
����������
�������

Citation: Liu, J.; Lin, C.-H.R.; Hu,

Y.-C.; Donta, P.K. Joint Beamforming,

Power Allocation, and Splitting Control

for SWIPT-Enabled IoT Networks with

Deep Reinforcement Learning and

Game Theory. Sensors 2022, 22, 2328.

https://doi.org/10.3390/s22062328

Academic Editor: Rebeca P. Díaz

Redondo

Received: 28 January 2022

Accepted: 15 March 2022

Published: 17 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Joint Beamforming, Power Allocation, and Splitting Control for
SWIPT-Enabled IoT Networks with Deep Reinforcement
Learning and Game Theory

JainShing Liu 1 , Chun-Hung Richard Lin 2,* , Yu-Chen Hu 3 and Praveen Kumar Donta 4

1 Department of Computer Science and Information Engineering, Providence University,
Taichung 43301, Taiwan; chhliu@pu.edu.tw

2 Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
3 Department of Computer Science and Information Management, Providence University,

Taichung 43301, Taiwan; ychu@pu.edu.tw
4 Research Unit of Distributed Systems, TU Wien, 1040 Vienna, Austria; pdonta@dsg.tuwien.ac.at
* Correspondence: lin@cse.nsysu.edu.tw

Abstract: Future wireless networks promise immense increases on data rate and energy efficiency
while overcoming the difficulties of charging the wireless stations or devices in the Internet of Things
(IoT) with the capability of simultaneous wireless information and power transfer (SWIPT). For such
networks, jointly optimizing beamforming, power control, and energy harvesting to enhance the
communication performance from the base stations (BSs) (or access points (APs)) to the mobile nodes
(MNs) served would be a real challenge. In this work, we formulate the joint optimization as a
mixed integer nonlinear programming (MINLP) problem, which can be also realized as a complex
multiple resource allocation (MRA) optimization problem subject to different allocation constraints.
By means of deep reinforcement learning to estimate future rewards of actions based on the reported
information from the users served by the networks, we introduce single-layer MRA algorithms
based on deep Q-learning (DQN) and deep deterministic policy gradient (DDPG), respectively, as
the basis for the downlink wireless transmissions. Moreover, by incorporating the capability of
data-driven DQN technique and the strength of noncooperative game theory model, we propose
a two-layer iterative approach to resolve the NP-hard MRA problem, which can further improve
the communication performance in terms of data rate, energy harvesting, and power consumption.
For the two-layer approach, we also introduce a pricing strategy for BSs or APs to determine their
power costs on the basis of social utility maximization to control the transmit power. Finally, with
the simulated environment based on realistic wireless networks, our numerical results show that
the two-layer MRA algorithm proposed can achieve up to 2.3 times higher value than the single-
layer counterparts which represent the data-driven deep reinforcement learning-based algorithms
extended to resolve the problem, in terms of the utilities designed to reflect the trade-off among the
performance metrics considered.

Keywords: joint optimization; deep reinforcement learning; game theory; multi-resource allocation;
beamforming; power control; energy harvesting; IoT

1. Introduction

The tremendous growth in wireless data transmission would be a result from the
introduction of fifth generation of wireless communications (5G) and will continue in the
wireless networks beyond 5G (B5G). In particular, the collaboration between 5G enabled
Internet of Things (5G-IoT) and wireless sensor networks (WSNs) will extend the connec-
tions between the Internet and the real world and widen the scope of IoT services. In
such collective networks, by uploading part of or all of the computing tasks to the edge
computing, a mobile edge computing (MEC) technique is developed to reduce the enor-
mous data traffic and huge energy consumption brought by a great number of IoT devices
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and sensors [1,2]. Even given that, realizing 5G or B5G IoT networks is still challenging
due to the limited energies for the IoT devices equipped with batteries. To alleviate this
problem, simultaneous wireless information and power transfer (SWIPT) are proposed to
effectively and conveniently extend the lifetime of IoT devices, and employed in many
related works [3–7]. In fact, SWIPT is a key technique in 5G and B5G because power
allocation and interference management are still the crucial issues to be addressed in the
communication networks [8,9]. In the border ground, the techniques of power control
along with beamforming and interference coordination are usually adopted to increase the
signal for data transmissions and improve the data rates received by end-users. However,
these techniques by default treat the interference as a harmful impact to data transmissions,
and ignore its potential to increase the communication capacity. By contrast, SWIPT opens
up the potential by harvesting energy from the ambient electromagnetic sources including
the interference signals. Consequently, not only would the benefits be obtained in which
devices with SWIPT can transfer the interference into a useful resource, but also there is an
advantage that can be taken with the signal-to-noise and interference ratio (SINR) to be
increased by SWIPT for the residual energy of IoT devices.

In this work for the scenario that multiple BSs or APs can simultaneously transmit data
and energy to their mobile nodes (MNs) in edge, we further show that, when the power
control and interference management meet SWIPT, an overall system utility reflecting
data rate, energy harvesting, and power consumption at the same time can be conduced
to lead the system to an optimal trade-off on these performance metrics. Given that,
how to allocate the transmit power, select the beamforming vector, and decide the power
splitting ratio for the system will be a complex multiple resource allocation (MRA) problem,
and can be formulated as a mixed integer nonlinear programming (MINLP) problem or
even a non-convex MINLP problem. In general, MINLP problems are NP-hard and no
efficient global optimal algorithm is available. Thus, apart from traditional optimization
programming programs [10–17], research efforts usually resort to game theory [18–21],
graph theory [22,23], and heuristic algorithms [24,25] to reduce the complexity.

More recently, inspired by the success of deep reinforcement learning (DRL) [26] on
the application of computer science in various important fields, using DRL to solve the
network problems, such as power control [27–29], joint resource allocation [30,31], and
energy harvesting [32], becomes one of the main trends in the communication society.
Although DRL is a useful tool to resolve these problems, the data-driven approaches that
resulted usually treat a given resource optimization problem as a black box to learn its
input/output relationship via various DRL techniques, which do not explicitly take the
advantages from the model-based counterparts, such as game theory, graph theory, and
heuristic algorithms mentioned previously. By noticing this fact, in this work, we first show
how to design DRL-based approaches operated in a single layer to (1) jointly solve for
power control, beamforming selection, and power splitting decision, and (2) approach the
optimal trade-off among the performance metrics without exhaustive search in the action
space. Next, we show how to incorporate a data-driven DRL-based technique and a model-
driven game-theory-based algorithm to form a two-layer iterative approach to resolve
the NP-hard MRA problem. By taking benefits from both data-driven and model-driven
methods, the proposed two-layer MRA approach is shown to outperform the single-layer
counterparts which rely only on the data-driven DRL-based algorithms.

1.1. Related Work

As a related work for LTE, the almost blank subframe (ABS) method was proposed
in the standard [33] to resolve the co-channel inter-cell interference problem caused by
two LTE base stations interfering with each other. Although ABS works well in fixed beam
patterns, it was shown in [34] that ABS would be inefficient due to the dynamic nature of
beamforming. Apart from the standard’s solution, particular attention has also been paid
to the efforts on resolving different resource allocation (RA) problems. In this work, these
efforts would be classified into two categories, namely model-driven methods and data-driven



Sensors 2022, 22, 2328 3 of 29

methods. According to our subjects, the former includes optimization methods and game
theory methods while the latter simply denotes machine learning methods. As expected, a
lot of previous works would be classified into the former, including graph theory [35,36],
optimization decomposition [10,11,13–15,17], and dual Lagrangian method [12,16], in
addition to game theory.

As a kind of data-driven method in the latter, which requires no model-oriented
analysis and design, DRL would play a key role in solving RA problems. For example,
the work in [37] proposed an inter-cell interference coordination and cell range expansion
technique in heterogeneous networks, wherein dynamic Q-learning-based methods were
introduced to improve user throughput. In addition, the previous works [29,38,39] intro-
duced different deep Q-learning-based power control methods to maximize their objectives.
Apart from Q-learning, in [40,41], actor–critic reinforcement learning (ACRL) algorithms
were developed to reduce energy consumption. Recently, with deep deterministic policy
gradient (DDPG), an algorithm was proposed in [32] that can be applicable for continuous
states to realize continuous energy management, getting rid of the curse of dimensionality
due to discrete action space from Q-learning.

Apart from the above, game-theory-based methods also received a lot of attention. For
example, non-cooperative interference-aware RA has been proposed in [19] to improve the
resource utilization efficiency of OFDMA networks. In [42], an interference coordination
game was introduced, and the Nash equilibrium was found to reduce its computational
complexity. Similarly, a joint transmit power and subchannel allocation problem was
considered in [20], and a distributed non-cooperative game-based RA algorithm and a
linear pricing technique were introduced therein to find the solutions. In addition, a
power control problem for self-organizing small cell networks was formulated as a non-
cooperative game in [21], which can then be solved by using the distributed energy efficient
power control scheme proposed. Recently, by introducing a time-varying interference
pricing with SWIPT, the authors in [18] modeled the power allocation problem as a non-
cooperative game, and, by minimizing the total interferences experienced, they modeled the
subchannel allocation problem as a non-cooperative potential game. Then, they proposed
iterative algorithms to obtain the Nash equilibrium points corresponding to these games
for the solutions.

More recently, there are different learning-based approaches proposed to resolve var-
ious problems in IoT networks. For example, a beamforming design for SWIPT-enabled
networks was introduced in [43], where the rate-splitting scheme and the power-splitting
energy harvesting receiver are adopted for secure information transfer and energy harvest-
ing, respectively. This work formulates an energy efficiency (EE) maximization problem
and properly addresses the beamforming design issue. However, such an issue is not our
focus. In [44], an EE maximization problem is considered for the SWIPT enabled hetero-
geneous networks (HetNets). To resolve this problem, the authors introduced a min-max
probability machine and an interactive power allocation/splitting scheme based on convex
optimization methods. In the latter, the Lagrange multipliers for the optimization problem
involved are obtained by using the subgradient method, which could be time-consuming to
converge. Despite the different design aim, our work instead develops a game-based inter-
active method additionally controlled by a threshold to meet our time constraint. In [45], a
sum rate maximization problem was formulated for SWIPT enabled HetNets, which jointly
optimizes transmit beamforming vectors and power splitting ratios. With the multi-agent
DDPG method for the user equipment (UE) without mobility, this work exhibits a notable
performance gain when compared with the fixed beamforming design. When UE is mobile
and not in the same location vicinity, the wireless channel is not constant and varies with
UE’s location. Taking this into account, the work in [46] resolved the dynamic problem with
a multi-agent formulation to learn its optimization policy. Specifically, the authors resorted
to the majorization–minimization (MM) technique and Dinkelbach algorithm to find the
locally optimal solution using the convex optimization method for solving the power and
time allocation problem involved. As a complement to these works, our approach considers
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single agent-based reinforcement learning to comply with the fact noted in [47] that, when
a multi-agent setting is modified by the actions of all agents, the environment becomes
non-stationary, and the effectiveness of most reinforcement learning algorithms would not
hold in non-stationary environments [48]. In addition, by further collaborating with the
game-based iterative algorithms, our approach would reduce the overhead resulting from,
e.g., the MM approach to resolve a complex optimization problem such as that in [46].

1.2. The Motivations and Characteristics of This Work

In recent years, advances in artificial intelligence are further helped by the neural
networks such as generative adversarial networks [49] which use advanced game theory
techniques to deep learn information and could converge to the Nash equilibrium of the
game involved. In general, these advances can be reflected by the notion that a machine
(computer) can learn about the outcomes of the game involved and teaches itself to do better
based on the probabilities, strategies, and previous instances of the game and other players
under the ground of game theory. By extending the advanced notation to the optimization
framework, in this work, we further exhibit the possibility of applying learning-based
methods, model-based methods, or both to resolve the joint beamforming, power control,
and energy harvesting problem in the SWIPT-enabled wireless networks that can alleviate
the hardness of finding an optimal solution with an optimization tool required to be
completed in time. In particular, in this scenario, apart from BS i serving the user or MN
needing to decide its transmit power, beamforming vector, and power splitting ratio, the
other BSs j 6= i would make their own decisions at the same time, which can affect the user
or MN served by BS i simultaneously. Here, by leveraging the scenario, we conduct our
approach to make a good trade-off between information decoding and energy harvesting,
which can be deployed in an actual SWIPT-enabled IoT network as one of the various
SWIPT applications surveyed in [50]. Specifically, by using the UE coordinates as that in [51]
sent to BS, it can align with the industry specification [33] through the slight modification
to reduce the original signal overhead of [33] on the channel state information to be sent by
UE with a report to have its length equal to the number of antenna elements at least. As a
summary, we list the characteristics of this work as follows:

• We introduce two single-layer algorithms based on the conventional DRL-based
models, DQN and DDPG, to solve the joint optimization problem formulated here as a
non-convex MINLP problem, and realized as an MRA problem subject to the different
allocation constraints.

• We propose further a two-layer iterative approach that can incorporate the capability
of data-driven DQN technique and the strength of non-cooperative game theory model
to resolve the NP-hard MRA problem.

• For the two-layer approach, we also introduce a pricing strategy to determine the
power costs based on the social utility maximization to control the transmit power.

• With the simulated environment based on realistic wireless networks, we show the
results that, by means of both learning-based and model-based methods, the two-layer
MRA algorithm proposed can outperform the single-layer counterparts introduced
which rely only on the data-driven DRL-based models.

The rest of this paper is structured as follows. In Section 2, we introduce the network
and channel models for this work. Next, we present the single-layer learning-based
approaches in Section 3, followed by the two-layer hybrid approach based on game theory
and deep reinforcement learning in Section 4. These approaches are then numerically
examined in Section 5 to show their performance differences. Finally, conclusions are
drawn in Section 6.

2. Network and Channel Models
2.1. Network Model

As shown in Figure 1, an orthogonal frequency division multiplexing (OFDM) multi-
access network with L̃ base stations (BSs) (or access points (APs)) is considered for downlink
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transmission, in which a serving BS would associate with one mobile node (MN). The
distance between two neighbor BSs is R and the cell radius (or transmission range) of BS is
r̂ > R/2 to allow overlap. Here, unlike the conventional coordinated multipoint Tx/Rx
(CoMP) system applied to the scenario in which a MN could receive data from multiple BSs,
we apply the SWIPT technique to the network so that an MN can simultaneously receive
not only wireless information but also energy from different BSs. In addition, although
mmWave brings many performance benefits as an essential part of 5G, it is also known to
have high propagation losses due to higher mmWave frequency bands to be adopted. Thus,
analog beamforming for the downlink transmission is considered to alleviate these losses.

Computation 

unit

Communication 

circuit

Energy 

harvesting circuit

BatteryBattery

.     .      .       .       .        .

Figure 1. A system model with respect to the joint beamforming, power allocation, and splitting con-
trol for SWIPT-enabled IoT networks. In this model, each mobile node has a power split mechanism
to split the received signal into two streams, one sent to the energy harvesting circuit for harvesting
energy and the other to the communication circuit for decoding information.

Next, for more flexibly constructing a beampattern toward MN, each BS adopts a
two-dimensional array of M antennas while each MN has a single antenna for transmission.
Given that, the received signal at the MN associated with i-th BS would be

yi = hi,i fixi + ∑
j 6=i

hi,j f jxj + ni (1)

In the above, xi, xj ∈ C are the transmitted signals form the i-th and j-th BSs, complying
with the power constraint E{|xi|} = Pi and E{|xj|} = Pj, where Pi and Pj are the transmit
powers of the i-th and j-th BSs. In addition, hi,i, hi,j ∈ CM×1 are the channel vectors from
the i-th and j-th BSs to the MN at the i-th BS, and fi, f j ∈ CM×1 denote the downlink
beamforming vectors adopted at the i-th BS and j-th BSs, respectively. As the last term, ni
represents the noise at the receiver sampled from a complex normal distribution with zero
mean and variance σ2

n .
Beamforming: As mentioned previously, for the high propagation loss, analog beam-

forming vectors are assumed for transmission, and each fi, i = 1, 2, · · · , |F |, consists of the
beamforming weights for a two-dimensional (2D) planar array steered towards MN. More
specifically, let each BS have a 2D array of antennas in the x–y plane, in which the antenna
m is located at

dm = (amλ, bmλ) (2)

where λ is the wavelength. Given the elevation direction ψd and the azimuthal direction
φd, the phased weights for the 2D array steered towards the angle (ψd, φd) in the polar
coordinates can be given by e−j2π sin ψd(am cos φd+bm sin φd). If the target is located on the
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x–y plane, sin ψd will be 1 and the weights can be simplified as e−j2π(am cos φd+bm sin φd).
Given that, we consider every beamforming vector to be selected from a steering-based
beamforming codebookF with |F | elements, wherein the n-th element or the array steering
vector in the direction φn is given by

fn
4
= a(φn) =

1√
M

[
1, e−j2π(a1 cos φn+b1 sin φn), · · · , e−j2π(aM−1 cos φn+bM−1 sin φn)

]
(3)

2.2. Channel Model

With the beamforming vector introduced above, we consider a narrow-band geometric
channel model which is widely used for mmWave networks [52–54]. Specifically, the
channel from BS i to the MN in BS j is formulated here as

hi,j =

√
M

ρi,j

Np
i,j

∑
p=1

α
p
i,ja(φ

p
i,j) (4)

where ρi,j represents the path-loss between BS i and the MN associated with BS j. α
p
i,j

is the complex path gain. a(φp
i,j) denotes the array response vector with respect to φ

p
i,j,

which is the angle of departure (AoD) of the p-th path. Np
i,j is the number of channel paths,

and when compared with those for sub-6G, the number for mmWave is usually a small
number [55,56]. Next, let the received power measured by the MN associated with BS i
over a set of resource blocks (RBs) on the channel from BS j to the MN be Pj|hi,j f j|2. Given
that, the received signal to noise and interference ratio (SINR) for the MN associated with
BS i can be obtained by

Pi|hi,i fi|2

∑j 6=i Pj|hj,i f j|2 + σ2
n

(5)

As shown above, each BS i uses Pi to transmit to its user with beamforming vector
fi. When incorporating SWIPT into power allocation, the use of beamforming on the
mmWave MIMO system provides a new solution to resolve both interference and energy
problems [57–59]. To this end, each MN in the network is installed with a power splitting
unit to split the received signal for information decoding and energy harvesting simulta-
neously. Given that, the beamforming would provide a dedicated beam for MN through
which power control and power splitting for energy harvesting can be realized at the same
time. More specifically, in the power splitting architecture for downlink, the received
signal at the MN associated with BS i which transmits with its beamforming vector fi, and
transmit power Pi is split into two separate signal streams according to the power split
ratio θi, which will be determined in the sequel to maximize the system utility. In addition,
when the technology of successive interference cancellation (SIC) is employed to mitigate
the interference for data decoding, the stronger signal would be decoded first, and the
weaker signals remaining could contribute to the interferences for decoding. With P and F
to denote the sets for the transmit power and the power split ratio, respectively, in addition
to the above, the SINR at the received MN i with SWIPT and SIC could be obtained by

γi(P, θi, F) = (1− θi)
Pi|hi,i fi|2

∑
j 6=i,Pi |hi,i fi |2>Pj |hj,i f j |2

Pj|hj,i f j|2 + σ2
n

(6)

As shown above, 1− θi denotes the fraction of signal for the data transmission of
SWIPT. In addition, with SIC [60], when there are multiple signals received by the MN
associated with BS i concurrently, it will decode the stronger signal, and treat the weaker
signals as interference. Here, if there are stronger signals from some BSs, they would be
decoded and deleted first. Then, the desired signal will be obtained by treating the weaker
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signals from the other BSs if they exist, noted here by j 6= i, Pi|hi,i fi|2 > Pj|hj,i f j|2, as the
interference for decoding in addition to the noise σ2

n .

2.3. Problem Formulation

Providing these essential models, our aim is to jointly optimize beamforming vectors,
transmit powers, and power split ratios at the BSs to make the best trade-off between data
rates, harvested energies, and power consumption from all MNs served in the SWIPT-
enabled network with SIC, which is formulated as a complex multiple resource allocation
(MRA) optimization problem subject to different allocation constraints that resulted from
the different types of resources involved, shown as follows:

(P1) max
Pi ,θi , fi ,∀i ∑

i
Ui(P, θi, F) (7a)

subject to Pmin ≤ Pi ≤ Pmax, ∀i (7b)

0 ≤ θi ≤ 1, ∀i (7c)

fi ∈ F , ∀i (7d)

where Ui(P, θi, F) in (7a) denotes the utility function for the trade-off to be introduced in
(19). (7b) specifies the constraint that the transmit power, Pi, should be ranged between the
minimum transmit power, Pmin, and the maximum transmit power, Pmax. (7c) requires θi to
be a nonnegative ratio number no larger than 1. Finally, (7d) says that the vector, fi, should
be selected from its codebook F .

Clearly, if Ui in the objective involves γi in (6), (P1) will be a mixed integer nonlinear
programming (MINLP) problem. It would be even a non-convex MINLP problem due to
the non-convexity of the objective function and the allocation constraints involving discrete
values, and its solution is hard to find even using an optimization tool. To resolve this
hard problem efficiently, we propose two kinds of innovative approaches based on deep
reinforcement learning, game theory, or both, resulting in data-driven, model-driven, or
hybrid iterative algorithms which could be operated in a single layer or two different layers,
as introduced in the following. In addition, for clarity, we summarize the import symbols
for the approaches to be introduced in Table A1 located in Appendix A due to its size.

3. Single-Layer Learning-Based Approaches

Determining an exact state transition model for (P1) through a model-based dynamic
programming algorithm is challenging because the MRA problem on transmit power,
power split ratio, and beamforming vector is location dependent. It is not trivial to list all
the state–action pairs to be found in a state transition model predefined. Therefore, we
design two single-layer learning-based algorithms derived from Markov decision process
(MDP) to resolve this problem.

3.1. Q-Learning Approach

The Q-learning algorithm is based on the MDP that can be defined as a 4-tuple
<S̃, Ã, R̃, P̃>, where S̃ = {s1, s2, · · · , sm} is the finite set of states, and Ã = {a1, a2, · · · , an}
is the set of discrete actions. R̃(s, a, s′) is the function to provide reward r defined at state
s ∈ S̃, action a ∈ Ã, and next state s′. P̃ss′(a) = p(s′|s, a) is the transition probability of the
agent at state s taking action a to migrate to state s′. Given that, reinforcement learning is
conducted to find the optimal policy π∗(s) that can maximize the total expected discounted
reward. Among the different approaches to this end, Q-learning is widely considered,
which adopts a value function Vπ(s)→ r for the expected value to be obtained by policy
π from each s ∈ S̃. Specifically, based on the infinite horizon discounted MDP, the value
function in the following is formulated to show the goodness of π as

Vπ(s) = Eπ

{
∞

∑
k=0

ζkrk+1
i |s0 = s

}
(8)
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where 0 ≤ ζ ≤ 1 denotes the discount factor, and E is the expectation operation. Here, the
optimal policy is defined to map the states to the optimal action in order to maximize the
expected cumulative reward. In particular, the optimal action at each sate s can be obtained
with the Bellman equation [61]:

V∗(s) = Vπ∗ = max
a∈Ã

{
E
(
r(s, a) + ζ ∑

s′∈S̃

Pss′V
∗(s′)

)}
(9)

Given that, the action–value function is in fact the expected reward of this model
starting from state s which takes action a according to policy π; that is,

Qπ(s, a) = E
(
r(s, a)

)
+ ζ ∑

s′∈S̃

Pss′V(s′) (10)

Let the optimal policy Q∗(s, a) be Qπ∗ . Then, we can obtain

V∗(s) = max
a∈Ã

Q∗(s, a) (11)

The strength of Q-learning can now be revealed as it can learn π∗ without knowing
the environment dynamics or Pss′(a), and the agent can learn it by adjusting the Q value
with the following update rule:

Q(st, at) = (1− α)Q(st, at) + α

[
rt + ζ max

a′∈Ã
Q(s′, a′)

]
(12)

where α ∈ [0, 1) denotes the learning rate.
Given this strength, the application of Q-learning is, however, limited because the

optimal policy can be obtained only when the state-action spaces are discrete and the
dimension is relatively small. Fortunately, after considerable investigations on the deep
learning techniques, reinforcement learning has made significant progress to replace a
Q-table with the neural network, leading to DQN that can approximate Q(st, at). In
particular, in DQN, the Q value in time t is rewritten as Q(st, at, ω) wherein ω is the weight
of a deep neural network (DNN). Given that, the optimal policy π∗(s) in DQN can be
represented by π∗(s) = arg maxa′ Q∗(st, a′, ω), where Q∗ denotes the optimal Q value
obtained through DNN. The goal of this approach is then to choose the approximated
action at+1 = π∗(st+1), and the approximated Q value is given by

Q̂(st, at, ω′) = r(st, at, ω′) + ζ max
a′∈Ã

[
Q(st+1, a′, ω)

]
(13)

In the above, ω will be updated by minimizing the loss function:

L̂ = E
[(

Q̂(st, at, ω′)−Q(st+1, at+1, ω′)
)2
]

(14)

Deep Q learning elements: Following the Q-learning design approach, we next
define state, action, and reward function specific for solving (P1) as follows:

(1) State: First, if there are n links in the network, the state at time t is represented in the
sequel by using the capital notations for their components and using the superscript
such as “(t)” for the time index as follows:

s(t) =
{

L(t), P(t), Θ(t), F(t)
}

(15)

where L(t) =
{

L(t)
1 , · · · , L(t)

n

}
, P(t) =

{
P(t)

1 , · · · , P(t)
n

}
, Θ(t) =

{
θ
(t)
1 , · · · , θ

(t)
n

}
, and

F(t) =
{

f (t)1 , · · · , f (t)n

}
. In the above, L(t)

i = (X(t)
i , Y(t)

i ) denotes the Cartesian coor-
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dinates of MN in link i at time t, while the others, i.e., P(t)
i , θ

(t)
i , and f (t)i , denote the

transmit power, power splitting ratio, and beamforming vector for link i at time t,
respectively.
Among these variables, the transmit power is usually the only parameter to be consid-
ered in many previous works [27,62]. In the complex MRA problem also involving
other types of resources, it is still a major factor affecting the system performance
based on SINR in (5) that would be significantly impacted by the power, and thus we
consider two different state formulations for P(t) as follows.

• Power state formulation 1 (PSF1): First, to align with the industry standard [33]
which chooses integers for power increments, we consider a ±1 dB offset repre-
sentation similar to that shown in [51], as the the first formulation for the power
state. Specifically, given an initial value P0

i , the transmit power Pi, ∀i (despite t),
will be chosen from the set

P1
i
4
=
{

10−0.1·Kmin P0
i , · · · , 10−0.1P0

i , P0
i , 100.1P0

i , · · · , 100.1·Kmax P0
i

}
(16)

where Kmin =b-10 log
10
(

Pmin
P0

i
)c and Kmax =b10 log

10
( Pmax

P0
i
)c.

• Power state formulation 2 (PSF2): Next, as shown in [27], the performance of a
power-controllable network can be improved by quantizing the transmit power
through a logarithmic step size instead of linear step size. Given that, the
transmit power Pi, ∀i could be selected from the set

P2 4=

Pmin

(
Pmin
Pmax

) j
|P2 |−2

∣∣∣∣∣∣j = 0, · · · , |P2| − 2

 (17)

Apart from the above, the other parameters, such as θi, ∀i, can be chosen from the
splitting ratio set Θ with linear step size, and fi, ∀i can be selected from the predefined
codebook F with |F | finite vectors or elements.

(2) Action: The action of this process at time t, a(t) is selected from a set of binary
decisions on the variables

Â =
{

ÂP, ÂΘ, ÂF
}

(18)

where ÂP = Âp1 × Âp2 · · · × Âpn ∈ {±1}n, ÂΘ = Âθ1 × Âθ2 · · · × Âθn ∈ {±1}n, and
ÂF = Â f1 × Â f2 · · · × Â fn ∈ {±1}n denote all the possible binary decisions on the
three types of variables involved, respectively. That is, the agent can decide each link
i to increase or decrease each of the variables to the next quantized value according to
Â(t)

pi , Â(t)
θi

and Â(t)
fi

in a(t), respectively.
Note that, as the number of values of a variable is limited, when reaching the maxi-
mum or minimum value with a binary action chosen from Â, a modulo operation is
used to decide the index for the next quantized value in the state space. For example,

in PSF2, if P(t)
i = Pmin

(
Pmin
Pmax

) j
|P2 |−2

with j = 0, and j + Â(t)
pi < 0, then the modulo

operation will lead to P(t+1)
i = Pmin

(
Pmin
Pmax

) j′
|P2 |−2

with j′ = |P2| − 2 in P2. As another

example, with fmin = 1 and fmax = |F | to denote the first and the last vector in the
codebook F , respectively, the action of increasing or decreasing fmin ≤ f (t)i ≤ fmax

by 1 will choose the previous or the next vector of f (t)i in F as f (t+1)
i , and a similar

modulo operation will also be applied to keep f (t+1)
i within [ fmin, fmax].

(3) Reward: To reduce the power consumption for green communication while maintain-
ing the desired trade-off among the data rate and the energy harvesting, we introduce



Sensors 2022, 22, 2328 10 of 29

a reward function that can represent a trade-off among the three metrics properly
normalized for link i with parameters λi, µi, and νi, at time t, as

Ui(P(t), θ
(t)
i , F(t)) = λiri(P(t), θ

(t)
i , F(t)) + µiEi(P(t), θ

(t)
i , F(t))− νiP

(t)
i (19)

where ri(P(t), θ
(t)
i , F(t)) denotes the data rate of link i obtained at time t, which can be

represented by
ri(P(t), θ

(t)
i , F(t)) = log(1 + γi(P(t), θ

(t)
i , F(t))) (20)

In addition, Ei(P(t), θ
(t)
i , F(t)

i ) is the energy harvested at MN of link i at time t, repre-
sented in the log scale as

Ei(P(t), θ
(t)
i , F(t)) = log

(
ei(P(t), θ

(t)
i , F(t))

)
(21)

wherein the harvested energy in its raw form is given by

ei(P(t), θ
(t)
i , F(t)) = θiδ

(
P(t)

i |h
(t)
i,i f (t)i |

2 + ∑
j 6=i

P(t)
j |h

(t)
j,i f (t)j |

2 + σ2
n
)

(22)

In the above, δ is the power conversion efficiency, and νi is the price or cost for the
power consumption P(t)

i to be paid for link i’s transmission. Note that the log repre-
sentation is considered here to accommodate a normalization process in deep learning
similar to the batch normalization in [63]. Otherwise, the data rate ri(P(t), θ

(t)
i , F(t))

obtained with a log operation and the raw energy harvesting ei(P(t), θ
(t)
i , F(t)) without

the (log) operation may be directly combined in the utility function. If so, with the
metric values lying in very different ranges, such a raw representation could cause
problems in the training process. Note also that, although λi and µi could be set to
compensate the scale differences, a very high energy obtained in certain case can still
happen to significantly vary the utility function and impede the learning process. By
taking these into account, the system utility at time t can be represented by the sum of
these link rewards as

U(t) = U(P(t), Θ(t), F(t)) = ∑
i

Ui(P(t), θ
(t)
i , F(t)) (23)

Policy selection: In general, Q-learning is an off-policy algorithm that can find a
suboptimal policy even when its actions are obtained from an arbitrary exploratory selection
policy [64]. Following that, we conduct the DQN-based MRA algorithm to have a near-
greedy action selection policy, which consists of (1) exploration mode and (2) exploitation
mode. On the one hand, in exploration mode, the DQN agent would randomly try different
actions at every time t for getting a better state-action or Q value. On the other hand, in
exploitation mode, the agent will choose at each time t an action a(t) that can maximize the
Q value via DNN with weight ω; that is, a(t) = arg maxa′∈A Q∗(st, a′, ω). More specifically,
we conduct the agent to explore with a probability ε and to exploit with a probability 1− ε,
where ε ∈ (0, 1) denotes a hyperparameter to adjust the trade-off between exploration and
exploitation, resulting in a ε-greedy selection policy.

Experience replay: This algorithm also includes a buffer memory D as a replay
memory to store transactions (s(t), a(t), r(t), s′), where reward r(t) = U(t) is obtained by
(23) at time t. Given that, at each learning step, a mini-batch is constructed by randomly
sampling the memory pool and then a stochastic gradient descent (SGD) is used to update
ω. By reusing the previous experiences, the experience replay makes the stored samples to
be exploited more efficiently. Furthermore, by randomly sampling the experience buffer, a
more independent and identically distributed data set could be obtained for training.
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As a summary of these key points introduced above, we formulate the single-layer DQN-
based MRA training algorithm with a pseudo code representation shown in Algorithm 1 for
easy reference.

Algorithm 1 The single-layer DQN-based MRA training algorithm.

1: (Input) λi, µi, νi, ∀i, batch size η, learning rate α, minimum exploration rate εmin, discount factor
ζ, and exploration decay rate d;

2: (Output) Learned DQN to decide Pi, θi, fi, ∀i, for (7);
3: Initialize action a(0) and replay buffer D = ∅;
4: for episode = 1 toM do
5: Initialize state s(0);
6: for time t = 1 to N do
7: Observe current state s(t);
8: ε = max(ε · d, εmin);
9: if random number r < ε then

10: Select a(t) ∈ Â at random;
11: else
12: Select a(t) = arg maxa′ Q∗(s(t), a′, ω);
13: end if
14: Observe next state s′;
15: Store transition (s(t), a(t), r(t), s′) in D, where r(t) is U(t) obtained with (23);
16: Select randomly η stored samples (s(j), a(j), r(j), s(j+1)) from D for experience;
17: Obtain Q̂(s(j), a(j), ω′) for all j samples with (13);
18: Perform SGD to minimize the loss in (14) for finding the optimal weight of DNN, ω∗;
19: Update ω = ω∗ in the DQN;
20: s(t) = s′;
21: end for
22: end for

3.2. DDPG-Based Approach

Similar to that found in the literature [28,29], as a deep reinforcement learning al-
gorithm, DQN would be superior to the classical Q-learning algorithm because it can
handle the problems with high-dimensional state spaces that can hardly be done with the
former. However, DQN still works on a discrete action space, and suffers the curse of
dimensionality when the action space becomes large. For this, we next develop a deep
deterministic policy gradient (DDPG)-based algorithm that can find optimal actions in a
continuous space to solve this MRA optimization problem without quantizing the actions
that should be done for the DQN-based algorithm.

Specifically, with DDPG, we aim to determine an action a to maximize the action–value
function Q(s, a) for a given state s. That is, our goal is to find

a∗(s) = arg max
a

Q(s, a) (24)

as that done with DQN introduced previously. However, unlike DQN, there are two neural
networks for DDPG, namely actor network and critic network, and each contains two
subnets, namely online net and target net, with the same architecture. First, the actor
network with the weight of DNN, ωa, which is called “actor parameter”, will take state s to
output a deterministic action a, denoted by Qa(s; ωa). Second, the critic network with the
weight of DNN, ωc, which is called “critic parameter” will take state s and a as its inputs to
produce the state–value function, denoted by Q(s, a; ωc), to simulate a table for Q-learning
or Q-table that would get rid of the curse of dimensionality. Given that, two key features of
DDPG can be summarized as follows:

(1) Exploration: As defined, the actor network is conducted to provide solutions to the
problem, playing a crucial role in DDPG. However, as it is designed to produce only



Sensors 2022, 22, 2328 12 of 29

deterministic actions, additional noise, n, is added to the output so that the actor
network can explore the solution space. That is,

a(s) = Qa(s; ωa) + n (25)

(2) Updating the networks: Next, with the notation (s, a, r, s′) to denote the transaction
wherein reward r is obtained by taking action a at state s to migrate to s′ as that
in DQN, the update procedures for the critic and actor networks can be further
summarized in the following.

• As shown in (24), the actor network is updated by maximizing the state–value
function. In terms of the parameters ωa and ωc, this maximization problem
can be rewritten to find J(ωa) = Q(s, a; ωc)|a=Qa(s;ωa). Here, as the action space
is continuous and the state–value function is assumed to be differentiable, the
actor parameter, ωa, would be updated by using the gradient ascent method.
Furthermore, as the gradient depends on the derivative of the objective function
with respect to ωa, the chain rule can be applied as

∇ωa J(ωa) = ∇aQ(s, a; ωc)|a=Qa(s;ωa)∇ωaQa(s; ωa) (26)

Then, as the actor network would output Qa(s; ωa) to be the action adopted by
the critic network, the actor parameter ωa can be updated by maximizing the
critic network’s output with the action obtained from the actor network, while
fixing the critic parameter ωc.

• Apart from the actor network to generate the needed actions, the critic network
is also crucial to ensure that the actor network is well trained. To update the critic
network, there are two aspects to be considered. First, with Qa′(s; ωa′) from the
target actor network to be an input of the target critic network, the state–value
function would produce

y = r+ ζQ̄(s′, a; ωc)|a=Qa′ (s;ωa′ )
(27)

Second, the output of the critic network, Q(s, a; ωc), can be regarded as another
source to estimate the state–value function. Based on these aspects, the critic
network can be updated by minimizing the following loss function:

L̂ = (y−Q(s, a; ωc))
2 (28)

Given that, the critic parameter, ωc, can be obtained by finding the parameter to
minimize this loss function.

• Finally, the target nets in both critic and actor networks can be updated with the
soft update parameter, τ, on their parameters ω′c and ω′a, as follows:

ω′c = τωc + (1− τ)ω′c, ω′a = τωa + (1− τ)ω′a (29)

Action representation for the MRA problem: As defined, the actor network outputs
the deterministic action a∗ = Qa(s; ωa). Due to the deterministic, a dynamic ε-greedy
policy is used to determine the action by adding a noise term n(t) to explore the action
space. Here, as the state of this work involves different types of variables, the action
resulting at time t in fact consists of three parts as a(t)

∗
=
{

A(t)∗
P , A(t)∗

Θ , A(t)∗
F

}
. When added

with the corresponding noises, the exploration action a(t) would be specified as

a(t) =
[
[A(t)∗

P + n(t)
P ]

Pup
Plow

, [A(t)∗
Θ + n(t)

Θ ]
Θup
Θlow

, [A(t)∗
F + n(t)

F ]
Fup
Flow

]
(30)
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where the different parts of a(t) are clipped to the intervals [xup, xlow], x ∈ {P, Θ, F}, accord-
ing to the different types of variables, and the added noises are obtained with a normal
distribution also based on the different types as

n(t)
x ∼ N

(
0, d(t)(xup − xlow)

)
(31)

where d(t) denotes the exploration decay rate at time t.
State normalization and quantization: As shown in the previous works [32,63,65], a

state normalization to preprocess the training sample sets would lead to a much easier and
faster training process. In our work, the three types of variables, P(t), Θ(t), and F(t) (shown
in vector forms) in s(t) may have their values lying in very different ranges, which could
cause problems in a training process. To prevent them, we normalize the coordinates with
the cell radius, and these variables with the scale factors ς1, ς2, and ς3, as

P(t)
i = ς1

P̃(t)
i

Pmax
, θ

(t)
i = ς2

θ̃
(t)
i

θmax
, f (t)i = ς3

f̃ (t)i
fmax

, ∀i (32)

In the above, f̃i is an integer variable rounded from its real counterpart to denote
which element in the codebook F to be used because the output of DDGP is a continuous
action. Specifically, given a(t)=

{
a(t)P , a(t)Θ , a(t)F

}
where a(t)fi

∈ a(t)F = [A(t)∗
F +n(t)

F ]
Fup
Flow

is obtained
by (30), its value at time t will be

f̃ (t)i =
[
b f (t)i fmax/ς3 + a(t)fi

c
] fmax

fmin
(33)

Note that, after the rounding operation (represented here by the floor function), the
value may still be out of its feasible range, and thus a modulo operation similar to that
for DQN is also applied here to keep it in [ fmin, fmax]. For the other types of variables, the
corresponding modulo operations are required to keep them in their feasible ranges as well.
Still, due to their continuous nature, a rounding operation is avoided. Specifically, with
a(t)Pi
∈ a(t)P and a(t)θi

∈ a(t)Θ , each P̃(t)
i and θ̃

(t)
i at time t would be updated by

P̃(t)
i =

[
P(t)

i Pmax/ς1 + a(t)Pi

]Pmax
Pmin

(34)

θ̃
(t)
i =

[
θ
(t)
i θmax/ς2 + a(t)θi

]θmax
θmin

(35)

Apart from the above, the critic network Q(sc, a; ωc) is conducted to transfer gradient
in learning, which is not involved in action generation. In particular, the critic network
evaluates the current control action based on the performance index (23) while the param-
eters P(t), Θ(t), and F(t) of U in (23) are obtained by the actor network. Apart from these
networks, the DDPG-based algorithm also includes an experience replay mechanism as
the DQN counterpart. That is, when the experience buffer is full, the current transition
(s(t), a(t), r(t), s′) will replace the oldest one in the buffer D where reward r(t) = U(t), and
then the algorithm would randomly choose η stored transitions to form a mini-batch for
updating the networks. Given these sampled transitions, the critic network can update its
online net by minimizing the loss function represented by

L̂η =
1
η ∑

i
(yi −Q(si, a; ωc))

2 (36)

where yi = ri + ζQ̄(s′i, a; ωc)|a=Qa′ (si ;ωa′ )
. Similarly, the actor network can update its online

net with

∇ωa Jη(ωa)=
1
η ∑

i
∇aQ(si, a; ωc)|a=Qa(si ;ωa)∇ωaQa(si; ωa) (37)
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Finally, we summarize the single-layer DDPG-based MRA training algorithm in
Algorithm 2 to be referred to easily.

Algorithm 2 The single-layer DDPG-based MRA training algorithm.

1: (Input) λi, µi, νi, ∀i, batch size η , actor learning rate αa, critic learning rate αc, decay rate d,
discount factor ζ, and soft update parameter τ;

2: (Output) Learned actor/critic to decide Pi, θi, fi, ∀i, for (7);
3: Initialize actor Qa(s; ωa), critic Q(s, a; ωc), action a(0), replay buffer D, and set initial decay rate

d(0) = 1;
4: for episode = 1 toM do
5: Initialize state s(0) and ρ(0);
6: for time t = 1 to N do
7: Normalize state s(t) with (32);
8: Execute action a(t) in (30), obtain reward r(t) = U(t) with (23), and observe new state s′;
9: if replay buffer D is not full then

10: Store transition (s(t), a(t), r(t), s′) in D;
11: else
12: Replace the oldest one in buffer D with (s(t), a(t), r(t), s′);
13: Set d(t) = d(t−1) · d;
14: Randomly choose η stored transitions from D;
15: Update the critic online network by minimizing the loss function in (36);
16: Update the actor online network with the gradient obtained by (37);
17: Soft update the target networks with their parameters updated by (29);
18: s(t) = s′;
19: end if
20: end for
21: end for

4. Two-Layer Hybrid Approach Based on Game Theory and Deep
Reinforcement Learning

As exhibited above, DDPG can be used for continuous action spaces as well as high-
dimensional state spaces, which would overcome the difficulty of DQN which can apply
only to discrete action spaces. However, the MRA problem includes both discrete and
continuous variables, which requires DDPG to quantize the continuous variables involved
to be their discrete counterparts as shown in (33). In addition, as a data driven approach,
deep reinforcement learning does not explicitly benefit from an analytic model specific to
the problem. To take the advantages from both data-driven and model-driven approaches,
we propose in the following a novel approach that consists of two layers, where the lower
layer is responsible for the continuous power allocation (PA) and energy harvest splitting
(EHS) by using a game-theory-based iterative method, and the upper layer resolves the
discrete beam selection problem (BSP) by using a DQN algorithm. That is, if fi, ∀i, can be
given, PA and EHS on Pi and θi for each link i could be decomposed from the objective.
Then, we could simplify the MRA problem by reducing (P1) to a BSP sub-problem and a
PA/EHS sub-problem. Specifically, the latter (PA/EHS) is given by

(P2) max
Pi ,θi Ui(P, θi, F) (38a)

subject to Pmin ≤ Pi ≤ Pmax (38b)

0 ≤ θi ≤ 1 (38c)

Clearly, if the BSP sub-problem can be solved, the major challenge of this approach
would be the PA/EHS sub-problem shown in (P2). Here, even represented by a simpler
form, (P2) is still a non-convex problem whose solution for link i will depend on the other
links j 6= i. That is, despite EHS, the PA problem still remains in (P2) that a larger Pi would
increase SINR of link i while reducing those of the other links j 6= i in (6), increase energy
harvesting in (22), or both, at the cost νi for Pi in the objective function.
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4.1. Game Model

To overcome this difficulty, we convert (P2) into a non-cooperative game among the
multiple links which could be regarded as self-interesting players and finding its Nash
equilibrium (NE) is the fundamental issue to be considered in this game model. On the
one hand, a link i can be seen as a non-cooperative game player who can choose its own
Pi and θi to make a trade-off so that a larger Pi will lead to a higher SINR value in (6) for
data rate, a higher value in (22) for energy harvesting, or both on the cost of a higher power
consumption, and vice versa. On the other hand, the utility given in (19) can be considered
to reduce the power consumption for green communication while maintaining a desired
trade-off among the data rate and the energy harvesting. The game-based pricing strategy
is thus designed through which BS can require its link to pay a certain price for the power
consumption on its transmission. For this, λi can be interpreted as the willingness of player
i to pay for the data rate, and µi as that to pay for the energy harvesting. Given that, each
link or player i can determine its Pi and θi based on price νi to maximize its own utility, and
in this maximization, λi, µi, and νi are predetermined values for player i and unknown for
the others j 6= i, as a basis for the non-cooperative game.

4.2. Existence of Nash Equilibrium

To ensure the outcome of the non-cooperative game to be effective, we next show
this game to have at least one Nash equilibrium. As noted in [66], a Nash equilibrium
point represents a situation wherein every player is unilaterally optimal and no player can
increase its utility alone by changing its own strategy. Furthermore, according to the game
theory fundamental [66], the non-cooperative game admits at least one Nash equilibrium
point if (1) the strategy space is a nonempty, compact and convex set, and (2) the utility
function is continuous quasiconcave with respect to the action space. In (P2), the utility
function Ui can be verified to satisfy the above conditions. Specifically, for the first condition,
we can note that the transmit power is bounded by Pmin and Pmax, i.e., Pi ∈ [Pmin, Pmax],
and the power splitting ratio, θi, is a real number bounded by 0 and 1. Let Si be the set of
all strategies as its strategy space. Then, the strategy space for each link i in the proposed
game model can be represented by Si=

{
(Pi, θi) ∈ R2|Pmin ≤ Pi ≤ Pmax, 0 ≤ θi ≤ 1

}
, which

is a compact (closed and bounded) convex set as required.
For the second condition, we can derive the partial differential of the utility function

with respect to power Pi as

∂Ui
∂Pi

=
λi(1− θi)|hi,i fi|2
Ri − θiPi|hi,i fi|2

+
µiθiδ|hi,i fi|2

θiδ
(

Pi|hi,i fi|2 + ∑j 6=i Pj|hj,i f j|2 + σ2
n
) − νi (39)

where Ri is the total received power at link i, which accommodates the effect of SIC
involved, as shown as follows:

Ri =

{
σ2

n + ∑j 6=i Pj|hj,i f j|2 + Pi|hi,i fi|2, if Pi|hi,i fi|2 > ∑j 6=i Pj|hj,i f j|2
σ2

n + Pi|hi,i fi|2 , otherwise
(40)

Similarly, we can obtain the partial differential of the utility with respect to θi by

∂Ui
∂θi

=
λi

1 + γi

∂γi
∂θi

+
µiδ
(

Pi|hi,i fi|2 + ∑j 6=i Pj|hj,i f j|2 + σ2
n
)

θiδ
(

Pi|hi,i fi|2 + ∑j 6=i Pj|hj,i f j|2 + σ2
n
)

=
−λiPi|hi,i fi|2

Ri − θiPi|hi,i fi|2
+

µi
θi

(41)

Furthermore, from (39) and (41), the second derivative of the utility function with
respect to Pi and θi, respectively, can be obtained by
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∂U2
i

∂P2
i

= −λi

(
(1− θi)|hi,i fi|2
Ri − θiPi|hi,i fi|2

)2

− µi

( |hi,i fi|2
Pi|hi,i fi|2 + ∑j 6=i Pj|hj,i f j|2 + σ2

n

)2

∂U2
i

∂θ2
i

= −λi

(
Pi|hi,i fi|2

Ri − θiPi|hi,i fi|2

)2

− µi
( 1

θi

)2 (42)

It is easy to see that both ∂U2
i

∂P2
i

and ∂U2
i

∂θ2
i

are less than or equal to 0, implying that the utility

function is convex. In addition, Ui is continuous in Pi. Consequently, the utility functions,
Ui, ∀i, all satisfy the required conditions for the existence of at least one Nash equilibrium.

4.3. Power Allocation and Energy Harvest Splitting in the Lower Layer

Based on the non-cooperative game model introduced, the associated BS is responsible
for deciding the transmit power Pi and the power splitting ratio θi for link i, with the
channel state information hi,j and the weights λi and µi, which can be done by finding
its Nash equilibrium. To see this, we note that, as the utility functions Ui, ∀i, are concave
down with respect to (Pi, θi), this decision can be made by using the solution to the system
of equations:

∂U1

∂P1
= 0, . . . ,

∂Un

∂Pn
= 0,

∂U1

∂θ1
= 0, . . . ,

∂Un

∂θn
= 0 (43)

where n denotes the number of links in the network.
To solve the system of equations, we propose an iterative algorithm based on the game

model, and through the fixed point iteration process, the system of Equation (43) can be
solved numerically. Here, by taking the derivative with respect to Pi (resp. θi) and setting
the result equal to 0, we can transform the system into a fixed point form for each link i
that can facilitate its convergence, as follows:

Pi =
λi

νi −
µi |hi,i fi |2

R̂i+Pi |hi,i fi |2

− R̂i
(1− θi)|hi,i fi|2

(44)

θi =
µiRi

(1 + λi)Pi|hi,i fi|2
(45)

where R̂i is an auxiliary variable denoted by

R̂i = σ2
n + ∑

j 6=i
Pj|hj,i f j|2 (46)

To show the iterative process more clearly, we denote the transmit power, the total
received power, the auxiliary variable, and the power splitting ratio, for link i at the k-th
iteration, by Pi[k], Ri[k], R̂i[k], and θi[k], respectively. Given that, the iterations on Pi and θi
can be shown by the relationships between iterations k and k− 1 with their results to be
bounded by the corresponding maximum and minimum values as follows:

Pi[k] =
[

λi

νi −
µi |hi,i fi |2

R̂i [k−1]+Pi [k−1]|hi,i fi |2

− R̂i[k− 1]
(1− θi[k− 1])|hi,i fi|2

]Pmax

Pmin

(47)

θi[k] =
[

µiRi[k− 1]
(1 + λi)Pi[k− 1]|hi,i fi|2

]θmax

θmin

(48)

4.4. Beam Selection in the Upper Layer and the Overall Algorithm

With the transmit powers and energy splitting ratios from the lower layer with a
low cost, the two-layer hybrid approach is designed to resolve the remaining beam se-
lection problem with a DQN-based algorithm in the upper layer, which would reduce
the computational overhead when compared with the DQN approach in Section 3.1 and
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the DDPG-based approach in Section 3.2. In addition, unlike the previous approaches
considering either discrete action space or continuous action space solely, the two-layer
approach obtains the variables in their own domains without either approximating the
hybrid space by concretization or relaxing it into a continuous set. As a result, the two-layer
approach would achieve higher utilities than the others, as exemplified in the experiments.

Specifically, we propose to use a DQN-based algorithm in the upper layer to resolve
the beam selection problem in its own discrete action space. When compared with that
given in Section 3.1, this algorithm considers locations L and beamforming vectors F only,
leading to a reduced DQN model whose state at time t is represented by s(t) =

{
L(t), F(t)

}
,

and the action a(t) is selected from Â (here including only ÂF) modified to take into account
also the case of no changes. That is, each Â(t)

fi
∈ a(t) selected from ÂF can now be anyone in

{−1, 0,+1} instead of ±1, in which 0 implies no changes on the previous beam selection.
When the modification integrates with the lower layer, the two-layer hybrid MRA training
algorithm has results as shown in Algorithm 3 along with its flowchart shown in Figure 2.
Similar to Algorithms 1 and 2, the training algorithm would take the parameters for the
utility, the hyperparameters for the learning algorithm, and the parameters for the game-
based method, as the input, while producing a learned DQN model as the output that can
online decide Pi, θi, and fi, ∀i, for the optimization problem in (7) afterwards. Apart from
the input and output, its main steps are summarized as follows:

Algorithm 3 The two-layer hybrid MRA training algorithm.

1: (Input) λi, µi, νi, ∀i, batch size η, learning rate α, minimum exploration rate εmin, discount factor
ζ, exploration decay rate d, and converge threshold $;

2: (Output) Learned DQN to decide Pi, θi, fi, ∀i, for (7);
3: (Upper-layer DQN-based learning:)
4: Initialize action a(0) and replay buffer D = ∅;
5: for episode = 1 toM do
6: Initialize state s(0);
7: for time t = 1 to N do
8: Observe current state s(t) =

{
L(t), F(t)

}
;

9: ε = max(ε · d, εmin);
10: if random number r < ε then
11: Select a(t) from ÂF at random;
12: else
13: Select a(t) = arg maxa′ Q∗(s(t), a′, ω);
14: end if
15: Observe next state s′;
16: (Lower-layer game-theory-based iteration:)
17: for each link i do
18: for iteration k = 1 to K do
19: Update Pi[k] with (47);
20: Update θi[k] with (48);
21: if |Ui[k]−Ui[k− 1]| ≤ $ then
22: k′ = k; break;
23: end if
24: end for
25: k∗ = min{k′,K};
26: P(t)

i = Pi[k∗]; θ
(t)
i = θi[k∗];

27: end for
28: Determine U(t)

i based on P(t)
i and θ

(t)
i in the lower layer, and f (t)i in the upper layer, ∀i;

29: Store transition (s(t), a(t), r(t), s′) in D;
30: Select η random samples (s(j), a(j), r(j), s(j+1)) from D;
31: Calculate Q̂(s(j), a(j), ω′) and perform SGD to find the optimal weight of DNN, ω∗;
32: Update ω = ω∗ for DQN in the upper layer;
33: s(t) = s′;
34: end for
35: end for
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• Observe state s(t) at time t for beam section.
• Select an optimal action from a(t) at time step t.
• Given selected beamforming vectors F(t), obtain transmit powers P(t) and splitting

ratios Θ(t) through the game-theory-based iterative method in the lower layer.
• Assess the impact on data rate ri, energy harvesting Ei, and transmit power Pi, for all

links i.
• Reward the action at time t as Ui(P(t), θ

(t)
i , F(t)), ∀i, based on the impact assessed.

• Train DQN with the system utility U(t) obtained.

After the training or learning period, say T, the trained DQN from Algorithm 3 would
be used to observe the following state s(t) =

{
L(t), F(t)

}
, t > T, evaluate utility Ui with the

given parameters λi, µi, and νi, and then take action a(t) to decide Pi, θi, and fi, ∀i, for the
system in the testing process.
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Figure 2. Flowchart of the two-layer hybrid MRA training algorithm. In the upper half, the input
and the state (corresponding to line 1 and line 3 in Algorithm 3) are shown by the first box and the
second box, respectively (from left to right). After selection (lines 10–14), the new state is shown by
the fourth box. In the bottom half, the lower-layer iterations (lines 17–27) are exhibited with a box
showing the equations involved. The two halves then cooperatively produce the reward (line 28)
shown in the rightmost side toward the remaining boxes at the top denoting the following steps in
Algorithm 3.

4.5. Time Complexity

Next, we show the time complexity for each of these algorithms before revealing their
performance differences in the next section. Specifically, let the number of episodes beM,
and the number of time-steps per episode be N . Assuming that the Q-learning network in
Algorithm 1 has J fully connected layers, the time complexity with regard to the number of
(floating point) operations in this algorithm would be O(∑J−1

j=0 ujuj+1) based on the analysis
in [32], where uj denotes the unit number in the jth layer, and u0 is the input state size. In
each time-step of an episode, there may be other operations such as the random selection
of an action in line 10 not involving the neural network, which could be ignored when
compared with the former for the analysis. Thus, taking the nesting for loops (the outer
is episode loop and the inner is time-step loop) into account, we have its worst-case time
complexity as O(MN ∑J−1

j=0 ujuj+1).
Apart from training, DDPG also involves a normalization process whose time com-

plexity could be denoted by T (s), where T (s) is the number of the variables in the state
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set. In addition, the actor and critic networks of DDPG in Algorithm 2 are assumed to
have J and K fully connected layers, respectively. According to [32], the time complexity
with respect to these networks in the training algorithm would be O(∑J−1

j=0 uactor,juactor,j+1 +

∑K−1
k=0 ucritic,kucritic,k+1), where uactor,i and ucritic,i denote the unit number in the ith layer

with respect to the actor network and the critic network, respectively. Then, by taking the
nesting loops into account as well, we have the overall time complexity of this algorithm as
O(MN (∑J−1

j=0 uactor,juactor,j+1 + ∑K−1
k=0 ucritic,kucritic,k+1)).

Finally, let the number of links be n and the number of iterations per link be K
in addition toM and N given previously. As the two-layer hybrid training algorithm
involves the lower-layer game-theory-based iterations, the overall time complexity of
Algorithm 3 would be O(MN nK∑J−1

j=0 uQ,juQ,j+1), where uQ,j denotes the unit number
in the jth layer with respect to the DQN neural network in this algorithm. Note that,
although there are additional nK iterations for the lower layer, the input state size uQ,0 is∣∣∣{L(0), F(0)

}∣∣∣ that could be much smaller than u0 =
∣∣∣{L(0), P(0), Θ(0), F(0)

}∣∣∣ in the single-
layer Algorithm 1 with DQN, while uQ,j = uj, 1 ≤ j ≤ J, is considered. In addition,
it requires no normalization process and has the computational overhead on its neural
network lower than that of O(∑J−1

j=0 uactor,juactor,j+1 + ∑K−1
k=0 ucritic,kucritic,k+1) on the two

different types of neural networks in Algorithm 2.

5. Numerical Experiments

In this section, we conduct simulation experiments to evaluate the proposed two-layer
approach and compare it with the single-layer approaches also introduced. To this end, we
first present the simulation setup adopted and the parameters involved. Then, we show
the performance differences between the two-layer hybrid MRA algorithm based on game
theory and deep reinforcement learning, and the single-layer counterparts based on the
conventional deep reinforcement learning models (DQN and DDPG).

5.1. Simulation Setup

With the network model and the channel model introduced in Section 2, we conduct
MNs to be uniformly distributed in the simulated cellular network and let them move at
a speed of v = 2 km/h on average with log-normal shadow fading as well as small-scale
fading. In this environment, the cell radius is set to r̂ and the distance between sites or
BSs is considered to be 1.5 r̂, in which MNs can experience a probability of line of sight,
Plos, on the signals from BSs. For easy reference, the important parameters for the radio
environment including those not shown above are summarized in Table 1.

Table 1. Important radio environment parameters.

Parameter Value

Maximum transmit power (Pmax) 40 W (46 dBm)
Minimum transmit power (Pmin) 1 W (30 dBm)
Probability of light of sight (Plos) 0.7
Cell radius (r̂) 150 m
Distance between sites (BSs) 225 m
Antenna gain 3 dBi
Mobile node (MN) antenna gain 0 dBi
Number of multipaths 4
MN movement speed on average (v) 2 km/h
Number of transmit antennas of BS {4, 8, 16, 32}
Downlink frequency band 28 GHz

Apart from the parameters for radio, the converge threshold $ is set to 10−5 for the
two-layer algorithm, and the hyperparameters for the deep reinforcement learning models
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are tabulated in Table 2. For example, in the DQN for the single-layer approach, the state
s(t) at time t is denoted by{

X(t)
i , Y(t)

i , X(t)
j , Y(t)

j , P(t)
i , P(t)

j , θ
(t)
i , θ

(t)
j , f (t)i , f (t)j

}
which corresponds to the size of state, 10, listed in this table. In addition, as introduced
in Section 3.1, a ± 1 dB offset representation is considered for PSF1, and the number of
power levels is set here as 9 for PSF2 to construct their power sets P1 and P2, respectively.
Furthermore, a ± 0.05 offset representation, and a set of 11 values, {0, 0.1, · · · , 1} with
step size of 0.1, are also conducted as the power splitting ratio sets Θ for PSF1 and PSF2,
respectively. Nevertheless, the size of action is 64 according to the binary decisions defined
in (18), despite PSF1 or PSF2 in DQN. Apart from the above, for the two-layer approach,
the DQN for the upper layer only considers the beamforming vectors F in addition to
the locations L, which reduces the size of state to 6. Moreover, as it considers {−1, 0,+1}
instead of ±1 for the actions, the size of action becomes 9. Despite these differences, the
other hyperparameters of DQN are the same for both single- and two-layer approaches.
Finally, the hyperparameters for DDPG are chosen to reflect its performance on average with
a reasonable time complexity to execute, and a codebook F with 4, 8, 16, and 32 elements
or vectors, respectively, to correspond to the different numbers of antennas in the radio
environment is considered for all the algorithms involved.

Table 2. Reinforcement learning parameters.

Parameter Value

DQN:

Discount factor (ζ) 0.995
Learning rate (α) 0.01
Initial exploration rate (ε) 1.0
Minimum exploration rate (εmin) 0.1
Exploration decay rate (d) 0.9995
Size of state (|s|) 10
Size of action (|a|) 64
Replay buffer size (|D|) 2000
Batch size (η) 256

DDPG:

Actor learning rate (αa) 0.001
Critic learning rate (αc) 0.002
Replay buffer size (|D|) 10000
Exploration decay rate (d) 0.9995
Batch size (η) 32
Scale factors (ς1, ς2, ς3) 1
Discount factor (ζ) 0.9
Soft update parameter (τ) 0.01

DQN for two-layer:

Size of state (|s|) 6
Size of action (|a|) 9

The same parameters for the single-layer DQN

Given that, we conduct 50 experiments with different seeds for all the algorithms
under comparison. For each of these experiments, there are 400 training episodes or epochs
in total. At the beginning of each episode, MNs are randomly located in the simulated
network, which then move at speed v in 500 time slots per episode. Afterward, with
the trained (P, Θ, F) from these algorithms, we conduct another 100 episodes with MNs
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randomly located at the beginning as well to obtain the averaged utility, data rate, energy
harvesting, and power consumption to validate the parameters obtained with the different
algorithms. Specifically, each 100 testing episodes of an experiment produce a mean value,
and each averaged metric shown in the following figures denotes the average of these
mean values from the 50 experiments. Note that, since DDPG is trained with normalized
variables as shown in (32), in the testing process, we also have to preprocess these inputs.

5.2. Performance Comparison

Given the environment, we compare the proposed two-layer MRA algorithm aided
by game theory with the single-layer MRA algorithms based solely on DQN and DDPG
also introduced. To see their performance differences, we conduct two sets of experiments
from different aspects; the first focuses on the number of antennas, M, and the second on
the power cost νi. Given that, in Figures 3–5 to be shown for the comparison results, the
legends of “two-layer”, “single-layer with DDPG”, “single-layer with DQN of PSF1”, and
“single-layer with DQN of PSF2” exhibited therein represent the two-layer MRA algorithm,
the single-layer DDPG-based MRA algorithm, the single-layer DQN-based MRA algorithm
with PSF1, and the single-layer DQN-based MRA algorithm with PSF2 introduced in this
work, respectively.
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Figure 3. Utilities obtained during training periods upon (a) M = 32, and (b) M = 4.

5.2.1. Impacts of Antennas

In the first experiment set, four numbers of transmit antennas, M ∈ {4, 8, 16, 32},
in BS are examined while fixing λi = 10, µi = 1, and νi = 1, ∀i. Due to similar trends to
be given, in Figure 3, we exemplify the utilities obtained during the training periods in
two experiment instances with the highest and the lowest number of transmit antennas,
32 and 4, respectively. It can be seen easily from the two sub-figures that the utility that
resulted from the two-layer MRA algorithm is higher than those from the single-layer
counterparts during the training periods, despite the number of antennas, on average.
In addition, it can also be observed that, with the continuous action space, DDPG could
outperform DQN in general, despite the power state formulations (PSF1 and PSF2) of the
latter. Finally, we can see that, with a ± 1 dB offset representation, PSF1 of DQN would
result in a greater number of states on the transmit power than PSF2 equipped with a
limited number of quantized levels, which could eventually lead to a better performance
on the utility in the long term.

Next, we show the performance differences among the averaged metrics on utility,
data rate, energy harvesting, and power consumption obtained by the testing process
on (P, Θ, F) resulting from these algorithms. As shown in Figure 4, the two-layer MRA
algorithm outperforms the single-layer counterparts on all the performance metrics except
the energy harvesting, despite the number of antennas, M. In particular, in terms of the
averaged utilities resulting from all different M, the two-layer MRA algorithm can achieve
up to 2.3 times higher value than the single-layer DQN of the PSF2 algorithm. Despite
the utility, as the resulting energy harvesting has relatively smaller values to impact the
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overall utility, a lower (resp. higher) value of this metric represented in the log scale is still
possible and its impact would be compensated by a higher (resp. lower) value of power
consumption, data rate, or both, which eventually leads to the overall utility to increase as
M increases. For example, the highest utilities which are obtained by the two-layer MRA
algorithm (as shown in Figure 4a) are mainly contributed by the highest data rates (as
shown in Figure 4b) and the lowest power consumption (as shown in Figure 4d), which are
all resulting from the two-layer algorithm, despite the energy harvesting of this algorithm to
be slightly fluctuated as M increases and lower than that from the single-layer counterparts
(as shown in Figure 4c).
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Figure 4. Impacts of varying the number of antennas (M) upon (a) utility, (b) data rate (bps), (c) energy
harvesting (J), and (d) power consumption (W).

In addition, as no previous works exactly consider the same system formulations
and metrics presented here, it is hard to directly compare this work with the others such
as [27,51] which consider only P, F, or both, for their data transmissions without the
capability of energy harvesting. However, even without the capability, we could still
consider the DRL algorithm in [51] with only P to see the possible performance differences
between ours and the conventional approaches. Specifically, with M = 32, the comparison
results are summarized in Table 3. As shown readily, without the power split for energy
harvesting, the DRL algorithm can obtain the highest data rate as an upper bound here,
as expected. In comparison, the two-layer algorithm can achieve almost the same data
rate while harvesting the energy with the lowest power consumption. Similarly, the single-
layer algorithms can enjoy the energy harvesting with similar power consumption, but
they may obtain lower data rates when splitting their powers to harvest energy and send
data simultaneously.

5.2.2. Impacts of Pricing Strategy

From the utility function defined by (19), we can see that the unit power cost νi actually
plays a crucial role in the non-cooperative game model, and would have a strong impact
on the performance of joint optimization and the Nash equilibrium. Thus, in the final set of
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experiments, we propose a simple pricing strategy for the base station to determine νi on
the basis of social utility maximization and to control the transmit power of link so that its
value can be located within the feasible range [Pmin, Pmax] for the high performance of this
algorithm to be realized by the social utility maximization.

Table 3. Performance comparison with M = 32.

Method Data Rate Energy Harvesting Power Consumption

DRL 11.32910 0 22.51510
two-layer 11.26969 8.164853× 10−9 16.40005
single-layer with DDPG 10.58339 1.062941× 10−5 21.34165
single-layer with DQN of PSF1 9.31607 5.809001× 10−8 22.50100
single-layer with DQN of PSF2 8.46842 3.477011× 10−8 23.69319

Specifically, let the desired transmit power be Pd
i , and, according to the fixed point

formulation in (44), we have

Pd
i =

λi

νi −
µi |hi,i fi |2

R̂i+Pd
i |hi,i fi |2

− R̂i
(1− θi)|hi,i fi|2

(49)

two-layer
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Figure 5. Impacts of the pricing strategy upon (a) utility, (b) data rate (bps), (c) energy harvesting (J),
and (d) power consumption (W).

Given that, the desired power cost νPd
i

can be obtained by

νPd
i
=

µi|hi,i fi|2

R̂i + Pd
i |hi,i fi|2

+
λi(1− θi)|hi,i fi|2

Pd
i (1− θi) + R̂i

(50)

Accordingly, the two-layer hybrid MRA algorithm is slightly modified to dynamically
adjust νi instead of using a fixed νi, ∀i, as an input of the algorithm. To be more specific, the
sketch of this modification is given in Algorithm 4, wherein the modified three statements
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showing their calculations (50), (47) and (48), respectively, are highlighted with bold italic
font, in addition to the fact that the input does not include νi now. For the comparison, the
pricing strategy is also applied to Algorithms 1 and 2 by replacing the input νi with νPd

i

dynamically adjusted by using (50) as well after observing the next state S′ carried out in
the corresponding steps in these algorithms.

Algorithm 4 The two-layer hybrid MRA training algorithm with the pricing strategy.

(Input) λi, µi, ∀i, · · · ;
· · ·
for episode = 1 toM do

for time t = 1 to N do
· · ·
Observe next state S′;
Obtain νPd

i
, ∀i, by using (50)

for each link i do
for iteration k = 1 to K do

Update Pi[k] by using (47) with νi = νPd
i
, ∀i;

Update θi[k] by using (48) with νi = νPd
i
, ∀i;

· · ·
end for

end for
· · ·

end for
end for

Here, following the same setting Pmin = 1 W and Pmax = 40 W, we sample the feasible
range at {1 W, 10 W, 20 W, 30 W, 40 W} as Pd

i to obtain νPd
i

with (50) while fixing λ = 10,
µ = 1, and M = 32, and conduct these algorithms to output the performance metrics
averaged to be compared. The results are now summarized in Figure 5, showing that the
two-layer algorithm outperforms the others in terms of the utility. In particular, although
it may have lower data rates when νP=1 (denoting νPd

i
obtained by Pd

i = 1 W), and higher

power consumption when νP>10 (denoting νPd
i

with Pd
i > 10 W), the increasing trend of

these resulting metrics would still lead to a utility higher than the others and the resulting
utility would increase as νPd

i
increases. Similarly, as the energy harvesting has relatively

smaller values to impact the system as noted before, its small fluctuations from the different
algorithms do not alter the increasing trend of utility in the final experiment set as well.

6. Conclusions

In this work, we sought to maximize the utility that can make an optimal trade-off
among data rate and energy harvesting while balancing the cost of power consumption
in multi-access wireless networks with base stations having multi-antennas. Given the
capability of selecting beamforming vectors from a finite set, adjusting transmit powers,
and deciding power splitting ratios for energy harvesting, the wireless networks developed
toward the future generation (beyond 5G or B5G) are expected to achieve the extreme
performance requirements that can only be satisfied by an optimal solution to be possibly
found through an exhaustive search.

To meet the expectation, we have shown in this work how to design DRL-based
approaches operated in a single layer to jointly solve for power control, beamforming
selection, and power splitting decision, and approach the optimal trade-off among the
performance metrics without an exhaustive search in the action space that resulted. Fur-
thermore, we have shown how to incorporate a data-driven DRL-based technique and
a model-driven game-theory-based algorithm to form a two-layer iterative approach to
resolve the NP-hard MRA problem in the wireless networks. Specifically, we have shown
that, by taking benefits from both data-driven and model-driven methods, the proposed
two-layer MRA algorithm can outperform the single-layer counterparts which rely only on
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the data-driven DRL-based algorithms. Here, the single-layer algorithms could represent
the conventional DRL methods extended to have the energy harvesting capability. As
shown readily in the experiments, the conventional DRL method and the single-layer
algorithms would not provide a good performance trade-off on the metrics considered.
That is, the overall utilities reflecting the trade-off from the single-layer algorithms have
been shown to be lower than that from the two-layer approach. In contrast, by collaborating
between DRL and game theory, the two-layer approach has been shown to achieve better
trade-off among the data rate and the energy harvesting while balancing the cost of power
consumption, reflecting on the higher utilities obtained. Specifically, in the simulation
experiments, we have exemplified the performance differences of these algorithms in terms
of data rate, energy harvesting, and power consumption, verified the feasibility of the three
parameters in the utility function, and examined the pricing strategy proposed that can
dynamically adjust the transmit power of the link to locate its value within the feasible
range for the high performance of the two-layer algorithm to be obtained by the social
utility maximization.

From the viewpoint of social utility maximization, our pricing strategy had been
shown to give this system the leverage to select beamforming vectors, transmit powers,
and power split ratios by properly adjusting the power costs. Finally, inspired by the
related works on multi-agent DRL, we would aim to develop further collaborating schemes
that can reduce the overhead caused by different optimization methods even under the
non-stationary environment brought by a multi-agent setting, as our future work.

Author Contributions: J.L. the main research idea, software implementation, validation, and manuscript
preparation; C.-H.R.L. research idea discussion, review, and manuscript preparation; Y.-C.H. research
idea discussion, edit, and manuscript preparation; P.K.D. research idea discussion and manuscript
preparation. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Technology, Republic of China,
under Grant MOST 110-2221-E-126-001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Important symbols for the proposed approaches in this work.

Name Description Name Description

P, Θ, F
sets of transmit powers, splitting ra-
tios, and beamforming vectors, re-
spectively

Pi, θi, fi

transmit power, splitting ratio, and
beamforming vector for link i, re-
spectively

L set of locations L̂ loss function

S̃ a finite set of states, {s1, s2, · · · , sm} s(t)
state at time t, denoted by

{
L(t) ,P(t),

Θ(t), F(t)
}

Ã
a finite set of actions,
{a1, a2, · · · , an}

Â
a set of binary variables, where ÂP,
ÂΘ, and ÂF correspond to those for
P, Θ, and F, respectively.
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Table A1. Cont.

Name Description Name Description

R̃

a finite set of rewards, where
R̃(s, a, s′) is the function to provide
reward r at state s ∈ S̃, action a ∈ Ã,
and next state s′

P̃

a finite set of transition probabilities,
where P̃ss′(a) = p(s′|s, a) is the tran-
sition probability at state s taking ac-
tion a to migrate to state s′

π∗(s) optimal policy at state s Vπ(s)
value function for the expected
value to be obtained by policy π
from state s ∈ S

V∗(s) optimal action at state s Qπ(s, a)

action–value function representing
the expected reward starting from
state s and taking action a from pol-
icy π

Qπ∗
optimal policy for the (optimal)
action–value function Q∗(s, a) =
maxπ Qπ(s, a)

Q(st, at) action–value (Q) function at time t

Q̂(st, at,
ω′)

approximated action–value (Q) func-
tion with the weight of DNN, ω′, at
time t

F beamforming codebook

P1
i

a set of transmit powers for link i in
PSF1 P2 a set of transmit powers for all links

in PSF2

Ui(P(t),
θ
(t)
i , F(t))

reward for link i at time t, includ-
ing data rate ri(P(t), θ

(t)
i , F(t)) and

energy harvest Ei(P(t), θ
(t)

i , F(t))

(s(t), a(t),
r(t), s′)

transition at time t, where r(t) = U(t)

that is the system utility at this time
step

α,
αa,
αc

learning rate, the (learning) rate spe-
cific to actor network, and the (learn-
ing) rate specific to critic network

ε, εmin
exploration rate (probability) and its
minimum requirement

ζ discount factor τ soft update parameter

d exploration decay rate D replay buffer

η batch size $
converge threshold for the fixed
point iteration

Qa(s; ωa),
Qa′ (s; ωa′ )

output of actor network (online and
target, respectively)

Q(s, a; ωc),
Q̄(s, a; ωc′ )

output of critic network (online and
target, respectively)

αi, µi, νi

parameters for data rate, energy har-
vesting, and power consumption, re-
spectively, for link i

ς1,
ς2,
ς3

scale factors for normalization of
DDPG at time t

a(t)
∗

deterministic action of DDPG at time
t, wherein A(t)∗

P , A(t)∗
Θ , and A(t)∗

F cor-
respond to those for transmit power,
split ratio and beamforming vector

P̃(t)
i , θ̃

(t)
i ,

f̃ (t)i

variables for normalization of DDPG
at time t

Ri
total received power at link i for the
fixed point iteration R̂i

auxiliary variable at link i for the
fixed point iteration

Pd
i

desired transmit power at link i for
the pricing strategy νPd

i

desired power cost at link i for the
pricing strategy
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