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Abstract— We consider 6d inertial measurement units (IMU)
attached to rigid bodies, e.g. human limb segments or links
of a robotic manipulator, which are connected by hinge joints
and spheroidal joints. Novel methods for joint axis estimation
and joint position estimation are presented that exploit the
kinematic constraints induced by these two types of joints.
The presented methods do not require any knowledge about
the sensor units’ positions or orientations and do not include
integration, i.e. they are insensitive to measurement bias.
By means of a three-links simulation model, the estimation
algorithms are validated and convergence is analyzed. Finally,
the algorithms are tested using experimental data from IMU-
based human gait analysis.

I. INTRODUCTION

Inertial measurement units (IMU) have been used in
a multitude of applications and have recently caught
increasing attention in the field of human motion analysis.
Typically, each limb segment is equipped with one IMU
and the goal is to measure position and orientation of
the links as well as one, two or three joint angles, in
case of a hinge, saddle or spheroidal joint, respectively.
Apparently, this information can be gained from the
measured accelerations and angular velocities by strap-down
integration and some coordinate transformation. However,
two fundamental problems arise: One is that since even
highly accurate sensors do not have a bias of exactly zero,
position and angle estimates are always subject to drift.
And the second is that information is required about the
(constant) orientation of the sensor’s coordinate systems with
respect to the joint axis or the segments they are mounted on.

Regarding the drift problem, many suggestions have been
made on how this effect might be overcome, but most of
them are based on additional assumptions like periodic
phases of rest [7], an even ground [6], or a constant magnetic
field [2]. Besides these rather restrictive approaches there
is also considerable work on reducing drift effects by
exploiting the kinematic constraints that the segments of
human limbs or a robotic manipulator are bound to, see e.g.
[1]. And in [5], kinematic constraints are used to calculate
joint angles without requiring any integration. In both cases,
however, the offset vectors from the origins of the sensor
frames to the joint center are assumed to be known. And
even when using more than one IMU per segment, as in
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[8], exactly this information is crucial.

Regarding the orientation problem, a number of previous
approaches, e.g. [3] and [2], used calibration movements in
order to estimate the orientation of the local sensor frame
with respect to a global frame or the joint axis. Apparently,
these techniques can lead to very poor results unless a tight
mechanical setup is used to restrict the motion. A tempting
alternative is to mount the sensors with a predefined
orientation towards the segment or joint, as in [4] and [5].
But besides the fact that this is hard to realize for some
applications, e.g. human gait analysis, the casing of a sensor
unit rarely coincides with its inner coordinate system.

Therefore, there is high demand for methods that enable
accurate estimation of joint positions and joint axes with
respect to the local sensor frames. In this contribution we
will demonstrate how this information can be extracted from
the measurement data of almost arbitrary movements by
exploiting the kinematic constraints of the respective joints.
Section II explains how the reduction in degrees of freedom
become manifest in the accelerations and angular velocities
of the sensor units. A geometric model is introduced in
Section III in order to provide a proof of concept and more
insight into the underlying ideas. Finally, in Section IV, we
present experimental results based on inertial measurement
data from a human gait analysis.

II. EXPLOITING KINEMATIC CONSTRAINTS

A. Constraints induced by hinge joints

Consider two rigid segments that are free to rotate and
move in space but are connected by a hinge joint, as depicted
in Fig. 1. The segments shall be called the first and the
second segment, and each of them shall be equipped with a
three-dimensional gyroscope that is attached to the segment
in some arbitrary orientation. The unit joint axis vector with
respect to the local coordinate system of the first segment’s
gyroscope shall be referred to as j1. And j2 shall be the very
same unit joint axis vector but seen from the local coordinate
system of the second segment’s gyroscope. Moreover, let the
angular velocities of the gyroscopes, in the coordinates of
their local frames, be g1(t) and g2(t) for the first and the
second segment, respectively. Then it is a geometrical fact,
that g1(t) and g2(t) differ only by the joint angle velocity
and a (time-variant) rotation matrix. Hence their projections
into the joint plane1 have the same lengths for each instant

1i.e. the plane to which the joint axis is the normal vector
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in time, which is equivalent to

||g1(t)× j1||2 − ||g2(t)× j2||2 = 0 ∀t, (1)

where || · ||2 denotes the Euclidean norm. This fact turns out
to be very useful when faced with the task of identifying
the hinge joint axis in case the orientation of the sensors
towards the segments is unknown. One can simply choose
a large set of gyroscopic data from both sensors and search
for the vectors ĵ1 and ĵ2 that fulfill (1) in a least-squares
sense. Therefore, we calculate the gradients of the left-hand
side terms of (1) with respect to j1 and j2:

d(||gi(t)× ji||2)

dji
=

(gi(t)× ji)× gi(t)
||gi(t)× ji||2

, i = 1, 2. (2)

This can be used, e.g., in a Gauss-Newton algorithm, as
further explained in Section III-B. Of course, the motion
of the segment should be such that the joint axis can be
identified. If the joint angle remains constant, i.e. the links
are rigidly connected, then g1(t) = Rg2(t), where R is
the constant rotation matrix from the second to the first
sensor frame. Therefore, (1) holds for any combination
(j1, j2), j1 = Rj2, no matter what movement is performed.
But it takes as little as rotating the first segment while the
second is fixed, and then vice versa, to make the kinematic
constraint become manifest in the gyroscopic measurement
data.

The result of the Gauss-Newton algorithm may then, e.g.,
be used to calculate (ĵ1 · g1(t) − ĵ2 · g2(t)) which gives
an estimate of the joint angle’s time derivative. However, it
should be noted that (1) is indifferent to the signs of both j1
and j2. Therefore, we need a criterion to determine whether
the gained estimates ĵ1 and ĵ2 are aligned or misaligned. In
practice, this information can easily be gained by restricting
the mounting of the sensor units such that, e.g., both z-axes
globally point into the same half-space. However, if such
information is not available, then alignment can as well be
checked based on the measurement data, as we will see in
Section III-C.

Fig. 1. Two rigid segments that are connected by a hinge joint, each
of them equipped with a three-dimensional gyroscope (represented by its
local coordinate system). The orientations of the gyroscopes towards their
segments are assumed to be, and in many application actually are, unknown.

Fig. 2. Two rigid segments that are connected by a spheroidal joint,
each of them equipped with a six-dimensional inertial measurement unit
(IMU) consisting of a gyroscope and an accelerometer (represented by their
common local coordinate system). Both the exact locations of the IMUs and
their orientations towards their segments are assumed to be, and in many
application actually are, unknown.

B. Constraints induced by spheroidal joints

Now we consider two links connected by a spheroidal
joint, as depicted in Fig. 2. Since this joint has three degrees
of freedom, there is no general relation between the measured
angular velocities of the first and the second sensor. In order
to exploit the kinematic constraints we need to incorporate
the accelerometer readings. Let the accelerations of the
sensors be a1(t) and a2(t) for the first and the second
segment, respectively. And define o1 and o2 as the offset
vectors from the joint center to the origin of the first and the
second sensor frame, respectively2. Then we claim that

||a1(t)− Γg1(o1)||2 − ||a2(t)− Γg2(o2)||2 = 0 ∀t, (3)
Γgi(oi) := gi(t)× (gi(t)× oi) + ġi(t)× oi, i = 1, 2,

where Γgi(oi) is the (radial and tangential) acceleration
due to rotation around the joint center. Therefore, (a1(t) −
Γg1(o1)) yields the acceleration of the joint center in the
coordinates of the first local frame, which must equal
(a2(t) − Γg2(o2)) up to multiplication by some rotation
matrix. Hence (3) holds for each instant in time and can
be used to estimate o1 and o2 from a large number of data
sets (a1(tk), a2(tk), g1(tk), g2(tk))Nk=1. The gradients of the
left-hand side terms is found to be

d(||ai(t)− Γgi(oi)||2)

doi
=

ΓT
gi(ai(t)− Γgi(oi))

||ai(t)− Γgi(oi)||2
, (4)

ΓT
gi(oi) := (oi × gi(t))× gi(t) + oi × ġi(t), i = 1, 2,

where the matrix-multiplication representation of ΓT
gi

happens to be the transpose of the matrix-multiplication
representation3 of the previously defined Γgi .

Again, for a good estimation it is required that the motion
is rich enough to make the constraint become manifest in the

2Note that, just as before, the subscripts 1 and 2 indicate that the vectors
are in the coordinates of the first and second local frame, respectively.

3i.e. the matrix Ggi ∈ R3×3 that satisfies Ggioi = Γgi (oi) ∀oi ∈ R3
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Fig. 3. Kinematic simulation model of three segments connected by a hinge joint (axis marked blue) and a spheroidal joint. Left: Each simulated inertial
measurement frame (red) is rigidly connected to its segment (black) with randomly chosen location and orientation. Middle: Random initial values are
generated for the joint axis estimates of the two upper sensors (shifted to hinge joint center) and for the joint position estimates of the lower two sensors.
Right: After a few seconds of leg and foot circling, and about ten Gauss-Newton steps, the estimates have converged to the true values. See also [9].

measurement data. Note, e.g., that if we restrict the (relative)
motion of both segments to only one plane, then we basically
have a hinge joint instead of a spheroidal joint, and (3) is true
for all points along the (virtual) hinge joint axis. This as well
as the feasibility of the estimation itself will be validated by
simulation in the next section.

III. MODELING AND SIMULATION

A. A three-segments model

A kinematic simulation model is developed, which
consists of three segments connected by a hinge and
a spheroidal joint, see Fig. 3. Each simulated inertial
measurement unit is rigidly connected to the respective
segment. Prior to each simulation run, the positions and
orientations of the sensors’ coordinate systems are chosen
randomly from reasonable intervals. The true joint axis and
joint position, in the coordinates of the respective sensor
frames, is calculated and stored for comparison with the
estimates. Subsequently, the segments perform a user-defined
motion including translation and rotation within the bounds
of the kinematic constraints. Based on an adjustable sample
rate, the accelerations and angular velocities of the sensors
are computed in the coordinates of their local frames. A
user-defined amount of measurement noise is added, and
the data is then provided to the estimation algorithms.

B. Algorithm implementation

Assume that N data sets, precisely (g1(tk), g2(tk))Nk=1,
are provided, where N � 4. By restricting the joint axis
estimates to unit length, the estimation problem becomes
four-dimensional. Accordingly, ĵ1 and ĵ2 are parametrized

in spherical coordinates, i.e.

x : = (φ1, θ1, φ2, θ2)T ,

ĵ1 = (cos(φ1) cos(θ1), cos(φ1) sin(θ1), sin(φ1))T , (5)

ĵ2 = (cos(φ2) cos(θ2), cos(φ2) sin(θ2), sin(φ2))T ,

where φi and θi are inclination and azimuth of ĵi in the ith

sensor’s coordinate system, i = 1, 2. We generate random
initial values for both the inclinations and azimuths, see e.g.
Fig. 3, and the following update procedure is applied:

1) Use (5) to calculate ĵ1 and ĵ2 from x.
2) Calculate the error vector e ∈ RN×1 defined by

e(k) := ||ĵ1×g1(tk)||2−||ĵ2×g2(tk)||2, k = 1, ..., N .
3) Use (2) and (5) to calculate the Jacobian de

dx as well
as its Moore-Penrose-pseudoinverse pinv( de

dx ).

4) Update x by x = x− pinv( de
dx ) e and repeat from 1).

A similar update scheme is applied for the estimation
of the spheroidal joint’s offset vectors, but here x is
the concatenation of o1 and o2. The error is defined
by e(t) := ||a1(t) − Γg1(o1)||2 − ||a2(t) − Γg2(o2)||2,
and instead of (2) we use (4) for the calculation of the
Jacobian. Therefore, and for the error equation itself,
the time-derivatives of g1(t) and g2(t) are required. A
noise-rejecting non-causal low-pass filter combined with a
simple difference quotient approximation is used and will
prove to give good results in Section IV, although more
sophisticated approaches may exist.

It may seem that the proposed algorithms require
large-scale numerics. However, the matrix that needs to be
inverted in the calculation of the pseudoinverse is at most of
dimension six. Furthermore, for normal-speed motions and
at common sample rates of 50 Hz to 300 Hz, it is sufficient
to use only every third to tenth sample, since data sets with

47



almost the same angular velocities hardly contribute to the
estimation. This also holds the advantage that the proposed
algorithms work well with considerably low sample rates.

In addition to the above, it should be mentioned that there
are many other least-squares implementations that might be
considered. As an online modification, e.g., one might start
applying the given update procedure as soon as a minimum
number of data sets, typically about ten, is available and
then repeat the loop (multiple times) whenever a new data
set is added. Then N increases gradually and every updated
estimate serves as a (very good) initial condition to the
next larger least-squares problem. Furthermore, please note
that in both estimation algorithms one might also divide
the difference of the two norms in the error equation by
the mean of both, and thus use a relative error instead.
However, in the presence of measurement errors we prefer
to give more weight to the data sets that yield large norms.
Hence we use the absolute errors, as defined above.

C. Simulation results

Both estimation algorithms are tested for various motions,
sample rates, and noise amplitudes, both online and offline.
It is found that two to three periods of (simultaneous)
small-amplitude oscillations in the direction of each degree
of freedom already yield enough data for an accurate
estimation. Moreover, even for a few hundred randomly
chosen initial conditions, the estimates always converge to
the close proximity of the true values within five to ten
iterations, see e.g. Fig. 3. At a signal-to-noise ratio of 100,
the estimated joint axes and the true axis confine angles of
less than 1◦, while the joint position estimates differ from
the true values by less than 3%.

Now we can use the hinge joint axis estimates to decom-
pose, for each sample, the angular velocities into a rotation
rate around the joint axis and a component orthogonal to
that, i.e. the projection into joint plane.

gi,proj(t) = gi(t)− (gi(t) · ji)ji, i = 1, 2 (6)

Thereby we gain a little more insight into the idea behind
(1), since, if we plot the projections for both sensors, as
in Fig. 4, then we find that they have the same length for
each sample. Moreover, if we corrected them point-wise by
the respective rotation around the joint axis, then we would
obtain two traces that are equal up to a rotation around the
origin. This can easily be used to check the alignment of
the axis estimates, since, if they are misaligned, then one of
the traces will be mirrored.

Similarly, one might calculate (ai(t) − Γgi(oi)), as
defined in (3), for both sensors next to the spheroidal joint.
Then for each sample one would obtain two vectors that are
equal up to (three-dimensional) rotation around the origin
by the (time-dependent) joint angles plus some constants.

For an illustration, please refer to [9].

As a final test, we apply the joint position estimation to the
measurement data of the sensor units next to the hinge joint.
Is is found that almost every run converges to a different pair
of offset vectors but each pair describes a point that happens
to lie on the hinge joint axis. On the contrary, applying the
joint axis estimation to the measurement data of the sensor
units next to the spheroidal joint yields no convergence at all.
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Fig. 4. The 3d measurements of two gyroscopes attached to the ends of a
hinge joint are projected into the joint plane: For each moment in time the
projections have the same length. Moreover, due to kinematic constraints
the two curves are congruent up to a rotation around the origin by the (time-
dependent) joint angle plus some constant. Since the joint angle only varies
by ±10◦ in the given simulation, the curves are hardly distorted.

IV. EXPERIMENTAL RESULTS

For the sake of experimental validation of the proposed
estimation algorithms, we apply them to measurement
data from an IMU-based gait analysis. Wireless motion
trackers4 are attached to the right thigh, shank and foot
using elastic straps. The true position and orientation of the
local sensor frames towards the ankle and knee are roughly5

determined using a combination of manual measurements
and calibration movements, as in [5] and [2], respectively.
Subsequently, the subject performs leg and foot circling for
about five seconds and then walks about thirty meters at
average speed. The accelerometer and gyroscope readings
are recorded and provided to the algorithms developed
above at a sample rate of 40 Hz.

One hundred runs are performed using random initial

4xsens MTw, http://www.xsens.com
5i.e. up to the limitations in accuracy that are inherent to these methods
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values and different subsets6 of the available data to analyze
both convergence and variance of the estimations. Results
are presented in Fig. 5. In all runs, both the knee joint
axis and the ankle joint position are identified correctly
within less than twenty iterations. However, the error vector
norms do not entirely converge to zero and the final values
vary by about ±0.01. This is not surprising, since the
sensor-to-leg connections are not very rigid, and since the
knee and ankle are not exactly a hinge and a spheroidal
joint. But apparently, the least-squares approach can cope
with these inaccuracies and still yield accurate estimates.
Of course, significantly higher accuracy and less variance
is expected in more rigid setups such as robotic manipulators.

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

4 8 12 16 20
num ber of update steps

jo
in

t 
a

x
is

 c
o

o
rd

in
a

te
s 

[ 
]

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5 6 7 8 9
num ber of update steps

o
ff

se
t 

v
e

ct
o

r 
co

o
rd

in
a

te
s 

[m
]

Fig. 5. Joint axis and position estimation from IMU-based gait analysis
data. For one hundred random initial values and with different subsets
of the available data stream under consideration, the estimates always
converge to the true values (marked by semicircles) within less than twenty
iterations. The final values show little variance despite the flexibilities in
the mechanical setup.

V. CONCLUSIONS AND FUTURE WORKS

We proposed least-squares methods for the estimation
of joint axes and positions from 6d inertial measurement
data. Explicit analytic expressions of the required Jacobians
have been provided as well as an example for algorithm
implementation and a number of optional modifications. It
was demonstrated that, regardless of the choice of initial
estimates, convergence to the true values is obtained both
in simulation and experiment. Due to the nature of the
approach, very small sample rates suffice and neither
integration nor knowledge on the sensor mounting is
required. The drawback of potential misalignment of the

6Note, however, that all subsets include data from both the circling and
the walking phase.

axis estimates has been addressed and two simple practical
solutions have been suggested. Finally, the reliability of the
algorithms in the context of human gait analysis has been
demonstrated.

Further fields of application include robotic manipulators,
linked vehicles, or any other mechanical setup in which
rigid bodies are connected by joints. In any case, the sensor
units can be attached in arbitrary position and orientation,
and calibration movements become obsolete. The obtained
estimates can be used to calculate joint angles, to transform
the sensors readings into joint-related coordinate systems,
or to apply bias-eliminating techniques as in [1]. Future
work will be concerned with such extensions and with
the identification of angle-dependent joint axes and positions.
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01EZ1112), and Steffen Schäperkötter’s help with the exper-
iments, as well as Timo von Marcard’s advice regarding the
sensors.

REFERENCES

[1] A.D. Young, ”Use of Body Model Constraints to Improve Accuracy
of Inertial Motion Capture”, International Workshop on Wearable
and Implantable Body Sensor Networks, Pages 180-186, International
Conference on Body Sensor Networks, 2010.

[2] K.J. ODonovan, R. Kamnik, D.T. OKeeffe, G.M. Lyons, ”An inertial
and magnetic sensor based technique for joint angle measurement”,
Journal of Biomechanics, Volume 40, Issue 12, 2007, Pages 2604-
2611.

[3] J. Favre, B.M. Jolles, R. Aissaoui, K. Aminian, ”Ambulatory mea-
surement of 3D knee joint angle, Journal of Biomechanics”, Volume
41, Issue 5, 2008, Pages 1029-1035.

[4] P. Cheng, B. Oelmann, ”Joint-Angle Measurement Using Accelerom-
eters and Gyroscopes A Survey,” Instrumentation and Measurement,
IEEE Transactions on , Volume 59, Number 2, Pages 404-414,
February 2010.

[5] K. Liu, T. Liu, K. Shibata, Y. Inoue, ”Ambulatory measurement
and analysis of the lower limb 3D posture using wearable sensor
system”, International Conference on Mechatronics and Automation
2009, Pages 3065-3069.

[6] R. Takeda, S. Tadano, A. Natorigawa, M. Todoh, S. Yoshinari, ”Gait
posture estimation using wearable acceleration and gyro sensors”,
Journal of Biomechanics, Volume 42, Issue 15, November 2009, Pages
2486-2494.

[7] T. Liu, Y. Inoue, K. Shibata, ”Development of a wearable sensor
system for quantitative gait analysis”, Measurement, Volume 42, 2009,
Pages 978-988.

[8] K. Liu, T. Liu, K. Shibata, Y. Inoue, R. Zheng, ”Novel approach to
ambulatory assessment of human segmental orientation on a wearable
sensor system”, Journal of Biomechanics, Volume 42, Issue 16,
December 2009, Pages 2747-2752.

[9] Supplemental material, e.g. 3d animations, is available at http://www.
control.tu-berlin.de/IMU-Based Gait Detection and Gait Analysis

49


