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Abstract—Joint attention, which is the ability of coordination
of a common point of reference with the communicating party,
emerges as a key factor in various interaction scenarios. This
paper presents an image-based method for establishing joint
attention between an experimenter and a robot. The precise
analysis of the experimenter’s eye region requires stability and
high-resolution image acquisition, which is not always available.
We investigate regression-based interpolation of the gaze direc-
tion from the head pose of the experimenter, which is easier
to track. Gaussian process regression and neural networks are
contrasted to interpolate the gaze direction. Then, we combine
gaze interpolation with image-based saliency to improve the target
point estimates and test three different saliency schemes. We
demonstrate the proposed method on a human–robot interaction
scenario. Cross-subject evaluations, as well as experiments under
adverse conditions (such as dimmed or artificial illumination or
motion blur), show that our method generalizes well and achieves
rapid gaze estimation for establishing joint attention.

Index Terms—Developmental robotics, gaze following, head
pose estimation, joint visual attention, saliency, selective attention.

I. INTRODUCTION AND MOTIVATION

NATURAL human–robot interaction requires the design
and implementation of robot skills that enable adaptive

behaviors in ways that mimic human–human interaction. In that
respect, the perspective taken by developmental robotics adopts
a mutual standpoint of developmental psychology and robotics,
where the training of the robot follows a natural scheme [1].
Hence, automatic interpretation and imitation of human activity
and behavior, as well as spontaneous generation of correct
responses, emerge as key factors. These require joint attention,
which needs to be established with the limited resources (i.e.,
sensors and computation) of a robotic agent.
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Joint attention, which is the ability of coordination of a
common point of reference with the communicating party
[2], emerges in the early stages of human social cognition,
providing a basis for the development of further social skills
and triggering imitation-based learning [3]. Subsequently, real-
time tracking of the focus of attention of the communicating
party (henceforth called the experimenter) and gaze following
are crucial skills for the emergence of certain types of imitation
[4]–[6].

In this paper, we propose a system to achieve joint attention
when the visual resources of the robotic system are limited
to a low-resolution camera, which is a reasonable assumption
considering the specifications of some state-of-the-art robotic
platforms such as Nao or iCub. Joint attention is suggested to be
achieved by estimating the point attended by the experimenter,
namely, the target point, and directing the focus of the robotic
agent toward that point. To that end, the gaze direction needs
to be determined, which we define as the direction toward
which the experimenter’s attention is steered. Gaze direction
is proposed to be obtained by the composite motion of head
and eyes, whereas the head pose is defined by the position
and orientation of the experimenter’s head in object space.
We use the term eyeball orientation to refer to the position
and orientation of the eye within the head model. Due to the
limitations in the hardware configuration of the robotic agent,
the eye region of the experimenter does not always provide
sufficient information to estimate the orientation of the eyeball.
Thereby, gaze direction is proposed to be interpolated from
head pose only. Although head pose and gaze direction are
suggested to be closely linked [7], our study underlines the fact
that the head direction is not a substitute for gaze direction.

Most approaches to gaze direction estimation assume a cal-
ibration stage where the experimenter looks at certain pre-
determined points that serve as anchors for interpolation [8].
We assume here that there is no calibration stage. Instead,
the structure of a visual scene provides additional cues to
the embodied agent in guessing the focus of attention of the
communicating party, namely, the target point. We use saliency

to detect objects of interest within the estimated gaze direction
of the experimenter. The gaze vector itself traverses the whole
scene in one direction, and whenever it goes through several
locations of interest, additional information is necessary to
resolve this conflict. We show that the head pose contains cues
relating to the distance of the object of interest. These cues will
be employed to further constrain the localization problem.

To summarize, the contributions of this work are the
following:

• We propose to learn gaze direction from head pose esti-
mates via regression. We use Gaussian process regression
(GPR) and neural networks (NNs) for the interpolation.
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• We compare three different saliency schemes to improve
estimation of target points.

• We systematically test the effects of resolution, changing
illumination, and motion blur.

Our proposed system is tested on data collected from a
Nao robot in realistic settings. In addition to establishing joint
attention, estimating the gaze direction from camera input is
relevant for different domains, such as human–robot interaction
[9], driver awareness [10], [11], attention tracking for meetings
[12], and communication with virtual agents [13].

The outline of this paper is described as follows: Section II
gives an overview of the related work in head pose and gaze
estimation for embodied agents. Section III describes the pro-
posed method. Section IV presents the head pose estimation
module, which is based on tracking with a cylindrical head
model (CHM), followed by Section V that describes gaze di-
rection and object depth estimation via GPR. In Section VI, the
saliency-based fine tuning of the focus of attention is described.
The proposed method is evaluated and discussed in Section VII,
followed by our conclusions in Section VIII.

II. RELATED WORK

The primary subtasks of the joint attention are recogni-
tion, maintenance of eye contact, and gaze following, which,
in tandem, enable getting engaged in joint attention [14].
In natural settings, cues such as imperative and declarative
pointing are also considered to permit feedback between the
interacting parties. While being first and foremost an image pro-
cessing challenge (from a practical perspective), joint attention
is a particularly important skill in early development, and as
such, it has received interest from the developmental robotics
community.

Related findings of developmental psychology suggest that
in order to establish social contact and fulfill the desire for
knowledge, infants get engaged in communication and, hence,
obtain joint attention with the caregivers. These social skills
are observed to gradually improve at primary stages of infancy.
Developmental psychologists have established that humans use
head pose in the estimation of focus of attention. It appears
that young infants first follow the head movements of others,
and only in time do they develop the ability to follow the gaze
direction [4]. The perception of gaze direction depends to a
large extent on head pose [15]. Subsequently, infants learn to
relate this information with attention [16].

Begum and Karray provided a detailed survey on computa-
tional models of visual attention for robot cognition [17]. In
this paper, we use operational constraints imposed by a robotic
platform and focus on related work with similar assumptions.
For gaze estimation approaches that use detailed eye region
analysis, refer to [8].

Earlier approaches to the problem focus on the develop-
mental aspects of joint attention and propose models with a
biological motivation. For instance, in [18], a NN is employed
for modeling the visual system of a robot, where there are
different layers representing the input, retina, visual cortex,
and output. Since the problem of establishing joint attention
is particularly difficult under these additional constraints, the

contextual information must be employed. In [19], a visual
attention module is used to detect salient objects in the robot’s
view, and attempts for joint attention are rectified by closing
the sensorimotor loop. If the attended location is erroneous, the
subsequent actions will be unsuccessful. The gaze direction of
the experimenter is learned from the face image with a back-
propagation NN. The drawback of this approach is that the
face image is a high-dimensional and complex representation,
which necessitates large numbers of training samples for an
appropriate generalization. The approach resembles the method
we propose in this paper, in that no special processing is used
for the eye regions.

Baluja and Pomerleau proposed an NN regression method
to interpolate gaze direction from a high-resolution face image
[20]. In a similar approach, a simple local linear interpolation
technique based on a Gaussian model assumption integrated
with head pose estimation was proposed by Sugano et al. [21].
In [22], Sugano et al. assumed that the head pose is fixed
throughout the experiment and observed the high-resolution eye
region to establish the relationship of the gaze with the saliency
of the scene viewed by the experimenter. In [23], Chen and Ji
described a method that, similar to the method we propose,
requires no personal calibration. In contrast to our proposed
approach, all these methods assume that the eye region can be
cropped with a high resolution.

Most approaches proposed for gaze estimation make use of
video or camera input, but treat video frames as individual
images and omit the temporal connection. Humans, on the other
hand, utilize motion information along with static information,
such as posture and face direction, to infer about desires and
intentions. For this reason, the robotic agent described in [24]
alternates its gaze between a human experimenter and the
attended object by triggering motion actions, using the cues
derived from the motion of the experimenter’s face.

In [25], the temporal relationship between subsequent frames
is expressed in terms of optical flow vectors and, thus, provide a
coarse estimate for gaze shift. In our case, the effect of motion
is negligible, as the objects are static at all times and motion
of the camera affects all objects uniformly due to their close
positioning.

Studies presented in [24] and [25] focus on available 2-D
information for formulating visual attention based on video
frames. However, common morphological characteristics of
faces can be employed in the derivation of 3-D information
from the 2-D visual input. Since the perception of gaze direction
depends to a large extent on the pose of the head [15], one
can model the head of the experimenter as a 3-D object and
resolve for the pose [26]. This is the approach we take in this
paper. In a similar vein, Hoffman et al. employed an ellipsoidal
model for the human head and inferred head angles for the
estimation of the head pose vector [27]. This vector is also used
as the estimated gaze vector. Saliency computation is performed
around the estimated gaze, but some experimenter-specific pri-
ors are incorporated into the model, according to which each
experimenter has different (but learnable) tendencies to look at
certain objects [28].

The relation between head pose and gaze is further explored
in [29], where a distinction is made between head movers and
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Fig. 1. Eye regions for different experimenters, acquired by the robot. The
images are approximately 15 × 25 pixels.

non-head movers. Given a target object, the head movers will
orient their gaze by rotating the head toward the object, and
the non-head movers will keep their head fixed and move their
eyes only. These are two extremes of a continuous range of
behaviors. A model based on this distinction is used in [30]
to synthesize realistic head-gaze movements for an embodied
conversational agent.

Stahl provided empirical results regarding the range of cus-
tomary ocular range and the onset of head movements for
compensation of postsaccadic eye eccentricity to obtain a com-
fortable focus [7].

In [27] and [31], Bayesian principles were used to explore
action spaces statistically, followed by gradual learning of ac-
tion groups and communicative preferences. These approaches
are based on the active intermodal mapping framework of
Meltzoff and Moore [32], which offers a theoretical basis for
imitation-based learning. In this paper, we do not assume any
communicative preference, and there are no object-specific
prior probabilities that can help the system to decide on the
focus of attention. Our attention-based approach mimics the
early stages of infancy (mainly six to twelve months) used in
robot learning and developmental robotics.

III. OUTLINE OF THE METHOD

Our experimental setup follows a real robotic scenario pro-
posed by Hoffman et al., where an experimenter and a robot
are facing each other over a table that contains several objects
of interest [27]. This setup is typical in robotic joint learning
scenarios (e.g., see [9]).

We use a Nao robot and observe that it is not sufficiently sta-
ble to extract an accurate estimate of the gaze direction directly
by analyzing the eye and iris areas of the experimenter. The
assumption that the camera input does not provide sufficient
resolution for the analysis of the eye region is realistic for many
application settings (including the recently popular interactive
marketing scenarios), and it is imperative to extract the maxi-
mum amount of gaze information, even when this is the case.

The question of what resolution is appropriate for accurate
gaze estimation is hard to answer. The most extensive survey
about gaze estimation to date is [8], and while over a hundred
methods are reviewed in this survey, the exact resolution ranges
are not made explicit for any of them. There is a reason for this;
external factors such as camera movement, head movement,
and tracking error can have strong influence on the minimum
resolution. This issue obviously needs more research. Our
analysis is based on the very practical observation that the iris
area contains only a few pixels in our setup, as described in
Section VII-A, and no eye-region-based method is applicable
in such a low-resolution setting.

Fig. 1 illustrates eye regions of different experimenters
cropped from the camera input of the Nao robot used in our
system (see Section VII). These regions have an approximately

Fig. 2. Basic steps of the algorithm.

15 × 25 pixel resolution, and it is clear in Fig. 1 that one cannot
make a reasonable estimate for gaze direction by just using the
eye and iris area information of these patches. Additionally,
non-frontal head pose affects the appearance of the eye region
drastically.

Our proposed approach mimics the natural strategy of resolu-
tion of focus of attention observed in infants. The resolution of
attention fixation points substantially relies on gaze direction,
which depends to a large extent on head pose [15]. Subse-
quently, we seek to determine the gaze direction from head pose
estimates by noting that head pose is indicative of (but not equal
to) the gaze direction. As a precaution, we note here that this
is an ill-posed problem. It is well documented that the temporal
alignment of eye and head movements is not strict in humans, as
humans are capable of controlling them separately. However, in
natural settings, there is a certain eye–head coupling [33], [34],
and it is this coupling we seek to exploit in this paper.

The basic steps of the proposed algorithm are given in Fig. 2.
The first step is detecting the face of the experimenter. The head
pose of the experimenter is then resolved by adapting a 3-D
elliptic cylindrical model to the face region. By applying a pose
update, which is derived with the Lucas–Kanade optical flow
method, a continuous tracking is maintained [35].

Two Gaussian process regressors are employed in the esti-
mation of gaze direction and the distance of the target object
along the gaze vector, from these pose values. These can be
conceptualized as horizontal and vertical displacement estima-
tors, respectively. The two estimates are then probabilistically
combined to yield a coarse estimate for the center of the
object of interest. By pooling a number of estimates regarding
consecutive frames, a more robust decision on the target point
is generated. The rough localization of the attended object
is refined by a bottom-up saliency scheme. Additionally, if
the experimenter continues to maintain a certain head pose,
alternative target locations are eventually explored as a result
of an inhibition-of-return mechanism.
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We stress the distinction of following the head pose and the
gaze direction itself in particular. Most of the joint attention
approaches in the literature do not explicitly correct for the
discrepancy between the head pose and gaze direction, which
is reported to be normally distributed with a mean of five
degrees in natural settings [36], [37]. In computer graphics
literature, there are some recent approaches that model this
discrepancy explicitly, in order to synthesize virtual agents with
a more natural behavior [30], [38]. In the following sections, we
describe the steps of the proposed method in more detail.

IV. HEAD POSE ESTIMATION

This section elaborates on the head tracking and pose esti-
mation algorithm. The human head is modeled as an elliptic
cylinder [39], with the actual width of the head and the radii
in line with anthropomorphic measures [40]. The 3-D head
model is superposed on the detected face area found by the
Viola–Jones algorithm, which uses the Adaboost classifier with
Haar wavelet features [41]. We require a joint attention session
to be initialized with the experimenter facing the robot. All head
pose angles are estimated with respect to the initial pose, and
since the method uses actual pixel values, it is not affected by
the alignment of the cylinder to a non-frontal pose.

The pose for the CHM at frame Fi is represented by a
vector �pi. This vector is basically a collection of pitch, roll,
and yaw angles (rix, r

i
y, r

i
z) and translation parameters at the

ith frame, i.e.,

�pi =
[

rix, r
i
y, r

i
z, t

i
x, t

i
y, t

i
z

]T
. (1)

The initial values for these parameters are determined by
employing the initialization condition of a session of joint
attention. In our scenario, we describe these conditions as the
establishment of eye contact between the agent and the experi-
menter with a fully frontal view of the experimenter’s face. This
is a much more natural initialization assumption compared with
explicit gaze calibration procedures. The rotation parameters
are all set to 0 for the initial frame. The translations along the
x-axis and the y-axis with respect to the object space reference
frame are determined by using the center of the face region as
determined by the Haar classifier. The depth of the head, i.e.,
t0z , which describes the distance of the head from the camera, is
set to an approximate fixed value. In practice, this value can be
derived by relating the anthropomorphic measures concerning
the height and the width of the head to the face region found on
image plane.

As soon as the initialization condition is satisfied, the agent
sets the head pose parameters as described and starts tracking
the head. Since the initial pose, i.e., �p0, is already determined,
any pose value �pi+1, i ≥ 0, can be resolved by simply updating
the previous value �pi [39], i.e.,

�pi+1 = �pi +∆�μi (2)

where ∆�μi = [ωi
x, ω

i
x, ω

i
x, τ

i
x, τ

i
x, τ

i
x]

T stands for the rigid mo-
tion vector summarizing the pose update between time instants
ti and ti+1. The performance of this dynamic approach is com-
pared with a variation of the cylindrical-model-based head pose
estimation scheme from a fixed template image in [42]. In light

of the detailed head pose estimation accuracy reported in [42],
it is concluded that the dynamic template yields comparable
results to the static template. In this case, we prefer using the
dynamic template, since tracking head pose is more feasible
than solving for it at every frame from a standard template.

We note here that a 2-D image (of the experimenter’s head) is
employed to derive pose values representing the direction and
orientation in 3-D space. In order to cope with the ambiguity
ensuing from the dimensionality disparity, a suitable mapping
needs to be defined. To that end, we use perspective projection
and ray tracing through a pinhole camera for establishing the
relation between the 3-D locations of the points on the cylinder
and their corresponding projections on the 2-D image plane.

As shown in Fig. 3, the cylinder is observed at different
locations and with different orientations at two consecutive
frames Fi and Fi+1. Let pi denote the 3-D location of a point
sampled on the cylinder on frame Fi. The new location of the
point at Fi+1 is found by applying a transformation model, i.e.,
M, which is represented by a rotation matrix R corresponding
to (ωi

x, ω
i
x, ω

i
x) and a translation vector T = [τ ix, τ

i
y, τ

i
y]

T , i.e.,

M(pi,∆�μi) = Rpi + T. (3)

The location of the projected point ui+1 on Fi+1 is found
by using a 2-D parametric function F and applying the rigid
motion vector ∆�μi, followed by a projection operation denoted
by P. Thus, the projection of the point at t = ti+1 can be
expressed in terms of the 3-D location of the point at t = ti
and the rigid motion vector as

ui+1 = P (M (F(ui),∆�μi)) . (4)

This equation describes the mapping in a comprehensive
way, covering transformations from object space to image plane
(P), from image plane to object space (F), and interframe
motion (M). If the illumination is assumed to be constant
(i.e., the intensity of the pixel I(u) does not change between
the images), then the rigid motion vector can be obtained by
minimizing the difference between the two image frames, i.e.,
I(ui+1)− I(ui). The optimal value of ∆�μi is found by using
the identity given in (4) and solving for this minimization
problem with the Lucas–Kanade method [35].

V. GAZE DIRECTION AND OBJECT DEPTH ESTIMATION

The head pose is certainly indicative of the gaze direction
but does not completely specify it. This is due to the fact that
gaze involves eye movements in addition to the head pose. In
an experiment with children, it has been empirically shown that
the head pose by itself is insufficient for determining children’s
focus of attention [43]. Some approaches deal with this problem
by resolving gaze direction from head pose implicitly by incor-
porating additional assumptions. For instance, in [44], the focus
of attention is assumed to rest on a person, and the estimated
head pose is corrected to select the closest person as the
target. However, this can only be done in specific application
domains, for instance, a meeting scenario, where the interaction
between people is all that matters. As mentioned earlier, our
human–robot interaction scenario involves an experimenter,
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Fig. 3. Projection and transformations illustrated for two consecutive frames in which the head moves and tilts, together with the reference frames of object
space and image plane.

who focuses on an object (called the object of interest), and the
robot, facing the experimenter, is trying to determine the object
of interest to initiate joint attention with the experimenter.

In this paper, in order to quantify the gaze direction on
image plane, we suggest employing the slope of the vector that
connects the center of the experimenter’s head and the center of
the bounding box of the object of interest. Moreover, the depth
of an object is expressed in numerical terms as the y coordinate
of the object center on the image reference frame (see Fig. 3).
The intersection of gaze direction and object depth indicates the
location of the target point on image plane. Since experiments
are set up to provide the ground truth (GT) for the object of
interest at all times, gaze direction and object depth estimation
becomes a learning problem.

Provided that a comfortable distance between the experi-
menter and the robot is kept so as to mimic a natural social
interaction [45], [46], head pose clearly provides indications
regarding gaze direction and object depth with the given defini-
tions. Assuming that the distance between the communicating
parties is close enough and the attention fixation points lie in
this range, the pose of the head needs to be adjusted to obtain
focal points with different depth and direction. We employ GPR
to interpolate the gaze direction and depth of the object of inter-
est from 3-D head pose estimates [47]. Regression approaches
based on Gaussian noise assumptions are previously applied to
robotic settings successfully [48]. We now describe the GPR
model we use and justify our choice of model.

Let variable �pi denote a head pose vector, where P = {�pi}
stands for the set of all observed poses. Assume that the gaze
direction values (on image plane) are formulated as random
variables f(�p), where �p ∈ P, through a transformation f , which
we assume to be a real Gaussian process. f(�p) is described
by its mean function, i.e., m(�p), and covariance function, i.e.,
k(�p, �p′ ). Thus

f(�p) ∼ GP (m(�p), k(�p, �p′ )) (5)

Fig. 4. Orientation of the eyeball model and the attended point.

where

m(�p) =E [f(�p)]

k(�p, �p′ )) =E [(f(�p)−m(�p)) (f(�p′ )−m(�p′ ))] . (6)

For notational simplicity, we let m(�p) = 0 at all times. This
could be compensated by applying an offset to �p. An additional
assumption, which makes the scenario close to real-life settings,
is to consider the observations to be noisy, i.e.,

y = f(�p) + ε (7)

where the additive noise ε is independent and identically dis-
tributed (i.i.d.) with variance σ2

0 . This may be regarded as
accounting for the eye movements, by considering them as
additive white noise. Before moving on to the details of the
model, we discuss the validity of this assumption.

Let the eyeball be modeled as a rigid sphere with orientation
(r, θf , ϕf ) in spherical coordinates with respect to the reference
frame positioned at the eye center (see Fig. 4). Suppose an
experimenter focuses on a point of = (xf , yf ) on a target board
positioned in front of him. By changing the azimuth angle φf ,
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the focus can be adjusted to any point lying on a line H passing
through of . Line H is not exactly horizontal, but it has a small
deviation from a horizontal line passing through of . In explicit
terms, for a certain azimuth angle φf , the deviation of the focal
point along the y-axis of the target board reference frame is
l tan(φf ), where l stands for the shortest distance between the
eye center and the target plane (see Fig. 4). While this deviation
increases with θf , our initial assumption that the experimenter
directs his field of vision toward the vicinity of the target point
by adjusting the head pose accounts for it. The implication is
that φf is expected to be small enough to result in a negligible
deviation in the curvature of H . Furthermore, the comfortable
distance l between the experimenter and the robot is small
enough for the deviation term l tan(φf ) not to grow too much.
By changing ϕf , the focus can be set to any point on a line
V passing through of , which is approximately vertical due to
similar reasons.

The angles φf and θf need to be i.i.d. for the noise term ε in
(7) to be modeled as i.i.d. Let θf be known. Thereby, the focus
is inferred to be lying on line H . However, the exact location
of the focus cannot be determined based on this information
solely. Similarly, any information on ϕf does not give a clue on
θf independent of the curvature of H or V . That is to say, as
the probability distribution is denoted with p(.)

p(θ|ϕ) = p(θ)

p(ϕ|θ) = p(ϕ). (8)

Thereby, the angles θ and ϕ are shown to be independent,
resulting in cov(θ, ϕ) = 0.

Moreover, since we do not adapt an inhomogeneous and
experimenter-specific distribution for the focus points as in
[27], the probability that the experimenter looks at any of the
points on the target board is equal. In other words, as the borders
of the target board are denoted with x−, x+ along the x-axis and
with y−, y+ along the y-axis with respect to the target board
axis (see Fig. 4), the distribution of xf is described as follows:

p(xf ) =

{

1
(x+−x−) , xf ∈ [x−, x+]

0, otherwise.
(9)

The distribution of yf is similar to that of xf in (9). Therefore,
from (8) and (9), θ and ϕ are shown to be i.i.d.

We now elaborate on the training of GPR. Let n⋆ input
points, represented by P ⋆, be drawn from this distribution. If
there are n points to train the regressor, denoted by P , the
covariance matrix K(P, P ⋆) has n× n⋆ entries evaluated at
every pair of training and test points. For the set of test points,
a random Gaussian vector is generated as in [47], i.e.,

f⋆ ∼ N (0,K(P ⋆, P ⋆)) . (10)

The prior for the joint distribution of training inputs f and test
outputs f⋆ is then

[

y
f⋆

]

∼ N

(

0,

[

K(P, P ) + σ2
0I K(P, P ⋆)

K(P ⋆, P ) K(P ⋆, P ⋆)

])

. (11)

The posterior distribution restricts the joint prior distributions
to contain only those functions that agree with the observations.
Hence, as the prior is conditioned on the observations, we get

f⋆|P, y, P ⋆ ∼ N
(

f̄⋆, cov(f⋆)
)

(12)

where

f̄⋆ =K(P ⋆, P )
[

K(P, P ) + σ2
0I

]−1
y

cov(f⋆) =K(P ⋆, P ⋆)−K(P ⋆, P )

×
[

K(P, P ) + σ2
nI

]−1
K(P, P ⋆). (13)

The Bayesian approach defined above is iterated until the
marginal likelihood reaches an optimal value. The reader is
referred to [47] for the details regarding the solution of free
parameters of GPR.

The learning procedure determines the parameters of a func-
tion f1 that interpolates the gaze direction from the head
pose parameters, as well as a function f2 that estimates the
depth of the focused object. Both functions have the same
form as presented in (7); in principle, it is straightforward to
concatenate the output values and learn them jointly as a single
multivariate output function. For function f1, the summation of
an isotropic rational quadratic covariance function and an NN
covariance function is used, based on the inference presented
above. For the second regression scheme f2, we have used
the summation of a linear covariance function and an inde-
pendent covariance function. The linear covariance function
is considered to account for the distance relation arising from
the relative positions of the camera, the experimenter, and the
attended objects, whereas the independent covariance function
represents the effect of the eye movements on object depth.

We now turn to the use of contextual information that com-
plements these estimates.

VI. TARGET OBJECT LOCATION ESTIMATION AND

THE SALIENCY MODEL

Once the gaze direction and object depth are estimated, the
intersection of those provides a prospective region for searching
for the target point. However, since interpolation from head
pose is a coarse indicative of the focus, there is an inherent
uncertainty, which we seek to remedy via contextual cues. After
narrowing down the search region using the coarse estimates, a
saliency scheme is applied to single out the spot of attention.
This combination is consistent with the view that an object can
be salient because of its inherent properties such as color, mo-
tion, or proximity, and also because it is the focus of attention
of the interacting party [49].

In [50], a robotic system is described where the bottom-
up saliency of a visual scene is computed by color, edge,
and motion cues. Top-down influences can be incorporated by
modulating bottom-up channels or by explicitly adding dedi-
cated saliency components. For instance, faces are particularly
important for natural interaction settings; consequently, they
can be separately detected and made salient [51]. Breazeal et al.

pointed out the importance of using such features of hu-
man preattentive visual perception for natural human–robot
interaction [52].
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We implement and contrast three saliency schemes to fine-
tune the target location estimates. These are 1) a bottom-up
method proposed by Itti et al. [53]; 2) the more recent method
of Judd et al. combining a set of low-, mid-, and high-level
features [54]; and 3) the attention-based information maximiza-
tion approach of Bruce and Tsotsos [55]. From these, the first
is by far the most popular saliency approach in the literature,
but good results were reported under the other schemes as
well. For segmenting out objects in the scene, region-growing
methods can be applied to the most salient location in an
unsupervised manner [56]. More recent saliency approaches
proposed for multimedia retrieval use supervised training but
require large amounts (tens of thousands) of annotated training
samples [57].

1) Itti et al. presented an approach in [53], which is based
on the feature integration theory of Treisman and Gelade,
and decomposed the saliency of a scene into separate
feature channels [58]. A saliency map ordinarily uses the
presence of cues such as illumination intensity, colors,
oriented features, and motion to determine salient loca-
tions in a scene. The saccadic eye movements derived
from the saliency map are simulated by directing a foveal
window to the most salient location, which is determined
by a dynamic and competitive winner-take-all network
[53]. Once a location is selected, it is suppressed by an
inhibition-of-return mechanism to allow the next most
salient location to receive attention.

2) Judd et al. extended [54], by incorporating, a set of
mid- and high-level features. Similar to [53], they employ
low-level features accounting for the color, intensity,
and orientation, whereas the mid-level features relate to
the detection of horizon and high-level features refer to
contextual cues such as face and person detection, as well
as a center prior. Since our interaction scenario precludes
some of these channels (i.e., faces, people, and the hori-
zon), contextual detectors are turned off, and the rest of
the features (such as subbands of the steerable pyramid,
the three channels of Itti and Koch’s saliency model, and
the color features) are employed in the computation of
saliency.

3) Bruce and Tsotsos argued that the saliency is equal to a
measure of the information locally present within a scene
in relation to its surroundings [55], [59]. In natural visual
stimuli, there exist significant amounts of redundancy.
For a given image, the authors employ a set of basis
functions and extract independent features for each point.
The projections to different feature spaces (one for each
filter channel) spanned by the basis functions are followed
by density estimation within each channel. Based on the
independence assumption, the joint likelihood is assumed
to be the product of the likelihood concerning each filter
type. The final saliency map is computed as the Shannon
self-information derived from the joint likelihood con-
cerning all filter types.

These three saliency resolution methods utilize static features
and do not consider the effect of motion cues for the present
scenario. These cues may be caused by the movement of the

target object or of the robotic head. The effects of motion are
negligible in our case, as the object of interest is always static
(no motion due to target) and the motion of the robotic head
affects all objects uniformly, since they are closely positioned
on the table. We use the saliency map (computed with one of
the three methods explained above) for determining the most
salient location in the prospective region.

We consider those methods exploiting the low-level features,
basis functions or entropy, more appropriate for our purposes
than several others, which consider the issue from a practical
perspective accounting for a biologically plausible nonuniform
retinal sampling [60] or task engagement [61]. The previous
experiences, intentions, the nature of the performed task, or
biological limitations do not play an important role in the
detection of the salient points from a robot vision perspective.
In addition, the collection of low-level features is suggested to
perform better than, for instance, a simple edge detector due to
the extended scope. If there is more information available as
to the experimenter’s intentions, or an instruction history that
can provide background probabilities with regard to which
objects are more likely to receive attention, these can be in-
tegrated into the saliency computation in a top-down manner,
for instance, by modulating the responses of individual feature
channels appropriately. In [27], the probability that an experi-
menter selects a particular object is learned by fitting a Gaussian
mixture model on the pixel distribution. We do not model the
top-down influence at this stage, simply because in the absence
of specific contextual models, this additional information would
optimistically bias the results.

Since the human eye makes three to five saccades per second,
it is not realistic to compute saliency for each gaze direction and
object depth estimate corresponding to a 10-fps rate. Therefore,
we form bins of consecutive frames and calculate the 2-D
location of focus of attention for each of these bins. We pooled
four frames corresponding to 0.4 s. This procedure is referred
to as pooling throughout the paper. Gaussian distributions
are then positioned around the resulting estimates, with a
10-pixel standard deviation. The choice of the latter follows
from considering a typical interaction scenario in conjunction
with the resolution of the camera.

We postulate that the robot will typically consult the joint
attention system when it is trying to figure out which object
is in focus (i.e., there is a reference to an object that needs
resolving) or when there is a large shift in the head pose of
the experimenter, suggesting an imminent shift in the focus
of attention. This implies that the estimated focus of attention
can be assumed to rest on an object. For scenarios when this
assumption cannot be justified, the saliency-based refinement
described in this section should be disabled.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

In order to evaluate the proposed method, we performed
two sets of experiments to model joint attention between a
human experimenter and an embodied agent (see Fig. 5). In
both cases, the experimenter is in front of a table, on which
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Fig. 5. (a) Experimental setup consists of an experimenter and the robot at the opposite sides of a table, on which several objects are placed. To measure
generalization capabilities, we vary the experimenter; the type, size, and number of objects; the background; and the illumination and blurring conditions between
(b) recording set-1 and (c) recording set-2.

a number of objects are placed in a non-occluding fashion as
in Fig. 5(b). A session of joint attention is initialized when
the experimenter establishes eye contact with the robot, which
leads to a fully frontal face image being acquired by the robot.
The experimenter fixates his/her attention to one of the six
objects by looking at them in random order for certain duration
of time. In this setting, the experimenter moves his head in a
range of [−50, 50] degrees for pitch, [−40, 40] degrees for
yaw, and [−20, 20] degrees for roll rotations. If the head pose is
found to be outside of this range, tracking is assumed to be lost,
and it is restarted using the first image of the video sequence.

Considering all the design details given in Section I, we
use a social interaction robot that is designed to be used for
service and guiding purposes in our experiments. This system
is composed of three main components: an Aldebaran Nao
humanoid robot as the main interaction and animation unit,
a Festo Robotino robot as the navigation unit, and a laptop
computer as the additional processing and monitoring unit. The
recordings are made with the color camera of the Nao.

To inspect the generalization capabilities of the proposed
method, we provide experimental results including com-
parisons between recordings obtained from a single ex-
perimenter across multiple sessions, as well as results for
cross-experimenter generalization, both under normal and ad-
verse conditions. In each sequence, all objects are randomly
attended for several seconds. The GT for the attended objects
is obtained by manual annotation.

We collected two sets of videos, comprising 20 sequences,
recorded at a rate of 10-fps with 320 × 240 resolution. In both
sets, the distance between the robot and the experimenter is
roughly 1.5 m, so as to obtain a comfortable distance for a
natural social interaction. The attention fixation points lie in
the field of view of both parties. In this setting, the center-to-
center object separation is approximately 20–30 cm. Recording
set-1 is designed to evaluate the intraclass and interclass gen-
eralization capabilities under normal illumination conditions,
providing an understanding of the baseline performance, where
each of the four experimenters provide two sequences in front
of a stationary camera under sufficient natural illumination.
Recording set-2 is composed of 12 video sequences collected
from four experimenters under three different conditions. These
include artificial illumination [see Fig. 5(c)], dimmed illumi-
nation, and motion blur. The whole database constitutes 6691
images in total, for which the focus of attention GT is manually
annotated.

We assess the performance for head-pose-based interpolation
and saliency-based fine tuning separately. We compare the
proposed GPR with an NN regressor, which has two-layer
back-propagation architecture [62]. We use ten hidden units;
an initial learning rate of 0.1, which is exponentially decreased
during training; and an online training scheme. Weights in both
layers are randomly initialized from the interval (−0.5, 0.5).
During training, a validation set (drawn from the training
sequence) is monitored for error decay to prevent overfitting.

B. Quality Measures

We use two different measures, which are termed Q1 and
Q2, for quantifying performance. Q1 indicates the ratio that an
estimated object center falls into the bounding box of the object
of interest. This is a more fine-grained measure than the mean
angular error, as the object depth is also taken into account. The
second measure Q2 shows the rate at which the estimated point
has the shortest distance to the true object center among all
targets. Thus, Q2 shows the effect of imposing object selection
as an additional constraint in the system.

Let q denote the pixel locations of the estimated object center
for a set of frames, which are labeled with object number i. Let
Bi be the bounding box of this object. It follows:

Q1(i) = |q ∈ Bi|/|q| (14)

where |.| denotes the cardinality of a set.
Q2 assigns an estimated point to the object, whose center has

the shortest distance among the set of all objects. It follows that
the explicit expression is

Q2(i)= |{q|d(q, ci) < d(q, cj), ∀j=1, . . . , n, j �= i}| /|q|
(15)

where d(a, b) denotes the Euclidean distance between points a
and b, ci stands for the center of object i, and n is the number
of objects.

C. Qualitative Evaluation

Here, we qualitatively evaluate different parts of the pro-
posed method.

We have mentioned that the camera input often does not
provide sufficient resolution for the analysis of the eye region.
Fig. 6 illustrates the performance of face detection on such low-
resolution videos. The original camera input from the robot is
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Fig. 6. Face detection performance versus resolution.

downscaled to as low as 10% of the original size, i.e., 32 × 24.
We observe that the Haar-wavelet-based face detector is able
to find the face region correctly in about 90% of the frames
when the images are 30% of their original size (320 × 240
for the entire original image, 1000–1500 pixels for the original
face area). Therefore, we infer that the employed face detection
algorithm is robust against low-resolution inputs.

We next illustrate that the head pose distributions for differ-
ent targets represent a learnable range of values and graphically
show the variation that relates to noise and eye movement.
Fig. 7 illustrates estimated pose distributions for two exem-
plary video sequences obtained by the head pose estimation
method explained in Section IV. We investigate the relation
between the distribution of head pose values and the layout
of the objects on the table. By fitting multivariate Gaussian
distributions to the point clouds concerning each object, we
obtain the indicated regions in 3-D. As shown in Fig. 7, the
topological relationship between the locations of the objects in
Fig. 5(b) and the corresponding head pose angles are preserved.
Investigating the covariance of these poses (illustrated in Fig. 7
for each object), we conclude that the variation of pose values
for different objects are not always significant compared with
the accuracy of the pose estimator. Nonetheless, the accuracy of
the method of Xiao et al. is regarded to perform satisfactorily
good considering the difficulty of the problem. Furthermore, the
grouping of the pose angles with respect to the target objects
reveals not only a clear clustering but also the nonlinear nature
of the relation between head pose and gaze direction.

The location of the objects influences the accuracy of gaze
estimation; the task is made more difficult by placing the
objects closer to each other. As the incorrect decisions are
investigated, it is observed that they mostly correspond to
the neighboring objects. Fig. 8 illustrates the error versus the
resolved values of yaw angle. From this figure, we observe that
for a small angle range deviating from the frontal pose (up
to approximately 0.1 rad), the head moves very little, and the
target fixation is performed with eye movements mostly. This
is due to the fact that the required eye movement for focusing
on any point in this range is in the customary ocular motor
range. Hence, focus can be attained only by eye movements [7].
This phenomenon causes increased error in estimation in the
customary ocular motor range, as we rely on head pose. Then,

for a wide range of yaw angles (0.1–0.5 rad), we have good
prediction accuracy. Beyond that range, head pose estimation
suffers from rotations, and this reflects on the accuracy.

We next discuss the integration of estimated gaze directions
and object depths on image plane (see Fig. 9). By imposing
object depth on gaze direction, a single point is obtained on
the image plane, which is indicative of the best estimate for
the target point. Fig. 9 presents two examples, where the gaze
vector is depicted as starting from the head center, going along
the gaze direction, and finally terminating at the estimated depth
of the object of interest. For an entire video sequence, resulting
integrated estimates are presented in Fig. 10. Subsequently, we
pool four of the consecutive estimates and mask the image
positioning a Gaussian distribution around each of them. Fig. 11
shows a masked image and the corresponding saliency map
obtained by the method of Itti et al.

Our final remark addresses the computational aspects of the
proposed method. The most computationally intensive part is
the cylindrical-model-based tracking, which works real time on
a standard PC (10 fps on a machine with a 2-GHz Intel Centrino
CPU and 2-Gb RAM). The saliency model needs to be evalu-
ated on areas smaller than 5% of the images and subsequently
has negligible computation time. The two regression results are
also obtained with very little computational effort.

D. Quantitative Evaluation

The two components of initial object location estimation, i.e.,
gaze direction and object depth, are separately examined, first
at an individual level and then in a collective manner.

For two exemplary video sequences, gaze estimation per-
formance of CHM, GPR, and NN-based schemes is presented
in Fig. 12. Among those, CHM-based pose resolution clearly
underestimates the actual gaze direction, whereas GPR- and
NN-based methods follow the GT with better accuracy.

Subsequently, for the entire data set, the mean square error
(MSE) regarding gaze direction and object depth estimation of
GPR and NN regressors is depicted in Fig. 13. In this figure,
it follows that GPR generally results in slightly smaller error
values in gaze estimation, where the NN regressor prematurely
converges to a local minimum for some of the training–test
pairs in depth estimation [see Fig. 13(b)].

In addition to providing a performance comparison for GPR-
and NN-based schemes, the MSE behavior is helpful in deter-
mining an adequate parameterization of the Gaussian mask to
be applied around the pool of initial estimates. In accordance
with the average of MSE values concerning gaze direction
and object depth estimation illustrated in Fig. 13, the search
envelope is restricted to 10 pixels. In the next section, we
investigate the initial (regression only) and final (regression +
saliency) performance of the proposed method for the first
group of recordings collected under normal conditions. The
efficiency of the alternative NN-based estimation is compared
with this baseline performance, and a discussion is provided.

E. GPR-Based Versus NN-Based Estimation

Performance quantifiers Q1 and Q2 are evaluated for
self-referencing (intraclass, i.e., single experimenter) and
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Fig. 7. Distribution of estimated pose values for two video sequences. Each point is a pose value for one object location; ellipsoids are representations for clusters
obtained by adapting multivariate Gaussian distributions for each object.

Fig. 8. Error in gaze direction with respect to estimated head pose values.

Fig. 9. Estimated gaze direction and object depth via GP regression (line)
together with the center of the manually annotated object of interest (solid dot).

cross-referencing (interclass, i.e., training and testing on dif-
ferent experimenters) cases. The mean values of true positive
rates for individual objects are depicted in Table I(a) and (b) for
GPR- and NN-regression-based estimations, respectively.

From these two tables, it is evident that GPR-based object
location estimation yields slightly better results than NN-based
scheme at every evaluation condition. In addition to the overall
rates presented in Table I, a closer look at the results at the
individual object level indicates that the standard deviation
of the NN-based estimation method is generally higher than

Fig. 10. Initial estimates for target points for a representative video sequence.
Each estimated target point is depicted in the color presented in Fig. 5(b)
corresponding to the bounding box of the annotated object.

Fig. 11. (a) The saliency map and (b) the target point resolved by the saliency
method of Judd et al. [54] demonstrated on the masked image with the red
marker.

that of the GPR-based scheme. Thus, we conclude that GPR
is a suitable tool for the interpolation task. Nonetheless, the
differences are not statistically significant, and we expect for
any powerful regression method to be able to similarly perform
under these conditions.

Comparing the results before and after the incorporation of
saliency, we can see that modeling image saliency improves
object location estimation, compared with relying only on
regression. This is the case for all three saliency schemes we
have considered. The improvements are close to each other,
and we cannot single out any of the saliency schemes as being
clearly superior to the others.

Comparing self-referencing and cross-referencing results, we
see that the method generalizes well across experimenters. It
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Fig. 12. Improvement in gaze direction shown for two exemplary training–test
pairs. GT is denoted in black.

Fig. 13. MSEs for (a) gaze estimation (in terms of radian squared) and
(b) object depth estimation (in terms of 103 pixel squared).

is natural that training and testing on the same experimenter
produces higher predictive power, as the method is based on
learning gazing behavior. However, the idiosyncratic variation
is not so great as to prevent generalization.

F. Performance Under Adversarial Conditions

We assess the generalization capability of the proposed
method under different illumination conditions and motion blur.
For this purpose, a series of experiments is conducted, where
the illumination conditions are changed for the test set by
using artificial or dimmed lighting as opposed to the previously
used natural light, or motion blur is introduced by moving the
head of the robot. The performance rates concerning record-
ing set-2 are presented in Table II. Table II(a) is the cross-
referenced baseline performance of recording set-2, i.e., trained
and tested with the videos of different experimenters, all under

natural light. Table II(b)–(d) gives the performance rates, where
training assumes natural light conditions, and testing considers
artificial illumination, dimmed illumination, and blurred vision,
respectively.

By comparing Table II(a) with Table II(b)–(d), it can be
deduced that the effect of adversarial conditions does not lead
to any decay in performance. The fluctuations are partly due to
the different number of objects used in different experiments
[five or six objects, respectively; see Fig. 5(b) and (c)].

Next, we look into the effect of pooling and changing quan-
tifiers. From Table II(b), it is clear that pooling the estimates
and applying saliency computation lead to a significant im-
provement in the resolution of attention fixation points in terms
of both Q1 (0.32 to 0.52) and Q2 (0.51 to 0.73). Moreover,
assigning the estimates to the object lying in closest proximity
leads to higher detection rates, as pointed out in Section VII-D.
Similar approaches in the literature also use pooling. In [9], a
dual-camera system with high resolution is used in a similar
robotic setup, and for three objects at a 20-cm distance to
the experimenter, an 80% correct detection rate is reported by
pooling gaze estimations over more than 60 frames.

In order to investigate the level of degradation introduced
by dimmed illumination, the regressors are trained using the
pose values obtained from the videos that are collected un-
der natural illumination and tested using the videos collected
under dimmed illumination settings. Performance results are
presented in Table II(c). Comparing Tables I(a) and II(c), it
is observed that there is no significant decline with respect
to the baseline performance. Moreover, pooling and saliency
estimation are inferred to improve performance in terms of both
Q1 (0.23 to 0.51) and Q2 (0.47 to 0.60). Besides, similar to the
artificial illumination case, following the assignment scheme of
Q2 leads to higher detection rates than that of Q1.

We also test the performance under a motion blur condition
with a set of recordings obtained when the robot was in motion.
The results indicate that the proposed method is robust to
motion artifacts. Similar to the previous cases, there is no
significant decay in detection rates with respect to the base-
line performance. Comparing initial and final performances in
Table II(d), it is observed that pooling and saliency estimation
affects the results positively for both Q1 (0.19 to 0.46) and Q2

(0.34 to 0.53). Moreover, similar to the other test scenarios,
performance rates calculated considering Q2 are higher than
those calculated considering Q1.

There are several sources for the error in target point esti-
mation. The basic source is the accuracy and effective range
of the head pose estimation method [39]. The resolution values
as reported in [42] do not permit us to distinguish very small
angular variations. Nonetheless, considering the difficulty of
the problem, the method of Xiao et al. is regarded as performing
well. A second source of error is suggested to be the exper-
imenters’ personal preferences regarding head pose onset or
eye movement range. The pose distributions presented in Fig. 7
have a certain fluctuation even for the same experimenter across
multiple instances of focusing on the same object. In addition
to the accuracy of head pose estimation and personal variations,
the proximity of objects poses an intrinsic challenge. Decreas-
ing the number of objects for interaction helps in improving
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TABLE I
PERFORMANCE QUANTIFICATION FOR (A) GPR- AND (B) NN-BASED REGRESSION

TABLE II
PERFORMANCE UNDER (A) NATURAL LIGHT AND ADVERSE CONDITIONS

OF (B) ARTIFICIAL ILLUMINATION, (C) DIMMED ILLUMINATION,
AND (D) BLURRED VISION

target point estimation as expected, and this can be verified by
comparing Tables I(a) and II(a).

VIII. CONCLUSION

This paper provides a method to estimate the focus of atten-
tion of an experimenter from a single low-resolution camera.
We employ a 3-D elliptic CHM to estimate the head pose. Our
model uses the estimate of the head pose to correct for gaze
direction and object depth and further refines the estimate by
a saliency-based selection for finding objects attended by an
experimenter. We seek to remedy head pose and gaze direc-
tion discrepancy by employing two parallel Gaussian process
regressors that correct for gaze direction by interpolation, as
well as estimate object depth from the head pose. The pro-
posed scheme is shown to work with good accuracy, although
the problem we tackle is ill posed under the realistic limited
resource assumptions we make.

Using saliency to fixate on interesting objects serves a
twofold purpose. First, it reduces the uncertainty in the estima-
tion of the gaze direction. We may safely conjecture that since
saliency computation in the early layers of the visual system
precedes the estimation of gaze direction, the saliency-based
grafting of the gaze to interesting objects should serve as a
supervisory system for learning to estimate the gaze direction.

In humans, a consequence of this learning is the developing
ability of the infant to estimate the focus of the experimenter
even when it lies beyond the visual field of the child. Sec-
ond, saliency-based grafting compensates for the discrepancy
between intended motor commands and executed physical ac-
tions, which is particularly relevant for robotic implementa-
tions. The movement of the simulated fovea effectively creates
an object-centered coordinate system, which is a precondition
of parsimonious mental object representations.

Our saliency scheme is feature based and does not assume
the existence of any high-level information. In fact, if ob-
jects of interaction are known beforehand, it would be much
easier to replace the saliency scheme with an object-specific
search, for instance, based on known sets of feature descriptors.
Furthermore, assuming known objects would also permit us
to learn object preferences per experimenter or object priors
conditioned on the context. We argue that including these high-
level cues does not make the approach more generally applica-
ble but less so, because in the present case, the experimenter
looks at all objects without any preference or order, which is
the least restricted of all interaction scenarios. Possible future
directions include incorporating object-specific information, as
well as the extension of the experimenter’s gaze range to allow
for objects above the experimenter. Another extension would be
to incorporate temporal information in the estimation; smaller
head shifts may imply that the shift of focus is performed with
gaze only, giving clues about the reliability of estimation.

The combination of the proposed method with an accurate
eye-region-based gaze estimation approach is possible under
certain conditions. If the latter is doing a decent job, our
intuition is that the direction estimator based on head pose
becomes obsolete, as its seeks to solve an ill-posed problem.
However, the depth estimator as well as the saliency-based
refinement can be both integrated, as the eye region does not
provide these cues.

Estimation of body posture in addition to head pose might
help make the interaction more natural by the pointing or
manipulation of the objects by the experimenter. In [63],
Schauerte et al. used pointing gestures (as opposed to gaze)
in combination with saliency-based refinement to detect target
objects. Another possibility is to add direct gaze estimation by
using a higher resolution camera to inspect the experimenter’s
eyes as an additional physical cue. An accurate gaze follow-
ing system for joint attention presents a suitable testbed for
evaluating complex interaction models, for testing alternative
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teaching techniques for children and robots, for analyzing de-
velopmental disorders, and for running social simulations.
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