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Joint Base Station Clustering and Beamformer
Design for Partial Coordinated Transmission In
Heterogeneous Networks

Mingyi Hong, Ruoyu Sun, Hadi Baligh, Zhi-Quan Luo

Abstract

We consider the interference management problem in a multicell MIMO heterogeneous network. Within each
cell there is a large number of distributed micro/pico base stations (BSs) that can be potentially coordinated for joint
transmission. To reduce coordination overhead, we consider user-centric BS clustering so that each user is served by
only a small number of (potentially overlapping) BSs. Thus, given the channel state information, our objective is to
jointly design the BS clustering and the linear beamformers for all BSs in the network. In this paper, we formulate
this problem from a sparse optimization perspective, and propose an efficient algorithm that is based on iteratively
solving a sequence of group LASSO problems. A novel feature of the proposed algorithm is that it performs BS
clustering and beamformer design jointly rather than separately as is done in the existing approaches for partial
coordinated transmission. Moreover, the cluster size can be controlled by adjusting a single penalty parameter in
the nonsmooth regularized utility function. The convergence of the proposed algorithm (to a stationary solution) is
guaranteed, and its effectiveness is demonstrated via extensive simulation.

. INTRODUCTION

The design of future wireless cellular networks is on the verge of a major paradigm change. In order to
accommodate the explosive demand for wireless data, the traditional wireless network architecture comprised of
a small number of high power base stations (BSs) has started to migrate to the so-called heterogeneous networl
(HetNet) [1], [2]. In HetNet, each cell is composed of potentially a large number of densely deployed access nodes
such as macro/micro/pico BSs to provide coverage extension for cell edge and hotspaot users [2]. Unfortunately, close
proximity of many transmitters and receivers introduces substantial interference, which, if not properly managed,
can significantly affect the system performance.

The interference management problem in multicell downlink networks has been a topic of intensive research
recently. It has been widely accepted that combining physical layer techniques such as multiple input multiple output
(MIMO) antenna arrays with multi-cell coordination can effectively mitigate inter-cell and intra-cell interference
[B]-[5]. There are two main approaches for the coordinated transmission and reception in a multi-cell MIMO
network: joint processing (JP) and coordinated beamforming (CB) [3]. In the first approach, the user data signals
are shared among the cooperating BSs. A single virtual BS can then be formed that transmits to all the users in
the system. Inter-BS interference is canceled by joint precoding and transmission among all the coordinated BSs.
In this case, either the capacity achieving non-linear dirty-paper coding (DPC) (se€,le.g@], [6], [7]), or simpler linear
precoding schemes such as zero-forcing (ZF) (see, €lg.[ [8]-[10]) can be used for joint transmission. However,
centralized processing is needed for the computation of the beamformers. Furthermore, this approach can require
heavy signaling overhead on the backhaul netwark ([5], [11], [12]) especially when the number of cooperating BSs
in the network becomes large.

When the benefit of full JP among the BSs is outweighed by the overhead, the BSs can choose CB as an
alternative reduced coordination scheme. In particular, the beamformers are jointly optimized among the coordinated
BSs to suppress excessive inter-BS interference. In this case, only local channel state information (CSI) and control
information are exchanged among the coordinated BSs. One popular formulation for CB is to optimize the system
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performance measured by a certain system utility functiorfotiunately, optimally solving the utility maximization
problem in MIMO interfering network is computationally intractable in general (except for a few exceptions, see
[13]-[16]). As a result, many works are devoted to finding high quality locally optimal solutions for different
network configurations, e.g., in MIMO/MISO interference channels (IC), [17]-[21] and MIMO/MISO interfering
broadcast channels (IBC) [22]-]24]. In particular, referencé [24] proposed a weighted Minimum Mean Square Error
(WMMSE) algorithm that is able to compute locally optimal solutions for a broad class of system utility functions
and for general network configurations.

A different approach for limited coordination is to group the BSs into coordination clusters of small sizes,
within which they perform JP. In this case, each user's data signals are only shared among a small number of its
serving BSs, thus greatly reducing the overall backhaul signaling cost. Many recent works have developed various
BS clustering strategies for such purpose, elg., [9], [25]-[31], where clusters are formed either greedily or by an
exhaustive search procedure. Once the clusters are formed, various approaches can be used to design beamformi
strategies for each BS. For example, the authors df [28]-[30] utilized the ZF strategy for intra-cluster transmission
without assuming any inter-cluster cooperation. Refererides([9], [25] considered a hybrid cooperation strategy in
which CB is used for inter-cluster coordination. In this way, inter-cluster interference for cluster edge users is
also mitigated. In principle, clustering strategies should be designed in conjunction with the beamforming and BS
coordination strategies to strike the best tradeoff among system throughput performance and signalling overhead.

In this work, we consider the joint BS clustering and beamformer design problem in a downlink multicell
HetNet for general partial coordinated transmission. In our formulation, the BSs that belong to the same cell can
dynamically form (possibly overlapping) coordination clusters of small sizes for JP while the BSs in different cells
perform CB. We formulate this problem from the perspective of sparse optimization. Specifically, if all the BSs
that belong to the same cell are viewed asirggle virtual BS, then its antennas can be partitioned into multiple
groups (each corresponding to an individual BS). Moreover, the requirement that each user is served by a small
number of BSs translates directly to the restriction that its virtual beamformer should avepasparsestructure,
that is, the nonzero components of the virtual beamformer should correspond to only a small number of antenna
groups. This interpretation inspires us to formulate a system utility maximization problem with a hixgd
regularization, as it is well known that such regularization induces the group sparse structure [32]. Incorporating
such nonsmooth regularization term into our objective ensures that the optimal beamformers possess the desirec
group-sparse structure. In this way, our proposed approach can be viewetihgtesstagdormulation of the joint
BS grouping and beamforming problem. The main contributions of this work are listed as follows.

« We propose to jointly optimize the coordination clusters and linear beamformers in a large scale HetNet by
solving a single-stage nonsmooth utility optimization problem. The system utility function (without nonsmooth
penalization) can have a very general form that includes the popular weighted sum rate and proportional fair
utility functions. This approach is different from the existing algorithms, which either require a predefined BS
clustering and a fixed system utility function, or some multi-stage heuristic optimization.

« Since the resulting nonsmooth utility maximization problem is difficult to solve due to its nonconvexity as well
as its nonsmoothness, we transform this problem teguivalentregularized weighted MSE minimization
problem. The latter has several desirable features such as separability across the cells and convexity among
different blocks of variables. This equivalence transformation substantially generalizes our previous result in
[24], which only deals with smooth utility functions.

« We propose an efficient iterative algorithm that computes a stationary solution to the transformed problem.
In each step of the algorithm the computation is closed-form and can be distributed to individual cells. The
algorithm is shown to converge to a stationary solution to the original nonsmooth utility maximization problem,
and its effectiveness is demonstrated via extensive simulation experiments.

The rest of the paper is organized as follows. In Section I, we present the system model and formulate the problem
into a nonsmooth utility maximization problem. We then transform this problem into an equivalent regularized
weighted MSE minimization problem in Sectibnllll. In Section 1V, an efficient algorithm is proposed to solve the
transformed problem. In Sectign V, numerical examples are provided to validate the proposed algorithm.

Notations For a symmetric matrixX, X > 0 signifies thatX is positive semi-definite. We use (), |X|, X
and p(X) to denote the trace, determinant, hermitian and spectral radius of a matrix, respectively. For a complex
scalarz, its complex conjugate is denoted by For a vectorx, we use||x|| to denote its/s norm.I,, is used to
denote an x n identity matrix. We usdy, x_;] to denote a vectok with its ith element replaced by. We use
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RNVXM and CV*M to denote the set of real and compldxx M matrices; We us&" andS¥ to denote the set of
N x N hermitian and hermitian positive semi-definite matrices, respectively. We use the expréssiant b > 0
to indicatea > 0,b > 0,a x b = 0.

[I. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a downlink multi-cell HetNet consisting of a $&t= {1,--- , K} of cells. Within each celk there
is a set ofQ; = {1,---,Qy} distributed base stations (BS) (for instance, macro/micro/pico BSs) which provide
service to users located in different areas of the cell. Assume that in each, ¢bére is low-latency backhaul
network connecting the set of B3, to a central controller (usually the macro BS), and that the central controller
makes the resource allocation decisions for all BSs within the cell. Furthermore, this central entity has access to
the data signals of all the users in its cell. LBt = {1,---,I;} denote the users located in céll Each of the
usersi; € 7, is served jointly by a subset of BSs ;. Let Z denote the set of all the users. For simplicity of
notations, let us assume that each BS hAsransmit antennas, and each user Nageceive antennas. Throughout
the paper, we useé j to indicate the user index, use/ for the cell index, and use,p for the BS index. Let

Hq’Z e CN*M denote the channel matrix between b BS in the/th cell and theith user in thekth cell. Let
HZ £ H, .. ,Hi‘ e CV*MQ: denote the channel matrix between all the BSs infhecell to the usei.

k7
Let vf}j € CM*1! denote the transmit beamformer that BSuses to transmit a single stream of data signal
H
s;, € C to useriy. Definev;, = [(v1 YA (v Q’“)H} € CM@rx1 as the collection of all beamformers intended

Tk

for useriy. Letv £ [v{f ... vi ] . Assume that there is a power budget constraint for eaclyBSe.,

> (I <Py, Vg€ Q, VEEK. )

ik €Ly

Let x € CM*! denote the transmitted signal of B, and letx* = [(x!)7, .- ,(ka)H]H € CM@x1 denote
the collection of transmitted signals of all the BSs in celli.e.

qr dk o . k _ .G
x¥ = E VIS, x" = g Vi, Si, -
1, €Lk 1, €Ly

The received signay;, € CV*! of useriy, is

e
—Hfv. < E k. o E ' E (IR )
- Hik Vi Sig + Hik Vik Sk + Hik VieSie +Z'Lk (2)
JkFik £k jo€L,
intra-cell interference inter-cell interference

wherez;, € CV*! is the additive white Gaussian noise with distribut@n’(0, o7 Iy).
Letu;, € CV*! denote the receive beamformer used by ugéo decode the intended signal. Then the estimated
signal for useriy is: s;, = ugyik. The mean square error (MSE) for uggrcan be written as
ei, 2 Bl(si, —3i,)(5a — 5i,)]
=1 —ul/H} v;, )1 —ullH} v;,)
+ Z uZHE v,V N(HE) u”+o
(€.5)# (ki)

The MMSE receiver minimizes useér’s MSE, and can be expressed as

—1
e (ZH <ka>H+askI) HE v,

£ C;'HY vy, (4)

where C;, denotes usef;’s received signal covariance matrix. The minimum MSE for ugewhen the MSE

This is a manuscript of an article from IEEE Journal on Selected Areas in Communications 31 (2013): 226,
doi: 10.1109/JSAC.2013.130211. Posted with permission.



receiver is used can be expressed as
epmse = 1 — (v, ) (H} )T C;  HY v, . (5)

1k
CIearIy, we havel — ¢ > (. Let us assume that Gaussian signaling is used and the interference is treated
as noise. If we assume that all the BSs in deform a single virtual BS, ther;, can be viewed as the virtual
beamformer for usei;. The achievable rate for usér is given by [33]

R;, =log|In + szVu i (Hk Vi

(Y Hiv,vE@ET +o2Iy) 7. (6)
(€.9)#(k,i)
The above expression suggests that each user can always use a MMSE rEteiver (4) since it preserves achievab
data rate when the interference is treated simply as noise. We will occasionally use the ndtatiensC;, (v)
to make their dependencies enexplicit.

Notice that the rate{6) can only be achieved when all the BSs inkcpérform a full JP. Unfortunately, this
requires the data signal for usigrto be known at all BSs irQ,,, causing significant signaling overhead, especially
when the number of users and BSs becomes large. To reduce overhead, partial cooperative transmission is preferre
whereby each user is served by not all, but a subset, of BSs in the cell. Mathematically, we are interested in jointly
performing the following two tasks) for each usetfiy, identify a small subset of serving BS%, C Q; such
that for eachy, ¢ S;,, v{* = 0; ii) optimize the transmit beamforme{s’{* },, cs, .i.cz, 10 achieve high system
throughput and/or fairness level. With the partial JP, uglr data signal needs to be shared only among BSs in
Si,, rather than among all BSs i@y.

The requirement thgtS;, | is small translates to the restriction thgt should contain only a few nonzero block
components (i.e., most of the beamformésg* },, co, should be set to zero). This structure of the beamformer
v;, Is referred to as thgroup sparsestructure [[32]. Recovering group sparse solutions for optimization problem
has recently found its application in many fields such as machine leaining [34], microarray data anhalysis [35],
signal processing [36]. [37] and communications| [38]. One popular approach to enforce the sparsity of the solution
to an optimization problem is to penalize the objective function with a group-sparse encouraging penalty such as
the mixed¢s/¢1 norm [32]. In our case, such norm can be expressed as. o |vi*|, which is the/; norm of
the vector consists af, norms{||v{*||}, co,. The resulting penalized problem is usually referred to as the group

least-absolute shrinkage and selection operator (LASSO) problem.
With the goal of inducing group-sparse structure of the beamforingrs;, z as well as optimizing system-level
performance, we propose to design the linear transmit beamformers by solving the following problem

max Z Z wiy, (Riy,) — Ak Z [[vi (7)

{Vl:} keEK in €Ly qrE€EQK

st Y (vIHIVI <P, Vg€ Qp VEEK

i €Ly,
wherew;, (-) denotes usei’s utility function, and{\; > 0}k is the set of parameters that control the level
of sparsity within each cell. Penalizing the objective with the nonsmooth mixé€l norm induces the group
sparsity ofv,. To see this, note that the group sparsityvafcan be characterized by the sparsity of the vector
{IIv¥*lI}¢e0., and thef; norm of this vector, which is what we use [d (7), is a good approximation ofhmerm
of it (defined as the number of nonzero entries of the vector); see the literature on compressive sensing [39]. The
reference[[32] contains more discussion on using the mixéd, norm to recover the group sparsity.

Unfortunately, solving(P1) directly is challenging. One reason is that when= 0, Vk, (P1) becomes a sum

utility maximization problem for an interfering broadcast channel, which is proven to be NP-hard for many common
utility functions (seel[13]-H[16]). Another reason is that most existing algorithms for solving the nonsmooth group
LASSO problem such a$ [32], [B6], [40], [41] only work for the case that the smooth part of the objective is
convex and quadraticWe will provide in the next section an equivalent reformulation of this problem in which
these difficulties are circumvented. The reformulated problem can be solved (to a stationary solution) via solving
a series of convex problems.
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[1l. EQUIVALENT FORMULATION

In this section, we develop a general equivalence relationship between the utility maximization p(@&lem
and a regularized weighted MSE minimization problem. This result is a generalization of a recent equivalence
relationship developed in [24] to the nonsmooth setting. The proofs of the results in this section can be found in
Appendix[A.

A. Single User Per Cell with Sum Rate Utility

For ease of presentation, we first consider a simpler case in which there is a single user in each cell. This scenaric
is of interest when different mobiles in each cell are scheduled to orthogonal time/frequency resources, and we
consider one of such resources. We also focus on using the sum rate utility function. Generalizations to multiple
users per-cell case with more general utility functions will be given in the next subsection.

Now that there is a single user in each cell, we denote the uskihimell as usek. We usev}* andH}" to
denote the BSj,'s beamformer for usek, and the channel from Bg to userk, respectively. Defindy, e, v,

Hi andu; similarly. Using the sum rate as the system utility function, the sparse beamforming problem for this
network configuration is given as

max (Rk_/\k Z |ka|) (8)

{vkk}kelc qxE€Qk
st. (ViYIvIE < P,, Vg€ Q YEkeEK.

Let us introduce a set of new weight variablésy }.ci. Consider the followingregularized weighted MSE
minimization problem

min Z (wkek — log(wg) + Ak Z [[viE ||) 9)

{ka} {uk} {wk} ke qr€Qk
st. (ViVIvIE <P, Var€Qk YEeEK

One immediate observation is that fixingu and solving forw admits a closed form solutiony, = é, v k.
Such property will be used in the following to derive the equivalence relationship between problems (B) and (9).
We refer the readers to [24, Section 11.A] for a simple example that motivates this equivalence in the eaée

To formally derive the equivalence relationship, the following definitions (sek [42]) of stationary points of a
nonsmooth function are needed. Note that stationarity is a necessary condition for both global and local optimality.
Let x = [x1,--- ,Xg] be a vector of variables, in whick, € CVx. Let f(-) : C=+Mx1 — R be a real valued
(possibly nonsmooth) continuous function.

Definition 1: x* is a stationary point of the problemnin f(x) if x* € dom(f) and f’'(x*;d) > 0, V d, where
f'(x*;d) is the directional derivative of (-) at x* in the directiond

J(e" ) = i inf (" + M) — F(x)]/
Definition 2: x* is a coordinatewise stationary point afin f(x) if x* € dom(f) and

f(X*—F[O, 707dk707"' 70]) Z.f(X*)a de E(CNIC,
Vx*+10,---,0,dg,0,---,0] € dom(f), Vk=1,--- | K

where[0,--- ,0,dg,0,--- ,0] denotes a vector with all zero components except foktitsblock.

Definition 3: The functionf(-) is regular atx* € dom(f) if f/(x*;(0,---,0,dg,0,---,0)) > 0, V dy €
CNe, VEk=1,---,K implies f'(x*,d) >0, Vd = [dy,---,dxk].

We establish the equivalence between probldrhs (8)[@dnd (9) in the following proposition.

Proposition 1: If (v*,u*, w*) is a stationary solution to probler(@), thenv* must be a stationary solution
to problem(8). Conversely, ifv* is a stationary solution to problen(8), then the tuple(v*,u*, w*) must be a
stationary solution to problen), where

u, =C; ( )Hkvkv wy,
( H(HE) T O ( HEv) ', Vkek
Wlth Ck( ZH/CV@ Vg )H + 0'131
teT
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Moreover, the global optimal solutions® for these two problems are identical.
Notice thatu; andwyj introduced in Propositionl 1 are the MMSE receiver and the inverse MMSE corresponding
to the transmit beamformer* (cf. (4) and [(5)) respectively.

B. Multiple Users Per Cell with More General Utility

In this section, we generalize the equivalence relationship presented in the previous section to the case with more
general utility function and multiple users per cell.

Consider the utility functiony;, (R;, ) that satisfies the following two conditions:

Cl1l) w, (x) is concave and strictly increasing in

C2) w;,(—log(x)) is strictly convex inz for all z satisfyingl > = > 0.

Note that this family of utility functions includes several well known utilities such as weighted sum rate and
geometric mean of one plus rates|[24]. L{@Iik;ikez be a set of real-valued weights. Lgt (-) : R — R denote the
inverse functiorof the derivatived[_“'ik(d_eiljg(e’ik I Consider the followingegularized weighted MSE minimization
problem

(P2) min > ( > (wikeik — w4, (= log(7i, (wiy)))

9k . .
{vik}’{qu}’{wT’k}kG/C ix €Tk

~ v )+ X I92))
qrEQk
st Y (VI <P, Ve Qr VEEK
ik €Ly

ei, defined in[(B)

Similar to Propositio]1, we can establish the following equivalence relationship.

Proposition 2: Suppose for each € Zy, the utility functionu;, (-) satisfies the conditions C1)-C2)(#*, u*, w*)
is a stationary solution to problerfiP2), thenv* must be a stationary solution to probleff?1). Conversely, if
v* is a stationary solution to problertP1), then the tuplgv*, u*, w*) must be a stationary solution to problem
(P2), where
u; = Ci—k1 (V*)kavfk,

* * * — * * —1
W;, = &y, (1 - (Vz‘k)H(Hﬁc)HCikl(V )kavik)
o o dui (Riy)

— > 0.
ke dRzk 20

R'Lk:Rik(v*)

with o

Moreover, the global optimal solutions* for these two problems are identical.

We remark thatu? is again the MSE receiver correspondingwt; w; takes a similar form to that in the
statement of Propositidd 1, except for the inclusion of a positive weightThe positivity ofo; comes form the
assumption C1).

IV. JOINT CLUSTERING AND BEAMFORMER DESIGN

In this section, we will develop an efficient iterative algorithm for the general honsmooth utility maximization
problem(P1). Due to the equivalence of this problem and the regularized weighted sum-MSE minimization problem
(P2), we can focus on solving the latter. We will employ the block coordinate descent (BCD) method [42] for such
purpose.

A. The Algorithm

It is straightforward to verify that the objective of probleff2) is convex w.r.t. each variabte, u, w. When
v, w are fixed, the optimah* is the MMSE receiven; = C;lekvik, YV ir € Z. Whenv, u are fixed, the optimal
w* takes the following form

wi, = duiy (Riy ) SEEIN 0, VipeZ.
dRik Ri, =R, (v) Ciy,
The positivity ofw; comes from the fact that;, > 0 and the utility functionu;, (-) is strictly increasing w.r.t. user
13’S rate.
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The main part of the algorithm is to find the optimal transmiatéormersv whenu, w are fixed. Observe that
when fixingu, w, problem(P2) can be decomposed intld independent convex problems (one for each cell)

(P3) min Z < ( Z w;, (H quHk )vlk
vipbigen, in€L JIET
- wlkvi(Hk )Huik wikuinkvik + Ak Z ”V;Z: ”)
qLEQk

s.t. Z (Vlk )H f: < P, ¥V qr € Q.

i €Ly

Let us focus on solving one of such problems. Note that the constraint set of this problem is separable among
the beamformers of different BSs. This suggests that we can obtain its optimal solution again by a BCD method,

with {v;]: }i.ez, as one block of variables. In particular, we will solve (P3) by sequentially solving the following
problem for each blocKv{* }; ez,

(P4) qinin Z < ( Z w;, (H quHk )Vlk

{vik }T'kezk ik €Ly =ra
P (HE ), — w, ulHE vzk+Ak||v%||)

s.t. Z (v f:)H & < Py,
ik €Ly
This problem is a quadratically constrained group-LASSO problem. The presence of the additional sum power

constraint prevents the direct application of the algorithms (e.d., [32], [36], [40], [41]) for conventional unconstrained

group-LASSO problem. In the following we will derive a customized algorithm for solving this problem.
Define the following two sets of variables

T 27wy, (HE ) Huy ullHE € 519 (10)
JI€T
d;, £ w;, (Hf )"u;, € CMOX1 v 4y € Ty, (11)
PartitionJ; andd,, into the following form
Jk[lal]a ) Jk[lan]
Ji = ,
JelQr, 1] - Ji[Qr, Q]
H
di, = [dff[1], - . A [Qu]] (12)

where J;[q,p] € CM*M Y (q,p) € Qi x Qx, andd; [q] € CM*1 V¥ ¢ € Q. Utilizing these definitions, the
objective of problem (P4) reduces to

> v —vidi, —dffvi) + e D v

i €Ly

ik €Ly
£ fulvi) A D vEl
ix €Ly ik €Lk
The gradient of the smooth functiofy, (v;,) w.r.t. vi* can be expressed as
Vo fin (Vi) = 2<Jk 0, dv¥* +> Iilg.plv [Q]) (13)
P#q
&) (Jk[q, i - i) (1)
where we have defined
ﬁ ZJk q, p]viE. (15)
pF#q
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Note that the gradienE(lB) given above is coupled with othmlbvariables{vf:}ikgk, pr # qi through the term

Jp
Z?Fﬁ ka, plv

e first order optimality condition for the convex problem (P4) is

- 2<V§1,fﬂq’“ + (Jrlg, v — Cu)) e MIO(IviFl), ¥ i € T, (16)
0<p L (P — Y (vi)'vi) >0, (17)
ik €Ly

wherep? is the Lagrangian multiplier for Bg,’s power budget constraing)(||v{"||) represents the subdifferential
of the nonsmooth functiofj - || at the pointv{*. The latter can be expressed as follows (seé [82], [43])

vik
lk qk
(v = { TV vie 70, (18)
=l <1}, vE=o.
k

Finding the global optimal solution of problem (P4) amounts to finding the optimal primal dua(l(pr%jr)*},-kezk, (e )*
that satisfy the condition$ (16}=(17). In the following, we will first develop a procedure to{fftl}; 7, that
satisfy the conditiond(16) for a givem’ > 0. Then we will use a bisection method to search for the optimal

multiplier.
Step 1) Utilizing the expression for the subdifferential in {18), the optimality condition (16) can be rewritten as

[32], [43]

/\k

. =0, if HC%H (19)

qk /\kég: qk o i
v = (Jilg.q] + S LU B otherwise (20)

with §7* > 0 defined asgq—k £ ||v¥*||. Note that [ID) is the key to achieve sparsity, as whengwet| is less than

the threshold\; /2, vq’“ will be forced to0. The correctness of (20) can be checked by plugging the second part
of (18) into (16).

By definition, the optiman: must satisfy

A0 !
hi,, (62%, ) £ 52 <Jk[Qv q] + (% + ,qu)IM> ¢ || =1 (21)

Define the set ohctive usergor BS g, as A% £ {iy iy, € Ty, ||, || > 2}, and define its cardinality gsi%| = A%.
For any givenu? > 0, let us denote a beamforme?: that satisfies (19)-(20) assff (u9+), and the corresponding
of* that satisfies[{21) a8} (u?). Clearly for a user, that satisfies the conditiof (19) (i.6; € Z;, \ A% )
vff (u?) does not depend on?: and can be directly computed. Let us then focus ondtiéve useri, € A%.
For anyi;, € A%, finding avf}f (1) amounts to obtaining the correspondkﬁfg(uqk) that satisfies (21). Due to a
certain monotonicity property of the functidgk(éff,uqk) W.I.t. 53: a bisection search o&fk" can be used to find
5;1: (19%). This claim is established in AppendiX B. On&éﬁ; (n?+) is found for alli, € A,,, we can usel(20) to
find v (ui*).

Step 2) Once {v?f (1) }i.ez,. 1S obtained, we need to search for the optimél that satisfies the feasibility
and the complementarity condition {17). The following result (the proof of which can be found in Apdehdix C)
suggests that there must exisfi& > 0 such that the optimal multiplier must lie i, z%]. Moreover, we can
perform a bisection search to find the optimal multiplier.

Lemma 1: For any setdfvy* (u?)} that satisfiegI9)20), [|v{* (u*)]| is strictly decreasing w.r.u%. Moreover,
there exists g% such that for all u% > 7%, 3=, o [|vi* (u®)[]* < P,,.

Performing Step 1) and Step 2) iteratively, we can “find the desired optimal primal-dual pair for problem (P4).

Table[l] summarizes the above BCD procedure.

It is worth noting that the algorithm in Table | admits a particular simple form (without performing the bisection
steps) when there is a single user in each cell, and each BS has a single antenna. Let us again denote the only us
in the kth cell as usek. The procedure to find Bg,'s scalar beamformezvq’“ € C for userk (i.e., Step S4-S13 in

Table[]) can be simplified as follows. Utilizing (19)={20),if,| < 2 2, vl* = 0. Otherwise, note thal[¢, ¢] € Ry
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TABLE |
THE PROCEDURE FORSOLVING PROBLEM (P3)

S1) Initialization Generate a feasible set of beamformgvd* },, co, i, ez,
S2) Computely, and d;,, using [10) and[{11)
S3) RepeatCyclically pick a BSqy, € Oy
S4)  Compute;, using [I5) for eachy, € 7
If 2HcikH < )\, set Vg;‘ =0
Else chooseu?: and 7% such that(u?)* € [u%, uo%|
S5)  Repeatpds = (p + ) /2 -

S6) For eachy, € 7, chooses?* and 3, such thats{" () € [87*, 5;"]
S7) Repeat(for eachi, € Z;;) 6f* = (6% +4;')/2, 1

S8) P, (01%, p®) = oF ’(Jk[q, q) + (A’“;;g: + /LQk)IM) Ci, H

S9) If i, (30, p) < 1, 87 + 6{*; Otherwise 3, « §7*

S10) Until [5;" — 0% | < e

S11) 1>, ez, (T’i"ﬁ < P, % « p®; Otherwise p + pit

S12)  Until % — po| < e
dk
ik

-1
Ak
S13) Vi (Jk[q,q] + (%5 +uqk)IM) Ci,

End If
S14)Until Desired stopping criteria is met

in this case, we have
Ck
¥ =
k Apolk ’
Jilg, q] + =5 + pax
|ck|

T
Jk[q, q] + /\kgk + pdx

with 67

= 1. (22)

Consequently, we obtain a closed-form expressionsfor &f* = J’Cl[cq‘qi}ti”k Substituting thiss{* into (20), we
sl=3
obtain

vk — |Ck| — /\_2’c Ck

BT Ila, g + pe o]

where the multiplieru? should be chosen such that the conditibn] (17) is satisfied. In summary, we have the
following closed-form solution for updating*

A
01 |Ck| S Tka
Oy T S Y A (23)
L NP P I L P o lewl > 5
Ck 1Q
eV Pai otherwise.

The complete algorithm for solving the regularized weighted MSE minimization profiR&nis given in Table
M We name this algorithm sparse weighted MMSE algorithm (S-WMMSE). The following theorem states its
convergence property. The proof can be found in Appehndix D.

Theorem 1: The S-WMMSE algorithm converges to a stationary solution of prolieh.

We remark that in a MISO network in which each user has single antenna, the algorithm stated id [Table I-II
can still be used, except that in this case the recaiyereduces to a scalar.

B. Parameter Selection

In this subsection, we provide guidelines for choosing some key parameters for practical implementation of the
proposed algorithm.

This is a manuscript of an article from IEEE Journal on Selected Areas in Communications 31 (2013): 226,
doi: 10.1109/JSAC.2013.130211. Posted with permission.



TABLE I
THE S-WMMSE ALGORITHM FOR SOLVING PROBLEM (P2)

S1) Initialization Generate a feasible set of variables, , u;, , w;, }
S2) Repeat

83) Wiy, <= (Z(f 7) szvﬂ Je (HZ ) + 02 I) H e Vi Vi
du;, (R;

S4)  w;, <—;7’“)’R =R, (v)( HH Vi)~ LY g
S5)  For eachk € IC UpdatE{qu}quQk using Tabld]l.
S6) Until Desired stopping criteria is met

Whenw, u are fixed, the procedure in Tallk | contains two bisection loops for solving for e&chrhe outer
loop searches the optimgh?)* < [p, 79| that ensures* ((u?)*) satisfy the complementarity and feasibility
conditions [[I¥). The inner loop searches for the optlﬁjgﬂuqk) [5‘” 5‘“] to ensure[(21). In implementation, it
will be useful to have explicit expressions for initial bounds of these variables.

1) The Choice of Initialu?:, 7?: From the fact thap? > 0, we can simply set the lower bound a% = 0.
For the initial upper boung?, it is sufficient to guarantee that

S VE@E™))? < By, (24)
i €Ly
To see this, recall thaftv;* (n9)||? is monotonically decreasing w.ru%. Consequently wheri_(24) is satisfied,
there must exist &.%+)* € [0, u?%] such that both the feasibility and complementarity condition (17) is satisfied.
To ensure[(24), it is sufficient that sugh* satisfies the following condition for eadctive useri;, € A% (notice
that the active setl?: is decided before bisection starts)

PV _ P
) e | <

[v& @) = ||(Inlg, q + (

For a specifici;, € A%, we have the following inequalities

)\ 5% —1
H(Jk[q,Q]‘f’( 2% ‘Hﬂ’“)IM) Ciy, (25)

(a) Y -1 © 1
< p| (Inla,q + 7" Iy el < = —r il

where in(a) we have used the fact th&f {25) is decreasing vri‘fkt in (b) we have used the fact thdj|q, ¢] = 0.

As a result, it is sufficient to find a% such that_qk llci, || < Aqk for all i, € A%. This implies that the following
choice ensure§ (24)

Adr i €Ak

2) The Choice of In|t|a5q’“ 5q’° Once the initial bounds op?% are chosen, we can determine the initial bounds

for eachd?”, iy, € A%, Because5q’“ > 0, the lower bound can be simply set&$ = 0. Next, we will find thed;"
that is suitable for alps € [ut, ;ﬂk] From the proof of LemmA]3, we see that it is sufficient to choose the initial

bounds;" such that

1
P -2
n%>(&) max sl (26)

hiy (05, %) > 1, ¥ p € [p® %],V ig € A% (27)

In this way for eachu® € [u%, 7% ] there is as{*(u%) € [0,5;'] that ensures,, (52 (%), ut*) = 1.
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We have the following series of inequalities bounding(gf:',qu) for any p% € [u%, @]

i e PV I -1
hi), (5:7/:7“%) > 53:“ <Jk[QvQ] +( k2 : +ﬁq’“)IM) Ciy,
1

Aok
p(Iila. q)) + =5 + "
where the first inequality is due to the monotonicity /of (Eff,uqk) w.r.t. u? .Using [28), we can show that the
following choice is a sufficient condition fof (R7)

i 1
50 > s (p(Jkla, @) + T™), V ik € AT

ik
H%\ -2

=22

e | (28)

C. Distributed Implementation

Suppose that there is some central entity, say a macro BS, managing the downlink resource allocation for each
cell. Then under the following assumptions, the proposed algorithm can be implemented distributedly by each
macro BS.

A-1) each macro B knows the channels from the BSs in its cell to all the uggrs
A-2) each user has an additional channel to feedback information to its current serving BS;
A-3) different macro BSs can exchange control information.

Under these assumptions, in each iteration of the algorithm, aipsem measure the covariance of the received
signalC;, and update its weight and receive beamformer, u;,, respectively. It then feeds these variables to one

of its serving BS, who in turn forwards it to the macro BS. Each pair of macro BSs then exchange their respective
users’ current beamformers. With these pieces of information, all macro BSs can carry out the proceduren Table |
independently. The newly computed beamforming and clustering decisions are subsequently distributed to the BSs
in their respective cells via low-latency backhaul links.

In practice, considering the costs of obtaining and sharing of the channel state information, the sparse clustering
algorithm may only need to be executed in its full generality in every several transmission time intervals (TTIs).
During the TTls in which the clustering is kept fixed, one can either keep updating the beamformers (by solving
problem (P1)without the regularization term), or even fix the beamformers.

V. NUMERICAL RESULTS

In this section, we perform numerical evaluation of our proposed algorithm. We consider a multicell network of up
to 10 cells. The distance of the centers of two adjacent cells is set Bodemeters (see Fidl] 1 for an illustration).

We place the BSs and users randomly in each ceII.aﬁkjé'denote the distance between BSand useri,. The
channel coefficients between usgrand BSq, are modeled as zero mean circularly symmetric complex Gaussian
vector with (200/d§§)3L§: as variance for both real and imaginary dimensions, wheieg 10(L{*) ~ N(0,64)

is a real Gaussian random variable modeling the shadowing effect. We fix the environment noise power for all the
users asffk = 1, fix the power budget of each BSs &5, = P, and fix the number of BSs and the number of
users in each cell 49| = Q, |Zx| = I. We defineSNR = PQ).

In Fig.[2, we illustrate the structure of the overlapping clusters generated by the S-WMMSE algorithm in a simple
single cell network. In this example, when no group-sparsity is considered, each user is served by all the BSs in
the setQ;. In contrast, when the clusters are formed by performing the proposed algorithm, the cluster sizes are
significantly reduced. In Fid.l3, we show the averaged number of iterdtiveeded for the proposed algorithm to
reach convergence in different network scenarios. The stopping criteria is [g@wvas!') — f(v?))| < 107!, where
f(-) represents the objective value of problem (P1). For both of these results, the sum rate utility is used.

Our experiments mainly compare the proposed algorithm with the following three algorithms:

« WMMSE with full intra-cell and limited inter-cell coordination [24]n this algorithm, the network is modeled
as a MIMO-IBC where all the BS®);, in cell k collectively form a giant virtual BS with the transmit power
pooled together. It is shown in_[24] that this algorithm compares favorably to other popular beamformer

INote that the number of iterations refer to thieter iterationsspecified by the update in Tadlé II.
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Fig. 1.  Cell configuration for numerical experiments.

design algorithms such as the iterative pricing algorithmi [17]. In the present paper, it corresponds to the case
where a single cluster is formed in each cell. This algorithm serves as a performance upperbound (in terms
of throughput) of the proposed algorithm.

« ZF beamforming with heuristic BS clusterirlg this algorithm, cooperation clusters with fixed sizes are formed
within each BS, and each cluster performs ZF beamforming. The clusters are formed greedily by choosing an
initial BS among the unclustered BSs and adding its nearest BSs until reaching the prescribed cluster size. The
users are assigned to the cluster with the strongest direct channel (in terms of 2-norm). Each cluster serves
its associated users by a single cell ZF linear beamfornﬁh&.[S‘p ensure feasibility of the per-cluster ZF
scheme, the weakest users in terms of direct channel are dropped when infeasibility arises.

« WMMSE with each user served by its nearest BShis algorithm, each user is assigned to the nearest BS,
that is, the size of the coordination cluster is at miostVe denote this algorithm as WMMSE-nearest neighbor
(NN).

We first consider a network witlk’ = 4, I = 40, @ = 20, M = 4, N = 2. We use system sum rate as the utility
function. The achieved system sum rate and the averaged number of serving BSs are shownl in Fid.]4— Fig. 5 for
different algorithms. Each point in the figures is an averag&6fruns of the algorithms over randomly generated
networks. Notice that for the ZF based scheme, although the cluster size is given and fixed, the actual number of
serving BSs per user can be smaller than the cluster size, as some users may not be served by all the BSs in it
serving cluster. It can be seen from Higj. 4— [Fig. 5 that the system throughput obtained by the proposed S-WMMSE
algorithm is close to what is achievable by the full cooperation. Moreover, the high throughput is achieved using
moderate cluster sizes. Notice that the proposed algorithm compares favorably even with the full per-cell ZF scheme
(with cluster size20). This suggests that the inter-cluster interference should be carefully taken into consideration
when jointly optimizing the BS clusters and beamformers.

It is important to emphasize that the parametgks} | in the proposed algorithm balance the sizes of the
clusters and the system throughput. For different network configurations they need to be properly chosen to yield

the best tradeoff. Empirically, we found that setting = QSKNR gives a satisfactory tradeoff (as illustrated
I

in Fig. [4- Fig.[3). This is partly because choosiig inversely proportional to,/SNR can better balance the
relative importance of the penalization term and the sum rate term when SNR becomes large. To better select this
parameter for different system settings, we provide an alternative scheme that adaptively co[mp}@§ in

each iterationof the algorithm. Note that for the quadratic problem (P4)\ifis chosen large enough such that

Me > Mg 2 2 X maxgeq, i ez, ||di, []], thenvy, = 0, Vi, € Z;. This result can be straightforwardly derived from

Note that in [8], after the beams are calculated and fixed, the power allocation for different beams/streams are determined by solving a
convex vector optimization with sum-power constraint. In our simulation, we replace the sum-power constraint with a set of per-group of
antenna power constraint to better fit the multi-BS setting.
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the optimality condition[(119). For conventional quadratic LASSO problem, the fixed sparsity parametan be
chosen ag)\;, where(0 < ¢ < 1 is a small number, see, e.d., [36]. In our experiments, we found that chabsing
as)\; = min {O'SOI\}?{’C , 1} works well for all network configurations. The performance of the S-WMMSE algorithm
with this adaptive choices of; is also demonstrated in Figl 4—-Fig. 5. Clearly such adaptive choice, afan
generate smaller sizes of the clusters while achieving similar performance as its fixed parameter counterparts. Note
that the convergence proof for the proposed algorithm does not apply anymore, as it requires that pafapjeters
must be fixed during the iterations (although in simulation experiments we observe that this adaptive algorithm
usually converges).

We also consider a larger network witk = 10, I = @Q = 20, M = 4 and N = 2, and choose to optimize

the proportional fairness utility defined as, (R;,) = log(R;,). In Fig.[6-Fig.®, we compare the performance of
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the WMMSE algorithm and the WMMSE-NN algoritlﬁwvith the proposed algorithm for different choicesqf.

In order to highlight the role of\; in balancing the system throughput and the cluster sizes, we show in these
figures the performance of the proposed algorithm Miiled sparsity parametek;, for all SNR values. In Fig.

[7, we plot the averaged per-BS power consumption relative to that of the WMMSE algorithm. [0 Fig. 9 we plot
the distribution of the individual users’ rates generated by these algorithms. Clearly the proposed algorithm is able
to achieve high levels of system throughput and fairness by only using small cluster sizes and significantly lower
transmission power (the reduction of transmission power can also be attributed to the use of penalization, see Fig.
[7). Additionally, in Fig.[6 and Fig.18, we include the performance of a limited cooperation scheme in which each
cell only coordinates with its nearest neighbor, while treating the signals of the remaining cells as thermal noise
(this scheme is labeled as “Sparse-Neighbor”). We observed that this scheme has similar system throughput as the
original one, but results in larger cluster size. Such increase in cluster size can be seen as a compensation adopte
by the “Sparse-Neighbor” algorithm for ignoring certain inter-cell interference. Due to the limited coordination
among the cells, the convergence of this scheme is not theoretically guaranteed. However in simulation we found

3We do not consider the ZF scheme in this experiment for the reason that it cannot guarantee that all the users in the system are servec
simultaneously, as required by the solution of the proportional fair utility maximization problem.
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that the algorithm usually converges.

V1. CONCLUDING REMARKS

In this work, we propose to jointly optimize the BS clustering and downlink linear beamformer in a large scale
HetNet by solving a nonsmooth utility maximization problem. A key observation that motivates this work is that
when all the BSs in each cell is viewed as a single virtual BS, the limited coordination strategy that requires a
few BSs jointly transmit to a user is equivalent to a group-sparsity structure of the virtual BSs’ beamformers. We
effectively incorporate such group-sparsity into our beamformer design by penalizing the system utility function
using a mixed/s/¢; norm. We derive a useful equivalent reformulation of this nonsmooth utility maximization
problem, which facilitates the design of an efficient iterative group-LASSO based algorithm. Simulation results
show that the proposed algorithm is able to select a few serving BSs for each user, while incurring minor loss in
terms of system throughput and/or user fairness.

Our framework can be extended for the scenario that multiple streams are transmitted to each user as well.
In this more general case, a precoding matrix is used by each BS for each user. To induce sparsity, the utility
function should be penalized by the Frobenius norms of the precoding matrices. All the equivalence results derived
in Sectior1ll hold true for this general case, while the algorithm needs to be properly tailored. We also expect that
the proposed approach can be extended for other related problems such as the design of coordinated transceiver |
an uplink HetNet, or the design of antenna selection algorithms for large scale distributed antenna systems.
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APPENDIXA
PROOF OFPROPOSITIONI]AND PROPOSITIONZ|
Proof of Propositior 1L Let I(v{*) denote the (nonsmooth) indicator function for the feasible space of vector
Vzk, i.e.,
: 1 (vimyHyie < P
qk\ ’ k k =49
I(vi") = { —o0, oOtherwise

We can then rewrite problerqil(8) compactly as an unconstrained nonsmooth optimization problem

max (Rk — Ak Z [[viF| + Z I(VZ’“)) £ max fr(v) (29)

qp qk
v }kEIC L E€Qy 4k E€Qk v

and rewrite [P) equivalently as

,nin Z (wkek — log(wg) + )\kz (||| — Z I(VZk))

vy ue,we } keK qL €Lk qLEQk

= min Smse(V,u, w). (30)

{viky furt {we}

We first claim that the functioryr(-) is regular in the sense of Definitiofl3, under the block structwre=
{vi*}4.co. ke This claim can be verified by observing that under such block structure, the nonsmooth parts of
the functionfx(-) areseparableacross blocks, and the smooth partfaf-) is differentiable. This property ensures
that a coordinatewise stationary powmtof fr(-) is also a stationary point. Sele [42, Lemma 3.1] for a derivation.
Similarly, the functionf,,s(-) is regular under the following block structure

k>

V= {VZ’“ }quQk,kelCa u= {uk}kGICa W = {wk}kelc-
Now assume thatv*, u*, w*) is a stationary solution of problerh {30), then we must have

f/ (V*au*7W*;(07"'adukaoa"'ao))zoaVdukaVk (31)

mse

fr/nse(V*vl*l*vW*;(Ov"' adwkvoa"' 70)) Z Oa v d’wkv vk (32)
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where (0,--- ,dy,,0,---,0) is a vector of zero entries except for the block corresponding to the varngble
which takes the valuel,,. Condition [31) implies thai; is the unconstrained local minimum of the function

Jmse(V*, [ug, u* |, w*). The same is true fow;,. Notice thatf,,.(-) is smooth w.r.tu, andwy, consequently, we
must have

8fmsc (V*a U*a W*)

vuk,fmsc(V*aU*aW*) = Oa 6wk

=0, Vkek.
The above two sets of conditions imply that
u; = G (v H v,

1 _ (1 o (VZ)H(Hz)HC;I(V*)HQVZ)fl

W,

%
In the sequel we will occasionally usg (v*) andwj(v*) to emphasize their dependencieswn Using these two
expressions, we have

fmse(V*a U-*aW*)

= Z (1 —log((e;) ™) + M Z vkl — Z I(Vzk))

keK qr€Qk q€Qk
K~ fr(v) (33)
where in(a) we have used the matrix inversion lemral[44] to obtain

log((e})™1) = log <<1 — (vp)fEHPC,t (v*)HﬁvZ> _1>

-1
=log Iy + Hjvi(vi)? (ZH;CV@ vi) F(H)E + U,%IN)
1#£k
= Rk (V*)
Using Definition[1, we write the stationarity condition of probldml(30) w.r.t. each component as
Fre (V50" W5 (0, e 0-+,0)) 20, ¥ dyse, Ve, ¥k (34)
Using Danskin’s Theorem [45] and the fact tHat*, u*) = arg min fi,.(v*, u, w), we have
(v u*, w* (0,--- . d Qk, oo, 0))
:_fR(V;(a"'adekaov 3 )),Vdek,VQkGQk,VkEK.

Combining [(3%#) and the regularity gfz(v) given in Definition[8, we conclude that
_fF/{(V*v dvk) > Oa v dvk = |:dvlk P avak:| . (35)

According to Definition[IL,v* satisfies the stationarity condition for problem](29). The reverse direction can be
obtained using the same argument.

The equivalence of the global optimal solutions of the two problems can be argued as follows. Suppase~™)
is a global optimal solution ofnin fy,s.(v,u, w) butv* is not a global optimal solution ahax fg(v). Then there
must exist av such thatfg(v) > fr(v*). Using [33), we must havé,..(v*,u*,w*) > K — fr(v). Notice that
when pluggingv, u*(v), w*(v) into fis(-), we again have

Jmse(V, 0" (V), W (V) = K — fr(V). (36)

Therefore, we have
fmse(VF, 0", W) > frnse (V,u"(V), W (V) (37)
a contradiction to the global optimality ¢&*,u*, w*). This completes the second part of the claim. |

Proof of Propositior P(sketch) We first show that the functiop, () is well defined. From our assumption on

the utility functionu;, (-), we see that, (—log(e;, )) is a strictly convex function ire;, for all e;, > 0. This

ensuresM is a strictly decreasing function. Consequently, its inverse function is well defined. Assume
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that (v*,u*, w*) is a stationary solution to problef#®2). Following the steps of the proof in Propositibh 1, we
can show thatv; is of the following form

wt = duik (le)
ik dRi,C Ri, =Ri, (v*)

x (1= (vi) " E)TC (v vi )~

ik " Lk

The rest of the proof is the same as that of Proposition 1. We omit it due to space limit.

APPENDIX B
We first show a monotonicity property &f, (67", u?).
Lemma 2: Supposfc;, || > k. Then for fixeds? > 0, h;, (57, u%) is a strictly decreasing function f?:.
For fixed % > 0, hy, (87", u9) is a strictly increasing function of*.

Proof: Define B(67*, u%) £ Jiq, q] + (A’“gf’: + p9)Ipr. Then we have

Oh; (6;”,/1‘1’“) 5;” _ _

s LG

oTr [B_l(éf: , pi8)e;, cfiB_H((Sg:,/ﬂ’“ )}
8#‘11@

= =6 IBTHEN, p e |7

X Tr[BH(0%, u B~ (62, % )z, LT B~ (67, 9]

Cir Cip,

X

Notice thatJx[q, ¢] = 0 because it is a principal submatrix of a positive semidefinite mdiixThis fact combined

with 67* > 0 ensuresB(6{*, %) > 0 andB~* (57", u?) > 0. Using the fact that;, # 0 andB~*(67", %) > 0,
we have

Tr B (6%, u# /B~ (3%, 1™ )c, ¢l B~ (52, o)
= B (50, B (60, u® )BT (02, i )ey, > 0.
hik (6?k 7qu)

This condition ensures’é)# <0,V 53: > 0, which in turn implies the desired monotonicity.

The second part of the lemma can be shown similarly.
Utilizing Lemmal2, we can show thaf* (%) aways exists.

Lemma 3: Suppose the conditidie;, | > 4+ is satisfied. Then for any fixqd that satisfies) < u% < oo,
there always exists &' (u%) that satisfie21) for all i;, € A%,

Proof: Pick ani, € A%. First notice thab;, (0, u%) = 0, Y0 < u% < oo. We then show thadimga. _, . hy, (67, u) >
1, V 0 < pu% < oco. To this end, we can write ’

i . dk dk
5;,)}:@00 hiy (3, 1)
qk
lim —*%
5k o0 AT 4
[

TN
2

where the last inequality is from the assumption.

Combining Lemmdl2 and the fact that, (6/", ug,) is increasing w.r.ts;", we conclude from continuity that
there must exisb < ¢, (u?) < oo such that[(211) is satisfied. [ |

The proof of Lemmdl3 is constructive, as it ensures that a tisemethod can find;* (u%).

—1
1
Jk[Qaq] by +IM> Ciy,
< 05 + e

> 1

APPENDIXC
PROOF OFLEMMA [1I
Fix a givenpds > 0, pick i, € A%. Suppose)/*(u?) satisfiesh;, (07" (u?), o) = 1. Fix g% > p. From
Lemmal2 we have;, (67 (u%), %) < 1. To ensureh;, (6, (a?), %) = 1, we must havey* (u%) > 6 (u?),
which gives the first part of the claim.
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We prove the second part of the claim by contradiction. Fieststder the trivial case where no user is active,
e, A% = (. Clearly 3=, 7 [[v{ "(p)||> = 0 and the claim is proven.
Now supposed?s is nonempty that isA?: > 0. Suppose that there exists gne A, such that for allu? > 0,

O (i) < Aq’“ . This assumption combined with Lemrhh 2 implies
i () e ) > B (B2 ) ) =1, % > 0 (39)
9k

However, we have that

_ Vo I ];H e
;ﬂk—>oo 2/ Ak + pax k4 AxVATE 19k M k

2\/_
=0

which contradicts[(38). This suggests that for each A%, there exists @;* such that for allu® > 7", 67" (u?) >

1/A‘“° (i.e., W < Aqk) Taking %" = max;, c.4u 7y , We have that for all® > 7%, 3=, _ 4., W <
P,,. ThIS condition implies tha}, ., [lvi*(u®)|*> < P, . As a result, the second part of the claim is proved.

APPENDIXD
PROOF OFTHEOREM[

Proof: Due to the equivalence relationship, it is sufficient to show that the S-WMMSE algorithm converges to
a stationary solution of the proble(i?2).

We first show that the BCD procedure in Table | for updatingonverges to the global optimal solution of
problem (P3). Recall that this problem can be decomposedAnhiadependent convex subproblems of the form
(P4), then it is sufficient to show that each of these problems are solved globally. Similallyl as {29)-(30), problem
(P4) can be expressed in its unconstrained form

min E (VﬁJsz‘k — Vfld dHV%
ik €Ly,

{viy Yipezy
S Y I X 1),
K €Qk qx€Qk
The procedure in Tab[& | is a BCD method for solving the above unconstrained problem, where each block is defined
asvir £ {v “}i.ez.- Observe that) the nonsmooth part of the objective separableacross the blocksij) the
smooth part of the objective is differentiabl@) each block variable’?* can be solve uniquely when fixing other
variables{v?+},, ., . According to [42, Theorem 4.1-(c)], these facts are sufficient to guarantee the convergence
of this BCD procedure to a global optimal solution of the convex nonsmooth problem (P4).
To prove the convergence of the S-WMMSE algorithm to a stationary solution of prafiem we can again
write problem (P2) into its unconstrained form, and see that the nonsmooth part of the objective is separable
across the blocks of variablesu, w. Furthermore, when we fix any two block variables and solve for the third, a
unique optimal solution can be obtained. Applyihg![42, Theorem 4.1], we conclude that the S-WMMSE algorithm
converges to a stationary solution of the problem (P2). |
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