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Email: {ema.becirovic, emil.bjornson, erik.g.larsson}@liu.se

Abstract—In this paper we propose a method of improving
channel estimates for non-coherent terminals with channels that
can be considered constant over multiple time slots. The terminals
have multiple antennas and are free to choose whichever antenna
they want to use in each time slot. An unknown phase shift is
introduced in each time slot as we cannot guarantee that the
terminals are phase coherent across time slots. The proposed
methods of improving channel estimates are a combination of
clustering and heuristic methods. With our proposed methods
we can have an improvement of 1.5 dB at 1 bit/s/Hz.

Index Terms—Channel estimation, non-coherent terminal.

I. INTRODUCTION

Channel estimation is crucial in multiple antenna wire-

less communication systems. In reciprocity-based precoding,

which is superior to feedback-based precoding, uplink channel

estimation is especially important for it to work effectively, and

also achieve accurate demodulation of uplink data [1]. Since

the uplink power can be two orders-of-magnitude lower than

the downlink power, the uplink estimation quality can be poor

even when the downlink signal-to-noise ratio (SNR) is good.

The estimates can be improved by averaging over multiple

slots. The slot duration is equal to the minimum coherence

time that the system supports. The vast majority of users will

have a substantially longer coherence time, and the majority of

traffic is generated by stationary indoor users that are the ones

with the longest coherence time. Filtering of channel estimates

is well known and used in state-of-the-art systems, see [2], [3],

[4] for examples in OFDM-systems.

In this paper, we study the class of non-coherent 5G

terminals [5, Ch. 7], which only use one of its antennas (or,

mathematically equivalent, one of the pre-defined beams in the

codebook) simultaneously. Moreover, in each time slot a phase

shift might occur which is due to the fact that the terminals

are not required to be phase coherent across time slots which

facilitates building energy efficient hardware, e.g., hardware

that is allowed to turn components on and off. The phase shift

may also be due to power amplifiers that change the range of

operation.

Technical contributions: We propose methods of improving

the channel estimates by jointly detecting the antenna that the

terminal used, and estimating the phase shifts and obtaining
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our channel estimates. The problem statement in this paper is

to the authors knowledge new.

II. SYSTEM MODEL

We consider a single-cell system with M antennas at the

base station and one user with K antennas. The channel

between the user and the base station is considered constant

over many time slots. The base station wants to exploit this and

use the received pilot signal from many time slots to estimate

the channel to the user. However, the user is free to use any

of its antennas but can only use one at a time. Here, the word

antenna is not necessarily referring to a physical antenna but

can refer to a virtual antenna defined by a per-defined beam.1

The choice of antenna is unknown to the base station. We

denote the selected antenna at time t with S(t) ∈ {1, . . . ,K}.
Let Tk be the set of time slots where the user selected to

use antenna k: Tk = {t : S(t) = k}. The union of the sets

is equal to the set of all time slots,
⋃K
k=1 Tk = {1, . . . , T},

where T is the number of slots where the channels can be

considered to be constant. T is assumed to be known at the

base station. The set of time slots of the selected antennas are

all disjoint, Tk ∩Tk′ = ∅, ∀ k 6= k′, meaning that the user can

only activate one antenna at a time.

At each time slot t, the user first sends a pilot signal φ(t) ∈
C
τp of length τp, ‖φ(t)‖ = 1, which is known to the base

station. The base station receives

Y p(t) =
√
pτpe

iψ(t)gS(t)φ(t)
H +W p(t), t = 1, . . . , T, (1)

where p is the power, gk ∈ C
M is the channel between user

antenna k and the base station and ψ(t) is an unknown phase

shift that occurs at time t. Finally, W p(t) ∈ C
M×τp is AWGN

with i.i.d. CN (0, 1) elements. The base station despreads the

received signal with the pilot signal as

Y p(t)φ(t) = yp(t) =
√
pτpe

iψ(t)gS(t) +wp(t), ∀ t, (2)

where wp(t) = W p(t)φ(t) ∼ CN (0, IM ). yp(t) are the

signals that the base station uses to estimate the channel

between itself and the user.

Furthermore, in each time slot, there is an uplink data phase

where we consider the symbol x(t), E
{
|x(t)|2

}
≤ 1, in an

1If G is the M ×K matrix consisting of the physical channel between the
base station and the user antennas, detecting one of the antennas, gk = Gek
is the same as detecting one of the pre-defined beams, Gwk , where wk is
the k:th beamforming vector.



TABLE I
THE FOUR CASES OF CHANNEL ESTIMATION OVER MANY SLOTS.

One antenna Multiple antennas

Without phase shift MMSE Section III-A

With phase shift Section III-B Section III-C

arbitrary time slot t. When the user sends x(t), the base station

receives

yd(t) =
√
peiψ(t)gS(t)x(t) +wd(t), (3)

where wd(t) ∼ CN (0, IM ) is AWGN.

III. CHANNEL ESTIMATION

There are four different cases of the channel estimation,

see Table I. The simplest case where only one antenna is

active and there is no phase shift (ψ(t) absent from the above

formulas) is trivial and can be solved with an MMSE estimate

(assuming that the distribution of g is known). The other cases

are described below.

A. With Multiple Active Antennas, Without Phase Shifts

In the case without phase shifts, i.e., ψ(t) = 0, t = 1, . . . T ,

the received despreaded pilot signal (2) simplifies to

yp(t) =
√
pτpgS(t) +wp(t), t = 1, . . . , T. (4)

We first cluster the points to detect the time slots where the

user selected antenna k, T̂k. As with the true sets, the detected

sets are also disjoint. Furthermore, we can express the detected

selected antenna with Ŝ(t), defined analogously to S(t). The

clustering algorithms are described in Section IV. The channel

estimates are formed from the despreaded pilot signal and the

detected clusters:

ĝk =
1

|T̂k|√pτp

∑

t∈T̂k

yp(t) (5)

=
|T̂k ∩ Tk|
|T̂k|

gk +

K∑

k′=1
k′ 6=k

|T̂k ∩ Tk′ |
|T̂k|

gk′ +
1

|T̂k|
∑

t∈T̂k

wp(t)
√
pτp

. (6)

B. With One Active Antenna, With Phase Shifts

In the case with only one active user antenna, i.e., S(t) =
1, t = 1, . . . , T , the received despreaded pilot signal (2)

simplifies to (with removed antenna subscript)

yp(t) =
√
pτpe

iψ(t)g +wp(t), t = 1, . . . , T. (7)

Here, we formulate the following least-squares problem:

min
g,{ψ(t)}

T∑

t=1

‖yp(t)− eiψ(t)g‖2 (8)

to form estimates of the channel and the phase shifts. We

experiment with two approaches of solving this problem:

• Pairwise: The first approach is called “Pairwise” and

works by adapting the phase shift pairwise between time

slots. We create the corrected observations:

yp,corr(1) = yp(1), (9)

yp,corr(t) = e−i arg(y
p,corr(t−1)Hyp(t))yp(t), t = 2, . . . , T.

(10)

After we have formed the corrected observations, we can

form our channel estimate to be

ĝ =
1

T
√
pτp

T∑

t=1

yp,corr(t) (11)

and the estimated phase shifts to be

ψ̂(t) = arg(ĝHyp(t)), t = 1, . . . , T. (12)

• Iterative ML: The next approach is based on the

maximum-likelihood (ML) estimate and is a cyclic

optimization algorithm. We call it “iterative ML” here.

We decouple the least-squares problem (8) to form

two separate problems where we minimize over the

channel in one and the phase shifts in the other. The

minimizers are, for the channel estimation and phase

shift estimation, respectively:

ĝ =
1

T
√
pτp

T∑

t=1

e−iψ(t)yp(t) (13)

and

ψ̂(t) = arg(gHyp(t)), t = 1, . . . , T. (14)

In our “iterative ML” method we obtain the solution by

iteratively inserti (13) into (14) and vice versa.

C. With Multiple Active Antennas, With Phase Shifts

In the case where we have both phase shifts and multiple

active antennas, we modify the clustering algorithms to handle

the case where there are phase shifts between each time slot to

form our detected clusters. This is discussed after introducing

the candidates for the clustering algorithms in Section IV-D.

Additionally, we need to modify the channel estimation.

This is basically done by using the same methods as in Section

III-B for each detected antenna cluster, T̂k, rather than going

over all time slots, t = 1, . . . , T , e.g., 1
T

∑T
t=1 is replaced

by 1
|T̂k|

∑

t∈T̂k . That is, after obtaining the detected antenna

clusters we apply the methods in the previous section on every

cluster.

IV. CLUSTERING ALGORITHMS

Below, we present three candidates for clustering the active

antennas.

A. K-means Clustering

The first clustering algorithm is the K-means clustering al-

gorithm and the general form of it is presented in Algorithm 1.

The general form can be directly applied to our problem with-

out phase shifts. K-means iteratively finds the K centroids,

c1, . . . , cK , of the T input points, {y(t)}, while trying to min-

imize the Euclidian distance between the points in the cluster

and the centroids, minT̂k
∑K
k=1

∑

t∈T̂k‖y(t)−ck‖2 by taking

the mean of all the points in each cluster [6]. The centroids



Algorithm 1 The K-means algorithm.

Input: {y(t)}, K
Output: T̂k ∀ k = 1, . . . ,K

1: Initialize ck ∀ k = 1, . . . ,K with appropriate algorithm

2: T̂k = {t : ‖y(t)− ck‖ ≤ ‖y(t)− ck′‖, k′ = 1, . . . ,K}
3: while

{

T̂k
}

unchanged do

4: ck ← 1
|T̂k|

∑

t∈T̂k y(t) ∀ k = 1, . . . ,K

5: T̂k = {t : ‖y(t)− ck‖ ≤ ‖y(t)− ck′‖, k′ = 1, . . . ,K}
6: end while

Algorithm 2 Modified EM algorithm, where p(x | m) is

the circularly symmetric complex Gaussian probability density

function with covariance matrix I evaluated in point x−m.

Input: {y(t)}, K
Output: T̂k ∀ k = 1, . . . ,K

1: Initialize ck ∀ k = 1, . . . ,K with appropriate algorithm

2: ηk ← 1
K
∀ k = 1, . . . ,K

3: while {γt,k} unchanged do

4: γt,k ←
ηkp (y(t) | ck)

∑K
k′=1 ηk′p (y(t) | ck′)

∀ t, k

5: ηk ← 1
T

T∑

t=1

γt,k

6: ck ←
∑T
t=1 γt,ky(t)
∑

T
t=1 γt,k

7: end while

8: T̂k = {t : γt,k ≥ γt,k′ , k′ = 1, . . . ,K}

need to be initialized which can be done by randomly choosing

them from the set of the points to be clustered or by a more

sophisticated algorithm like the K-means++ algorithm [7].

B. Expectation-Maximization (EM) Algorithm

The clustering problem can be formulated as a Gaussian

mixture model fit,

max
{gk},{ηk}

T∏

t=1

K∑

k=1

ηkp(y
p(t) | √pτpgk) (15)

where p(yp(t) | √pτpgk) =
exp(−‖yp(t)−√

pτpgk‖2)

πM
is the circu-

larly symmetric complex Gaussian probability density function

with covariance matrix I evaluated in point yp(t) − √pτpgk
and ηk denotes the probability of any point belonging cluster

k. (15) produces the ML estimate of the mixture parameters,

gk and ηk. Therefore, a possibility is to use the EM algorithm

which iteratively finds the ML estimate of the mixture param-

eters [6]. The algorithm is presented in Algorithm 2, where

a slight modification is made to the original algorithm as we

utilize the knowledge of the noise covariance matrix. The γt,k
variable denotes the probability of point yp(t) belonging to

cluster k and can be interpreted as “fuzzy”, or soft, clusters.

In this work, we do not consider soft clusters and instead

assign point yp(t) to the cluster k with the highest probability,

Ŝ(t) = argmaxk′ γt,k′ .

Algorithm 3 The spectral clustering algorithm [8].

Input: {y(t)}, K, ρ

Output: T̂k ∀ k = 1, . . . ,K
1: Create A ∈ R

T×T

2: Ai,j ← exp
(

‖y(i)−y(j)‖2

ρ

)

∀ i = 1, . . . , T, j = 1, . . . , T, i 6= j

3: Ai,i ← 0 ∀ i = 1, . . . , T
4: Create D ∈ R

T×T

5: Di,j ← 0 ∀ i = 1, . . . , T, j = 1, . . . , T, i 6= j

6: Di,i ←
T∑

j=1

Ai,j ∀ i = 1, . . . , T

7: Create L ∈ R
T×T

8: L←D− 1
2AD− 1

2

9: Find the eigenvectors v1, . . . ,vK ∈ R
T corresponding to

the K largest eigenvalues of L and put them as columns

of V ∈ R
T×K

10: Create U ∈ R
T×K

11: Ui,j ← Vi,j
(

∑

K
j′=1

V 2
i,j′

) 1
2

12: Cluster the rows of U with Algorithm 1 to obtain T̂k

C. Spectral Clustering

The spectral clustering is done with the Ng-Jordan-Weiss

algorithm [8] and is presented in Algorithm 3. The affinity

matrix A is describing the similarity between the points and

ρ is deciding how fast the similarity should decrease with

increased distance between the points.

D. Modifying the Clustering Algorithms to Consider Phase

Shifts

When introducing phase shifts to our model, we need to take

these into consideration when performing the clustering as

well. This is achieved by slightly modifying the clustering

algorithms.

We consider the pseudo metric d(x,y) = minθ‖x −
eiθy‖ = ‖x− e−i arg(xH

y)y‖ as a substitute for the Euclidean

distance when assigning points to clusters in K-means, when

calculating probabilities in the EM algorithm and when deter-

mining the similarity between two points in spectral clustering.

The pseudo metric, d(x,y), has all the properties that a metric

has except for d(x,y) = 0 6=⇒ x = y [9, Ch. 4], i.e.,

a pseudo metric is non-negative, symmetric and fulfills the

triangle inequality.

Additionally, in K-means and the EM algorithm, the cluster

centers are calculated with either the “Pairwise” or “Iterative

ML” method instead of taking the (weighted) mean.

V. ACHIEVABLE RATE

To evaluate the performance of our channel estimation

methods we use the uplink achievable rate, which is a good

measure of performance given that we study long code words

and that suitable channel coding techniques are used.



To calculate the achievable rate, we consider the uplink re-

ceived signal (3). We multiply the received signal with the con-

jugate transpose of the receive combining vector v(t) to form

v(t)Hyd(t) =
√
peiψ(t)v(t)HgS(t)x(t) + v(t)Hwd(t). (16)

We study three different capacity bounds; the use-and-

then-forget bound [1, Sec. 2.3.4] [10, Thm. 4.4] with two

different receive combining vectors and the estimation bound

(EB) in [11, Lemma 3]: The two receive combining vectors

that we consider for the use-and-then-forget bound are the

channel estimate scaled by a deterministic constant (UaF)

v(t) =
eiψ̂(t)

ĝ
Ŝ(t)

M
and the the channel estimate divided by

its squared norm (UaF N) v(t) =
eiψ̂(t)

ĝ
Ŝ(t)

‖ĝ
Ŝ(t)‖2 . To adhere to

the system model for EB in [11, Lemma 3] we scale the

channel estimate by its norm v(t) =
eiψ̂(t)

ĝ
Ŝ(t)

‖ĝ
Ŝ(t)‖

. The system

model in [11] is a downlink multiuser MIMO system with

linearly precoded transmission to the K single-antenna users.

To apply the EB bound from [11] to our system model, we

state the conjugate of (16) with the notation from [11] under

the braces (without the block indices);

yd(t)Hv(t)
︸ ︷︷ ︸

=yk

= e−iψ(t)gH

S(t)
︸ ︷︷ ︸

=hH

k

√
p

︸︷︷︸

=
√
Ek

v(t)
︸︷︷︸

=vk

x(t)∗
︸ ︷︷ ︸

=sk
︸ ︷︷ ︸

=x

+wd(t)Hv(t)
︸ ︷︷ ︸

=zk

.

Unit precoding vectors are assumed in [11], i.e., ‖vk‖2 = 1,

which is why we use the normalized receive combining

vector in our model. Also, zk should be independent of vk
which is also fulfilled in our model with the normalized v(t).
This can be verified by noting that the probability distribution

of wd(t)Hv(t) conditioned v(t) does not depend on v(t) for

any unit-norm v(t).
The achievable rates are as follows; the use-and-then-forget

bound

C ≥ log2

(

1 +
p
∣
∣E
{
eiψ(t)v(t)HgS(t)

}∣
∣
2

V {v(t)Hwd(t)}+ pV
{
eiψ(t)v(t)HgS(t)

}

)

,

(17)

where UaF and UaF N are obtained by inserting the cor-

responding receive combining vector and the expectations

are across channel realizations and t, and finally EB with

normalized receive combining vector

CEB ≥ E







log2




1 + p

∣
∣
∣
∣
∣
∣

ei(ψ(t)−ψ̂(t))ĝH

Ŝ(t)
gS(t)

‖ĝŜ(t)‖

∣
∣
∣
∣
∣
∣

2











− 1

τc

log2



1 + τcpV







ei(ψ(t)−ψ̂(t))ĝH

Ŝ(t)
gS(t)

‖ĝŜ(t)‖









 . (18)

VI. NUMERICAL SIMULATIONS

The channels are in the simulations assumed to be uncor-

related Rayleigh fading and independent between the user

antennas, gk ∼ CN (0, IM ). The large scale fading is nor-

malized and included in p. The phase shift ψ(t) is assumed to
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R
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UaF N, Iterative ML
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Fig. 1. Simulation of achievable rates with one active antenna, with phase
shifts as in Section III-B, M = 100, T = 20, τp = 10.

be uniformly distributed between −π and π and independent

between time slots. When having multiple antennas, the ter-

minal is assumed to have four antennas, K = 4. The selected

antenna is uniformly chosen at each time slot. Throughout

the simulations we use τc = 200 as in [10]. Furthermore, the

simulations depicted are with M = 100, T = 20, and τp = 10.

We insert yp(t) in the clustering algorithms. Both the K-means

and EM algorithm are initialized by the K-means++ algorithm

[7]. The scaling parameter, ρ, in the spectral clustering is set

to Mpτp to not make the distances explode for high SNR or

large number of antennas. We limit the number of iterations in

K-means and EM and set the maximum number of iterations

to 1000. Because of some numerical issues we re-initialize

the EM algorithm if
∑K
k=1 ηkP (y(t) | ck) = 0 (to machine

precision) for any t, that is the probability of a point belonging

to any cluster is zero to machine precision in the simulation.

The K-means algorithm, EM algorithm and spectral clustering

algorithm are denoted by KM, EM and SC, respectively in the

figure legends. We run the “Iterative ML” for 5 iterations, as

it converges fairly quickly.

In the first simulation, we compare the different methods

of attending to the phase shifts without dealing with multiple

antennas, i.e., the case in Section III-B. The result is depicted

in Fig. 1. The difference between the iterative ML and the

pairwise method is most noticeable at low SNR where the

iterative ML method is outperforming the pairwise method.

This is achieved at a cost of increasing complexity. Although

not depicted here, when having fewer antennas at the base

station, the iterative ML and the pairwise method get closer

in performance.

Next, we study the case with multiple antennas but without

phase shifts, i.e., Section III-A, to compare the different

clustering algorithms. The result is depicted in Fig. 2. Here

we can see that the EM algorithm is clearly the best of the

three methods at high SNR, and that spectral clustering is

slightly better at low SNR. In fact, the spectral clustering

algorithm gains in performance when there are more points to

cluster, i.e., T is larger. In this figure, we can also more clearly

see the difference between the different achievable rates. The

UaF bound is the worst of the three as it is very pessimistic.

This bound can be calculated in closed form in some system
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Fig. 2. Simulation of achievable rates with multiple active antennas, without
phase shifts as in Section III-A, M = 100, T = 20, τp = 10.
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Fig. 3. Simulation of achievable rates with multiple active antennas, with
phase shifts as in Section III-C with the iterative ML method used to deal
with the phase shifts, M = 100, T = 20, τp = 10.

models and is tight when the channel hardens which is why

it is commonly used. Here, we do not have much channel

hardening due to occasional missed detection of the antenna

clusters. By scaling the receive combining vector by its norm

squared we obtain a much better bound, UaF N. However, the

bound that is the best in this case is EB, which is because the

second term in (18) becomes very small when τc is much larger

than the number of users which is the case here (200≫ 1). EB

almost attains the achievable rate when the channel is perfectly

known, log2 (1 +Mp), at high SNR.

Finally, we combine the clustering and phase shifts and

consider the case in Section III-C. Fig. 3 shows a simulation

where the iterative ML method is used to deal with the

phase shifts. We can see that the rates suffer but that the

modifications done to the clustering algorithms are fairly

adequate to handle the phase shifts.

To answer how much we gain from utilizing multiple time
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6

8
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R
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e
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Perfect

EB, KM, Iterative ML

EB, EM, Iterative ML

EB, SC, Iterative ML

EB, One slot

Fig. 4. Comparison of achievable rates when using only a single slot for
channel estimation and the proposed method of utilizing multiple slots, M =

100, T = 20, τp = 10. The curve denoted by “Perfect” is the case where
the channel is exactly known at the base station.

slots when estimating the channel, we compare the case where

the base station estimates the channel separately in each slot

(with the least-squares estimator) to our case with phase shifts

and multiple antennas. The result is shown in Fig. 4. In

this figure the achievable rate when having perfect channel

knowledge is also considered. We see that we will improve

the rates most at relatively low SNR; there is an improvement

of approximately 1.5 dB at 1 bit/s/Hz.

VII. CONCLUSIONS

In this paper we considered the problem of filtering the

channel estimates between time slots of a non-coherent 5G

user terminal. Our suggested methods detect the selected

antenna and estimate the phase shift in each time slot. We

show that the uplink data rate can be improved by considering

more time slots than only considering one time slot for channel

estimation.
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