose to apply a

Cholesky factorization on the kernel matrix at each iteration

and then solve for it.

As for the choice of the kernel function, working on the

original space is equivalent to choose k as the usual dot

product : k(xi,xj) = 〈xi,xj〉. Choosing a different function

enables to perform the process in a feature space where

the geometry of the manifold embedding X can be more

meaningful. Among existing kernels, the standard Gaussian
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Radial Basis Function (RBF) is widely used since it enables

a projection in an infinite dimensional space :

k(xi,xj) = exp

(

−
‖xi − xj‖

2

2σ2

)

. (6)

The overall procedure enables to extract endmembers by

finding the optimal manifold hull composed of ℓ spectra in

the feature space. This exact simplex volume maximization

procedure is the cornerstone of endmember estimation in

SAGA [30]. In most methods assuming a linear mixing model,

the number of endmembers is exactly defined by the number

of pure spectra present in the image, and cannot exceed the

spectral dimension. As such, choosing a point which is already

a mixture of those pure spectra would lead to a nul increase

in the volume of the simplex. In the RKHS corresponding to

the Gaussian Kernel, each elements of Φ are orthogonal, and

therefore would lead to a positive increase of the volume. In

practice, it is therefore possible to have more endmembers than

the number of pure materials (and can even exceed the spectral

dimension). From this point of view, the process is a dictionary

learning procedure, with an overcomplete dictionary (in the

sense of the original spectral space). Apart from handling

implicitly the non-linearity of the mixing model, this leads

to two important properties of our method:

• The spectra can be decomposed over elements that are

also combination of pure elements. This can ease the

interpretation of the unmixing for specialists through

the obtention of more physically realistic spectra, and

alleviate to some extent the purity assumption which

states that at least one pixel of each material should be

present in the image;

• Choosing an overcomplete endmember set can help in

handling the intra-class variability of each element, as

similar versions of the same material (but with different

spectral signatures, as it is the case with shadows for

instance), can be efficiently exploited.

In practice, this also requires some sparsity assumption in

the mixing coefficients, which is guaranteed by our projection

method (see Section II-C).

B. Anomaly Detection

As mentioned above, SAGA procedure selects endmembers

in a way to increase the volume of the simplex hull in the

feature space. According to this strategy, in each iteration,

extremal points of the dataset hull are chosen. This criterion

makes the algorithm vulnerable to anomalies since they are

most likely to appear in the construction of our dictionary E.

This issue is illustrated in the two first rows of Fig. 2. In

this figure, all instances of the first row are generated from a

uniform Dirichlet distribution within the 2-simplex identified

by blue vertexes (note that these pure points are not included in

the dataset). In the second row 10 anomalies have been added

to the nominal data. On the right column, the corresponding

endmembers extracted by SAGA are depicted (red dots) using

both datasets. From this simple experience, it is visible that

endmember extraction algorithm fails to identify the correct

borders of the nominal data in presence of anomalies.

Fig. 2: Illustration of difficulties in presence of outliers.

First Row: endmember extraction using SAGA without

anomalies: in this situation extracted endmembers are a reli-

able representation of the manifold ; Second Row: endmem-

ber extraction using SAGA in presence of anomalies: in this

situation extracted endmembers (in red) do not correspond to

real borders of the data manifold ; Third Row: endmember

extraction and anomaly detection In presence of anomalies

using SAGA+: here extracted endmembers (in red) by are in

accordance with borders of the manifold embedding data while

the anomalies (in cyan) are properly selected.

As soon as extreme points appear, they significantly con-

tribute in maximizing the simplex volume and are thus selected

as endmembers. This behavior is observable in all unsuper-

vised endmember extraction procedures which work based

on maximization of the geometrical volume of the simplex

encompassing data. To cope with this issue, the proposed

anomaly detection (AD) procedure relies on the computation

of the reconstruction error (in feature space) between a data

sample and its perpendicular projection onto a side of the

polygon of the simplex. Although similar ideas have already
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been proposed (see [42] and other AD algorithms), the process

here does no attempt for identifying the nominal distribution

(for example based on decomposition of the eigen-structure

of dataset) but we rather exploit the iterative structure of

SAGA where in step p, after selection of the p + 1 -th

endmember candidate through equation (2), we check its

validity by computing the sum-of-projection-errors (SOPE) of

all instances with respect to the new simplex ∆p+1:

SOPE(p+ 1) =

[
∑N

i=1 1− (kTxi
·K−1

p+1 · kxi
)
]

N
, (7)

where N is the number of samples and acts as the nor-

malization constant. A perfect reconstruction gives SOPE(p+
1) = 0, whereas its value increases when the quality of

the reconstruction decreases (i.e. the simplex is not a good

representation of the dataset). During the iterative procedure,

when a considerable drop of SOPE is perceived after adding a

new vertex to the simplex, this means that previously selected

prototypes (endmember candidates of previous steps) could

be anomaly and are among instances significantly different

from nominal data. By this procedure one can then identify

and reject them. In the third row of Fig. 2 one can see that

this AD procedure, even when data are exposed to anomalies,

endmember estimation remains close to a good representation

of the data manifold which is in contrast to the second row of

Fig.2 (without any AD process).

In order to be able to check this drop in each iteration

we need to define a threshold τ . This point is not trivial and

highly depends both on the distribution of nominal data and the

distribution of anomalies. To illustrate this, Fig. 3 represents

the evaluation of SOPE when all nominal data (green points)

are represented on a unique candidate issued from a meshgrid.

From this figure, one easily observes that error decreases when

endmember candidates get closer to the center of the data

distribution2. The iso-contour corresponding to τ = 0.01 in

SOPE value is also represented to evaluate the associated

threshold that enables to remove outlier data. A discussion

related to the practical selection of τ is proposed in section

III.

Once endmembers are identified (together with anomalies),

the projection of each data point onto the new basis has to be

performed. This process is discussed in the following.

C. Sparse Projections onto the Simplex

Let us recall that the unmixing process aims at approximat-

ing the data matrix X through X ≈ EG, where the estimation

of the endmember matrix E has been presented above. As for

the abundance matrix G, it corresponds to the projection of

X onto a region bounded by E. This is done, for each row of

G (each row being represented as G•i associated to the ith
point), with a projected gradient decent :

G•i = argmin
G•i

||φ(xi)−ΦWG⊤
•i||

2s.t.G•i ∈ ∆λ. (8)

2In order to illustrate more into details, various maps of SOPE fields
along the endmember extraction process are represented in the supplemental
materials.

where ∆λ is the sub-simplex included in ∆ℓ but composed

only with λ vertexes.

Fig. 3: Evolution of SOPE (Sum Of Projection Errors)

when all data in green are represented through a single end-

member uniformly represented on a meshgrid. One observes a

decrease in SOPE when candidates get closer to the nominal

distribution.

We indeed want to impose sparsity on each column of G

since in practice, a pixel is likely to be composed only with a

subset of existing endmembers. Explicitly, imposing sparsity

prevents from solutions where all endmembers have a (even

small) contribution. To this end, a greedy selector and sparse

projector (GSSP) [47] method is used not only to project

the data onto the simplex but also to impose a sparsity level

(through a number of non null elements given as an input

parameter). In practice the coordinate values of each pixel

will be sorted based on their magnitude and the λ greatest

ones will be projected onto a unit simplex while the rest of

the values will be set to zero.

We now have all ingredients for the complete process of

anomaly detection and unmixing which is being presented.

D. Overall process

The SAGA+ procedure is presented in algorithm of Fig.

4. In a first step we compute the manifold hull to derive

endmembers together with anomaly detection (lines 4 to 10).

To initialize the process, the algorithm selects a random datum

xi (line 4), and computes the distances between xi and all

instances in X (line 5). These distances are then sorted in de-

scending order and will be feed to the Exact Simplex Volume

Maximization and Anomaly Detection process to estimate the

first endmember êi associated with a set of anomalies (line

6). This process is repeated ℓ times in order to extract the ℓ
endmembers (lines 7 to 9) and to construct the manifold hull

E.

In each iteration the volume increase of the simplex is

computed in RKHS w.r.t each xi. Following equations (2)–

(5), this requires to inverse the kernel matrix K−1 which

is done in practice using the Cholesky decomposition. After
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computation of the volume changes, the anomaly detection

algorithm is called to check the trade-off between the increase

of the volume of the simplex and the decrease in the sum-of-

projection-errors (SOPE). This is represented in algorithm of

Fig. 5.

Once the manifold hull extracted, the projection matrix G

is calculated using the Greedy Selector and Sparse Projector

(GSSP) algorithm. This second step of SAGA+ follows the

process described in [47].

The principle of Exact Simplex Volume Maximization and

Anomaly Detection algorithm is described in Fig. 5. Here we

check iteratively, on the basis of the SOPE criteria presented in

equation (7), if successive candidates for the simplex vertexes

(sorted based on their distances with the current simplex) are

real endmembers or lie among outliers.

SOPE is computed by taking into account the presence

of already found prototypes and in case no endmembers are

already present, the sum of projection error reads SOPE =
[(ν⊤·ν)/N ]−1 where ν represents the vector of the similarities

between the current candidate and the rest of the dataset

instances.

1: procedure SAGA+
2: Input data

• Data matrix X

• Number of required endmembers ℓ
• Threshold τ required for SOPE (see section II-B)
• Sparsity level λ for abundance matrix G

• Kernel bandwidth σ

3: Output data

• Endmember matrix E

• Abundance matrix G

• Anomaly matrix A

⊲ Step 1: Endmember Estimation (EE) and Anomaly Detection
(AD):

4: - Select a random point xi.
5: - Compute distances w.r.t xi in RKHS (see eq. (4)–(6)).
6: - Identify the first endmember and first outliers using Exact

SiVM and AD algorithm (see description in Fig. 5)

7: for (p = 2, . . . , ℓ) do

- From current simplex with p − 1 endmembers, compute
volume changes with all instances (see eq. (3)).

- Sort the vector of volume changes decreasingly (see eq. (2)).
- Since first indexes are possible anomalies, SAGA+ to iden-

tify endmembers and outliers (see algorithm in Fig. 5)

8: end for
9: return(A,E)

10: ⊲ Step 2: Abundance estimation via sparse projections
11: - Apply eq.(8) and extract matrix (G)
12:

13: return (G)
14: end procedure

Fig. 4: Complete SAGA+ procedure: outlier detection, end-

member and associated abundance estimations.

1: procedure EXACT SIVM AND AD
2: Input data

• Data matrix X

• Current endmembers Ê

• Current outliers A

• Vector of Sorted indexes vs

3: Output data

• New Endmembers ê

• New Anomalies A

4: flag = true (Indicator of anomaly)
5: i = 0
6: while flag = true do (Loop on all points)

7: if (vsi /∈ {A
⋃

Ê}) then
8: Compute SOPE on X[vsi] Eq (7)
9: if (sope < τ ) then

10: flag = false
11: else
12: i+ = 1
13: A+ = xi

14: end if
15: end if
16: end while
17: return (A,Ê+ xi) Index of the next endmember
18: end procedure

Fig. 5: Sub-procedure for endmember extraction and

anomaly detection

III. EVALUATION

In this section we evaluate on synthetic and real data, SAGA

and SAGA+ procedures and compare their performances with

a number of state-of-the-art unmixing procedures. In particular

we consider two linear unmixing methods N-Finder [21]

and VCA [22] introduced above. As mentioned, these are

frequently used unsupervised methods of unmixing and their

endmember extraction procedures are based on the simplex

volume maximization method. This makes them suitable to

be compared with the current method.

It should be mentioned however that these models assume

linear mixing and do not detect outliers, therefore the com-

parison with our approach would be thought to some extent

unfair. Nevertheless it should also be emphasized that they all

follow the same logic of extending the encompassing simplex

which makes them (to some degree) comparable to the logic

behind SAGA. We also decided to compare our approach

with G-SiVM [48] which is a non-linear procedure based on

simplex volume maximization through shortest-path distances

in a nearest-neighbor graph. Non-linearity is performed using

kernel trick which makes this approach similar to SAGA and

SAGA+ in the sense that they do not rely on any specific

mixing assumption.

In order to evaluate and compare the efficiency of the

procedures, we use different criteria to assess endmember

extraction and anomaly detection processes. These criteria are

introduced bellow together with experimental setups.

A. Experimental setups

1) Evaluation criteria: for synthetic data where ground

truth is available, a set of criteria are used to measure our

performances:
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• To evaluate the adequacy of estimated endmembers

Ê = [ê1, . . . , êℓ] with ground truth endmembers E =
[e1, . . . , eℓ], several possibilities are offered as Spectral

Information Divergence (SID) or RBF kernel distance,

each of which give a measure of similarity between two

signals represented as a vector. Though efficient, these

criteria are sensible to the difference of endmembers in

terms of magnitude while in this application, we are more

interested in comparing their shape. Indeed, because of

atmospheric attenuation or variation in illumination, spec-

tral energy can be attenuated for two samples even if they

belong to the same class. Thus, we rather prefer to rely

on Spectral Angle Map (SAM) which is scale invariant.

The SAM reads, for spectral vectors xi = [xi1, ..., xiD]T

and xj = [xj1, ..., xjD]T with positive values:

SAM(xi,xj) = cos−1

(
~xi · ~xj

||~xi||||~xj||

)

(9)

and lives in the range [0, 1] (1 representing maximum

dissimilarity and 0 indicating two identical signals).

In practice in order to compare two different sets of

endmembers, we need a pairing procedure to associate

each estimated endmember to a unique real one. This

is done as finding the best permutation of estimated

endmembers that gives the minimal average SAM values

when they are compared to real ones. Therefore, two sets

E and Ê have a difference ǫ(E, Ê) which reads:

ǫ(E, Ê) = min
η

1

ℓ

ℓ∑

i=1

SAM(eηℓ(i), êi) (10)

where ℓ is the number of endmembers and ηℓ :
{1, ..., ℓ} −→ {1, ..., ℓ} is a function corresponding to

all possible permutations.

• As for the evaluation of the anomaly detection algo-

rithm, we rely on Cohen’s Kappa Statistics [49] to

measure the adequacy of the classification between out-

liers/endmembers. Kappa criterion, noted κ, lies between

0 (nothing is in accordance) and 1 (perfect accordance)

and combines False Positive (FP), False Negative (FN),

True Positive (TP) and True Negative (TN) in order to

measure the inter-rater agreement of categories.

• In complement we also give an execution-time compari-

son among the endmember extraction procedures.

We now introduce our datasets.

2) Synthetic data: In order to generate synthetic datasets,

we have selected 41 spectral signatures from RELAB spectral

library [9] 3.

From ℓ spectral signatures E = [e1, . . . , eℓ] (ei ∈ RD),

mixed spectra have been generated based on three different

mixing assumptions: Linear Mixing Model (LMM), Bilin-

ear Mixing Model (BMM) and Highly Concentrating Model

(HCM). These mixing models are well studied in the unmixing

literature, though they do not fully represent the variability of

mixing processes in real world hyperspectral images. The two

3These signatures together with additional information regarding them can
be seen in the supplement material.

first models (LMM, BMM) are implemented according to the

procedure in [7]. The usage of HCM model is also mentioned

in some earlier works [50].

From the set of endmembers E, the Linear Mixture Model

reads :

xi = ETgi +wi (11)

where gi is the abundance vector related to data xi and wi is a

random noise. Each element in gi lives in the range [0, 1] and

their sum equals 1. The fractional abundances in LMM have

been generated based on Multivariate Symmetric Dirichlet

Distribution, uniformly distributed over the standard ∆ℓ−1

simplex. More precisely for each sample x⊤
i , i = 1, . . . , N

and xi ∈ RD the abundance vector gi = [g1, . . . , gℓ] is gener-

ated through a Dirichlet Distribution. This latter, parametrized

by vector α = [α1, . . . , αℓ] such that αi > 0, ∀i ∈ [1, ℓ], reads:

gi =
Γ(α · ℓ)

Γ(α)ℓ

ℓ∏

j=1

eα−1
j (12)

where Γ(·) is the Gamma function. Dirichlet are generaliza-

tion of the beta distribution in a multi-variate context. Such

distributions are then very useful to simulate mixture models.

From equation (12), using a parametrization α = [α1, . . . , αℓ],
we generate mixtures of pure endmemners [e1, ..., eℓ] by

computing abundance parameters gi = [g1, . . . , gℓ] as the

power-product between endmembers and α. This is written

in the right part of equation (12). The left part is only a

normalization coefficient that involves the Gamma function.

In practice α is set as the vector of ones: αi = 1, ∀i. As the

result the vector gi contains coefficients which are uniformly

distributed across the ℓ vertexes of the simplex. To illustrate

this, from pure endmembers visible on the top of Fig. 6(a),

blue points of Fig. 6(b) represent a 2D slice (band 70 vs. band

100) of the synthetic data generated under the LMM model.

For Bilinear Mixing Model, the power products of re-

flectance is added to the linear mixing model, leading to a

model of the form :

xi = ETgi
︸ ︷︷ ︸

LMM

+

ℓ−1∑

k=1

ℓ∑

l=k+1

βk,l,iek ⊙ el +wi (13)

where βk,l,i are new mixing coefficients and the termwise

Hadamard product is defined as

ek ⊙ el =





e1,k
· · ·
eD,k



⊙





e1,l
· · ·
eD,l



 =





e1,ke1,l
· · ·

eD,keD,l



 . (14)

From the same pure endmembers on the top of Fig. 6(a), blue

points of Fig. 6(c) represent the same 2D slice generated under

the BMM model.

As for the Highly Concentrating Model, we choose to

rely on the same Dirichlet Distribution as in LMM, however

with large concentration parameters αi ≫ 1 (in practice we

used αi = 50, ∀i). This ensures that generated abundance

coefficients gi are highly concentrated in the middle of the

simplex which is formed by the endmembers. This is visible

in blue points of Fig. 6(c).
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In order to generate and include a number Υ of outliers to

the nominal synthetic data, we used three spectral signatures

E′ = [e′1, e
′
2, e

′
3] without any similarities to the signatures used

to generate nominal data. From ℓ known endmembers in E and

our abnormal spectral signatures in E′, we use again Dirichlet

distribution function to generate fractional abundances for

anomalies g′
i using three more parameters α′ = [α′

1, α
′
2, α

′
3].

The generation function reads:

g′
i =

Γ(
∑ℓ+3

j=1 γj)
∏ℓ+3

j=1 Γ(γj)

ℓ+3∏

j=1

e
γj−1
j (15)

where γ = [α1, ..., αℓ, α
′
1, α

′
2, α

′
3] is the concatenation of

parameters α and α′. In practice, we used α1, . . . , αℓ = 1 and

α′
1, α

′
2, α

′
3 = 50 to simulate outliers. These latter are depicted

in red in figures 6(b-c-d) and an example of anomaly is visible

in the bottom of figure 6(a). As shown on these figures,

outliers are lying in a separable distance from the 2-simplex

encompassing the nominal data (note that in practice outliers

may not necessarily live in a similar area but we prefer to

use this simple situation for validation).

In further experiments on synthetic data we use different

datasets with various sizes (N = {103, 104, 105, 106}) and

endmembers (ℓ = {3, 5, 7, 10, 12, 15}). As for the evaluation

of anomaly detection procedures, for all datasets we choose

to generate Υ = 20 anomalies from three different signatures.

(a) (b)

(c) (d)

Fig. 6: Illustration of synthetic data. (a): Some endmembers

(top) and the anomaly spectrum (bottom) used to generate the

datasets.(b): A 2D Slice of two components of a synthetic

dataset of 1010 samples generated based on LMM from the 3

nominal endmembers and 10 samples issued from the single

anomaly signature. The geometrical location of the anomalies

in the 2D plan makes them visually separable. (c): Similar

visualization but mixtures are generated on the basis of BMM.

(d): Similar visualization but mixtures are generated on the

basis of HCM.

3) Real data: For the application on real data we choose

in this study to focus on 4-Vesta asteroid which is the second

largest asteroid in the solar system and thus is of prime

scientific interest in planetary exploration. 4-Vesta is though

to be a protoplanet, i.e. a building block of terrestrial planets

remnant of the early formation of the Solar System [51].

Therefore understanding its properties is of prime importance

to understand the initial material that accreted to form the

Earth 4. The number “4” in the name of the asteroid is due to

the fact that 4-Vesta was the fourth asteroid to be discovered.

It was observed recently by the Dawn mission [52], providing

high resolution hyperspectral images of the whole surface.

Moreover a very large number of meteorite samples in our

collection come from this asteroid [53], providing additional

constraints on the minerals mixtures possibly encountered

when processing the HS dataset. As the dataset available for 4-

Vesta is concerned by all the limitations described in section

I, the use of an improved non-linear unmixing algorithm is

essential to progress from basic indexes maps (as done up

to now, e.g. [54]) to detailed maps, making the link between

meteorites and compositions extracted from remote sensing

possible.

Fig. 7: 4-VESTA mosaic composed of (842×327) pixels, with

383 spectral bands covering the range 0.55µm to 2.47µm.

Examples of spectra (located on the mosaic with letters) are

reported with (a) a normal spectrum, (b) discontinuity at the

two detectors boundary and (c) a spectrum at the boundary

of a shadow region. The gray wavelength range is where

inconsistency are usually observed.

Because of the large size of the full dataset (as mentioned in

section I), here we choose to focus on a small subset located

in the northern hemisphere. This region was chosen because

Olivine, a mineral indicative of deep magmatic processes,

was first detected in this area [55]. This mineral is never

found alone in meteorites coming from Vesta-4 [56], [57],

implying the use of an algorithm able to decompose spectra

as a combination of mixtures of materials.

4In astrophysics, accretion is the growth of particles into a massive object
by gravitationally attracting more matter, typically gaseous matter and dust,
in an accretion disc.
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Following the procedure described in [58], we processed

Dawn VIR [59] images from the High Altitude Mapping Orbit

(HAMO) 1 and 2 and from the Low Altitude Mapping Orbit

(LAMO). Raw images were downloaded from PDS in level 1B
and were calibrated using ISIS3 pipeline [60] and photometric

parameters found in the literature [61]–[63]. Additional in-

house routines were used to filter bad pixels and to correct

the geographical misalignment between the two detectors of

the VIR instrument (following the method described in [54]).

Finally each image was converted from radiance to I/F and

projected using the spacecraft geometry information. Such

process remains standard in planetary image analysis.

After removing channels known to be noisy, the final

mosaic has a size of (842 × 327) pixels, with 383 spectral

bands covering the range 0.55µm to 2.47µm. Nevertheless,

despite the first-order filtering of bad pixels/spectra, some

inconsistency still exist in the dataset and outliers can be

observed, as illustrated in Fig. 7. In this figure the typical

shape of an expected spectra is depicted together with highly

corrupted spectra due to the misalignment between the visible

and near-infrared detectors, either showing a sharp peak

when pixels fall on two distinct lithological units or an

Heaviside-step shape signature when pixels fall at a boundary

between sunlit and shadow.

4) Parameters setting for SAGA and SAGA+: To guarantee

an optimal performance, internal parameters of SAGA and

SAGA+ have to be tuned according to dataset characteristics.

Apart from the number of atoms/endmembers ℓ and the

sparsity level λ, these parameters correspond to kernel

bandwidth (σ) and for SAGA+, to the error threshold (τ )

of the anomaly detection procedure (see algorithm in Fig.

4). For this reason a number of tests have been taken in

order to find the best parametrization of the models. As

the result of these tests, we observed empirically that the

best parameter values for linear mixtures are σ = 0.15 and

τ = 0.2, for bilinear mixtures : σ = 0.15 and τ = 0.04 and

for highly concentrating mixtures : σ = 0.15 and τ = 0.2.

This setting enabled us to detect all true anomalies (true

positives) through each run of the algorithm while keeping

the number of wrongly selected anomalies (false positives)

minimum. These parameters kept fix in all our experiments.

It should be noted that these tests are meant to find the

best parameters for a model regarding the dataset under

consideration and thus not to be thought as generic. For the

real application presented later we also use σ = 0.15 and

τ = 0.2 since they are used for LMM and HCM. As will

be shown in the next section, this setting produces acceptable

results. The question of an optimal parameter selection for real

datasets within the unsupervised scenario however remains an

open question. We now turn to experiments.

B. Results on synthetic data

In this part we compare the results from SAGA and SAGA+

with other unmixing procedures on the synthetic datasets,

presented in section III-A2. We first compare SAGA with N-

Finder, VCA, and G-SiVM in order to evaluate their accuracy

in endmember estimation in absence of any anomaly.

Fig. 8: Endmember estimation Averages of SAM values

for SAGA, G-SiVM, VCA and N-Finder in function of the

number of endmembers. Each plot represents the results for

three mixing models.

For this we generated various datasets of size N = 103,

using different numbers of signatures ℓ = 3, 5, 7, 10, 12, 15
and based on the three aforementioned mixing models.

Because our approach embeds some randomness in the

initialization step, we depict the average of SAM errors

computed on 100 runs. They are visible in Fig. 8 in function

of different number of endmembers for each algorithm. From

this figure one observes that SAGA, N-Finder and VCA

have similar performances unlike G-SiVMs whose accuracy

is generally diminished for the case of intimate mixtures.

This first experience where no outliers are involved shows

the relative good performances of all techniques to extract

consistent endmembers.

In a second experience we ran exactly the same experiments,

this time however, we included Υ = 20 anomalies (generated

from 3 extra signatures randomly selected from the dataset as

explained in previous section) in the dataset. New results are

depicted in Fig.9. As expected the overall error increases in

all the algorithms except SAGA+ which includes an anomaly

detector process. These simple experiments demonstrate the

ability of our approach to accurately estimate endmembers

while removing outliers. It should be noticed that the 41

signatures used in this setting are not extremely different in

their overall profile shape. Nevertheless the results show that

the presence of AD even at the situations where the anomalies

are not dramatically different (therefore have small distance

w.r.t the nominal data) from the nominal signatures can effect
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considerably.

Fig. 9: Endmember estimation Averages of SAM values

for SAGA+, G-SiVM, VCA and N-Finder in function of the

number of endmembers. Data contains anomalies generated

based on 3 random signatures. Each plot represents the results

for three mixing models.

Let us also outline that in the last dataset, outlier signatures

were considerably different from the nominal data, making

it an ideal condition for the anomaly detection. In order to

evaluate the sensitivity of SAGA+ when anomalies are more

dispersed w.r.t data, several concentration levels (issued from

Dirichlet distribution as mentioned in previous section) of

anomalies have been generated: the higher the concentration

level, the lower the dispersion of anomalies. An example

of dataset is shown in Fig. 10 together with endmember

and anomaly estimation with SAGA+. As one observes in

this figure, both anomalies and endmembers are accurately

detected.

In another test, the anomalies are assigned on the basis of 50

executions, where in each execution, a new concentration level

in the range α′ = 1, . . . , 50 is used to generate anomalies (see

equation (15)). In order to quantitatively evaluate the sensitiv-

ity of AD procedure to the level of concentration/dispersion of

anomalies. In Table. I we report the average of Kappa values

when comparing true number of anomalies to those detected

by SAGA+ over synthetic datasets of size N = 103, generated

with various numbers of endmembers ℓ = 3, 5, 7, 10, 12, 15
and Υ = 20 anomalies generated from three different signa-

tures. From this table one observes that when increasing the

number of endmembers, the anomaly detection algorithm is

still robust since κ > 0.7 is generally interpreted as a good

separation accuracy in two class classification. The way Kappa

reacts in function of the concentration of outliers is visually

illustrated in Fig. 11.

(a)

(b)

(c)

Fig. 10: Results in presence of anomalies using SAGA+.

(a): Representation of the dataset; (b) original endmembers

and anomalies (c) estimated endmembers and anomalies with

SAGA+

TABLE I: Kappa statistics for SAGA+ in endmember estima-

tion for the three synthetic datasets

ℓ 3 5 7 9 11 13 15

κ

LMM 0.73 0.84 0.85 0.84 0.84 0.84 0.79

BMM 0.94 0.94 0.89 0.88 0.85 0.85 0.78

IMM 0.96 0.96 0.95 0.95 0.94 0.94 0.91

Let us remind that when α′ grows, the separation between

outliers and nominal data is more clear. From this figure one

observes that when α′ = 15, we reach κ ≃ 0.8 which is

a very good accordance. In order to provide a more visible

understanding of the effect of anomaly dispersion on the

accuracy of the AD algorithm, in Fig.12 we generated different

datasets using the same endmember signatures and anomaly

signatures. Like other tests 1000 samples generated using

ℓ = 3 endmembers and Υ = 20 anomalies generated using

2 spectral signatures. For generation of anomalies different

levels of concentration have set which are reflected in the

parameter α = [5, 15, 50].
The result of the AD algorithm is then evaluated according

to the ratio between True Positive (TP) and False Positive (FP).
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Fig. 11: Evaluation of SAGA+: Kappa values as the function

of Concentration of the anomalies. The red lines represent the

threshold where the Kappa value starts to get over 0.8 which

is equal to the concentration level α = 15.

It is visible that how large dispersion (low values of α) can

obscure the division line between nominal data and outliers,

resulting in low accuracy of anomaly detection. In the contrary

high value of α isolates the anomalies and thus it would be

easier for the AD algorithm to detect them.

C. On the application of Overcomplete Dictionary

In order to illustrate the benefits of overcomplete dictionar-

ies in estimating reliable endmembers, we generated a dataset

composed of N = 103 nominal data on the basis of BMM us-

ing 4 original signatures. A number of Υ = 20 anomalies have

been added from 2 different signatures. When running SAGA+

we choose ℓ = 10 atoms to represent endmembers on an

overcomplete dictionary and we set a sparsity level λ = 4 since

mixing were generated from 4 signatures. Results are shown in

Fig. 13 where we depicted original endmembers and outliers

(Fig. 13(a)), a 2D slice of the generated dataset (Fig. 13(b)),

the ℓ = 10 estimated endmembers and associated outliers (Fig.

13(c)) and the resulting 4 “averaged” endmembers (Fig. 13(d)).

In this last sub-figure, as we know exactly the location of

the 4 pure endmembers, each of the ten estimated ones is

associated to the closest real one and weighted averages, on

the basis of their abundances, are represented. One can see

the good adequacy of our approach when comparing these

averaged endmembers with real ones in the top of Fig. 13(a).

It is also interesting to see the effect of overcomplete

dictionary on the accuracy of the abundance coefficients. For

this we generated datasets in a similar way as the previous step.

For the projection of dataset on the estimated endmembers

by N-finder and VCA algorithms we used the Constrained

Least Squares (CLS) [11] method. This time we evaluated

the closeness of each row of the estimated abundance matrix

with its closest counterpart in the original generated abundance

matrix using the mean of SAM error calculated as:

ǫ(G, Ĝ) = min
η

1

ℓ

ℓ∑

i=1

SAM(gηℓ(i), ĝi) (16)

where ℓ is the number of endmembers and ηℓ :
{1, . . . , ℓ} −→ {1, . . . , ℓ} is a function corresponding to all

possible permutations. The result of this comparison is repre-

sented in the table II which shows considerable improvement

in the accuracy of the abundance maps in the case of SAGA+

comparing to the other methods.

Fig. 12: Effect of Anomaly concentration: In each plot a

2D slice of a dataset generated based on the same endmember

signatures and anomaly signatures is illustrated. For construc-

tion of anomalies different levels of concentration is set :

α = [5, 15, 50].

Finally, we report a comparison of execution times on

supplementary material.

D. Results on real data: 4-Vesta Asteroid

In this experiment we consider the performance of SAGA+

on 4-Vesta and try to give a high level interpretation of
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(a)

(b)

(c)

(d)

Fig. 13: Results in presence of anomalies using SAGA+.

(a): original signatures used for generation of dataset; (b):

2D Slice of dataset together with the estimated prototypes

(c): signatures of estimated endmembers and anomalies with

SAGA+ (d): the 4 weighted averaged endmembers.

TABLE II: Average SAM errors between the original and

estimated abundance coefficients. Best results are reported in

boldfont

ℓ 3 5 7 10 12 15

ǫ

VCA 0.237 0.541 0.756 0.912 0.981 1.105

N-finder 0.155 0.451 0.713 0.918 0.970 1.108

G-SiVM 0.333 0.592 0.951 1.084 1.121 1.301

SAGA+ 0.096 0.123 0.311 0.549 0.711 0.892

the results which can be of interest from the planetary ob-

servation point of view. In practice, two difficulties arise

when manipulating 4-Vesta data : 1) the real number of

endmembers is unknown and 2) the assumption that some

pure pixels are present in the original image does not hold. In

order to cope with these difficulties, as mentioned earlier, we

exploit the intrinsic characteristics of overcomplete dictionary

learning approach which relaxes both mentioned difficulties

by selecting out a large number of endmembers (referred to

as the dictionary atoms) from the image.

Fig. 14: Results on real 4-Vesta asteroid. Top: Vesta-4

mosaic with the spatial position of the extracted endmembers.

The red points are detected anomalies and the 10 green points

with labels are selected endmember prototypes. Bottom: The

respective estimated endmember signatures.

From the geological point of view, the large number of

selected endmembers/atoms might be interpreted as different

compositions of materials in a scene. In practice for the case

of 4-Vesta we choose the dictionary of size ℓ = 10. Because

of the intrinsic characteristic of overcomplete dictionary for

re-grouping the similar endmembers, this parameter is not

crucial but has to be set such that the number of atoms of

the dictionary is larger than the number of expected “pure”

materials.

The estimated endmembers are represented in the bottom of

Fig. 14 (denoted P0 to P9) while the top of this figure depicts

the spatial positions of the respective estimated endmembers

(in green) together with the outliers (in red). A specimen of
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outliers spectra signature (with a sharp peak) is represented in

the bottom of Fig. 7.

By comparing these two plots (Fig. 14 and Fig. 7), one

can observe that the estimated endmembers signatures are

generally in accordance with the expected nominal signature

profiles (laboratory spectra related to the lithologies on the

northern hemisphere). Although one observes some unwanted

signatures (mainly contributing to the shadowing effect), it

is of prime interest to note that the absence of signatures

corrupted by noise is significant5. Indeed, endmembers related

to unwanted spectra can be discarded: P1 and P3 have a low

reflectance and correlate perfectly with the most dark (shadow)

areas, while P2, P6 and P7 show a shift between the two

detectors, with a very small amount of noise. The five other

endmembers are of interest regarding mineralogical detections.

P4 and P8 show characteristic signatures of pyroxenes and

represent the surface background. Some outcrops, related to

P0, exhibit similar signatures with stronger absorptions, in

relation with impact craters (i.e. fresh rocks) and very good

illumination conditions. The last two endmembers P5 and P9,

detected in small spots in and around craters, show a broader

absorption feature in the 1µm range.

One can see the whole set of endmembers and their respec-

tive abundance maps in Fig. 17. From these plots, it is worth

noting that the spatial consistency of associated maps matches

well with real physical structures in 4-Vesta, which is a very

good property.

As a more physical comparison, one can also compare the

spectra in Fig. 14 with the laboratory measured spectra of

Olivine and Orthopyroxene which is illustrated in Fig. 15.

As can be observed in this figure, the broader 1µm absorption

seen in P9 and P5 can be correlated to an increased olivine

content in the rocks, in accordance with observations made

by [55] or [64]. From these observations, SAGA+ is thus

able to extract from the hyperspectral image spectra that

are a combination of mixtures of materials, representative

of distinct geological units. Additionally, using the extracted

endmembers, the outcrops enriched in Olivine (i.e. spots where

pixels in which P9 and P5 are needed in the unmixing)

can be mapped (see Fig. 16) and found localization are

similar to those obtain with other techniques [64]. Let us

note that that the shift in absorption center at 2µm is due

to the chemical composition of orthopyroxene (olivine does

not have absorptions in this wavelength range) and reflects

the fact that the orthopyroxene used as a reference does not

have the same chemical composition as the one observed on

4-Vesta’s surface. Lastly, in order to represent the benefits

of the anomaly detection procedure, we have applied the

same method without the outlier removal process. Extracted

endmembers and associated abundances are available in the

supplement material. By comparing them with Fig. 17, we

clearly observe corrupted endmembers yielding less consistent

abundance maps. This experience reveals the importance of the

anomaly detection process introduced here.

5Interested reader may find a plot of detected anomaly signatures from this
mosaic in the supplement material

Fig. 15: Top: laboratory spectra of mixtures involving olivine

and orthopyroxene (spectra from the RELAB library with

numbers referring respectively to the olivine and orthopyrox-

ene contents (% olivine / % orthopyroxene). Bottom: compar-

ison with the three extracted endmembers P0, P5 and P9. The

shift in absorption center at 2µm is due to an increase in Ca

and/or Fe in the pyroxene, compared to the pure orthopyroxene

composition.

IV. CONCLUSION

In this paper, a joint procedure for anomaly detection and

spectral unmixing has been presented for hyperspectral data.

Endmembers and anomalies are extracted from the vertexes

of the simplex that embeds data, this simplex being computed

in a feature space to deal with non-linearities. Abundances

are computed on the basis of sparse projections of spectra

onto extracted endmembers. To deal both with the internal

heterogeneity inside classes and with the fact that pure ele-

ments are not necessarily present in the data, overcomplete

dictionaries have been used. We evaluated and compared our

approach with linear and non linear unmixing methods on

synthetic datasets generated from real spectra where linear and

nonlinear mixing procedures have been applied. Anomalies

have also been introduced in the data. These experiments have

revealed the efficiency of our technique to deal with anomalies

and endmember detection at the same time. Computational

aspects have also been discussed and have revealed the ability

of our algorithm to easily scale up to large datasets. Lastly,

experiments have been performed on real data issued from the

4-Vesta Asteroid. From a geological point of view, we have

shown that anomalies, endmembers and mixing abundances
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Fig. 16: RGB composition with R=P9+P5, G=P4+P8+P0, and B=P4+P8+P0. Coloring shows the localization of outcrops

enriched in olivine (appearing in red)

are consistent, demonstrating the efficiency of our approach

for real applications.
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[24] M. Hollósi, G. D. Fasman et al., “Convex constraint analysis: a natural
deconvolution of circular dichroism curves of proteins,” Protein Engi-

neering, vol. 4, no. 6, pp. 669–679, 1991.

[25] S. Jia and Y. Qian, “Constrained nonnegative matrix factorization
for hyperspectral unmixing,” Geoscience and Remote Sensing, IEEE

Transactions on, vol. 47, no. 1, pp. 161–173, 2009.

[26] L. Miao and H. Qi, “Endmember extraction from highly mixed data
using minimum volume constrained nonnegative matrix factorization,”
Geoscience and Remote Sensing, IEEE Transactions on, vol. 45, no. 3,
pp. 765–777, 2007.

[27] P. Sajda, S. Du, and L. Parra, “Recovery of constituent spectra using
non-negative matrix factorization,” in Optical Science and Technology,

SPIE’s 48th Annual Meeting. International Society for Optics and
Photonics, 2003, pp. 321–331.

[28] N. Yokoya, J. Chanussot, and A. Iwasaki, “Generalized bilinear model
based nonlinear unmixing using semi-nonnegative matrix factorization,”
in Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE

International. IEEE, 2012, pp. 1365–1368.

[29] R. Heylen and P. Scheunders, “Calculation of geodesic distances in
nonlinear mixing models: Application to the generalized bilinear model,”
Geoscience and Remote Sensing Letters, IEEE, vol. 9, no. 4, pp. 644–
648, 2012.

[30] N. Courty, X. Gong, J. Vandel, and T. Burger, “Saga: sparse and
geometry-aware non-negative matrix factorization through non-linear
local embedding,” Machine Learning, vol. 97, no. 1-2, pp. 205–226,
2014.

[31] J. Broadwater, A. Banerjee, and P. Burlina, “Kernel methods for unmix-
ing hyperspectral imagery,” Kernel Methods for Remote Sensing Data

Analysis, pp. 249–270, 2009.

[32] J. Broadwater and A. Banerjee, “A comparison of kernel functions for
intimate mixture models,” in Hyperspectral Image and Signal Process-

ing: Evolution in Remote Sensing, 2009. WHISPERS ’09. First Workshop

on, Aug 2009, pp. 1–4.

[33] J. Broadwater, R. Chellappa, A. Banerjee, and P. Burlina, “Kernel
fully constrained least squares abundance estimates,” in Geoscience and

Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International,
July 2007, pp. 4041–4044.

[34] J. Bieniarz, E. Aguilera, X. Zhu, R. Muller, and P. Reinartz, “Joint
sparsity model for multilook hyperspectral image unmixing,” Geoscience

and Remote Sensing Letters, IEEE, vol. 12, no. 4, pp. 696–700, April
2015.

[35] J. Bieniarz, R. Muller, X. Zhu, and P. Reinartz, “On the use of over-
complete dictionaries for spectral unmixing,” in Hyperspectral Image

and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2012

4th Workshop on, June 2012, pp. 1–4.

[36] J. Li and J. M. Bioucas-dias, “Minimum volume simplex analysis: A
fast algorithm to unmix hyperspectral data,” 2008.

[37] T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi, “A simplex vol-
ume maximization framework for hyperspectral endmember extraction,”
Geoscience and Remote Sensing, IEEE Transactions on, vol. 49, no. 11,
pp. 4177–4193, Nov 2011.

[38] S. Matteoli, M. Diani, and G. Corsini, “A tutorial overview of anomaly
detection in hyperspectral images,” Aerospace and Electronic Systems

Magazine, IEEE, vol. 25, no. 7, pp. 5–28, July 2010.

[39] T. Veracini, S. Matteoli, M. Diani, and G. Corsini, “Fully unsupervised
learning of gaussian mixtures for anomaly detection in hyperspectral im-
agery,” in Intelligent Systems Design and Applications, 2009. ISDA’09.

Ninth International Conference on. IEEE, 2009, pp. 596–601.

[40] S. Schweizer and J. Moura, “Hyperspectral imagery: clutter adaptation in
anomaly detection,” Information Theory, IEEE Transactions on, vol. 46,
no. 5, pp. 1855–1871, Aug 2000.

[41] M. Z. Baghbidi, K. Jamshidi, A. R. N. Nilchi, and S. Homayouni,
“Improvement of anomoly detection algorithms in hyperspectral images
using discrete wavelet transform,” arXiv preprint arXiv:1201.2025,
2012.

[42] L. Chapel and C. Friguet, “Anomaly detection with score functions
based on the reconstruction error of the kernel pca,” in Machine Learning

and Knowledge Discovery in Databases, ser. Lecture Notes in Computer

Science, T. Calders, F. Esposito, E. Hllermeier, and R. Meo, Eds.
Springer Berlin Heidelberg, 2014, vol. 8724, pp. 227–241.

[43] H. Hoffmann, “Kernel-PCA for novelty detection,” Pattern Recognition,
vol. 40, no. 3, pp. 863 – 874, 2007.

[44] Y. Altmann, S. McLaughlin, and A. Hero, “Robust linear spectral un-
mixing using anomaly detection,” IEEE Transactions on Computational

Imaging, vol. 1, no. 2, pp. 74–85, 2015.
[45] C. Thurau, K. Kersting, M. Wahabzada, and C. Bauckhage, “Descriptive

matrix factorization for sustainability adopting the principle of oppo-
sites,” Data Mining and Knowledge Discovery, vol. 24, no. 2, pp. 325–
354, 2012.

[46] G. Camps-Valls and L. Bruzzone, Kernel methods for remote sensing

data analysis. John Wiley & Sons, 2009.
[47] A. T. Kyrillidis, S. Becker, and V. Cevher, “Sparse projections onto

the simplex,” CoRR, vol. abs/1206.1529, 2012. [Online]. Available:
http://arxiv.org/abs/1206.1529

[48] R. Heylen, D. Burazerovic, and P. Scheunders, “Non-linear spectral
unmixing by geodesic simplex volume maximization,” Selected Topics

in Signal Processing, IEEE Journal of, vol. 5, no. 3, pp. 534–542, June
2011.

[49] J. Cohen et al., “A coefficient of agreement for nominal scales,”
Educational and psychological measurement, vol. 20, no. 1, pp. 37–46,
1960.
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Fig. 17: Abundance maps and respective spectral signa-

tures extracted by SAGA+ (with anomaly detection pro-

cedure). Using an anomaly detection procedure, one observes

that signatures whit magnitudes higher than 1 and those with

sharp peaks are not selected as endmembers.
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