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Joint Antenna Detection and Bayesian Channel

Estimation for Non-Coherent User Terminals
Ema Becirovic, Student Member, IEEE Emil Björnson, Senior Member, IEEE and Erik G. Larsson, Fellow, IEEE

Abstract—In this paper, we propose a method of improving
the channel estimates for non-coherent multi-antenna terminals,
which are terminals that cannot control the relative phase
between its antenna ports, with channels that can be considered
constant over multiple time slots. The terminals have multiple
antennas and are free to choose whichever antenna they want
to use in each time slot. An unknown phase shift is introduced
in each time slot as we cannot guarantee that the terminals are
phase coherent across time slots. We compare three different
clustering techniques that we use to detect the active antenna. We
also compare a set of different statistical and heuristic estimators
for the channels and the phase shifts. We evaluate the methods
by using correlated Rayleigh fading and three different bounds
on the uplink capacity. The accuracy of the capacity bounds
are verified with bit-error-rate simulations. With our proposed
methods we can have an SNR improvement of approximately
2 dB at 1 bit/s/Hz.

Index Terms—5G mobile communication, antenna detection,
channel estimation, massive MIMO

I. INTRODUCTION

C
HANNEL estimation is crucial in multiple antenna wire-

less communication systems for the signals to be directed

correctly. Reciprocity-based precoding is superior to feedback-

based precoding, and is also the canonical operation mode

of TDD massive MIMO [2, Sec. 1.4]. For reciprocity-based

precoding to work effectively, and for accurate demodulation

of the uplink data, the quality of the uplink channel estimates

is important [2]. Since the uplink power can be two orders-

of-magnitude lower than the downlink power, the uplink

estimation quality can be poor even when the downlink signal-

to-noise ratio (SNR) is good.

The slot duration is equal to the minimum coherence time

that the system supports. Many users, especially stationary

indoor users, will have a substantially longer coherence time.

When the channel coherence time exceeds the slot duration,

the channel estimates can be improved by averaging (filtering)

over multiple slots. Filtering in the frequency domain is also

possible, depending on the actual channel coherence band-

width (delay spread in the time-domain). Several techniques

are available for filtering of channel estimates [3]–[6] and also

used in state-of-the-art systems.

One of the most common channel-estimate-filtering ap-

proaches is to utilize different types of interpolation between
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of Electrical Engineering (ISY), Linköoping University, Linköping, Sweden
(e-mail: {ema.becirovic, emil.bjornson, erik.g.larsson}@liu.se ).

estimates [5], [6]. In OFDM-based systems, where the channel

is assumed to be changing between symbols, channel estima-

tion can be aided by sending pilot symbols. The pilot symbols

are arranged in a pattern across the OFDM-grid, usually a

comb pattern or a block pattern. For each of the pilot symbols,

simple least-squares channel estimation can be done. Further,

the channels corresponding to the symbols in between the

pilots need to be estimated. This estimation can be done by

interpolation. The interpolators are of different complexity and

the simplest ones are the piecewise constant and piecewise

linear interpolators. The interpolation can be done, depending

on the pilot pattern, either in the time-domain, frequency-

domain, or in both.

In 5G, there are two uplink transmission schemes; one

is codebook based and the other one is reciprocity based

[7, Ch. 7], [8, Ch. 11]. In the codebook based transmission

scheme, the choice of precoder is made by the base station

which chooses a precoder from a predefined set based on

reference signals transmitted by the terminal. A multi-antenna

5G terminal can either have full coherence, partial coherence

or be non-coherent. If a terminal has full coherence it can

control the relative phase between all of its antenna ports, a

terminal with partial coherence can only transmit coherently

over pairs of antenna ports, and a non-coherent terminal cannot

transmit coherently at all, i.e., it can only use one antenna port

at a time. This means that for a non-coherent terminal, the set

of precoders that the base station can decide on is limited to

using one antenna port at a time. An antenna port is not the

same as a physical antenna, but is a terminology used to signify

that the receiver cannot distinguish a signal transmitted on a

single antenna from a signal transmitted on multiple precoded

antennas. That is, a signal transmitted on a single antenna port

can be precoded over the physical antennas, to always make

use of the entire array aperture and all its power amplifiers.

In the other uplink transmission scheme, reciprocity holds.

The terminal transmits one or multiple (per prior agreement

with the base station) precoded reference signals, where the

choice of precoder(s) is up to the terminal. The base station in

turn reports to the terminal which of these reference signals,

corresponding to a precoder, that was preferred. The terminal

then, in turn, uses the precoder corresponding to this preferred

reference signal. In case the terminal transmits only a single

reference signal, no feedback is needed from the base station.

A. Contributions

In this paper, we consider non-coherent terminals and

reciprocity-based operation, which is one of the important
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cases in the 5G standard. We assume the terminal transmits a

single reference signal; the choice of precoder is made by the

terminal and not known by the base station. As the terminal

is non-coherent, this precoder is selected from a finite set

of possibilities; the number of possible precoders equals the

number of antennas at the terminal. A special case is when

each precoder corresponds to transmission (only) through a

specific antenna; henceforth, without loss of generality, we

will say that the terminal selects an “antenna” instead of a

“precoder”. Moreover, we assume that in each time slot a

phase shift might occur which is due to the fact that the

terminals are not required to be phase coherent across time

slots which facilitates building energy-efficient hardware, e.g.,

hardware that is allowed to turn components on and off. The

phase shift may also be due to power amplifiers that change

the range of operation.

For this scenario, we develop methods for joint estimation

of the channel, estimation of the phase shifts, and detection

of the active (terminal) antenna, based on pilots received over

multiple consecutive slots. Our proposed methods only affect

the operation of the base station, not the terminal. Hence,

the terminal operates according to the pre-specified standard

which does not require it to be phase coherent across slots.

We use the well researched and analyzed area of clustering

algorithms and propose new algorithms to solve our problem.

The main innovation is a new pseudo-metric which takes

into account the unknown phase shifts within the clusters.

We obtain estimates both for the case of unknown channel

statistics (using a maximum-likelihood approach), and for the

case of arbitrarily correlated Rayleigh fading with uniformly

distributed phase shifts between consecutive slots (using a

Bayesian approach). We use three different capacity bounds

to evaluate the performance of our proposed methods. We

also provide bit-error-rate simulations with modulation and

low-density parity-check coding in order to demonstrate the

validity of the obtained capacity bounds as proxies for actual

link performance in practice.

This paper is a comprehensive extension of our previous

conference paper [1]. The main new elements are the deriva-

tion of Bayesian estimators that exploit priors on the fading

distribution, and the link simulations to validate the capacity

bounds.

B. Notation

We use italicized, x, bold lowercase, x, bold uppercase,

X , and calligraphic, X , characters to denote scalars, vectors,

matrices and sets respectively. IM is used to denote the M×M
identity matrix. 0 denotes an all-zero vector with appropriate

(clear from the context) length. ek is the k:th unit vector, i.e.,

a vector with a one in the k:th position and zeros otherwise.

(·)∗, (·)T and (·)H denote the conjugate, the transpose, and the

conjugate transpose, respectively. We use {xi}Ni=1 as short-

hand for xi, i = 1, . . . , N . We use x̂ to denote the estimate of

x. The imaginary unit is denoted by j. CN (0,R) is denoting

the circularly symmetric complex Gaussian distribution with

covariance matrix R. U(a, b) is denoting the uniform distri-

bution between a and b. The expected value and variance are

denoted by E {·} and V {·}, respectively. The determinant of

a matrix X is denoted by |X|.

II. SYSTEM MODEL

We consider a single-cell system with M antennas at the

base station and one user with K antennas. The channel

between the user and the base station is considered constant

over many time slots. The base station wants to exploit this

property and use the received pilot signal from many time

slots to estimate the channel to the user. However, the user is

assumed to be non-coherent, as described in the introduction,

and is therefore free to use any of its antennas but can only

use one at a time. The choice of antenna is unknown to the

base station as the decision is made at the terminal. We denote

the selected antenna at time t with S(t) ∈ {1, . . . ,K}. Let Tk
be the set of time slots where the user selected to use antenna

k: Tk = {t : S(t) = k}. The union of the sets is equal to

the set of all time slots,
⋃K
k=1 Tk = {1, . . . , T}, where T

is the number of slots where the channels can be considered

constant, i.e., the considered user has a coherence time which

is T times longer than the minimum coherence time that the

system supports. T is assumed to be known at the base station.

The set of time slots of the selected antennas are all disjoint,

Tk ∩ Tk′ = ∅, k = 1, . . . ,K, k′ = 1, . . . ,K, k 6= k′, meaning

that the user can only activate one antenna at a time. Each

time slot consists of τc symbols, and the user uses codewords

that span multiple time slots such that the ergodic capacity is

a legitimate performance metric.

At each time slot t, the user first sends a pilot signal

φ(t) ∈ C
τp of length τp, ‖φ(t)‖2 = 1, which is known to

the base station. The length of the pilot signal, τp, is assumed

to be pre-decided based on, for example, the number of users

in the system [9], [10]. The pilot signal is transmitted with

an average power of p per symbol. Hence, it is scaled by the

square root of the length of the signal,
√
τp. The base station

receives

Yp(t) =
√
pτpe

jψ(t)gS(t)φ
H(t) +Wp(t), t = 1, . . . , T, (1)

where p is the power, gk ∈ C
M is the channel between user

antenna k and the base station, and ψ(t) is an unknown phase

shift that occurs at time t. Finally, Wp(t) ∈ C
M×τp is additive

white Gaussian noise with i.i.d. CN (0, 1) elements. The noise

realizations in different time slots are independent. The base

station despreads the received signal with the pilot signal as

Yp(t)φ(t) = yp(t) =
√
pτpe

jψ(t)gS(t) +wp(t), t = 1, . . . , T,
(2)

where wp(t) = Wp(t)φ(t) ∼ CN (0, IM ). yp(t) ∈ C
M for

t = 1, . . . , T are the signals that the base station uses to

estimate the channel between itself and the user.

Furthermore, in each time slot, there is an uplink data phase

where we denote the data symbol as x(t), E
{
|x(t)|2

}
≤ 1,

in an arbitrary time slot t. When the user sends x(t),
the base station receives

yd(t) =
√
pejψ(t)gS(t)x(t) +wd(t), (3)

where wd(t) ∼ CN (0, IM ) is additive white Gaussian noise.
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TABLE I
THE FOUR CASES OF CHANNEL ESTIMATION OVER MANY SLOTS

One antenna Multiple antennas

Without phase shifts LS/MMSE (6)/(7) Section V

With phase shifts Section IV Section VI

III. CHANNEL ESTIMATION

We utilize that the channel is constant over multiple slots

to improve the channel estimates compared to estimating the

channel separately in each slot. The channel estimation can be

broken down into four different cases by considering either

multi-antenna terminals or single-antenna terminals, and the

presence or absence of phase shifts between the slots, see

Table I.

In the simplest case, when we have a single antenna and

no phase shifts between the time slots, channel estimation is

relatively easy. The despreaded signal (2) is then

yp(t) =
√
pτpg +wp(t), t = 1, . . . , T. (4)

We can take the mean over the channel estimates to obtain a

sufficient statistic

y′ =
1

T

T∑

t=1

yp(t) =
√
pτpg +

1

T

T∑

t=1

wp(t)

︸ ︷︷ ︸

w′

, (5)

where w′ ∼ CN
(
0, 1

T
IM
)
. The least-squares (LS) estimate

of g is then

ĝ =
1

√
pτpT

T∑

t=1

yp(t). (6)

If we have full statistical prior information about the distribu-

tion of the channel g, we can state the minimum-mean-square-

error (MMSE) estimate. As an example, for a correlated

Rayleigh fading channel with prior g ∼ CN (0,R), where R

is the correlation matrix, the MMSE estimate is [11, Ch. 10]

[12, Thm. 3.1]

ĝ =
√
pτpR

(

pτpR+
1

T
IM

)−1
(

1

T

T∑

t=1

yp(t)

)

. (7)

The other three cases in Table I require some more analysis

and are discussed in the sections that follow. In Section IV,

the case where the terminal has a single antenna and there are

phase shifts between the slots is discussed. Next, in Section V,

the case where the terminal has multiple antennas and the

terminal is free to switch between them but where there

are no phase shifts between the slots is treated. Finally, the

combination of multiple antennas at the terminal and phase

shifts between the slots is analyzed in Section VI.

IV. SINGLE ANTENNA TERMINAL WITH PHASE SHIFTS

In the single antenna terminal case, the despreaded signal

(2) is

yp(t) =
√
pτpe

jψ(t)g +wp(t), t = 1, . . . , T. (8)

In this case, the variables we need to estimate are the phase

shifts, ψ(t), t = 1, . . . , T , and the channel, g. The LS estimate

is a joint minimization of the phase shifts and the channel, and

is defined as
{

ĝ,
{

ψ̂(t)
}T

t=1

}LS

= argmin
g,{ψ(t)}Tt=1

T∑

t=1

∥
∥
∥yp(t)−√

pτpe
jψ(t)g

∥
∥
∥

2

. (9)

The maximum-likelihood (ML) estimate can also be used

to jointly estimate the phase shifts and the channel. The ML

estimate is defined as
{

ĝ,
{

ψ̂(t)
}T

t=1

}ML

= argmax
g,{ψ(t)}Tt=1

p
(

{yp(t)}Tt=1
| g, {ψ(t)}Tt=1

)

(10)

= argmax
g,{ψ(t)}Tt=1

T∏

t=1

1

πM
exp

(

−‖yp(t)−√
pτpe

jψ(t)g‖2
)

(11)

= argmin
g,{ψ(t)}Tt=1

T∑

t=1

∥
∥
∥yp(t)−√

pτpe
jψ(t)g

∥
∥
∥

2

, (12)

where in the first step we utilize that the noise is Gaussian

and then simplify to get (12). The joint ML estimate is

the same as the LS estimate (9). Neither the the LS nor

the ML estimate assumes any priors on the channel or the

phase shifts. In what follows, we will derive estimates based

on statistical knowledge. There are different combinations of

these depending on which priors that are available.

If we assume a correlated Rayleigh fading channel, g ∼
CN (0,R), and uniformly distributed phase shifts, ψ(t) ∼
U(−π, π), t = 1, . . . , T which are independent between slots,

we can state the maximum-a-posteriori (MAP) estimate and

simplify to get an estimator for the channel and the phase

shifts as
{

ĝ,
{

ψ̂(t)
}T

t=1

}MAP

= argmax
g,{ψ(t)}Tt=1

p
(

{yp(t)}Tt=1
| g, {ψ(t)}Tt=1

)

p(g)p
(

{ψ(t)}Tt=1

)

(13)

= argmax
g,{ψ(t)}Tt=1

exp
(

−∑T
t=1‖yp(t)−√

pτpe
jψ(t)g‖2 − gHR−1g

)

2Tπ2M+T |R|
(14)

= argmin
g,{ψ(t)}Tt=1

gHR−1g +
T∑

t=1

∥
∥
∥yp(t)−√

pτpe
jψ(t)g

∥
∥
∥

2

.

(15)

Here, (13) holds for all distributions, while (14) and (15) hold

for our assumed priors.

Furthermore, by only assuming the uniform prior distribu-

tion of the phase shifts, ψ(t) ∼ U(−π, π), t = 1, . . . , T ,

independent between slots, we can state the likelihood distribu-

tion only conditioned on the channel by marginalizing out the
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phase shifts. The distribution holds for all prior distributions

of the channel and is

p
(

{yp(t)}Tt=1
| g
)

=

∫

p
(

{yp(t)}Tt=1
| g, {ψ(t)}Tt=1

)

p({ψ(t)}Tt=1)d {ψ(t)}
T
t=1

(16)

=

∫ exp
(

−∑T
t=1‖yp(t)−√

pτpe
jψ(t)g‖2

)

πM+T 2T
d {ψ(t)}Tt=1

(17)

=
exp

(

−∑T
t=1‖yp(t)‖2 − Tpτp‖g‖2

)

πM+T 2T

×
T∏

t=1

∫ π

−π
exp

(

2ℜ
{√

pτpe
jψ(t)yp(t)

Hg
})

dψ(t) (18)

=
exp

(

−∑T
t=1‖yp(t)‖2 − Tpτp‖g‖2

)

πM

×
T∏

t=1

1

2π

∫ π

−π
exp

(
2
√
pτp|yp(t)

Hg| cos (ψ(t))
)
dψ(t)

(19)

=

exp

(

−
T∑

t=1

‖yp(t)‖2 − Tpτp‖g‖2
)

πM

×
T∏

t=1

(
I0(2

√
pτp|yH

p (t)g|)
)
, (20)

where

I0(z) =
1

π

∫ π

0

ez cos(θ)dθ

is the modified Bessel function of the first kind which can be

bounded like [13]

ez

1 + 2z
< I0(z) <

ez√
1 + 2z

. (21)

The marginal distribution in (20) can be used to state an ML

estimator of the channel:

ĝML-g = argmax
g

p
(

{yp(t)}Tt=1
| g
)

(22)

= argmax
g

1

πM
exp

(

−
T∑

t=1

‖yp(t)‖2 − Tpτp‖g‖2
)

×
T∏

t=1

(
I0(2

√
pτp|yH

p (t)g|)
)

(23)

= argmax
g

−Tpτp‖g‖2

+

T∑

t=1

log
(
I0
(
2
√
pτp|yH

p (t)g|
))
. (24)

If the channel is correlated Rayleigh fading, g ∼ CN (0,R),
a MAP estimator for the channel is

ĝMAP-g = argmax
g

p
(

{yp(t)}Tt=1
| g
)

p(g) (25)

= argmax
g

−gH
(
TpτpIM +R−1

)
g

+

T∑

t=1

log
(
I0
(
2
√
pτp|yH

p (t)g|
))
. (26)

Again, (22) and (25) hold for all prior distributions while (24)

holds if we assume the uniformly distributed phase shifts and

(26) holds by further assuming a correlated Rayleigh fading

channel.

We can also perform the marginalization with respect to

the channel distribution. We can do this if we do not know

the distribution of the phase shifts. The likelihood distribution

conditioned on the phase shifts is

p({yp(t)}Tt=1
| {ψ(t)}Tt=1)

=

∫

p({yp(t)}Tt=1
| g, {ψ(t)}Tt=1)p(g)dg (27)

=

∫
1

π2M |R| exp
(
−‖Y −√

pτpgv
T‖2F − gHR−1g

)
dg

(28)

=

∫
exp

(
−‖Y ‖2F − (g −m)HA−1(g −m) +mHA−1m

)

π2M |R| dg

(29)

=
|A|πM
π2M |R| exp

(
−‖Y ‖2F +mHA−1m

)

×
(

1

|A|πM
∫

exp
(
−(g −m)HA−1(g −m)

)
dg

)

︸ ︷︷ ︸

=1

(30)

=
exp

(
−‖Y ‖2F + pτp(Y v∗)H(TpτpI +R−1)−1(Y v∗)

)

πM |TpτpR+ I| ,

(31)

where Y = [yp(1), . . . ,yp(t), . . . ,yp(T )],

v =
[
ejψ(1), . . . , ejψ(t), . . . , ejψ(T )

]T
, and

A = (TpτpI +R−1)−1 and m =
√
pτpAY v∗ are helpful

variable changes. In this case, given a uniform distribution of

the phase shifts, the ML and MAP estimators for the phase

shifts are the same:
{{

ψ̂(t)
}T

t=1

}ML-ψ

=

{{

ψ̂(t)
}T

t=1

}MAP-ψ

= argmax
{ψ(t)}Tt=1

p({yp(t)}Tt=1
| {ψ(t)}Tt=1) (32)

= argmax
{ψ(t)}Tt=1

vTY H(TpτpI +R−1)−1Y v∗. (33)

The different channel and phase shift estimators based on

statistical knowledge are summarized in Table II. We derived

estimators with the correlated Rayleigh fading channel prior,

and the independent and uniformly distributed phase shift

prior. The correlated Rayleigh fading prior is widely used in

communication literature and models practical channels well.

The independent and uniform distribution of the phase shifts
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TABLE II
THE DIFFERENT CHANNEL AND PHASE SHIFT ESTIMATORS BASED ON THE STATISTICS. THE EQUATION NUMBERS REFERS TO THE CASES WHEN THE

CHANNEL IS RAYLEIGH FADING, g ∼ CN (0,R), AND THE PHASE SHIFTS HAVE UNIFORM DISTRIBUTION ψ(t) ∼ U(−π, π), t = 1, . . . , T , AND ARE

INDEPENDENT.

ML MAP

joint argmax
g,{ψ(t)}

p ({yp(t)} | g, {ψ(t)}) (12) argmax
g,{ψ(t)}

p ({yp(t)} | g, {ψ(t)}) p (g) p ({ψ(t)}) (15)

∫

p({ψ(t)})d {ψ(t)} argmax
g

p ({yp(t)} | g) (24) argmax
g

p({yp(t)} | g)p(g) (26)

∫

p(g)dg argmax
{ψ(t)}

p ({yp(t)} | {ψ(t)}) (33) argmax
{ψ(t)}

p ({yp(t)} | {ψ(t)}) p ({ψ(t)}) (33)

is a very weak prior, i.e., it provides little structure. Other

priors on the phase shifts are certainly possible. For instance,

if the estimation problems are rewritten in terms of phase

differences between two consecutive slots we can utilize priors

on the phase shifts which are not independent between slots.

A classical way of modeling phase drifts is to assume that

the phase difference, θ, between two consecutive slots has the

following distribution, see [14, Chapter 4],

p(θ) =
1

2πB(a, a)

(
π + θ

2π

)a−1(
π − θ

2π

)a−1

,−π ≤ θ ≤ π.

The constant a parameterizes the distribution, and a = 0
gives the uniform distribution. This distribution facilitates the

evaluation of (16) in terms of a Bessel function.

A. Solutions

The solutions of the optimization problems in (9), (12),

(15), (24), (26) and (33) cannot be found in closed form.

Additionally, the problems are all non-convex which means

that we need to solve the problems in a heuristic or sub-

optimal manner. In the subsections that follow we present the

algorithms we used to find solutions to the problems.

1) Iterative ML: Here, we present the solver used to solve

(9) and (12). If we assume that we know the channel g

perfectly, the optimal phase shifts ψ(t), t = 1, . . . , T , in the

LS/ML sense, would be

ψ̂(t) = arg(gHyp(t)), t = 1, . . . , T. (34)

Similarly, if we assume that we know the phase shifts perfectly,

the optimal channel g, in the LS/ML sense, would be

ĝ =

T∑

t=1

e− jψ(t)yp(t)

T
√
pτp

. (35)

Using these two facts we present the iterative ML algorithm,

Algorithm 1, which sequentially updates the phase shifts

and channel estimates using (34) and (35). The algorithm is

considered converged if the objective value in (12) changes

less than a predefined value between two iterations.

The iterative ML algorithm is a block coordinate descent

method [15, Ch. 9]. Such coordinate descent algorithms will

converge to a local optimum, albeit a different local optimum

for different initial values. Performance guarantees can only

be proven if the problem is convex, which our problem is

not. The algorithm has complexity O(IMT ) where I is the

number of iterations, see Table III.

Algorithm 1 The iterative ML algorithm.

Input: {yp(t)}Tt=1
, p, τp

Output: ĝ,
{

ψ̂(t)
}T

t=1

1: ĝ =
1

T
√
pτp

T∑

t=1

yp(t)

2: while not converged do

3: ψ̂(t) = arg(ĝHyp(t)), t = 1, . . . , T

4: ĝ =

T∑

t=1

e− j ψ̂(t)yp(t)

T
√
pτp

5: end while

2) Iterative MAP: Just as with the joint ML problem, we

can solve the joint MAP problem with an iterative approach,

where sequentially the phase shift estimates are updated with

(34) and the channel estimate is updated with

ĝ =
√
pτp(TpτpIM +R−1)−1

T∑

t=1

e− jψ(t)yp(t). (36)

This algorithm is presented in Algorithm 2. The algorithm is

considered converged if the objective value in (15) changes

less than a predefined value between two iterations.

Similar to the iterative ML algorithm, the iterative MAP al-

gorithm is a block coordinate descent method and performance

guarantees can not be proven since the problem is non-convex.

The algorithm has complexity O(IM(T + M)) where I is

the number of iterations, see Table III. The added complexity

compared to the iterative ML (Algorithm 1) is due to the

matrix-vector multiplication on line 4 in the iterative MAP

algorithm. The iterative MAP requires two matrix inversions

to be pre-computed with complexity O(M3). These inversions

are done once every time the large-scale properties of the

channel change which does not happen during the transmission

of a codeword since we use ergodic capacity as a performance

metric.

3) Pairwise: The pairwise algorithm is a sequential al-

gorithm that solves the LS problem in (9), meaning that it

can be performed while the pilot measurements from the

slots are received. “Pairwise” refers to that the algorithm is

considering only two measurements at a time. It is described

in Algorithm 3. The pairwise algorithm is non-iterative and

has complexity O(TM) which is lower than both the iterative

ML and iterative MAP, see Table III.
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TABLE III
THE NUMBER OF COMPLEX ARITHMETIC OPERATIONS IN THE CHANNEL ESTIMATION ALGORITHMS. THE MOST COMPLEX ALGORITHM IS THE

ITERATIVE MAP, ALGORITHM 2, DUE TO THE MATRIX-VECTOR MULTIPLICATION ON LINE 4. THE PAIRWISE ALGORITHM, ALGORITHM 3, IS THE LEAST

COMPLEX BECAUSE IT IS NOT ITERATIVE. “PRE-COMPUTE” REFERS TO WHAT CAN BE PRE-COMPUTED ONCE EVERY TIME THE LARGE SCALE

PROPERTIES OF THE CHANNEL CHANGE AND “ONCE” REFERS TO WHAT IS COMPUTED ONCE PER ALGORITHM INSTANCE. THE COLUMN “OVERALL”
REFERS TO THE ASYMPTOTIC SCALING OF THE ALGORITHMS.

Algorithm Add/sub. Mult. Other Overall

Iterative ML Pre-compute 0 2 1 div. + 1 sqrt. O(1)

Once (T − 1)M M - O(TM)

Each iteration 2TM − T −M 2TM + T +M T exp. + T arg. O(TM)

Iterative MAP Pre-compute M M2 + 2 2 inv. O(M3)+ 1 sqrt. O(M3)

Once (T +M − 2)M M2 - O((T +M)M)

Each iteration 2TM − T +
M2 − 2M

2TM +M2 + T T exp. + T arg. O((T +M)M)

Pairwise Pre-compute 0 2 1 div. + 1 sqrt. O(1)

Once 3TM − 2T −
2M + 1

3TM + T −M − 1 (T − 1) exp. + (2T − 1) arg. O(TM)

Algorithm 2 The iterative MAP algorithm.

Input: {yp(t)}Tt=1
, p, τp, R

Output: ĝ,
{

ψ̂(t)
}T

t=1

1: ĝ =
√
pτp(TpτpIM +R−1)−1

T∑

t=1

yp(t)

2: while not converged do

3: ψ̂(t) = arg(ĝHyp(t)), t = 1, . . . , T

4: ĝ =
√
pτp(TpτpIM +R−1)−1

T∑

t=1

e− j ψ̂(t)yp(t)

5: end while

Algorithm 3 The pairwise algorithm.

Input: {yp(t)}Tt=1
, p, τp

Output: ĝ,
{

ψ̂(t)
}T

t=1
1: ynew(1) = yp(1)

2: for t = 2 to T do

3: ynew(t) = e− j arg((ynew)
H(t−1)yp(t))yp(t)

4: end for

5: ĝ =
1

T
√
pτp

T∑

t=1

ynew(t)

6: ψ̂(t) = arg(ĝHyp(t)), t = 1, . . . , T

4) Gradient Descent: The marginalized ML and MAP in

(24) and (26) can be solved (to find a local solution) using

standard gradient descent [15, Ch. 3]. Furthermore, the bounds

in (21) can be used to speed up the solver.

V. ANTENNA DETECTION

When the user terminal switches between multiple antennas

and no phase shifts are occurring between these time slots, the

despreaded signal (2) is

yp(t) =
√
pτpgS(t) +wp(t), t = 1, . . . , T. (37)

Here the channel estimation problem boils down to the base

station finding the set of slots in which the terminal used each

antenna, i.e., the base station should find
{

T̂k
}K

k=1
, where

T̂1, . . . , T̂K are disjoint sets, T̂k∩T̂k′ = ∅, k = 1, . . . ,K, k′ =
1, . . . ,K, k 6= k′ and the union of them contains all the time

slots:
⋃K
k=1 T̂k = {1, . . . , T}. The channel estimates can then

simply be stated as LS estimates

ĝk =

∑

t∈Tk
yp(t)

|T̂k|√pτp

, k = 1, . . . ,K. (38)

It is more complicated to deal with the case when the

base station has side information. For example, the MMSE

estimator cannot be stated without knowing the performance

of the antenna detection, i.e., to state the MMSE estimator,

we would need to know all the outcomes of the antenna

detection and the probabilities of these events. However,

one can still assume that the detection algorithm performed

perfectly, T̂k = Tk, k = 1, . . . ,K, and estimate the channels

with methods based on this assumption.

The antenna detection is done by clustering the measure-

ments based on which antenna that was used. This is made

possible because each antenna has a constant channel realiza-

tion within the slots considered, so it is only noise that affects

the clustering and detection performance. We study three

different clustering algorithms, which are described below.

A. K-means Clustering

The first clustering algorithm is the K-means clustering al-

gorithm [16, Ch. 5]; it is presented in Algorithm 4. The general

form can be directly applied to our problem without phase

shifts. K-means iteratively finds the K centroids, c1, . . . , cK ,

of the T input points, {yp(t)}Tt=1
, while trying to minimize

the Euclidian distance between the points in the cluster and

the centroids,

min
{T̂k}K

k=1

K∑

k=1

∑

t∈T̂k

∥
∥
∥
∥

yp(t)√
pτp

− ck

∥
∥
∥
∥

2

(39)
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Algorithm 4 The K-means algorithm.

Input: {yp(t)}Tt=1
, K, p, τp

Output:
{

T̂k
}K

k=1

1: Initialize {ck}Kk=1 with appropriate algorithm

2: T̂k =

{

t :

∥
∥
∥
∥

yp(t)√
pτp

− ck

∥
∥
∥
∥
≤
∥
∥
∥
∥

yp(t)√
pτp

− ck′

∥
∥
∥
∥
,

k′ = 1, . . . ,K
}

, k = 1, . . . ,K

3: while
{

T̂k
}K

k=1
changed do

4: ck =
1

|T̂k|√pτp

∑

t∈T̂k

yp(t), k = 1, . . . ,K

5: T̂k =

{

t :

∥
∥
∥
∥

yp(t)√
pτp

− ck

∥
∥
∥
∥
≤
∥
∥
∥
∥

yp(t)√
pτp

− ck′

∥
∥
∥
∥
,

k′ = 1, . . . ,K
}

, k = 1, . . . ,K

6: end while

by taking the mean of all the points in each cluster [16, Ch. 5],

ck =
1

|T̂k|√pτp

∑

t∈T̂k

yp(t), k = 1, . . . ,K. (40)

The K-means algorithm will converge to different local optima

depending on the initialization of the centroids. This initial-

ization can be done by randomly choosing them from the

set of the points to be clustered or by a more sophisticated

algorithm like the K-means++ algorithm [17]. K-means has a

complexity of O(TMKI), where I is the number of iterations,

see Table IV. Note that line 4 in Algorithm 4 gives the LS

channel estimate. Hence, the K-means algorithm cyclically

detects the antennas and estimates the channel.

B. Expectation-Maximization (EM) Algorithm

The clustering problem can alternatively be formulated as a

Gaussian mixture model fit:

{ĝk}Kk=1 , {η̂k}
K
k=1

= argmax
{gk}Kk=1,{ηk}Kk=1

T∏

t=1

K∑

k=1

ηkp(yp(t) | √pτpgk) (41)

where

p(yp(t) | √pτpgk) =
exp(−

∥
∥yp(t)−√

pτpgk
∥
∥
2
)

πM
(42)

is the circularly symmetric complex Gaussian probability

density function with covariance matrix IM evaluated in point

yp(t)−√
pτpgk and ηk denotes the probability of any point be-

longing to cluster k. Equation (41) produces the ML estimate

of the mixture parameters: gk and ηk. Therefore, a possibility

is to use the EM algorithm which iteratively finds the ML

estimate of the mixture parameters [16, Ch. 6]. The algorithm

is presented in Algorithm 5, where a slight modification is

made to the original algorithm as we utilize the knowledge

of the noise covariance matrix. The γt,k variable denotes the

probability of the point yp(t) belonging to cluster k and can

be interpreted as “fuzzy”, or soft, clusters. We can either

Algorithm 5 The EM algorithm, where p(x | m) is the

circularly symmetric complex Gaussian probability density

function with covariance matrix I evaluated in point x−m.

Input: {yp(t)}Tt=1
, K, p, τp

Output:
{

T̂k
}K

k=1

1: Initialize {ck}Kk=1 with appropriate algorithm

2: ηk = 1
K
, k = 1, . . . ,K

3: while {γt,k}T,Kt=1,k=1 changed do

4: γt,k =
ηkp

(
yp(t) | √pτpck

)

K∑

k′=1

ηk′p
(
yp(t) | √pτpck′

)

,

t = 1, . . . , T, k = 1, . . . ,K

5: ηk =
1

T

T∑

t=1

γt,k, k = 1, . . . ,K

6: ck =

T∑

t=1

γt,kyp(t)

√
pτp

T∑

t=1

γt,k

, k = 1, . . . ,K

7: end while

8: T̂k = {t : γt,k ≥ γt,k′ , k
′ = 1, . . . ,K} , k = 1, . . . ,K

utilize the soft clusters or create hard clusters by assigning

points yp(t) to the cluster k with the highest probability,

T̂k = {t : γt,k ≥ γt,k′ , k
′ = 1, . . . ,K} , k = 1, . . . ,K. The

EM algorithm will converge to a local optimum. The K-

means algorithm is a special case of the EM algorithm. The

complexity of the EM algorithm is of the same order as K-

means, see Table IV. Note that line 6 in Algorithm 5 can be

interpreted as a channel estimate. Hence, the EM algorithm

cyclically detects the antennas and estimates the channel.

C. Spectral Clustering

The last clustering algorithm to be presented is spectral

clustering. The spectral clustering is done with the Ng-Jordan-

Weiss algorithm [18] and is presented in Algorithm 6. The

affinity matrix, A, is describing the similarity between the

points and ρ is deciding how fast the similarity should de-

crease with increased distance between the points. This matrix

describes a fully connected graph where the nodes are the

measurements and the edges are similarities. The goal of the

spectral clustering algorithm is to cut the graph such that

the intra-cluster similarities are large while the inter-cluster

similarities are small [19]. One of the properties of spectral

clustering is that the resulting clusters are not necessarily

convex, as compared to e.g., K-means which gives convex

clusters. The complexity of the spectral clustering algorithm is

dominated by the calculation of the affinity matrix, O(T 2M)
and the eigenvalue decomposition, O(T 3), see Table IV.
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TABLE IV
THE NUMBER OF COMPLEX ARITHMETIC OPERATIONS OF THE CLUSTERING ALGORITHMS 4, 5, 6 AND 10. THE LAST ALGORITHM IS THE

INITIALIZATION STRATEGY USED IN THE SIMULATIONS WHICH WILL BE PRESENTED IN SECTION VIII. “PRE-COMPUTE” REFERS TO WHAT CAN BE

PRE-COMPUTED ONCE EVERY TIME THE LARGE SCALE PROPERTIES OF THE CHANNEL CHANGE AND “ONCE” REFERS TO WHAT IS COMPUTED ONCE PER

ALGORITHM INSTANCE. THE COLUMN “OVERALL” REFERS TO THE ASYMPTOTIC SCALING OF THE ALGORITHMS.

Algorithm Add/sub. Mult. Other Overall

K-means Pre-compute 0 1 1 div. + 1 sqrt. O(1)

Once TK(2M − 1) TM(K + 1) Cost for init. + T
(

K

2

)

comp. O(TMK)

Each iteration TK(2M − 1) +
M(T − 1)

TM(1 +K) +MK K div. + T
(

K

2

)

comp. O(TMK)

EM Pre-compute 0 1 1 div. + 1 sqrt. + 1
πM

O(1)

Once 0 0 1 div. + Cost for init. O(1)

Each iteration 3TK(M + 1) −
MK − T − 2K

K(3MT + 2T + 2) TK +KM div. + TK exp.

+ T
(

K

2

)

comp.

O(TMK)

Spectral Pre-compute 0 1 1 div. O(1)

clustering Affinity matrix T (T/2 − 1) ×
(2M − 1)

T (T/2− 1)(M + 1) T (T/2− 1) div.
+ T (T/2− 1) exp.

O(T 2 + TM)

Eigenvalue - - O(T 3) O(T 3)

Other T (T − 1 +K − 1) 2M2 +KT KT + T div. + 2T sqrt.
+ K-means (Y iterations)

O(T 2 +M2 +
Y TK2)

Init. Euclidean (K − 1)T (2M − 1) (K − 1)TM (K − 1)(2T − 1) comp. O(TMK)

Pseudo-metric (K − 1)T (3M − 2) (K − 1)T (3M + 1) (K − 1)T arg. (K − 1)T exp.
(K − 1)(2T − 1) comp.

O(TMK)

Algorithm 6 The spectral clustering algorithm [18].

Input: {yp(t)}Tt=1
, K, p, τp, ρ

Output:
{

T̂k
}K

k=1
1: Create A ∈ R

T×T

2: Ai,j = exp

(

−‖yp(i)− yp(j)‖2
ρpτp

)

,

i = 1, . . . , T, j = 1, . . . , T, i 6= j

3: Ai,i = 0, i = 1, . . . , T

4: Create D ∈ R
T×T

5: Di,j = 0, i = 1, . . . , T, j = 1, . . . , T, i 6= j

6: Di,i =

T∑

j=1

Ai,j , i = 1, . . . , T

7: Create L = D− 1
2AD− 1

2 ∈ R
T×T

8: Find the eigenvectors v1, . . . ,vK ∈ R
T corresponding to

the K largest eigenvalues of L and put them as columns

of V ∈ R
T×K

9: Create U ∈ R
T×K

10: Ui,j =
Vi,j

(
∑K
j′=1 V

2
i,j′

) 1
2

, i = 1, . . . , T, j = 1, . . . ,K

11: Cluster the rows of U with Algorithm 4 (p = 1, τp = 1)

to obtain T̂k

VI. JOINT ANTENNA DETECTION AND CHANNEL

ESTIMATION

In the fourth case of channel estimation in this paper, the

user terminal has multiple antennas and there are phase shifts

between the time slots. In this case, we have to both detect the

active antennas and estimate the channels and phase shifts.

We consider the pseudo-metric

d(x,y) = min
θ

‖x− ej θy‖ = ‖x− e− j arg(xH
y)y‖ (43)

as a substitute for the Euclidean distance when assigning

points to clusters in K-means, when calculating probabilities

in the EM algorithm and when determining the similarity

between two points in spectral clustering. The pseudo-metric,

d(x,y), has all the properties that a metric has except for

d(x,y) = 0 6=⇒ x = y [20, Ch. 4], i.e., a pseudo-metric

is non-negative, symmetric and fulfills the triangle inequality.

This metric is considered because the distance between a

vector and the phase shifted version of the same vector is zero,

d(x, ej θx) = 0 for any θ, which is suitable for our application

as we would like two measurements corresponding to the same

terminal antenna to be “close” so that the clustering algorithm

puts them in the same cluster. Other metrics that fulfill this

property are also possible but no superior metric has been

found, see Section VIII for a discussion.

The modified, “phase agnostic”, versions of Algorithms 4,

5 and 6 are found in Algorithms 7, 8 and 9, respectively. The

phase agnostic versions of the algorithms are more complex

than their counterparts without phase shifts due to the slightly

higher complexity of the pseudo-metric compared to the

Euclidean distance, and the use of Algorithm 1 on lines 4 and

6 in Algorithms 7 and 8, respectively. The convergence of the

phase agnostic versions of the algorithms is generally slower.

After detecting the clusters,
{

T̂k
}K

k=1
, either the iterative

ML (Algorithm 1) or pairwise (Algorithm 3) algorithm can

be used to give the channel and phase shift estimates. This

is done by using the estimation algorithms K times with

{yp(t)}t∈T̂k , k = 1, . . . ,K as measurements. We can also
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Algorithm 7 The phase agnostic K-means algorithm.

Input: {yp(t)}Tt=1
, K, p, τp

Output:
{

T̂k
}K

k=1

1: Initialize {ck}Kk=1 with appropriate algorithm

2: T̂k =

{

t : d

(
yp(t)√
pτp

, ck

)

≤ d

(
yp(t)√
pτp

, ck′

)

,

k′ = 1, . . . ,K

}

, k = 1, . . . ,K

3: while
{

T̂k
}K

k=1
changed do

4: Use Algorithm 1 with measurements {yp(t)}t∈T̂k and

let the resulting ĝ be ck, k = 1, . . . ,K. The resulting

phase shift estimates can be discarded.

5: T̂k =

{

t : d

(
yp(t)√
pτp

, ck

)

≤ d

(
yp(t)√
pτp

, ck′

)

,

k′ = 1, . . . ,K

}

, k = 1, . . . ,K

6: end while

use the iterative MAP estimator (Algorithm 2), however, this

is not the true MAP estimate because of potential errors in the

clustering.

Note that the problem is a joint detection and estimation

problem, and we treat it as such. With the EM and K-means

algorithms, we do not estimate the channel assuming that the

antenna detection result is perfect. Rather, we jointly minimize

a cost function with respect to all unknowns through a cyclic

optimization procedure that alternates between detection of

active antennas and estimation of the channels. The channel

estimates can be extracted as a byproduct, from intermediate

variables in the K-means (line 4) and EM algorithms (line 6).

For the spectral clustering algorithm the channel estimation is

performed explicitly after the antenna detection is finished.

VII. ACHIEVABLE RATE

To evaluate the performance of our channel estimation

methods, we use the uplink achievable rate, which is a good

measure of performance given that we study long codewords

and that suitable channel coding techniques are used. This is

the case in practice, as practical systems use channel codes

and operate close to capacity. In this paper, we do not study

the downlink. However, if we were to study the downlink

achievable rate, the causality of the system would have to be

considered.

The achievable rate will include the effects of antenna mis-

detection and channel estimation errors. We will not study

these effects separately because for a communication link in

general a smaller channel estimation mean-square error does

not necessarily imply a higher rate as elaborated for example

in [21].

To calculate the uplink achievable rate, we consider the

uplink received signal in (3). We multiply the received signal

with the conjugate transpose of the receive combining vector

v(t) to form

vH(t)yd(t) =
√
pejψ(t)vH(t)gS(t)x(t) + vH(t)wd(t). (44)

Algorithm 8 The phase agnostic EM algorithm, where

p(x | m) = 1
πM

exp(−d(x,m)2).

Input: {yp(t)}Tt=1
, K, p, τp

Output:
{

T̂k
}K

k=1

1: Initialize {ck}Kk=1 with appropriate algorithm

2: ηk = 1
K
, k = 1, . . . ,K

3: while {γt,k}T,Kt=1,k=1 changed do

4: γt,k =
ηkp

(
yp(t) | √pτpck

)

K∑

k′=1

ηk′p
(
yp(t) | √pτpck′

)

,

t = 1, . . . , T, k = 1, . . . ,K

5: ηk =
1

T

T∑

t=1

γt,k, k = 1, . . . ,K

6: Use Algorithm 1 with {γt,kyp(t)}Tt=1
as measurements

and let the resulting ĝ be cun
k , k = 1, . . . ,K. The

resulting phase shift estimates can be discarded.

7: ck =
cun
k

T∑

t=1

γt,k

, k = 1, . . . ,K

8: end while

9: T̂k = {t : γt,k ≥ γt,k′ , k
′ = 1, . . . ,K} , k = 1, . . . ,K

Algorithm 9 The phase agnostic spectral clustering algorithm.

Input: {yp(t)}Tt=1
, K, p, τp, ρ

Output:
{

T̂k
}K

k=1
1: Create A ∈ R

T×T

2: Ai,j = exp

(

−d (yp(i),yp(j))
2

ρpτp

)

,

i = 1, . . . , T, j = 1, . . . , T, i 6= j

3: Ai,i = 0, i = 1, . . . , T

4: Create D ∈ R
T×T

5: Di,j = 0, i = 1, . . . , T, j = 1, . . . , T, i 6= j

6: Di,i =

T∑

j=1

Ai,j , i = 1, . . . , T

7: Create L = D− 1
2AD− 1

2 ∈ R
T×T

8: Find the eigenvectors v1, . . . ,vK ∈ R
T corresponding to

the K largest eigenvalues of L and put them as columns

of V ∈ R
T×K

9: Create U ∈ R
T×K

10: Ui,j =
Vi,j

(
∑K
j′=1 V

2
i,j′

) 1
2

11: Cluster the rows of U with Algorithm 4 (p = 1, τp = 1)

to obtain T̂k



10 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. X, XXXX

C ≥ RUaF = log2




1 +

p
∣
∣
∣E

{

ejψ(t)−j ψ̂(t)ĝH

Ŝ(t)
gS(t)

}∣
∣
∣

2

V

{

e− j ψ̂(t)ĝH

Ŝ(t)
wd(t)

}

+ pV
{

ejψ(t)−j ψ̂(t)ĝH

Ŝ(t)
gS(t)

}




 (45)

C ≥ RUaF N = log2







1 +

p

∣
∣
∣
∣
E

{

ejψ(t)−j ψ̂(t)
ĝ
H

Ŝ(t)
gS(t)

‖ĝŜ(t)‖2

}∣
∣
∣
∣

2

V

{

e− j ψ̂(t)
ĝ
H

Ŝ(t)
wd(t)

‖ĝŜ(t)‖2

}

+ pV

{

ejψ(t)−j ψ̂(t)
ĝ
H

Ŝ(t)
gS(t)

‖ĝŜ(t)‖2

}








(46)

We study three different capacity bounds; the use-and-then-

forget (UaF) bound [2, Sec. 2.3.4] [12, Thm. 4.4] with two

different receive combining vectors (UaF and UaF N), and the

estimation bound (EB) in [22, Lemma 3]. By studying three

lower bounds, we get a clearer picture of the true capacity as

the greatest lower bound in each point is the most telling.

The first bound we study is the UaF bound where the

receive combining vector is the channel estimate scaled by a

deterministic constant, in this case M , v(t) =
ej ψ̂(t)

ĝ
Ŝ(t)

M
. This

is a receive combining vector that is widely used in massive

MIMO literature as the capacity bound using this receive

combining vector can be found in closed form in many cases

and is optimal in the case of perfect channel state information.

This receive combining vector, together with the UaF capacity

bounding technique gives us (45) (at the top of this page).

In the second bound we still use the UaF bounding tech-

nique, however the receive combining vector is different here

and is the channel estimate scaled by the inverse of its squared

norm, v(t) =
ej ψ̂(t)ĝŜ(t)

‖ĝŜ(t)‖2
. The resulting bound is showed

in [12, Section 4.2.1] to be tighter than UaF in some cases,

especially in the cases with less channel hardening. The bound

is called UaF N and is given by (46) (at the top of this page).

To adhere to the system model for the third bound we

consider, EB, in [22, Lemma 3] our receive combining vector

is the channel estimate scaled by its norm v(t) =
ej ψ̂(t)ĝŜ(t)

‖ĝŜ(t)‖
.

The system model in [22] is a downlink multiuser MIMO

system with linearly precoded transmission to multiple single-

antenna users. To apply the EB bound from [22] to our system

model, we state the conjugate of (44) with the notation from

[22] under the braces (without the block indices):

yH
d (t)v(t)
︸ ︷︷ ︸

=yk

= e− jψ(t)gH
S(t)

︸ ︷︷ ︸

=hH
k

√
p

︸︷︷︸

=
√
Ek

v(t)
︸︷︷︸

=vk

x(t)∗
︸ ︷︷ ︸

=sk
︸ ︷︷ ︸

=x

+wH
d (t)v(t)

︸ ︷︷ ︸

=zk

.

Unit precoding vectors are assumed in [22], i.e., ‖vk‖2 = 1,

which is why we use the normalized receive combining vector

in our model. Also, zk should be independent of vk which

is also fulfilled in our model with the normalized v(t). This

can be verified by noting that the probability distribution of

wH
d (t)v(t) conditioned on v(t) does not depend on v(t) for

any unit-norm v(t). This gives our last capacity bound:

C ≥ REB =E







log2




1 + p

∣
∣
∣
∣
∣
∣

ej(ψ(t)−ψ̂(t))ĝH

Ŝ(t)
gS(t)

‖ĝŜ(t)‖

∣
∣
∣
∣
∣
∣

2











− 1

τc

log2



1 + τcpV







ej(ψ(t)−ψ̂(t))ĝH

Ŝ(t)
gS(t)

‖ĝŜ(t)‖









 , (45)

where τc is the size of one slot.

VIII. NUMERICAL SIMULATIONS

As the expectations and variances in the achievable rate

expressions cannot be calculated we do numerical simulations

to see how our detection and estimation methods perform

using these rates. We also evaluate how much that can be

gained by having prior knowledge of the correlation matrices.

We use three different forms of Rayleigh fading,

gk ∼ CN (0,R), k = 1, . . . ,K:

1) Uncorrelated Rayleigh fading, R = IM .

2) Correlated Rayleigh fading with the approximate Gaus-

sian local scattering (AGLS) model [12, Sec. 2.6]

with angular standard deviation (ASD), σϕ = 10◦,

nominal angle, ϕ = 30◦ and half-wavelength antenna

spacing, where the element in row j and column k of

the correlation matrix R is

Rj,k = e2π j 0.5(j−k) sin(ϕ)e
σ2ϕ
2 (2π0.5(j−k) cos(ϕ))2 ,

j = 1, . . . ,M, k = 1, . . . ,M. (46)

3) Correlated Rayleigh fading with the exponential corre-

lation model from [23], assuming a uniform linear array

where the channel correlation between adjacent antennas

is equal to a constant r:

R =








r0 r1 · · · rM−1

r1 r0 · · · rM−2

...
...

. . .
...

rM−1 rM−2 · · · r0







. (47)

We use r = 0.9; r being real-valued corresponds to the

signal from the terminal impinging broadside onto the

array.

The phase shift ψ(t) is assumed to be uniformly distributed

between −π and π and independent between time slots. When

having multiple antennas, the terminal is assumed to have
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four antennas, K = 4, and each antenna observes a random

realization with the same distribution. This corresponds to a

rich scattering environment around the terminal. The selected

antenna is selected randomly using a uniform distribution

in each time slot. In some cases, the antenna switching is

not entirely random but based on some side information that

is available to the terminal. In principle, the terminal could

communicate additional information through its choice of

which antenna that is active, similar to the spatial modulation

concept [24]. A possible future extension of the paper could

consider corresponding algorithms and trade-offs. Throughout

the simulations we use τc = 200 as in [12, Sec. 4.1.3].

Furthermore, the simulations depicted are with M = 100,

T = 20, and τp = 10.

Both the K-means and EM algorithm are initialized1 by

starting with a random measurement as the first cluster center.

After that, the measurement furthest (in Euclidean distance or

the pseudo-metric d) from all the existing cluster centers are

added until there are K cluster centers as opposed to the K-

means++ algorithm which adds cluster centers with a probabil-

ity that is proportional to the distance to the existing cluster

centers. Our initialization algorithm can be found in Algo-

rithm 10 and its complexity is given in Table IV. We observed

that our initialization method performs better, compared to K-

means++, on average considering we only have one initializa-

tion. The results might change slightly if we can start the algo-

rithms with many more initializations and save the best choice.

The scaling parameter, ρ, in the spectral clustering is set to M

to prevent the distances from growing large at high SNR or

large number of antennas. Consider two pilot measurements,

from slot t1 and t2, without phase shifts. The expected squared

distance between these measurements given that the terminal

used the same antenna and different antennas in slot t1 and

t2 would be E
{
‖yp(t1)− yp(t2)‖2 | S(t1) = S(t2)

}
= 2M

and E
{
‖yp(t1)− yp(t2)‖2 | S(t1) 6= S(t2)

}
= 2M(pτp +1),

respectively. Both of these distances scale with M . We chose

the scaling parameter such that the number of antennas will

not affect the clustering. In [18], it is suggested that one can

search over many different scaling parameters, and choose the

one that gives the tightest clusters. We limit the number of

iterations in K-means and EM and set the maximum number

of iterations to 1000. The K-means algorithm, EM algorithm,

and spectral clustering algorithm (either the standard version

or the phase agnostic version) are denoted by KM, EM and

SC, respectively, in the figure legends.

The problems in (24) (ML-g) and (26) (MAP-g) are solved

with a gradient descent method where the modified Bessel

function of the first kind either has been lower (L) or upper

(U) bounded. The starting points of the gradient descent

is 5 iterations of either the iterative ML or iterative MAP

algorithms.

First, we study the case where the terminal has a single an-

tenna, like in Section IV, which means that we need to estimate

1During the course of this work, it has come to our knowledge that
initializing these algorithms appropriately is very important. In the earlier
version of this work [1], the K-means++ algorithm [17] was used, and as can
be seen by comparing the figures, performed much worse than when using
the current initialization method.

Algorithm 10 The furthest distance initialization for the

K-means and EM algorithm where f(x,y) is either d(x,y)
or ‖x− y‖.

Input: {yp(t)}Tt=1
, K

Output: {ck}Kk=1

1: Randomly choose c1 from {yp(t)}Tt=1

2: for k = 2 to K do

3: for t = 1 to T do

4: at = ∞
5: for k′ = 1 to k − 1 do

6: at = min (at, f(ck′ ,yp(t)))

7: end for

8: end for

9: Set ck = yp

(

argmax
t∈{1,...,T}

at

)

10: end for

both the channel and the phase shifts. Fig. 1, where achievable

rate is shown as a function of SNR, shows that the pairwise

algorithm is clearly inferior to the other methods, especially

for low SNRs. We see that the MAP based estimators do not

perform noticeably better when the channel has uncorrelated

Rayleigh fading. This behavior is expected, as uncorrelated

Rayleigh fading is a weak prior. However, with correlated

Rayleigh fading, we see that the ML based estimators provide

worse estimates than the MAP based estimates. This is clear,

as more information is used when doing MAP estimation

compared to ML estimation. The loss of not having priors is

not huge; it is less than 1 dB at 1 bit/s/Hz. From the numerical

simulations, the iterative ML (Algorithm 1) and iterative MAP

(Algorithm 2) do not require many iterations to converge. At

p = −15 dB less than 10 iterations are required on average

and at p = 0 dB 5 iterations are required on average.

Second, we study how the clustering algorithms perform

when there are no phase shifts between the time slots, i.e.,

the channel estimation case in Section V. The results are

seen in Fig. 2, where achievable rate is shown as a function

of SNR. In the figure, what is most clear is that the UaF

bound is the worst of the three used bounds; both the UaF N

and the EB give higher achievable rates. The UaF bound can

be calculated in closed form in some system models and is

tight when the channel hardens which is why it is commonly

used in the massive MIMO literature. Here, we do not have

much channel hardening due to occasional missed detection of

the antenna clusters. By scaling the receive combining vector

by the inverse of its norm squared we obtain a much better

bound, UaF N. However, the bound that is the best in this

case is EB, which is because the second term in (45) becomes

very small when τc is much larger than the number of users

which is the case here (200 ≫ 1). EB almost attains the

same achievable rate as when the channel is perfectly known,

log2 (1 +Mp), at high SNR. Furthermore, we can see that

the clustering algorithms have similar performance, however,

spectral clustering performs better in lower SNR and the K-



12 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. X, XXXX

Iterative ML ML-g L ML-g U

Iterative MAP MAP-g L MAP-g U

Pairwise

−25 −20 −15 −10
0

1

2

3

4

p [dB]

R
at

e
[b

it
/s

/H
z]

(a) UaF, uncorrelated Rayleigh fading

−25 −20 −15 −10
0

1

2

3

4

p [dB]

R
at

e
[b

it
/s

/H
z]

(b) UaF, AGLS correlated Rayleigh fading
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(d) UaF N, uncorrelated Rayleigh fading
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(e) UaF N, AGLS correlated Rayleigh fading
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(g) EB, uncorrelated Rayleigh fading
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(h) EB, AGLS correlated Rayleigh fading
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(i) EB, exponentially correlated Rayleigh fading

Fig. 1. Simulation of achievable rates (UaF, UaF N, and EB) with one antenna at the terminal and phase shifts between the time slots (scenario in Section IV),
with different fading models (uncorrelated, AGLS correlated, and exponentially correlated Rayleigh fading). The channel is constant for T = 20 slots, the
base station has M = 100 antennas and the pilot length is τp = 10.
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Fig. 2. Simulation of achievable rates with multiple terminal antennas (K =
4) and no phase shifts between the time slots, with MAP channel estimates
and uncorrelated Rayleigh fading channels. The channels are constant for
T = 20 slots, the base station has M = 100 antennas and, the pilot length
is τp = 10.

means and EM algorithms perform better in higher SNR.

Third, we combine the phase shifts and the antenna switch-

ing and study the case in Section VI. The results can be seen

in Fig. 3, which shows achievable rate as a function of SNR.

Here, we can see that the clustering algorithms are close in

performance. However, the EM algorithm is consistently better

than the other two. We can also conclude that our method of

handling the phase shifts in the clustering algorithms is close

to optimal. This conclusion is drawn from the fact that the

curves in Figs. 2 and 3 are very close.

Lastly, to answer how much we gain from utilizing multiple

time slots when estimating the channel, we compare the case

where the base station estimates the channel separately in each

slot to our case with phase shifts and multiple antennas. Other

benchmarks such as non-coherent transmission are possible

but such transmission schemes do not use pilots and therefore

the comparison to our scheme is irrelevant since our methods

are an add-on to a pilot-based scheme. The result is shown in

Fig. 4. In this figure, the achievable rate when having perfect

channel knowledge is also considered. We see that the rates

are improved the most at relatively low SNR; there is an

improvement of approximately 2 dB at 1 bit/s/Hz. In this figure

we also evaluated the clustering performance by including a

genie-aided antenna detector. We see that clustering with our

phase agnostic EM algorithm comes very close to the genie-

aided detector.

Although not included in the manuscript, more simulation

scenarios have been evaluated.

• Particularly, we saw that our methods will always give

an improvement compared to re-estimating the channel

in each slot, irrespective of what τp is.

• Moreover, we observed that, while the K-means and
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Fig. 3. Simulation of achievable rates with multiple terminal antennas (K =
4) and phase shifts between time slots, with iterative MAP and uncorrelated
Rayleigh fading channels and uniformly distributed, independent, phase shifts.
The channels are constant for T = 20 slots, the base station has M = 100
antennas, and the pilot length is τp = 10.
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Fig. 4. Comparison of achievable rates when using only a single slot for
channel estimation and the proposed method of utilizing multiple slots. The
terminal has (K = 4) antennas, the base station has M = 100 antennas and
the pilot length is τp = 10 The channels are uncorrelated Rayleigh fading and
constant for T = 20 slots. The phase shifts between the slots are assumed
to be independent and uniformly distributed. Here, the estimation is done by
iterative MAP when estimating over many slots and the ordinary MAP when
estimating the channel in one slot. The curve denoted by “Perfect” is the
case where the channel is exactly known at the base station and “Genie” is
denoting a genie-aided antenna detector. An improvement of around 2 dB can
be seen at 1 bit/s/Hz.



14 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. X, XXXX

EM algorithm will always give an improvement over re-

estimating the channel in each slot, the spectral clustering

algorithm is sensitive to the number of slots and might

degrade the performance if T < 20 compared to the

baseline.

• We have also evaluated the chordal distance, dC(x,y) =√

1− |xHy|2
‖x‖2‖y‖2 , as an alternative for the pseudo-metric d

in the phase agnostic clustering algorithms. The chordal

distance performs slightly worse for K-means while no

noticeable difference could be seen for spectral clustering.

This is because the chordal distance only considers the

separation in angle, while the separation in magnitude is

lost.

• We also considered the case where the channels from

the terminal antennas are correlated with the Kronecker

model [25] and the exponential correlation model similar

to (47) at the terminal side. Perhaps somewhat unex-

pectedly, we saw a slight performance increase in the

low SNR region when the channels from the terminal

antennas were correlated and the signal is impinging

broadside or the phase agnostic clustering algorithms are

used. We conjecture that when the channels from the

terminal antennas are correlated, the antenna detection

might be less crucial.

• Simulations evaluating channel mean-square error and

antenna detection accuracy have also been performed.

These results show the same trends as the achievable rate.

To shed some more light on, and validate, how the capacity

bounds hold up in practice, in terms of using realistic modula-

tion and channel coding, we continue our numerical analysis

by considering coded bit-error-rates. We assume that the ter-

minal is sending quadrature phase-shift keying (QPSK) mod-

ulated symbols and uses a low-density parity-check (LDPC)

code with rate 1/2, which means that the transmission rate is

1 bit/s/Hz. The LDPC code has length 1000 and is defined in

[26]2. The codes in [26] are optimized for AWGN channels,

but they work well in massive MIMO settings because of

channel hardening, as shown in [27]. In the simulation we

use the receive combining vector v(t) =
ej ψ̂(t)

ĝ
Ŝ(t)

M
.

The implemented decoder is an AWGN decoder which is not

optimal but performs well in massive MIMO settings because

of channel hardening. The AWGN decoder considers a symbol

s is sent with power ρ and corrupted by AWGN w with

variance σ2. The received signal is y = ρs + w. The log-

likelihood ratio of the i:th bit of the symbol s, i.e., si is

log

(
p(y|si = 0)

p(y|si = 1)

)

= log





∑

s∈Si0 exp
(

|y−ρs|2
σ2

)

∑

s∈Si1 exp
(

|y−ρs|2
σ2

)



 , (48)

where Si0 and Si1 are the sets of symbols with a 0 or 1 in the

i:th position, respectively. In our setting the symbol x(t) is

transmitted over the channel and received at the base station,

see (3). The received signal is combined with the receive

combining vector and interpreted as a symbol that passed

2We use the code with maximum variable node degree 9 in Table I in [26].

through an AWGN channel where the effective channel gain

is
√
p

M
‖ĝŜ(t)‖2s and the effective noise variance is

σ2 =
p

M2
E

{∣
∣
∣‖ĝŜ(t)‖ − ejψ(t)−j ψ̂(t)ĝH

Ŝ(t)
gS(t)

∣
∣
∣

2
}

+
1

M2
V

{

e− j ψ̂(t)ĝH

Ŝ(t)
wd(t)

}

. (49)

Thus, the log-likelihood ratio for the i:th bit in the symbol is

log









∑

s∈Si0 exp

(

−
∣

∣

∣
v
H(t)yd(t)−

√
p

M
‖ĝ
Ŝ(t)‖

2s
∣

∣

∣

2

σ2

)

∑

s∈Si1 exp

(

−
∣

∣

∣
vH(t)yd(t)−

√
p

M
‖ĝ
Ŝ(t)‖2s

∣

∣

∣

2

σ2

)









, (50)

While σ2 is a deterministic number, it is not available in closed

form and we used Monte-Carlo simulations to calculate it prior

to running the performance simulations.

The result of the bit-error-rate simulations can be seen

in Fig. 5, where the vertical lines are the achievable rates

predicted by the UaF bound at 1 bit/s/Hz. We can see that

even though we do not have as much channel hardening

as in conventional massive MIMO in [27], the code, which

is optimized for AWGN channels, also performs well in

our scenario as the gaps between the vertical lines and the

waterfalls are small. The gaps between the vertical lines and

the waterfalls are due to the limited code length, shaping loss

of QPSK modulation, the AWGN assumption, and the fact that

we have a lower bound on the capacity. As can be seen in the

figure, the predicted gaps between the capacity bounds are

kept fairly well in the bit-error results, which further validates

the results in the paper. Additionally, the loss from having

phase shifts does not degrade the performance of the multiple-

antenna case much more than the single-antenna case which

again indicates that our method of handling the phase shifts

in the clustering algorithms is close to optimal.

IX. CONCLUSIONS

In this paper we considered the problem of filtering the

channel estimates between time slots of a non-coherent 5G

user terminal. Our suggested methods detect the selected

antenna and estimate the phase shift and channels in each

time slot. We saw that, in most cases, our phase agnostic EM

algorithm is the best for the antenna detection and that our

joint MAP algorithm best estimates the channels and the phase

shifts. We showed that the uplink data rate can be improved

by considering more time slots than only considering one time

slot for channel estimation and we verified our capacity bounds

with a bit-error-rate simulation.

The scheme is also applicable in multi-user scenarios. The

users are all acting by sending orthogonal pilots and data. If

their coherence time is longer than one system coherence block

the methods presented in the paper can be used to improve

their channel estimates.
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