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Abstract
It is often advantageous to track objects in a scene using multimodal information
when such information is available. We use audio as a complementary modality
to video data, which, in comparison to vision, can provide faster localization over
a wider field of view. We present a particle-filter based tracking framework for
performing multimodal sensor fusion for tracking people in a videoconferencing
environment using multiple cameras and multiple microphone arrays. One advan-
tage of our proposed tracker is its ability to seamlessly handle temporary absence
of some measurements (e.g., camera occlusion or silence). Another advantage is
the possibility of self-calibration of the joint system to compensate for imprecision
in the knowledge of array or camera parameters by treating them as containing
an unknown statistical component that can be determined using the particle filter
framework during tracking. We implement the algorithm in the context of a video-
conferencing and meeting recording system. The system also performs high-level
semantic analysis of the scene by keeping participant tracks, recognizing turn-
taking events and recording an annotated transcript of the meeting. Experimental
results are presented. Our system operates in real-time and is shown to be robust
and reliable.
Keywords: audio-visual tracking, sensor fusion, Monte-Carlo algorithms.

1



1 Introduction
The goal of most machine perception systems is to mimic the performance of
human and animal systems. A key characteristic of human systems is their mul-
timodality. They rely on information from many modalities, chief among which
are vision and audition. It is now apparent that many of the centers in the brain
thought to encode space-time are activated by combinations of visual and audio
stimuli [1]. However, the problems of computer vision and computer audition
have essentially been performed on parallel tracks, with different research com-
munities and problems. Capabilities of computers have now reached such a level
that it is now possible to build and develop systems that can combine multiple
audio and video sensors and perform meaningful joint-analysis of a scene, such
as joint audio-visual speaker localization, tracking, speaker change detection and
remote speech acquisition using beamforming techniques, which is necessary for
the development of natural, robust and environmentally-independent applications.
Applications of such systems include novel human-computer interfaces, robots
that sense and perceive their environment, perceptive spaces for applications in
immersive virtual or augmented reality, etc. In particular, applications such as
video gaming, virtual reality, multimodal user interfaces, and video conferencing,
require systems that can locate and track persons in a room through a combina-
tion of visual and audio cues, enhance the sound that they produce, and perform
identification.
In this paper we describe the development of a system that is able to process

input from multiple video and audio sensors. The information gathered is used
to perform both lower level analysis (robust object tracking including occlusion
handling), higher level scene analysis (providing break-up of the audio meeting
recording into pieces corresponding to activity of individual speakers) and speech
quality improvement (simple beamforming-based speech signal enhancement for
the speech recognition engine). We present a probabilistic framework for combin-
ing results from the twomodes and develop a particle filter based joint audio-video
tracking algorithm. The availability of independent modalities allows us to dy-
namically adjust the audio and video calibration parameters to achieve consistent
tracks. Similarly, our multimodal tracker is able to robustly track through missing
features in one of the modalities, and is more robust than trackers relying on one
of the modes alone. The system developed is applied for smart videoconferencing
and meeting recording, and for animal behavior studies.
The developed algorithm is an application of sequential Monte-Carlo meth-

ods (also known as particle filters) to 3-D tracking using one or more cameras
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and one or more microphone arrays. Particle filters were originally introduced
in the computer vision area in the form of the CONDENSATION algorithm [2].
Improvements of a technical nature to the condensation algorithm were provided
by Isard and Blake [3], MacCormick and Blake [4], Li and Chellappa [5], and
Philomin et al [6]. The algorithm has seen applications to multiple aspects of both
computer vision and signal processing. For example, a recent paper by Qian and
Chellappa [7] describes a particle filter algorithm for the structure from motion
problem using sparse feature correspondence which also performs the estimation
of sensor motion from the epipolar constraint, and a recently published book [8]
describes many different applications in signal detection and estimation. Overall,
it can be said that particle filters provide effective solutions for challenging issues
in different areas of computer vision and signal processing.
The development of a multimodal sensor fusion algorithms is also an active re-

search area. The applications seen include multisensor vehicle navigation system
where computer vision, laser radar, sonar and microwave radar sensors are used
together [9], recent papers on audio-visual person identification using support vec-
tor machine (SVM) classifier [10], multimodal speaker detection using Bayesian
networks [11], multimodal tracking using inverse modeling techniques from com-
puter vision, speech recognition and acoustics [12] and discourse segmentation
using gesture, speech and gaze cues [13]. Our algorithm combines multimodality
with a particle filter framework, which enables simple and fast implementation
and on-the-fly multi-sensor system self-calibration by tracking the relative posi-
tions and orientations of the sensors together with the coordinates of the objects.
We present experimental results showing the potential of the developed algorithm.

2 Algorithms
The multimodal tracking system consists of several relatively independent com-
ponents that produce sensor measurements and perform tracking and camera con-
trol. We describe the formulation of the multimodal particle filter, discuss how
it can be modified to allow for a dynamic system self-calibration, and show how
the measurement vector for the particle filter is obtained. We will also describe
the detection of turn-taking events and separation of the audio recording of the
meeting into pieces corresponding to different talkers.
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2.1 Particle filter formulation
Several different approaches can be used for multimodal tracking for videoconfer-
encing. Probably the simplest method is a direct object detection in every frame
by inverting the measurement equations and obtaining object positions from mea-
surements. Significant drawbacks of this method are, first, slow speed and second
and more important, the fact that a closed-form inversion of measurement equa-
tions may not exist or may not be numerically stable; in addition, the temporal
inter-frame relationships between object positions are not exploited. The Kalman
filter and the extended Kalman filter provide a statistically optimal tracking solu-
tion in the case of a Gaussian probability density function of a process; however,
it can’t be used effectively for a process that is not modeled well by the Gaussian
distribution. Particle filters address this problem effectively.
The particle filter algorithm provides a simple and effective way of modeling

a stochastic process with arbitrary probability density function p(S) by approx-
imating it numerically with a cloud of points called particles in a process state
space S. (We use S for the state space to avoid confusion with X which we use
to denote the geometric coordinates only). Other components of a particle filter
framework are the measurement vector Z, the motion model and the likelihood
equation. The measurements depend on the object state, and the object state is
statistically derived from them. The motion model St+1 = F (St) describes the
time evolution of the object state and the conditional posterior probability estima-
tion function P (Z|S) defines the likelihood of the observed measurement for a
given point of a state space. (Note that in the particle filter framework, it is never
required to invert the measurement equations; only the forward projection from
the state space to the measurement space has to be computed, which is usually
quite easy). The update cycle consists of propagation of every particle in the state
space according to the motion model, re-weighting them in accordance with the
obtained measurement vector and re-sampling the particle set to prevent degener-
ation and maintain an equi-weighted set. The update algorithm is described below
and is very similar to the original algorithm.

2.1.1 Update algorithm

Every particle in the set {si}, i = 1...N, in the state space S has a weight πi
associated with it. This set is called properly weighted if it approximates the true
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PDF P (s), so that for every integrable functionH(s)

EP (s)(H(s)) = lim
N→∞

P
N H(si)πiP

N πi
. (1)

Given a properly weighted set of particles at time t with equal weights 1/N , it is
possible to update it to reflect the new measurements obtained at time t+ δt. The
update algorithm is as follows:

1. Propagate each particle si in time using the object motion model to obtain
an updated particle set {s∗i }.

2. Obtain a new measurement vector Z and evaluate the posterior probability
density π∗i on {s∗i }, π∗i = p(s∗i |Z), which measures the likelihood of s∗i
given Z. This can be written using Bayes’ rule:

p(s∗i |Z) =
p(Z|s∗i )p(s∗i )

p(Z)
, (2)

where p(Z) is the prior probability of measurement, which is assumed to
be a known constant, and p(s∗i ) = 1/N . Thus, p(s∗i |Z) = Kp(Z|s∗i ) for
some constant K, and p(Z|s∗i ) can be computed without inversion of the
measurement equations.

3. Resample from {s∗i } with probabilities π∗i , and generate a new properly
weighted set {s0i} with equal weights 1/N for each particle.

4. Repeat steps 1-3 for subsequent times.

Several improvements to the original particle filter framework proposed by
different researchers are implemented, including importance sampling and quasi-
random sampling. They significantly improve the performance of the tracker.

2.2 Self-calibration
The particle filter is usually employed for tracking the motion of an object. How-
ever, (and this is one of the contributions of this paper), it can be used equally
well to estimate the intrinsic system parameters or the sensor ego-motion. In a
videoconferencing framework, there often exists uncertainty in the position of the
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sensors. For example, the position of a microphone array with respect to the cam-
era can be measured with a ruler or determined from a calibrated video sequence.
However, both methods are subject to measurement errors. These errors can lead
to disagreement in audio and video estimations of the object position and ulti-
mately to tracking loss. In another scenario, a multimodal tracking system with
independent motion of a sensor requires estimation of sensor motion, which can
be done simultaneously with tracking in the proposed framework. Such a system
can include, for example, several moving platforms, each with a camera and a
microphone array, or a rotating microphone array.
To perform simultaneous tracking with parameter estimation, we simply in-

clude the sensor parameters into the system state space. One should be careful,
though, to avoid introducing too many free parameters as this will increase the di-
mensionality of the state space (“curse of dimensionality”) and lead to poor track-
ing performance. We perform several experiments with synthetic data using one
and two planar microphone arrays rotating independently and one and two rotat-
ing cameras. In all cases where at least one sensor position is fixed, tracking with
simultaneous parameter estimation was successful in recovering both the object
and the sensor motion. (When all sensors are free to rotate, there exist configura-
tions in which it is impossible to distinguish between sensor and object motion.
Multi-point self-calibration should be used in this case). We also perform an ex-
perimental study of a self-calibrating videoconferencing system. In our particular
experimental setup, two cameras observe the room and a microphone array lies on
the room floor. The self-geometry of the array is known with good precision, but
the relative position of the array to the cameras is known only approximately and
is recovered correctly during tracking.

2.3 Motion model
The motion model describes the temporal update rule for the system state. The
tracked object state consists of three coordinates and three velocities of the object
[x y z ẋ ẏ ż], thus corresponding to a first-order motion model. To allow changes
in the object state, a random excitation force F modeled by Gaussian with zero
mean and normal deviation σ is applied to the velocity component. (The value of
σ chosen depends on expected acceleration of the tracked object. If it is set too
small, tracking can be lost as the tracker can’t follow the object quickly enough;
if it is set too large, the predictive value of the model disappears. In our setup,
σ = 100 m/s2 in the experiments with fast moving free-flying bat which can
accelerate quickly and make sharp turns, and σ = 5 m/s2 in videoconferencing

6



setup where people are being tracked). The state update rule is

x(t+ δt) = x(t) + ẋδt,
ẋ(t+ δt) = ẋ(t) + F δt,

(3)

with similar expressions for y, ẏ, z, ż. When additional spatial parameters (po-
sition or rotation angle) are added for a sensor that is expected to be in motion,
both the parameter and it’s first time derivative (velocity) are added, and the same
motion model as in equation 3 is used. When parameters are added for a static
sensor, the velocity is not used and the random excitation applies directly to the
parameter. For example, for the case of two rotating arrays being used to track
the object, the state vector consists of ten components [x y z φ1 φ2 ẋ ẏ ż φ̇1 φ̇2],
where φ1 and φ2 are the rotation angles of these arrays.

2.4 Video measurements
The video data stream is acquired from two color pan-tilt-zoom cameras. The
relationship between image coordinates (ui, vi) and world coordinates (X,Y, Z)
of the object (the camera projection equations) for the ith camera can be described
using the simple direct linear transformation (DLT) model ([14]):

ui =
p11X + p12Y + p13Z + p14
p31X + p32Y + p33Z + 1

(4)

vi =
p21X + p22Y + p23Z + p24
p31X + p32Y + p33Z + 1

The matrix Pi has eleven parameters {p11,..., p14, p21,..., p33} which in this
model are assumed to be independent with p34 = 1. These parameters are esti-
mated by using a calibration object of a known geometry placed in the field of
view of both cameras with both camera pan and tilt set to zero. The calibra-
tion object consists of 25 white balls on black sticks arranged in a regular spa-
tial pattern; the three-dimensional coordinates of the balls are known within 0.5
mm. The image coordinates of every ball is determined manually from the image
of the calibration object, thus giving 25 relationships between (Xj, Yj, Zj) and
(uij,vij),j = 1...25 for the ith camera of the form (4) with the unknown parame-
ters P . This overdetermined linear system of equations is then solved for P using
least squares.
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In the course of tracking, the video processing subsystem analyzes the ac-
quired video frames and computes the likelihood of an observed video frame
(measurement) given a system state. This can be done in two ways. One pos-
sible way is to first extract the object coordinates from the image by template
matching over the whole image and finding the best match; then see how well the
image object coordinates match the coordinates obtained by projecting the system
state onto the measurement space. Another, more promising, approach is to take
the whole image as a measurement, perform template matching at the image point
to which the system state projects and report the matching score as a likelihood
measure; this has the advantage of performing matching only at points where it is
likely to find a match – ie. around the true object position – and has the ability to
handle multiple objects in the same frame. We use a simple face detection algo-
rithm based on skin color and template matching for the initial detection and then
perform head tracking based on shape matching and color histograms [16] after
the detection is done.
Let us denote the image coordinates of the object as (ũi, ṽi) (the tilde denotes

measured values). Object localization is described in a later subsection. Given
the system state S (and the object coordinates (x, y, z) as part of S), the data like-
lihood estimation Pv(Zv|S) is computed as follows. First, one needs to account
for the (known) current camera pan and tilt angle. To do that, we simply rotate
the world around the camera origin using the same pan and tilt angles obtaining a
source position (x0, y0, z0) in the coordinate system of the rotated camera. Then,
these coordinates are plugged into the DLT equations (4) to obtain the correspond-
ing image object position (ui, vi). The error measure εv for the video localization
is given by a sum over N cameras

ε2v =
1

N

X
i=1...N

[(ui − ũi)2 + (vi − ṽi)2], (5)

and the data likelihood estimation Pv(Zv|S) as

Pv(Zv|S) = 1√
2πσv

e−ε
2
v/2σ

2
v , (6)

where σv is the width of a corresponding Gaussian reflecting the level of confi-
dence in the video measurements. (We introduce the notion of the error measure
exclusively to split the complicated formula into two parts; the data likelihood can
be easily expressed directly over measurements as well).
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2.5 Audio measurements
The audio localization is based on computing the time differences of arrivals
(TDOA) between channels of the microphone array. TDOA values are computed
by a generalized cross-correlation algorithm [15]. Denote the signal at the ith mi-
crophone as hi(t) and it’s Fourier transform Hi(ω); then, the time difference τ̂ij
that maximizes the value of the generalized cross-correlation between channels i
and j can be computed quickly

τ̂ij = argmax
t
Rij(t), Rij(t)

FFT⇔ Rij(ω), (7)

Rij(ω) =W (ω)Hi(ω)H
∗
j (ω).

W (ω) is a weighting function and is equivalent to the inverse noise spectrum
power |N(ω)|−2, and H∗

j (ω) denotes the complex conjugate of Hj(ω). The noise
power spectrum is estimated during silence periods.
To be able to use these measurements in the filtering framework, one has to

define the likelihood of observing an audio measurement vector Za consisting of
particular measurements {τ̃ij}, i, j = 1...N, for a given system state S. It is easy
to do that. Assume that the state S corresponds to the source position (xs, ys, zs)
and microphone positions (xi, yi, zi), i = 1...N. (In case of moving sensors, the
microphone positions may change over time). Then, define the distance χi from
the source to the ith microphone as χ2i = (xs−xi)2+(ys−yi)2+(zs − zi)2 . The
TDOA set for this system state is simply τij = (χj − χi)/c, where c is the sound
speed. Now, we define the audio error measure εa between TDOAs for the state S
and the observed set of TDOAs as

ε2a =

µ
N

2

¶−1 X
1≤i<j≤N

(τij − τ̃ij)
2 (8)

and the data likelihood estimation Pa(Za|S) as
Pa(Za|S) = 1√

2πσa
e−ε

2
a/2σ

2
a (9)

(On a side note, a probabilistic audio source localization algorithm similar to
the one described here is computationally more expensive but is superior to the
algorithms that use pairs of cross-correlation values and perform intersection of
multiple cones of equivalent time delays, since one invalid cross-correlation can
throw the resulting intersection vastly off position. In contrast, a probabilistic
approach does not require unstable inverse calculations and is shown to be more
robust – see, for example, [19]).
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2.6 Occlusion handling
The combined audio-video data likelihood estimation for the multimodal particle
filter P (Z|S) is obtained by multiplication of the corresponding audio and video
parts: P (Z|S) = Pv(Zv|S)Pa(Za|S). Note that the final formula consists simply
of a product of multiple Gaussians, one per component of the measurement vector.
This property allows the tracker to handle partial measurements, which can be
due to occlusion of the tracked object from one of the cameras, or due to missing
values for some of the TDOA estimations due to noisy or weak audio channels. In
these cases, the part of the product that corresponds to the missing measurement
is simply set to a constant value, meaning that the missing measurement does
not give any information whatsoever. The tracking can still be performed as long
as there is sufficient enough information to localize the object, no matter which
particular sensor it is coming from. This allows the tracker to perform well when
separate audio and video trackers would fail. We performed some experiments
with real data and show in a later section the recovered track of the person through
occlusion in one camera.
Occlusion handling and misdetection handling are also simplified by the un-

derlying mechanisms of the particle filter. The PDF of the process is concentrated
around the area in the system state space which the system is predicted to occupy
at the next time instant, thus vastly decreasing the probability of misdetection
since only the space near the predicted system state is densely sampled. If there is
insufficient information available to perform tracking due to full or partial occlu-
sion, the PDF of the process begins to widen over time, reflecting an uncertainty
in the determination of the system state. The PDF still continues to be clustered
around the point in the state space where the object is likely to reappear again,
greatly improving the chances of successfully reacquiring the object track after
the occlusion clears. If the object is not detected for such a long time that the
width of the PDF reaches a certain threshold, the tracker is reinitialized using a
separate detection algorithm (described below) and tracking is started over.

2.7 Face detection and tracking
To initially locate people in the scene, we use a template matching algorithm
on a skin color image which works sufficiently well in the videoconferencing
environment. The assumption for the method to work is that people are facing the
camera, which is usually true for videoconferencing. Our face detection algorithm
is described in [18]; here, we give only a brief outline of the processing. The skin
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Figure 1: Sample screenshot from the face detection algorithm and three frames
from a sequence of head tracking.

color is detected using R/B and G/B color intensity ratios γrb and γgb for a
pixel with intensity I = (R,G,B). These are compared to the “correct” values
which correspond to the skin color γ̂rb(I) and γ̂gb(I) which are acquired by hand-
localization of the face area in several sample images. Due to non-linearity of
the camera CCDs, these reference values depend on the brightness of the pixel in
the scene; the functions γ̂rb(I) and γ̂gb(I) are obtained by sampling sample face
images at pixels with different intensities. Then, if the following three conditions
are satisfied, the pixel is assumed to have the skin color:

Îl < I < Îh,
γ̂rb − ζ < γrb < γ̂rb + ζ,
γ̂gb − ζ < γgb < γ̂gb + ζ.

(10)

The first condition rejects too dark or too bright pixels since they are often
mis-recognized as skin color pixels due to non-linearity of the camera CCD. The
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second and third conditions perform actual testing for the skin color. In our im-
plementation, Îl = 0.1, Îh = 0.9 and ζ = 0.12.
Then, the image is divided into blocks of 8x8 pixels. These blocks are clas-

sified according to the number of skin color pixels inside, and a connected com-
ponents algorithm is executed on the blocks to find skin color blobs. For every
blob found, template matching is performed with a simple oval-shaped template
with different template center positions and template sizes. If the best score is less
than a certain threshold, the skin color blob is rejected. Otherwise, some heuristic
features that are characteristic to the face image are tested (eyes, lips, nose and
forehead areas). If these features are present, the algorithm decides that a face
image is found. Experimental results show that the algorithm is sufficiently fast
to operate in real-time, robust to illumination changes, and capable of detecting
multiple faces.
After successful localization, the head tracking algorithm described in [6] is

invoked on an image sequence, and the output of this subtracker constitutes video
measurements. The tracking algorithm is based on the head tracking using shape
matching and object color histogram. (In principle, it can be incorporated directly
into the main tracker). The head is modelled by an ellipse with a fixed vertical
orientation and a fixed aspect ratio of 1.2 similar to [16]. The ellipse state is
given by s = (x, y,σ), where (x, y) is the center of the ellipse and σ is the mi-
nor axis length of the ellipse. We use quasi-random points for sampling instead
of the standard pseudo-random points since these points improve the asymptotic
complexity of the search (number of points required to achieve a certain sampling
error), can be efficiently generated and are well spread in multiple dimensions (see
[6] for details). For a given tolerance to tracking error, the quasi-random sampling
needs a significantly lower number of sampling points (about 1/2) as compared
to pseudo-random sampling, thereby speeding up the execution of the algorithm
significantly. Our measurement model is a combination of two complementary
modules (see [16] for why this is good), one that makes measurements based on
the object’s boundary and the other that focuses on the object’s interior (color
histograms [17]). Figure 1 shows a sample screenshot from the face detection al-
gorithm and three frames from the head tracking sequence in the case where two
persons are presented. The tracker is able to tolerate temporary occlusions and
switches back to the correct target after the occlusion is cleared.
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2.8 Turn-taking detection
For applications in videoconferencing, meeting recording or a surveillance sys-
tem, it is often desirable to know the high-level semantic structure of the scene
and to provide an annotated transcript of the meeting. This information can be
later used for content-based retrieval purposes. Our system can create such an
annotated transcript. Currently, no speech recognition is performed; the only in-
formation available is the set of associations between the segments of a audio
recording and the thumbnails of a corresponding speaker.
To perform audio annotation, we detect the speaker change event during the

tracking. The speaker change event is deemed to have occurred when a) the au-
dio localization data significantly disagree with the position of current tracked
speaker, and b) the face is recognized at or near the position of a new sound
source. The color histogram of the image of the speaker is used to maintain iden-
tity of speakers. The recorded turn-taking sequence is used to segment the audio
data into parts corresponding to individual speakers. Examples of such recordings
are given later in the experimental results section.
We also optionally perform acoustic beamforming using the determined posi-

tion of the speaker, as provided by the tracking algorithm. Simple delay-and-sum
beamforming is used, achieving SNR gain of about 7 dB. The beamforming algo-
rithm removes noise and interference from the recorded voice, allowing a speech
recognition engine to be used on the recorded audio portions. [18]

3 System setup
To evaluate the suitability and performance of the developed tracking and event
detection algorithms, we have built an experimental system which includes two
cameras and two microphone arrays. We use two different setups, one of which
is targeted for videoconferencing applications and the other for ultrasonic sound
localization. In this section, we briefly describe these setups.
The videoconferencing setup includes two cameras and two microphone ar-

rays. A single high-end office PC (dual PIII-933 MHZ Dell PC under WinNT)
is used. The video data is acquired using two Sony EVI-D30 color pan-tilt-zoom
cameras that are mounted on two tripods to form a wide-baseline stereo pair. Pan,
tilt and zoom of these cameras is controlled by software through a computer serial
port for videoconferencing translation. The video stream is captured using two
Matrox Meteor II cards. Two microphone arrays are attached to the room wall

13



above the cameras. Each array consists of 7 small button Panasonic microphones
in a circular arrangement. The signal is digitized using a 12-bit PowerDAQ ADC
board at 22.05 KHz per channel. Parallel programming is used to utilize both
processors effectively, achieving a frame rate of a combined audio-visual track-
ing system of approximately 8 frames per second. Much higher frame rates can
be achieved by performing audio and video analysis on separate networked ma-
chines.
The ultrasonic tracking system that is used for more precise localization exper-

iments is set up in a partially anechoic room that is used for bat behavioral studies.
The video data is acquired using two digital Kodak MotionCorder infrared cam-
eras at a frame rate of 240 frames per second. (The room is illuminated only
by infrared light during the experiments to ensure that the bat uses exclusively
acoustic information for navigation). The video stream is recorded on a digital
tape and later digitized using a video capture card. The audio stream is captured
using seven Knowles FG3329 ultrasonic microphones arranged in a L-shaped pat-
tern on the room floor. The bat ultrasonic chirps consist of downward sweeping
frequency-modulated signals ranging from 20 to 50 KHz. The microphone out-
put is digitized at 140 KHz per channel and captured using an IoTech Wavebook
ADC board. Joint audio-visual bat tracking is performed using the described al-
gorithms. The results show that the self-calibration indeed allows for automatic
compensation of inaccuracies in knowledge of sensor positions.

4 Results
We perform several experiments with synthetic and real data in both operating
environments to test the performance and robustness of the tracking algorithms.
First, we evaluate algorithm performance on synthetic data using fixed cameras
and fixed microphone array positions. Then, we test the self-calibration ability of
the algorithm by introducing an error in the microphone array position. The third
experiment deals with the case when both the object and the sensors are in motion;
we show that for the case of two independently rotating microphone arrays, the
system can recover both the object motion and the array rotations.
Then, we performed experiments with real data for the sound-emitting object

tracking in both setups. We show that the algorithm tracks real objects well, the
self-calibration is performed along with the tracking to bring audio and video
tracks in agreement, and the algorithm is capable of tracking through occlusions.
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Figure 2: Unimodal and multimodal tracking performance.

4.1 Synthetic data
First, we test algorithm performance in the case when the ground truth is available.
Using the ultrasonic tracking system setup, we synthesize the track of an object
moving along a spiral trajectory for one second. The trajectory (X(t), Y (t), Z(t))
is given by

X(t) = sin(2πt), Y (t) = 2− t, Z(t) = cos(2πt), t ∈ [0, 1] (11)

All parameters of the system are taken from the real setup. The frame rate is
set to the 240 frames per second corresponding to the real data. At every frame,
the measurement vector corresponding to the true object position is computed.
Then, a random Gaussian noise with zero mean and deviation of σv = 3% for
video measurements and σa = 8% for audio measurements is added to every
component of the vector. The tracker is run on an obtained synthetic data trace
and average tracking error is computed over 128 runs for different number of par-
ticles. In Figure 2, the average tracking error for video-only based tracking (with
all acoustic measurements omitted), for audio-only based tracking and for multi-
modal tracking is plotted versus log-number of particles. Note that the horizontal
axis is logarithmic and the number of particles ranges from 1024 to 131072. It
can be seen that the performance of the combined tracker is better than for both
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Figure 3: Plot of the percentage improvent in the performance of audio-video
tracker vs the performance of audio-only tracker for different combinations of
audio and video measurement uncertainty.

unimodal cases, and the performance increases as the number of particles grows.
The smallest tracking error obtained is approximately 16.5 mm; this is an almost
threefold improvement over a pure object detection in every frame without track-
ing, which gives an error of approximately 38.3 mm.
Since the plots in Figure 2 represents only one combination of σv and σa, we

also tested the performance of the tracking algorithm for different combinations
of σv and σa to see if a consistent performance improvement is obtained with
a second modality. Figure 3 shows the improvement of the performance of the
combined audio-video tracker relative to the performance of audio-only tracker
(i.e., the effect of adding the video modality to the tracker). The performance
improvement is defined as a percentage decrease of the tracking error (if the er-
ror is halved, the performance improvement is 50%). Every point in the plot is
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Figure 4: Plot of the percentage improvent in the performance of audio-video
tracker vs the performance of video-only tracker for different combinations of
audio and video measurement uncertainty.

computed by averaging results from 128 runs; 4096 particles were used in the
simulations. Five curves are plotted for different levels of noise contamination of
the audio-only (base) tracker. The values of the standard deviation of the audio
measurement noise, σa, are shown as “Ua” in the legend, and each curve shows
the dependence of the improvement on σv. For example, the bottom curve re-
flects the addition of video modality with different degree of contamination (σv
varying from 2% to 10%) to a case where the audio modality is quite accurate
(σa = 2%). Note that for the abcissa the measurements are cleaner towards the
right edge of the plot. It can be seen that addition of noisy video modality to clean
audio (σa = 2%, σv = 10%, left end of the bottom curve) improves the perfor-
mance only slightly (by about 10%), as can be reasonably expected, and addition
of clean video modality to clean audio modality (σa = σv = 2%) improves the
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performance by about 50%, which is also reasonable. The top curve represents the
opposite case when the audio modality is contaminated significantly (σa = 10%);
when clean video is added (right point of the top curve), the tracking error de-
creases by 75%, and when noisy video is added to noisy audio the improvement
is again about 50%. Indeed, it can be seen from the plots that the performance
improvement is about 50% when σv = σa. The performance gain is small when
a noisy modality is added to a cleaner one and larger in the opposite case, but
the gain is always present. Figure 4 represents the complementary case when au-
dio modality is added to the video-only tracker. Five curves for different level
of noise contamination of the video-only (base) tracker are plotted, and the same
trends can be observed. The important results shown by this experiment is that the
performance improvement is consistent and systematic, that the modalities have
the same relative importance and that the addition of even a seriously contami-
nated modality to a clean one produces noticeable performance gain, when both
are present, and provides tracker robustness when one of the modalities is absent.
Then, the sensor motion recovery capability of the algorithm was tested. We

used two L-shaped microphone arrays placed on the ground, rotating with differ-
ent speeds of 0.5 and 0.25 radians per second in opposite directions. The object is
moving along the same spiral trajectory as before. The rotation was modeled by
adding two rotation angles and two rotational velocities into the state of the sys-
tem. The measurement vector was computed using true microphone coordinates
and the object position. Then, random Gaussian noise with the same parameters
as before was added to the measurement vector. Due to lack of space, we show
only one result here, which corresponds to the simultaneous tracking and sensor
motion recovery using only one fixed camera. The algorithm succeeds in tracking,
despite the fact that using any sensor alone is not sufficient to recover full object
motion and the sensor’s relative geometry is constantly changing. We show the
plot of recovered sensor motion in Figure 5; the solid lines correspond to the true
sensor rotation angles, and the dashed lines are the estimations computed by the
tracking algorithm. The object tracking error for this set of experiments is only
slightly increased (approximately 21.4 mm) compared to the case of two static
arrays and two static cameras (16.5 mm). The same results were obtained for the
case of two rotating cameras and one fixed microphone array.

4.2 Real data
We use the developed algorithms to perform tracking of the echolocating bat in a
quiet room. The bat is allowed to fly freely in the flight area and to hunt for a food
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Figure 5: Rotating sensor motion estimation.

item (a mealworm) suspended from the ceiling. In earlier experiments, we noticed
that there was disagreement between bat trajectories recovered by audio and video
means, although their shapes were similar. This was attributed to the fact that mi-
crophone coordinates were determined using the image of the microphone array
from two calibrated cameras, which is not very accurate for the points far from the
area where the calibration object was located. That led to the idea to perform ad-
justment of the microphone array position and orientation as tracking progresses.
The array is built of a long L-shaped tube with microphones attached to it, so the
relative positions of sensors within the array are known exactly. Therefore, we
introduce three additional parameters – (xa, ya) positions of the array center and
the rotation angle around the center θa – into the state vector of the system. Since
the array lies on the floor, these parameters fully describe possible inaccuracy of
the array placement. The tracking is performed in the nine-dimensional space
[x y z ẋ ẏ ż xa ya θa] to simultaneously estimate the bat trajectory and the array
position.
The results from one of the cases are shown in Figure 6. The bat flies from

right to left, and the plot shows a plan view of the room. The solid line corre-
sponds to the bat position estimated by video means only. The crosses are the
audio estimations; they are discrete because the bat emits echolocation calls only
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Figure 6: An object track recovered with and without self-calibration.

intermittently. The bat behavioral pattern can be seen in the picture as infrequent
vocalizations in the beginning of trajectory (search stage), a series of frequent
calls in the middle (target approach stage) and the following silence (target cap-
ture stage); after that, the bat is again in the search mode. It can be seen from
the track that there is a disagreement of about 0.2 meters between video and au-
dio position estimations. The multimodal tracker with a fixed microphone array
position estimated from video is run first. The output is shown in the plot with
a dashed line. The combined trajectory correctly lies in-between the audio and
video tracks. Still, it is desirable to eliminate misalignment between modalities;
to perform that, we run a self-adjusting tracker. The output is shown with a dot-
ted line. The new trajectory lies substantially closer to the video estimation, and
after a while the parameters describing array shift (xa, ya, θa) stabilize around val-
ues (−0.22,−0.17, 0.067) which presumably correspond to the error in the array
placement. The experiment shows that the tracker successfully recovers both the
bat trajectory and the error in the sensor placement.

4.3 Occlusion handling
Another advantage of the proposed multimodal tracking algorithm is its ability
to handle temporary absence of some measurements. As described before, this
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Figure 7: Track of the (X,Y)-coordinates of a person through a simulated occlu-
sion.

is done by setting the members of the cumulative data likelihood that correspond
to the missing measurements to constant values. For the video measurement, the
measurement is marked as missing if the face detector was not able to find a face
in a image. For the audio TDOA values, the measurement is not used if it does
not pass certain consistency checks (more details in [18]). To demonstrate the
possibility of tracking through occlusion, in Figure 7 we show a case of a speaking
person tracked in a videoconferencing setup.
The plot shows coordinates of a speaking person moving from left to right and

going down and up in the meantime. The video-only based trajectory estimation
is shown as a solid line and is obtained using the face detector described previ-
ously. The crosses show the successive audio estimations of the speaker position.
The audio localization is less accurate in the videoconferencing setup since the
array baseline and the discretization frequency are substantially less than in the
anechoic room setup. Still, the audio estimations follows the video track pretty
well (note that the whole vertical axis span is only 0.5 meters). We simulate the
face occlusion in one camera field of view by omitting the measurements from one
camera when the person is within a marked rectangular area on the plot. The out-
put of the tracker is shown as the dotted line. Tracking is performed successfully
using partial measurements; the tracker output deviates from the video trajectory
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during occlusion since the audio information gets higher relative weight now, but
still stays close to the correct trajectory. The tracker recovers quickly once the
occlusion is cleared.

4.4 Annotated meeting recording
The developed multimodal tracking system has the ability to detect change in an
active speaker and to rotate the active videoconferencing camera to point to the
currently active speaker. In addition, the algorithm segments the audio record-
ing of a meeting into pieces corresponding to the activity of individual speakers.
We collected multimodal data during three simulated meetings of different types
(lecture-type meeting where there is one primary speaker and occasional short in-
terruptions occur, seminar-type meeting where speaker roles are equal and typical
length of a speech segment by one person is significant, and informal talk or chat
between participants where speaker changes and interruptions are quite frequent).
Figure 8 shows the sequence of speaker changes for those three sequences. The
time axis is horizontal and covers 80 seconds of meeting time. The bold line in
the plot indicates the active speaker. Small icons attached to the tracks show the
identities of individual speakers automatically captured and stored by the system.
An audio recording of the meeting, enhanced by beamforming, is subdivided ac-
cording to the turn-taking sequence and later is used to select parts corresponding
to activities of individual speakers. A separate graphical user interface can be user
later to retrieve several such recordings at once and selectively play back record-
ings or parts of recordings containing only the speaker(s) of interest.

5 Summary and Conclusions
We have developed a multi-modal sensor fusion tracking algorithm based on par-
ticle filtering. The posterior distribution of the system intrinsic parameters and
the tracked object position are approximated with a set of points in combined
system-object state space. Experimental results from a developed real-time sys-
tem are presented showing that the tracker is able to seamlessly integrate multiple
modalities, cope with temporary absence of some measurements and perform self-
calibration of a multi-sensor system simultaneously with object tracking.
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Figure 8: Three sample turn-taking sequences (speaker versus time). Speaker
icons show the identity of each speaker as automatically captured by system.
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