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A key step for Alzheimer’s disease (AD) study is to identify associations between genetic variations
and intermediate phenotypes (e.g., brain structures). At the same time, it is crucial to develop a
noninvasive means for AD diagnosis. Although these two tasks—association discovery and disease
diagnosis—have been treated separately by a variety of approaches, they are tightly coupled due
to their common biological basis. We hypothesize that the two tasks can potentially benefit each
other by a joint analysis, because (i) the association study discovers correlated biomarkers from
different data sources, which may help improve diagnosis accuracy, and (ii) the disease status may
help identify disease-sensitive associations between genetic variations and MRI features. Based on
this hypothesis, we present a new sparse Bayesian approach for joint association study and disease
diagnosis. In this approach, common latent features are extracted from different data sources based
on sparse projection matrices and used to predict multiple disease severity levels based on Gaussian
process ordinal regression; in return, the disease status is used to guide the discovery of relationships
between the data sources. The sparse projection matrices not only reveal the associations but also
select groups of biomarkers related to AD. To learn the model from data, we develop an efficient
variational expectation maximization algorithm. Simulation results demonstrate that our approach
achieves higher accuracy in both predicting ordinal labels and discovering associations between data
sources than alternative methods. We apply our approach to an imaging genetics dataset of AD.
Our joint analysis approach not only identifies meaningful and interesting associations between
genetic variations, brain structures, and AD status, but also achieves significantly higher accuracy
for predicting ordinal AD stages than the competing methods.

Keywords: disease diagnosis, Alzheimer’s disease, genetic variations, brain structures, multiview
learning, ordinal regression.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder associated with aging. Although it
accounts for 60-80% of age-related dementia cases, currently there is no cure for AD and its
underlying mechanism remain elusive. To study AD mechanism, a crucial step is to identify
associations between genetic variations and intermediate phenotypes (e.g., endophenotypical
traits). In other words, we want to discover cross linkages between genetic risk factors based on
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ing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.ucla.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf



genomic data—such as single nucleotide polymorphisms (SNPs)—and indicative intermediate
phenotypes—such as cortical thickness of different brain regions (based on magnetic resonance
imaging (MRI)). This identification can help us locate a subset of polymorphisms which may
have functional consequences on brain structures. Although GWAS studies have been applied
to AD studies,1,2 the association study between genetic variations and multiple intermediate
phenotypes is still relatively scarce for AD. A similar task arises for expression quantitative
trait locus (eQTL) analysis, where canonical correlation analysis (CCA) and its extensions3–6

have been widely applied. Meanwhile, it has become increasingly important to develop a
noninvasive means for AD diagnosis based on various biomarkers, including both genetic
variations and MRI features. Because many of these biomarkers are irrelevant to the diagnosis,
sparse models are needed to identify the relevant ones. For disease diagnosis, popular sparse
models include lasso,7 elastic net,8 and automatic relevance determination.9 Here we treat
genotypes or intermediate phenotypes as biomarkers and the disease status as the response
in a linear regression or classification setting. Non-zero regression or classification weights in
our estimation indicate relevant biomarkers for the disease.10,11

Although these two tasks—association discovery and disease diagnosis—have been ad-
dressed separately in the previous works, they are closely related—due to the their common
underlying biological basis—and can potentially benefit each other by a joint analysis. To
harness the natural synergy between the two tasks, we propose a new Bayesian approach that
integrates multiview learning for association discovery with sparse ordinal regression for dis-
ease diagnosis. In the new approach, genetic variations and phenotypical traits are generated
from common latent features based on separate sparse projection matrices and the common
latent features are used to predict the disease status based on Gaussian process ordinal re-
gression (See Section 2). To enforce sparsity in projection matrices, we assign spike and slab
priors12 over them; these priors have been shown to be more effective than l1 penalty to learn
sparse projection matrices.13,14 The sparse projection matrices not only reveal critical interac-
tions between the different data sources but also identify groups of biomarkers in data relevant
to disease status. Finding groups of biomarkers can avoid over-sparsification (i.e., selecting
one instead of multiple correlated features), thus boosting the accuracy for disease diagnosis.
It can also help provide a better biological understanding because these groups may form bio-
logically meaningful units (e.g., pathways). Meanwhile, via its direct connection to the latent
features, the disease status influences the estimation of the projection matrices. Hence we
name this new method Supervised Heterogeneous Multiview Learning (SHML). In addition
to enjoying the benefit of integrating the related tasks, two features of our model distinguish
it from previous approaches:

• There is a severity order for AD, from being normal to mild cognitive impairment (MCI)
and then to AD; and our ordinal regression component captures the AD severity order.
Alternative sparse models, by contrast, use classification or regression likelihoods and
do not consider the order of disease severity.

• The data are heterogeneous: SNPs values are discrete (or ordinal) and the imaging
features are continuous. While popular CCA-type methods treat both of them as con-
tinuous data, our model captures the heterogeneous nature of the data.



To learn the model from data, we develop a variational Bayesian expectation maximization
(VB-EM) approach (See Section 3). Maximizing this estimate enables us to automatically
choose a suitable dimension for the latent features in a principled Bayesian framework.

In Section 4, we test our approach SHML on both synthetic and real datasets. On synthetic
data, SHML achieves both higher estimation accuracy in recovering true associations between
different views and higher prediction accuracy than alternative state-of-the-art methods. We
then apply SHML to an AD study. SHML achieved highest prediction accuracy among all
competing methods and yielded biologically meaningful relationships between genetic varia-
tions, brain atrophy, and the disease status.

2. Model

First, let us describe the data. We assume there are two heterogeneous data sources: one
contains continuous data – for example, MRI features – and one discrete ordinal data – for
instance, SNPs. Given data from n subjects, p continuous features and q discrete features,
we denote the continuous data by a p × n matrix X = [x1, . . . ,xn], the discrete ordinal data
by a q × n matrix Z = [z1, . . . , zn], and the labels (i.e., the disease status) by a n × 1 vector
y = [y1, . . . , yn]

>. For the AD study, we let yi = 0, 1, and 2 if the i-th subject is in the normal,
MCI or AD condition, respectively.

To link two data sources X and Z together, we introduce common latent fea-
tures U = [u1, . . . ,un] and assume X and Z are generated from U by sparse pro-
jections. The common latent feature assumption is sensible for association studies be-
cause both SNPs and MRI features are biological measurements of the same subjects.
Note that ui is the latent feature for the i-th subject and its dimension k is esti-
mated by evidence maximization. In a Bayesian framework, we give a Gaussian prior over
U, p(U) =

∏
iN (ui|0, I), and specify the rest of the model (see Figure 1) as follows:
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Fig. 1. The probabilistic graphical model
of SHML, where X is the continuous view,
Z is the ordinal view, and y are the labels.

Continuous data. Given U, X is generated from

p(X|U,G, η) =
n∏

i=1

N (xi|Gui, η
−1I)

where G = [g1,g2, ...gp]
> is a p×k projection matrix,

I is an identity matrix, and η−1I is the precision
matrix of the Gaussian distribution. For η, we assign
an uninformative diffuse Gamma prior, p(η|r1, r2) =
Gamma(η|r1, r2) with r1 = r2 = 10−3.
Ordinal data. For an ordinal observation z ∈
{0, 1, . . . , R − 1}, its value is decided by which region an auxiliary variable c falls in −∞ =

b0 < b1 < . . . < bR = ∞. If c falls in [br, br+1), z is set to be r. For the AD study, the SNPs Z

take values in {0, 1, 2} and therefore R = 3. Given a q×k projection matrix H = [h1,h2, ...hq]
>,

the auxiliary variables C = {cij} and the ordinal data Z are generated from

p(Z,C|U,H) =

q∏
i=1

n∏
j=1

N (cij |h>
i uj , 1)

2∑
r=0

δ(zij = r)δ(br ≤ cij < br+1)



where δ(a) = 1 if a is true and δ(a) = 0 otherwise, and [b0, . . . , b3] are set to [−∞,−1, 1,∞].
Labels. For ordinal labels y, we use a Gaussian process ordinal regression model15 based the
latent representation U,

p(y|U) = N (f |0,K)

n∏
i=1

2∑
r=0

δ(yi = r)δ(br ≤ fi < br+1)

where [b0, . . . , b3] are set to [−∞,−1, 1,∞], and Kij = k(ui,uj) is the cross-covariance between
ui and uj. We can choose k from a rich family of kernel functions such as linear, polynomial,
and Gaussian kernels to model relationships between the labels y and the latent features U.

Note that the labels y are linked to the data X and Z via the latent features U and the
projection matrices H and G. Due to the sparsity in H and G, only a few groups of variables
in X and Z are selected to predict y. Note that each of group is linked to a feature in U.
Sparse Priors. Because we want to identify a few critical interactions between different data
sources, we use spike and slab prior distributions12 to sparsify the projection matrices G and
H. Specifically, we use a p× k matrix Sg to represent the selection of elements in G: if sij = 1,
gij is selected and follows a Gaussian prior distribution with variance σ21; if sij = 0, gij is not
selected and forced to almost zero (i.e., sampled from a Gaussian with a very small variance
σ22). Specifically, we have the following prior over G:

p(G|Sg,Πg) =

p∏
i=1

k∏
j=1

πijg
sijg (1− πijg )

1−sijg
(
sijg N (gij |0, σ21) + (1− sijg )N (gij |0, σ22)

)
where πijg in Πg is the probability of sijg = 1, and σ21 � σ22 (in our experiment, we set σ21 = 1 and
σ22 = 10−6). Without any prior preference over the selecting probabilities, we assign uniform
priors, p(Πg) = 1. Similarly, H is sampled from

p(H|Sh,Πh) =

q∏
i=1

k∏
j=1

πijh
sijh (1− πijh )

1−sijh
(
sijh N (hij |0, σ21) + (1− sijh )N (hij |0, σ22)

)
where Sh are binary selection variables and πijh in Πh is the probability of sijh = 1. Again, we
assign uninformative uniform priors over Πh: p(Πh) = 1.

Finally, the joint distribution of our model, SHML, is simply the product of all the prior
distributions and the conditional density distributions.

3. Algorithm

3.1. Estimating latent variables

Given the model specified in the previous section, now we present an efficient, principled
method to estimate the latent features U, the projection matrices H and G, the selection
indicators Sg and Sh, the selection probabilities Πg and Πh, the variance η, the auxiliary
variables C for generating ordinal data Z, and the auxiliary variables f for generating the
labels y. In a Bayesian framework, this estimation task amounts to computing their posterior
distributions. However, computing the exact posteriors turns out to be infeasible since we
cannot calculate the normalization constant of the exact posterior distribution. Thus, we resort



to a variational Bayesian Expectation Maximization (VB-EM) approach. More specifically, in
the E step, we approximate the posterior distributions of H,G,Sg,Sh,Πg,Πh, η,C and f by a
factorized distribution Q(H)Q(G)Q(Sg)Q(Sh)Q(Πg)Q(Πh)Q(η)Q(C)Q(f); and in the M step,
based on the approximate distributions, we optimize the latent features U.

To obtain the variational approximation, we minimize the Kullback-Leibler (KL) diver-
gence between the approximate and the exact posteriors. To this end, we use coordinate de-
scent; we update an approximate distribution, say, Q(H), while fixing the other approximate
distributions, and iteratively refine all the approximate distributions. The detailed updates
are given in the following paragraphs.

3.1.1. Updating variational distributions for continuous data

For the continuous data X, the approximate distributions of the projection matrix G, the
noise variance η, the selection indicators Sg and the selection probabilities Πg are

Q(G) =

p∏
i=1

N (gi;λi,Ωi) Q(η) = Gamma(η|r̃1, r̃2), (1)

Q(Sg) =

p∏
i=1

k∏
j=1

β
sijg
ij (1− βij)

1−sijg Q(Πg) =

p∏
i=1

k∏
j=1

Beta(πijg |l̃
ij
1 , l̃

ij
2 ). (2)

The mean and covariance of gi are calculated as Ωi =
(
〈η〉UU> + 1

σ2
1
diag(〈sig〉) + 1

σ2
2
diag(1 −

〈sig〉)
)−1

and λi = Ωi(〈η〉Ux̃i), where 〈·〉 means expectation over a distribution, x̃i and sig are
the transpose of the i-th rows of X and Sg, 〈sig〉 = [βi1, . . . , βik]

>, and 〈g2ij〉 is the j-th diagonal
element in Ωi. The parameters of the Gamma distribution Q(η) are updated as r̃1 = r1+

np
2 and

r̃2 = r2+
1
2tr(XX>)−tr(〈G〉UX>)+ 1

2tr(UU>〈G>G〉). The parameter βij in Q(sijg ) is calculated

as βij = 1/
(
1 + exp(〈log(1 − πijg )〉 − 〈log(πijg )〉 + 1

2 log(
σ2
1

σ2
2
) + 1

2〈g
2
ij〉( 1

σ2
1
− 1

σ2
2
))
)
. The parameters of

the Beta distribution Q(πijg ) is given by l̃ij1 = βij + 1 and l̃ij2 = 2− βij.
The moments required in the above distributions are calculated as 〈η〉 = r̃1

r̃2
, 〈G〉 =

[λ1, . . . ,λp]
>, 〈G>G〉 =

∑p
i=1Ωi + λiλ

>
i , 〈log(π

ij
g )〉 = ψ(l̃ij1 ) − ψ(l̃ij1 + l̃ij2 ) and 〈log(1 − πijg )〉 =

ψ(l̃ij2 )− ψ(l̃ij1 + l̃ij2 ), where ψ(x) = d
dx ln Γ(x).

3.1.2. Updating variational distributions for ordinal data

For the ordinal data Z, we update the approximate distributions of the projection matrix H,
the auxiliary variables C, the sparse selection indicators Sh and the selection probabilities Πh.
Specifically, the variational distributions of C, H, Sh and Πh are

Q(C) ∝
q∏

i=1

k∏
j=1

δ(bzij ≤ cij < bzij+1)N (cij |c̄ij , 1) Q(H) =

q∏
i=1

N (hi;γi,Λi), (3)

Q(Sh) =

q∏
i=1

k∏
j=1

α
sijh
ij (1− αij)

1−sijh Q(Πh) =

q∏
i=1

k∏
j=1

Beta(πijh |d̃
ij
1 , d̃

ij
2), (4)

where c̄ij = γ>
i uj, Λi =

(
UU> + 1

σ2
1
diag(〈sih〉) +

1
σ2
2
diag(〈1 − sih〉)

)−1
, γi = Λi(U〈c̃i〉) where c̃i

is the transpose of the i-th row of C, αij = 1/
(
1 + exp(〈log(1 − πijh )〉 − 〈log(πijh )〉 +

1
2 log(

σ2
1

σ2
2
) +



1
2〈h

2
ij〉( 1

σ2
1
− 1

σ2
2
))
)
, d̃ij1 = αij +1, d̃ij2 = 2−αij, 〈sih〉 = [αi1, . . . , αik]

>, and 〈h2ij〉 is the j-th diagonal
element in Λi.

The required moments for updating the above distributions can be calculated as 〈log(πijh )〉 =
ψ(d̃ij1 ) − ψ(d̃ij1 + d̃ij2 ), 〈log(1 − πijh )〉 = ψ(d̃ij2 ) − ψ(d̃ij1 + d̃ij2 ), 〈c̃i〉 = [〈ci1〉, . . . , 〈cin〉]> and 〈cij〉 =

c̄ij −
(
N (bzij+1|c̄ij , 1)−N (bzij |c̄ij , 1)

)
/
(
Φ(bzij+1− c̄ij)−Φ(bzij − c̄ij)

)
, where Φ(·) is the cumulative

distribution function of a standard Gaussian distribution. Note that in Equation (3), Q(C)

is the product of truncated Gaussian distributions and the truncation is controlled by the
observed ordinal data Z.

3.1.3. Updating variational distributions for labels

We update the variational distribution of the auxiliary variables f as follows:

Q(f) ∝
n∏

i=1

δ(byi
≤ fi < byi+1)N (fi|f̄i, σ2fi) (5)

where f̄i = Ki,¬iK
−1
¬i,¬i〈f¬i〉 and σ2fi = Ki,i − Ki,¬iK

−1
¬i,¬iK¬i,i. Ki,¬i is the covariance

between ui and U¬i, K¬i,¬i is the covariance on U¬i (U¬i = [u1, · · ·ui−1,ui+1, · · ·un]),
〈f¬i〉 = [〈f1〉, · · · , 〈fi−1〉, 〈fi+1〉, · · · , 〈fn〉]>, and each 〈fi〉 is 〈fi〉 = f̄i − σ2fi ·

(
N (byi+1|f̄i, σ2fi) −

N (byi
|f̄i, σ2fi)

)
/
(
Φ(

byi+1−f̄i
σfi

)−Φ(
byi−f̄i
σfi

)
)
. Note that Q(f) is also the product of truncated Gaus-

sian distributions and the truncated region is decided by the ordinal label y. In this way, the
supervised information from y is incorporated into estimation of f and then estimation of the
other quantities by the recursive updates.

3.1.4. Optimizing the latent representation U

After the expectations of the other variables are calculated, we optimize U by maximizing the
following variational lower bound

F (U) = −1

2
tr(UU>) + 〈η〉tr(X>〈G〉U)− 1

2
tr(〈H>H〉UU>)− 1

2
log|K| − 1

2
tr(〈ff>〉K−1)

− 〈η〉
2

tr(〈G>G〉UU>) + tr(〈C〉>〈H〉U) + constant, (6)

where 〈H〉 = [h1, . . . ,hq]
>, 〈H>H〉 =

∑p
i=1Λi + γiγ

>
i , 〈ff>〉 = 〈f〉〈f〉> − diag(〈f〉2) +

diag(〈f2〉), 〈f2i 〉 = 〈fi〉2+σ2fi+σ
2
fi
·
(
(byi

−〈fi〉)N (byi
|〈fi〉, σ2fi)

)
/
(
Φ(

byi+1−〈fi〉
σfi

)−Φ(
byi

−〈fi〉
σfi

)
)
−σ2fi ·

(
(byi+1−

〈fi〉)N (byi+1|〈fi〉, σ2fi)
)
/
(
Φ(

byi+1−〈fi〉
σfi

) − Φ(
byi

−〈fi〉
σfi

)
)
, and the constant means a value independent

of U so that it is irrelevant for optimizing U. Note that we can optimize the dimension k by
maximizing the full variational lower bound of our model, which involves other quantities as
well, such as 〈H〉 and 〈G〉. To save space, we do not present the long equation for the full lower
bound (which can be easily derived based on what we have presented). We use the L-BFGS
algorithm to maximize the cost function F over U. The gradient of U is given by

∂F

∂U
= 〈η〉〈G〉>X+ 〈H〉>〈C〉 −

(
I+ 〈η〉〈G>G〉+ 〈H>H〉

)
U− 1

2

(
K−1 − 1

2
K−1〈ff>〉K−1

)∂K
∂U

. (7)

Note that ∂K
∂U depends on the form of the kernel function k(ui,uj).



Computational complexity. Based on the previous equations, we can show that the
total computational complexity of our algorithm is O(max(n3, (p + q)nk2))—it is either cubic
in the number of samples n or linear in the number of the features.

3.2. Predicting disease status

Let us denote the training data as Dtrain = {Xtrain,Ztrain,ytrain} and the test data as Dtest =

{Xtest,Ztest}. To obtain the latent representation Utrain and Utest for prediction, we carry out
variational EM simultaneously on Dtrain and Dtest. The benefit is that the variational EM
learning procedure can utilize both the training and test data. Note that there are no updates
for ordinal label part on Dtest and the terms regarding ordinal labels should also be removed
from Equation (6) and (7). After both Utest and Utrain are obtained from the M-step, we
predict the labels for test data as follows:

ftest = K
(
Utest,Utrain

)
K−1

(
Utrain,Utrain

)
〈ftrain〉 yitest =

R−1∑
r=0

r · δ(br ≤ f itest < br+1),

where yitest is the prediction for i-th test sample.

4. Experiments

4.1. Simulation Study

We first design a simulation study to examine SHML in terms of (i) estimation accuracy on
finding associations between the two views and (ii) prediction accuracy on the ordinal labels.

Simulation data. To generate the ground truth, we set n = 200 (200 instances), p = q = 40,
and k = 5. We designed G, the 40 × 5 projection matrix for the continuous data X, to be a
block diagonal matrix; each column of G had 8 elements being ones and the rest of them
were zeros, ensuring each row with only one nonzero element. We designed H, the 40 × 5

projection matrix for the ordinal data Z, to be a block diagonal matrix; each of the first
four columns of H had 10 elements being ones and the rest of them were zeros, and the fifth
column contained only zeros. We randomly generated the latent representations U ∈ Rk×n

with each column ui ∼ N (0, I). To generate Z, we first sampled the auxiliary variables C

with each column ci ∼ N (Hui, 1), and then decided the value of each element zij by the
region cij fell in—in other words, zij =

∑2
r=0 rδ(br ≤ cij < br+1). Similarly, to generate y,

we sampled the auxiliary variables f from N (0,U>U + I) and then each yi was generated by
p(yi|fi) = δ(yi = 0)δ(fi ≤ 0) + δ(yi = 1)δ(fi > 0).

Comparative methods. We compared SHML with several state-of-the-art methods in-
cluding (1) CCA,4 which finds the projection directions that maximize the correlation between
two views, (2) sparse CCA,6,18 where sparse priors are put on the CCA directions, and (3)
multiple-response regression with lasso (MRLasso)19 where each column of the second view
(Z) is regarded as the output of the first view (X). We did not include results from the sparse
probabilistic projection approach20 because it performed unstably in our experiments. Re-
garding the software implementation, we used the built-in Matlab Matlab routine for CCA
and the code by18 for sparse CCA. We implemented MRLasso based on the Glmnet package
(cran.r-project.org/web/packages/glmnet/index.html).



To test prediction accuracy, we compared our method with the following ordinal or multi-
nomial regression methods: (1) lasso for multinomial regression,7 (2) elastic net for multinomial
regression,8 (3) sparse ordinal regression with the splike and slab prior, (4) CCA + lasso, for
which we first ran CCA to obtain the latent features H and then applied lasso to predict y,
(5) CCA + elastic net, for which we first ran CCA to obtain the projection matrices and then
applied elastic net on the projected data, (6) Gaussian Process Ordinal Regression (GPOR),15

and (7) Laplacian Support Vector Machine (LapSVM),21 a semi-supervised SVM classifica-
tion method. We used the published code for lasso, elastic net, GPOR and LapSVM. For all
the methods, we used 10-fold cross validation on the training data for each run to choose
the kernel form (Gaussian or linear or Polynomials) and its parameters (the kernel width or
polynomial orders) for SHML, GPOR, and LapSVM.

Because alternative methods cannot learn the dimension automatically for simple compar-
ison, we provided the dimension of the latent representation to all the methods we tested in
our simulations. We partitioned the data into 10 subsets and used 9 of them for training and
1 subset for testing; we repeated the procedure 10 times to generate the averaged test results.

Results.To estimate linkage (i.e., interactions) between X and Z, we calculated
the cross covariance matrix GH>. We then computed the precision and the re-
call based on the ground truth. The precision-recall curves are shown in Figure 2.
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Fig. 2. The precision-recall curves for
association discovery.

Clearly, our method successfully recovered almost
all the links and significantly outperformed all the
competing methods. This improvement may come
from i) the use of the spike and slab priors, which
not only remove irrelevant elements in the projec-
tion matrices but also avoid over-penalizing the ac-
tive association structures (the Laplace prior used
in sparse CCA does over penalize the relevant ones)
and ii) more importantly, the supervision from the
labels y, which is probably the biggest difference be-
tween ours and the other methods for the association
study. The prediction accuracies on unknown y and
their standard errors are shown in Figure 3a and the
AUC and their standard errors are shown in Figure 3b. Our proposed SHML model achieves
significant improvement over all the other methods. It reduces the prediction error of elastic
net (which ranks the second best) by 25%, and reduces the error of LapSVM by 48%.

4.2. AD Study

We conducted joint association analysis and AD diagnosis based on the Alzheimer’s Disease
Neuroimaging Initiative 1 (ADNI 1) dataset. The ADNI study is a longitudinal multisite
observational study of elderly individuals with normal cognition, mild cognitive impairment,
or AD. Specifically, we used SHML to study the associations of genotypes and brain atrophy
measured by MRI and to predict the disease status (normal vs MCI vs AD). Note that the
labels are ordinal since the three states represent increasing severity levels of AD.
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Fig. 3. The prediction results on simulated and real datasets. The results are averaged over 10 runs.
The error bars represent standard errors. For the real ADNI dataset, we predict the ordinal disease
status, Normal, MCI and AD.

Genetic and phenotypic data used in this study were obtained from the ADNI database
(http://www.loni.ucla.edu/ADNI). Genomic DNA samples of 818 ADNI 1 subjects were an-
alyzed on the Human610-Quad BeadChip according to the manufacturer’s protocols. After
quality control, a list of 512,788 SNPs was used in an initial GWAS analysis associating them
with the disease trait (AD vs. normal subjects). As a result, the top 1000 SNPs were pre-
selected for analysis in this study. For structural MRI, we used image analysis results from
UCSF based on the Freesurfer software package (http://surfer.nmr.mgh.harvard.edu); the re-
sulting imaging data includes volumetric, cortical thickness and surface area measurements
for a variety cortical and subcortical regions. After removing missing data, the final dataset
consists of 618 subjects (183 normal, 308 MCI and 134 AD), and 924 SNPs and 328 MRI
features measuring the brain atrophies for each subject at baseline.

We compared SHML with the alternative methods on accuracy of predicting whether a
subject is in the normal or MCI or AD condition. We randomly split the dataset into 556
training and 62 test samples 10 times and ran all the competing methods on each partition.
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Fig. 4. The variational lower bound
of the marginal likelihood (i.e., evi-
dence).

We used the 10-fold cross validation for each run to
tune free parameters on the training data. In SHML,
in order to determine k, the dimension of U, we com-
puted the variational lower bound as an approxima-
tion to the model marginal likelihood with various
k values {10, 20, 40, 60}. We chose the value with the
largest approximate evidence, which led to k = 20

(see Figure 4). Our experiments confirmed that, with
k = 20, SHML achieved highest prediction accuracy,
demonstrating the benefit of evidence maximization.

The accuracies for predicting unknown labels y

and their standard errors are shown in Figure 3c. Our
method achieved the highest prediction accuracy, higher than that of the second best method,
GP ordinal Regression, by 10% and than that of the worst method, CCA+lasso, by 22%.

We also examined the strongest associations discovered by SHML based on the whole
dataset. First of all, the ranking of MRI features in terms of their prediction power of
different disease stages (normal, MCI and AD) demonstrates that most of the top ranked
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Fig. 5. The estimated associations between MRI features and SNPs. In each sub-figure, the MRI features are
listed on the right and the SNP names are given at the bottom.

features are the cortical thickness measurements, followed by the volume of white mat-
ter, volume of gray matter in cortical regions, and the cortical surface area measurements.

Table 1. The weights of the average
cortical thickness of ROI on the left
and right hemispheres.

ROI
weight

left right

Superior Frontal 1.37 1.35
Middle Temporal 1.33 1.37
Precuneus 1.33 1.36
Inferior Parietal 1.29 1.34
Inferior Temporal 1.32 1.29
Caudal Middle Frontal 1.32 1.31
Rostral Middle Frontal 1.31 1.30

These results are consistent with the literature for demon-
strating that the cortical thickness measurement is poten-
tially a more sensitive measurement of the brain atrophy
for Alzheimer’s dementia.22,23 Particularly, thickness measure-
ments of frontal lobe, middle temporal lobe, and precuneus
were found to be most predictive compared with other brain
regions. These findings are consistent with their atrophy pat-
tern and prediction power of AD found in the literature23–27.
We also found that measurements of the same structure on
the left and right hemisphere have similar weights (See Ta-
ble 1); this is again consistent with the related literature—no
asymmetrical relationship has been found for the brain re-
gions involved in AD.28



Secondly, the analysis of associating genotypes to AD also generated interesting results.
Similar to the MRI features, SNPs that are in the vicinity of each other are selected together
due to the group-selection characteristics of our algorithm. The top ranked SNPs are associated
with a few genes including PSMC1P12 (proteasome 26S subunit, ATPase), NCOA2 (The
nuclear receptor coactivator 2), and WDR52 (WD repeat domain 52). These genes have been
associated with diseases such as breast neoplasms, carcinoma, and endometrial neoplasms.29

At last, biclustering of the genotype-MRI association, as shown in Figure 5, revealed
interesting patterns in terms of the relationship between genetic variations and brain atrophy
in association with AD. For example, the highest ranked association was found between genes
such as MAP3K1 (mitogen-activated protein kinase kinase kinase 1) and MIER3 (mesoderm
induction early response 1, family member 3) with the caudate anterior cingulate cortex.
MAP3K1 and MIER3 genes are associated with biological process such as apoptosis, cell cycle,
chromatin binding and DNA binding (https://portal.genego.com/), and cingulate cortex has
been shown to be severely affected by AD30. The strong association discovered in this work
might indicate potential genetic effect in the atrophy pattern observed in this cingulate sub-
region. Additionally, SNPs in MAPT (microtubule-associated protein tau) gene were also
found to have association with brain atrophy in a variety of cortical regions including frontal,
cingulate and temperate lobes. The hyperphosphorylation of tau protein, which is a product of
MAPT, can result in the self-assembly of tangles that are involved in the pathogenesis of AD.
Therefore, the genetic variation of MAPT has been associated with increased risk of AD31–35.
The association between MATP gene and brain atrophies found in this analysis is consistent
with the gray matter loss observed in MATP genetic variant carrier in recent studies.36

In summary, SHML discovered the synergistic predictive relationships between brain atro-
phy, genetic variations and the disease status, and achieved higher prediction accuracy than
the alternative methods.

5. Conclusions

We have presented, SHML, a new Bayesian supervised multiview learning algorithm for AD
study. By integrating association discovery with disease diagnosis, it improves performance for
both tasks. Although we have focused on the AD study in this paper, we expect that SHML can
be applied to a wide range of applications in biomedical research—for example, eQTL analysis
supervised by additional labeling information. As to the future work, we plan to incorporate
additional biological or side information into our model to improve its quality. In particular,
linkage disequilibrium structures encode important correlation information between SNPs. Our
current model uses independent, uniform priors over the selection probabilities of SNPs, which
ignore the correlation between SNPs (note that the posterior distribution of the model does
capture some correlation between genetic variations based on the data likelihood). To overcome
this limitation, we plan to use graph Laplacian matrices to encode linkage disequilibrium
structures and use these matrices in our prior distributions. We have explored a similar strategy
to incorporate biological pathway constraints for biomarker selection and obtained improved
performance over the models that do not use the pathway information.37 We expect a similar
improvement can be obtained by incorporating LD structures into SHML.
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