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Abstract—In this paper, the problem of joint Carrier Fre-
quency Offset (CFO) and channel estimation for OFDM systems
over the fast time-varying frequency-selective channel is explored
within the framework of the expectation-maximization (EM)
algorithm and parametric channel model. Assuming that the path
delays are known, a novel iterative pilot-aided algorithm for joint
estimation of the multi-path Rayleigh channel Complex Gains
(CG) and the Carrier Frequency Offset (CFO) is introduced.
Each CG time-variation, within one OFDM symbol, is approx-
imated by a Basis Expansion Model (BEM) representation. An
auto-regressive (AR) model is built to statistically characterize
the variations of the BEM coefficients across the OFDM blocks.
In addition to the algorithm, the derivation of the Hybrid
Cramér-Rao Bound (HCRB) for CFO and CGs estimation in
our context of very high mobility is provided. We show that the
proposed EM has a lower computational complexity than the
optimum maximum a posteriori estimator and yet incurs only
an insignificant loss in performance.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing

(OFDM) has become a standard technique for

broadband high speed communication systems, mainly the

Mobile Worldwide Interoperability Microwave Systems for

Next-Generation Wireless Communication Systems (WiMAX)

and the Third-Generation Partnership Project (3GPP) in the

form of its Long-Term Evolution (LTE) project. However, it is

well known that small carrier frequency offsets (CFOs) yield

severe degradation in OFDM modulation since it produces

inter-carrier interference (ICI) and attenuates the desired

signal. These effects reduce the effective signal-to-noise ratio

(SNR) in OFDM reception resulting in degraded system

performance [1] [2]. Accurate CFO recovery is thus essential

to make an OFDM system practically viable. In addition,

the coherent detection of signals is generally performed by

means of an equalization task which requires the channel

knowledge. Therefore the channel estimation is also essential

for practical systems.

The best performance is obtained when the CFO and the

channel are estimated jointly [3]. This problem can be regarded

as an estimation problem of one given parameter (here the

CFO) in the presence of unobserved state (here CGs of

the channel). Then, an interesting approach is to use the

Expectation-Maximization (EM) algorithm. The EM algorithm

provides actually an iterative method to find the maximum

likelihood (ML) estimates, as presented in [4] for the problem

of speech recognition system parameters estimation while also

providing the state estimates. Recently, the EM algorithm has

been applied to a lot of problems including channel estimation

[5] [6][7][8]. In [6], the authors proposed a joint CFO and

channel estimator based on EM algorithm for OFDM - single

input-single output (SISO) systems, and in [7] the authors

extended this work to the OFDM - multiple input-multiple

output (MIMO) context. However, these studies have been

derived for quasi-static channels. We propose to address the

problem of joint CFO and channel estimation via the EM

algorithm in the context of OFDM systems with very high

mobility. Note that there are other approaches for estimating

both CFO and channel, like the extended Kalman filter used

in [9].

In the context of very high mobility, it is generally prefer-

able to directly estimate the physical channel parameters [10].

Indeed, as the channel delay spread increases, the number of

channel taps also increases, thus leading to a large number of

BEM coefficients, and consequently more pilot symbols are

needed. Estimating the physical propagation parameters means

estimating multi-path delays and multi-path CGs. It is well

known that in Radio-Frequency transmissions, the path delays

are quasi-invariant over several OFDM blocks [11](Sec.III-

A), [12], [13] (whereas the CGs may change significantly,

even within one OFDM block). In this work, the delays are

assumed perfectly estimated and quasi-invariant. It should be

noted that an initial, and generally accurate estimation of the

number of paths and delays can be obtained by using the

MDL (minimum description length) and ESPRIT (estimation

of signal parameters by rotational invariance techniques) meth-

ods, respectively [14][10][15]. The CFO and channel estimator

derivations are presented for this approach. Additionally, we

demonstrate that the results for the non-parametric approach

can be simply deduced from those derivations. Hence, this

work can be applied to both approaches.

The Cramér-Rao bound (CRB) is a well known benchmark

to which the mean-square errors of estimators are compared.

In [16], the authors derived the CRB for the joint estimation
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of CFO and channel response in a static context. In [17], the

authors derived the CRB of path CGs in the presence of high

mobility. We propose to extend this bound to the case of joint

CFO and CGs estimation. Depending on the prior knowledge

available on parameters, the CRB has different expressions.

The hybrid CRB (HCRB) is considered in the case of a hybrid

vector containing deterministic and random parameters. We

provide the derivation of the HCRB for joint estimation of

CFO and the fast time-varying CGs in the OFDM context. To

sum up, the main contributions for the work presented in this

paper are the following:

• Unlike existing methods, the proposed algorithm uses

a parametric channel model to estimate the CFO and

the channel in a highly mobile environment. Using para-

metric channel models is of interest in the case of high

mobility, since less coefficients are to be estimated.

• To reduce estimation complexity, the proposed method

uses the BEM approach (to reduce the number of co-

efficients to estimate), a multivariate AR(1) model (to

describe the statistical variations of the BEM coefficients

across the blocks), and the EM method to avoid batch

processing. Simulations have shown that the proposed al-

gorithm has almost the same performance as the optimum

maximum a posteriori (MAP) estimator which requires

handling and inverting large matrices.

• A closed-form expression of the HCRB is provided.

The notations adopted are as follows: Upper (lower) bold face

letters denote matrices (column vectors). [x]n denotes the nth element

of the vector x, and [X]n,m denotes the [n,m]th element of the matrix

X. It is noteworthy that vector and matrix indices start from 0 and not

from 1. We will use the matlab notation X[n1:n2,m1:m2] to extract a

submatrix within X from row n1 to row n2 and from column m1 to

column m2. IN is a N×N identity matrix and 0N is a N×N matrix

of zeros. diag{x} is a diagonal matrix with x on its main diagonal,

diag{X} is a vector whose elements are the elements of the main

diagonal of X and blkdiag{X,Y} is a block diagonal matrix with

the matrices X and Y on its main diagonal. The Hadamard product

for two matrices X and Y of the same dimensions is denoted X ◦ Y.

The superscripts (·)T and (·)H stand respectively for transpose and

Hermitian operators. | · |, and Tr{·} are respectively the determinant

and trace operations. Re(·), Im(·) and (·)∗ are respectively the real

part, imaginary part and conjugate of a complex number or matrix.

Ex,y[·] is the expectation over x and y, J0(·) is the zeroth-order

Bessel function of the first kind and δk,m is the Kronecker symbol.

∇x and ∆x
y represent the first and the second-order partial derivatives

operator i.e., ∇x = [ ∂
∂x1

, ..., ∂
∂xN

]T and ∆x
y = ∇y*∇

T
x .

II. TIME-VARYING OFDM SYSTEM SUBJECT TO CFO

A. OFDM System Model

Consider an OFDM system with N sub-carriers, and a

cyclic prefix length Ng . The duration of an OFDM block is

T = NbTs, where Ts is the sampling time and Nb = N +Ng .

Let xk[n], n = −N
2 , . . . ,

N
2 −1 be the transmitted data symbol

on the subcarrier n of the kth OFDM symbol. The {xk[n]} are

normalized symbols (i.e.,E
[

xk[n]x
∗
k[n]

]

= 1). The frequency

mismatch between the oscillators used in the radio transmitters

and receivers causes a CFO ∆F . The normalized CFO is

denoted ν = ∆FNTs. After transmission over a multi-path

Rayleigh channel, the subcarrier n of the kth received OFDM

symbol yk[n] is given in the frequency domain (after removing

cyclic prefix and taking DFT) by [13] [18]:

yk = Hk xk + wk (1)

where xk =
[

xk[−
N
2 ], xk[−

N
2 + 1], ..., xk[

N
2 − 1]

]T
. yk and

wk are defined in a similar way as xk. wk is a white complex

Gaussian noise vector of covariance matrix σ2IN and Hk is

the N×N channel matrix. The elements of Hk can be written

in terms of equivalent channel taps [19]
{

gl,k(qTs) = gl(kT+

qTs)
}

:

[Hk]n,m =

1

N

L′−1
∑

l=0

[

e−j2π(m
N

− 1
2 )·l

N−1
∑

q=0

gl,k(qTs)e
j2πm−n+ν

N
q
]

, (2)

or in terms of physical channel parameters [15] (delays
{

τl
}

and CGs
{

αl,k(qTs) = αl(kT + qTs)
}

), yielding:

[Hk]n,m =

1

N

L−1
∑

l=0

[

e−j2π(m
N

− 1
2 )τl

N−1
∑

q=0

αl,k(qTs)e
j2πm−n+ν

N
q
]

. (3)

L′ < Ng is the number of channel taps and L the number of

paths. The delays are normalized by Ts and not necessarily

integers (τl < Ng). The L elements of
{

αl,k(qTs)
}

are un-

correlated. However, the L′ elements of
{

gl,k(qTs)
}

are cor-

related, unless the delays are multiple of Ts as often assumed

in the literature. These channel taps and CGs are wide-sense

stationary (WSS), narrow-band zero-mean complex Gaussian

processes of variances σgl
2 and σαl

2, respectively, and with

the so-called Jakes’ power spectrum of maximum Doppler

frequency fd [20]. The average energy of the channel is

normalized to one, i.e.,

L′−1
∑

l=0

σgl
2 = 1 and

L−1
∑

l=0

σαl

2 = 1. Let

us define the N × 1 vector:

αl,k =
[

αl,k(0), ..., αl,k

(

(N − 1)Ts

)]T
(4)

The correlation matrix of αl,k for the time-lag p, R(p)
αl

=
E
[

αl,kαl,k−p
H
]

, is given by:

[R(p)
αl

]n,m = σαl

2J0

(

2πfdTs(n−m+ pNb)

)

(5)

In the next sections, we present the derivations for the second

approach (physical channel). The results of the first approach

(channel taps) can be easily deduced by replacing L by L′

and the set of delays
{

τl
}

by
{

l, l = 0 : L′ − 1
}

.

B. BEM Channel Model

In each OFDM block, there are N samples to be estimated

for each path CG due to the fast time-variation of the channel,

yielding a total of LN samples for the whole channel and

for each block. In order to reduce the number of parameters



3

to be estimated, we resort to the Basis Expansion Model

(BEM). In this section, our aim is to accurately model the

time-variation of αl,k(qTs) from q = 0 to N − 1 by using a

BEM. The purpose of using a BEM is to approximate αl,k as

the weighted sum of just a few basis function bd, as follows:

αl,k = αBEMl,k
+ ξl,k = B · cl,k + ξl,k (6)

where B = [b0, ...,bNc−1] is a N × Nc matrix that collects

the Nc basis functions bd. Vector cl,k =
[

cl,k[0], ..., cl,k[Nc −

1]
]T

represents the Nc BEM coefficients for the lth CG of

the kth OFDM symbol, and ξl,k represents the corresponding

BEM modeling error, which is assumed to be minimized in the

mean square error (MSE) sense [21]. Under this criterion, the

optimal BEM coefficients and the corresponding model error

are given by:

cl,k =
(

BHB
)−1

BHαl,k (7)

ξl,k = (IN − S)αl,k

where S = B
(

BHB
)−1

BH is a N ×N matrix.

Various traditional BEM designs have been reported to

model the channel time-variations, e.g., the Complex Expo-

nential BEM (CE-BEM), the Polynomial BEM (P-BEM) or

the Karhuen-Loeve BEM (DKL-BEM) for instance [18][22].

From now on, we can describe the OFDM system model

derived previously in terms of the BEM. Substituting (6) in

(1) yields after some algebra:

yk = Kk(ν) · ck + ǫk + wk (8)

where the LNc × 1 vector ck and the N × LNc matrix Kk

are given by:

ck =
[

cT0,k, ..., cTL−1,k

]T

Kk(ν) =
1

N
[Z0,k(ν), ...,ZL−1,k(ν)] (9)

Zl,k(ν) = [M0(ν) diag{xk} fl, ...,

MNc−1(ν) diag{xk} fl] (10)

where vector fl is the lth column of the N ×L Fourier matrix

F that depends on the delays distribution (defined by [14]),

and Md(ν) is a N ×N matrix given by:

[F]n,l = e−j2π( n
N

− 1
2 )τl (11)

[Md(ν)]n,m =

N−1
∑

q=0

[B]q,d ej2π
m−n+ν

N
q (12)

The second component in (8), ǫk, represents the approxi-

mation error in the observation model.

C. The AR Model for ck
From (7), we get that the optimal BEM coefficients cl,k are

correlated complex Gaussian variables with zero-means and

correlation matrix given by:

R(p)
cl

= E[cl,kcHl,k−p]

=
(

BHB
)−1

BHR(p)
αl

B
(

BHB
)−1

(13)

Since the coefficients cl,k are correlated Gaussian variables,

their dynamics can be well approached by an auto-regressive

(AR) process [23] [15] . A complex AR process of order I ,

denoted c̃l,k, can be generated as:

c̃l,k =

I
∑

i=1

A(i)c̃l,k−i + ul,k (14)

where A(1), ...,A(I) are Nc×Nc matrices and ul,k is a Nc×1
complex Gaussian vector with covariance matrix Ul. From

[15], it is sufficient to choose I = 1 to correctly capture the

coefficients dynamics. The matrices A(1) = A and Ul are the

AR model parameters. The standard choice [23] to compute

those parameters is to impose that the correlation matrices R
(p)
c̃l

of the approximate process perfectly match the correlation

matrices R(p)
cl

of the true process for lag p ∈ {−1, 0, 1} in (13).

Imposing this correlation matching constraint, the parameters

of the AR process can be computed by the set of the Yule-

Walker equations defined as:

A = R(1)
cl

(

R(0)
cl

)−1

(15)

Ul = R(0)
cl

− AR(−1)
cl

(16)

Using (14), we obtain the AR model of order 1 for c̃k:

c̃k = A · c̃k−1 + uk (17)

where A = blkdiag {A, ...,A} is a LNc × LNc ma-

trix and uk =
[

uT
0,k, ...,uT

L−1,k

]T

is a LNc × 1 zero-

mean complex Gaussian vector with covariance matrix U =
blkdiag {U0, ...,UL−1}.

III. EM ALGORITHM

First, we consider a block of K OFDM received symbols.

Let y = [y0
T , ..., yK−1

T ]T and c = [c0
T , ..., cK−1

T ]T . The

objective is to jointly estimate the CFO ν and the BEM

coefficients c of the path CGs based on the set of the K
OFDM received signals. It is noteworthy that if ν is known,

the BEM coefficients c can be estimated by using a Kalman

filter [15]. In our specific context, both ν and c are unknown.

Therefore we propose to use the EM algorithm, which has

been extensively explained in [24]. The EM algorithm is an

iterative method to find the ML estimates of parameters in

the presence of unobserved data. The algorithm comprises two

steps : the expectation step (E-step) and the maximization step

(M-step). We describe an EM algorithm for our model.

We suppose that the transmitted symbols xk are known (this

configuration is called Data Aided (DA), and corresponds to

the acquisition task). We consider the received data y as in-

complete data, and define the complete data as z
def
=

[

yT , cT
]T

.

Since the state is described by first order Markov model, the

likelihood function of the complete data is given by:

p(z; ν) = p(c0)

K−1
∏

k=1

p(ck|ck−1)

K−1
∏

k=0

p(yk|ck; ν)

Then, from (8) (the error term ǫk is neglected), we compute
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the log-likelihood of the complete data:

ln (p(z; ν)) = C −
1

σ2

K−1
∑

k=0

(yk − mk(ν))
H
(yk − mk(ν))

+ ln p(c0) +

K−1
∑

k=1

ln p(ck|ck−1) (18)

where C is a constant and mk(ν) = Kk(ν)ck is the mean

vector. Each iteration i = 0, 1, . . . of the EM algorithm for

estimating ν from y consists in two steps:

E-step : given the measurements y and the latest estimate ν̂(i)

from the previous iteration, we calculate:

Q(ν, ν̂(i))
def
= Ec|y,ν̂(i) [ln p(z; ν)] (19)

M-step : this step finds ν̂(i+1), the value of ν which maximizes

Q(ν, ν̂(i)) over all possible values of ν:

ν̂(i+1) = argmaxνQ(ν, ν̂(i)) (20)

This procedure is repeated until the sequence ν̂(0), ν̂(1), . . .
converges.

Due to the Gauss-Markov nature of the problem, the com-

putation of the Q function can be expressed as (see Appendix

A):

Q(ν, ν̂(i)) = −
1

σ2

K−1
∑

k=0

Tr
{

Kk(ν)S
(i)
k|KK

H
k (ν)

(

yk −Kk(ν)ĉ
(i)
k|K

)(

yk −Kk(ν)ĉ
(i)
k|K

)H
}

(21)

where ĉ
(i)
k|K

def
= Ec|y,ν̂(i) [ck] and S

(i)
k|K

def
=

Ec|y,ν̂(i)

[

(ck − ĉ
(i)
k|K)(ck − ĉ

(i)
k|K)H

]

. The required terms ĉ
(i)
k|K

and S
(i)
k|K can actually be computed for all k = 0, . . . ,K − 1

from the fixed interval Kalman smoother (using the parameter

estimate at iteration i), since our model (8 in neglecting the

error term ǫk) becomes a so-called Gaussian linear model for

the estimation of ck assuming previous knowledge of ν. The

E-step is thus an Estimation-step for the BEM coefficients

vector. The smoother consists of a backward pass that follows

the standard Kalman filter Forward recursion given by:

Forward recursion:

Time Update Equations (TUE):

ĉ
(i)
k|k−1 = Aĉ

(i)
k−1|k−1 (22)

S
(i)
k|k−1 = AS

(i)
k−1|k−1A

H + U

Measurement Update Equations (MUE):

Kk = S
(i)
k|k−1K

H
k (ν̂(i))

(

Kk(ν̂
(i))S

(i)
k|k−1K

H
k (ν̂(i)) + σ2IN

)−1

ĉ
(i)
k|k = ĉ

(i)
k|k−1 +Kk(ν̂

(i))
(

yk −Kk(ν̂
(i))ĉ

(i)
k|k−1

)

(23)

S
(i)
k|k = S

(i)
k|k−1 − KkKk(ν̂

(i))S
(i)
k|k−1

Backward recursion:

Jk = S
(i)
k−1|k−1A

HS
(i)
k|k−1

ĉ
(i)
k−1|K = ĉ

(i)
k−1|k−1 + Jk

(

ĉ
(i)
k|K − ĉ

(i)
k|k−1

)

(24)

S
(i)
k−1|K = S

(i)
k−1|k−1 + Jk

(

S
(i)
k|K − S

(i)
k|k−1

)

JH
k

It is noteworthy that the EM is a computationally less

demanding technique than MAP [25], since it does not require

batch processing and the matrices to be inverted are only of

size LNc × LNc. The BEM-based MAP technique requires

batch processing and the inversion of (KLNc × KLNc)
matrices. We show in Section V that the MSE performances

of the two methods are very close to each other.

IV. HYBRID CRAMÉR-RAO BOUNDS (HCRB)

A. Introduction

The CRB for the fast time-varying path CGs has been first

computed in [17] for the OFDM context. However, the calcu-

lated CRB assumed a BEM model for the channels. Hence,

the CRB of the CGs derived in [17] cannot be considered as

the true CRB but as a BEM-based CRB since it is based on

the CRB of the BEM coefficients. The exact CRB for the CGs

is the one that does not assume a BEM.

In this Section, we propose to derive the true CRB for the

estimation of the CGs together with the CFO, in the presence

of very high mobility. The CFO being deterministic, this yields

to calculate a Hybrid CRB. The CRBs provide a lower bound

on the Mean Square Error (MSE) achievable by any unbiased

estimator. We give the general expression of the Hybrid

Cramér-Rao Bound (HCRB). The HCRB is particularly suited

for problems where the parameters to be estimated encompass

both deterministic (here ν) and random (here α) components,

with availability of the a priori information (p(α)). An off-line

scenario is considered, i.e. the receiver waits until the whole

observation frame of K OFDM symbols y = [yT
0 , ..., yT

K−1]
T

has been received to perform parameter estimation.

Vector α is defined as follows:

α =
[

αT
0 , . . . ,α

T
K−1

]T
(25)

αk =
[

αT
0,k, . . . ,α

T
L−1,k

]T
(26)

where the vector αl,k is defined in (4).

Let µ = [αT , ν]T be the hybrid vector to be estimated. The

HCRB has been initially proposed in [26] as:

Ey,α|ν

[

(

µ̂(y)− µ
)(

µ̂(y)− µ
)H

|ν

]

≥ HCRB

where X ≥ Y is interpreted as meaning that the matrix X−Y

is positive semi-definite. We partition the HCRB matrix as

follows:

HCRB =

[

HCRBα HCRB12

HCRB21 HCRBν

]

(27)

where the KLN × KLN matrix HCRBα and the scalar

HCRBν are the minimal bounds on the MSE of α and ν,

respectively, and the vectors HCRB12 and HCRB21 are the

cross-terms. Note that for notational convenience, we drop the
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dependence of these submatrices on ν. The HCRB1 is the

inverse of the Hybrid Information Matrix (HIM), which can

be written as:

Hi(ν) = Eα

[

Fi(α, ν)
]

+ Eα|ν
[

−∆µ

µ
ln

(

p(α|ν)
)

|ν
]

where p(α|ν) is the prior distribution and Fi(α, ν) is the

Fisher Information Matrix (FIM) defined as:

Fi(α, ν) = Ey|α,ν

[

−∆µ

µ
ln
(

p(y|α, ν)
)

|ν
]

where p(y|α, ν) is the conditional probability density function

of y given α and ν. Since the deterministic and the random

parts of the hybrid vector are statistically independent, i.e.,
p(α|ν) = p(α), then after some algebraic manipulations, the

second component of the HIM can be written as [27]:

Eα|ν
[

−∆µ

µ
ln
(

p(α|ν)
)

|ν
]

=
[

Eα

[

−∆α

α
ln

(

p(α)
)]

0KLN,1

01,KLN 0

]

In the DA context, the transmitted data symbols x are known

at the receiver and then no averaging over the data is required.

Hence, the probability density function depends on x, and so

do the bound.

Finally, the mean MSE of the estimation of α is lower-

bounded by:

HCRBα =
1

KLN
Tr {HCRBα} (28)

The HCRB associated with the estimation of ν, HCRBν , is

given by (27).

B. Expression of the HCRB

The closed-form exact expression for the HCRB related to

the estimations of α and ν in the Data Aided (DA) mode

of OFDM systems is presented hereafter. The details of the

derivation are given in Appendix B, yielding:

HCRB = (blkdiag {J 0(ν), . . . ,JK−1(ν),

Eα [Fi22(α,ν)]}+ blkdiag
{

R−1
α

, 0
})−1

(29)

where J k(ν) is given by (42), Eα [Fi22(α,ν)] is given by (44)

and Rα is given by (45).

V. SIMULATION RESULTS

For all our simulations the channel autocorrelation function

is assumed to be given by the widely accepted Jakes’ model,

as stated in Section II.

System parameters in our simulations follow the WiMAX

mobile standard [28], with N = 128 and 1/Ts = 1.25 MHz,

yielding a subcarrier spacing of 10.94KHz which is the value

imposed by WiMAX (section 2.3 WIMAX Physical layer in

[28]). The carrier frequency is set to 3.5GHz.

The Rayleigh channel model is the channel A from [28]

(L = 6 paths and maximum delay τmax = 3.1Ts, see Table

I). The data symbols are drawn from normalized 4QAM

constellations. We set Ng = N
8 . Three different normalized

1We recall that, for a deterministic parameter, Standard Cramér-Rao Bound
(SCRB) would be directly the inverse of the Fisher Information Matrix (FIM).

Path number Relative Power (dB) Delay (nsec)

0 0 0

1 -1 310

2 -9 710

3 -10 1,090

4 -15 1,730

5 -20 2,510

TABLE I
ITU MULTIPATH CHANNEL MODEL - CHANNEL A [28]

Doppler frequencies have been selected, fdT = 0.05, fdT =
0.1 and fdT = 0.15, corresponding to a mobile terminal

moving at speeds of 130 Km/h, 270 Km/h and 400 Km/h,

respectively. The BEM model used for the simulation is the

polynomial BEM. The normalized CFO ν has been set to 0.35,

corresponding to an oscillator tolerance of 1 ppm. The mean

MSE of the estimations of α and the MSE of the estimation

of ν are defined as follows:

MSEα
def
=

1

KNL
E

[

(α̂−α)
H
(α̂−α)

]

(30)

MSEν
def
= E

[

|ν̂ − ν|
2
]

(31)

where the expectation is estimated via monte-carlo simulations

in the following.

A. Acquisition algorithm

First, the impact of the number of EM iterations on CFO

estimation has been investigated for different speeds. Fig. 1

shows the mean over 100 realizations of the CFO recursive

estimate (ν̂(i)) versus the number of EM iterations i for

Eb/N0 = 20 dB and K = 2. The normalized CFO ν has been

set to 0.35, corresponding to an oscillator tolerance of 1 ppm.

This figure shows that the estimated CFO converges to the

true value faster when the Doppler is lower. For fdT = 0.05,

fdT = 0.1, fdT = 0.15, the algorithm converges after about

30, 50, 100 iterations respectively. Hence, the convergence

time strongly depends on the mobile speed. Fig. 2 illustrates

this convergence with the Q-function as a function of ν for

different values of iteration number i and for fdT = 0.1
(always for a true value ν = 0.35). It is worthwhile to observe

that the function does not present local maximas.

Next, the acquisition range for the CFO has been investi-

gated for the most critical case fdT = 0.15. Fig. 3 shows the

CFO estimate curves (ν̂(i)) versus the number of EM iterations

for different values of ν selected in the range [−1.2, 1.3] with

an increment of 0.1 (each curve corresponding to a given

ν̂ is averaged over 100 realizations). It is shown that the

algorithm is able to acquire the normalized CFO ν in the range

[−1.1, 1.2], corresponding to about ±3.4 ppm.

Fig. 4 shows the HCRB for the CG estimation (28) and CFO

estimation (27) versus the block size K for different values

of Eb/N0, again with fdT = 0.1 and Nc = 3. K varies from

2 to 50. As expected, it is observed that both bounds rapidly

decrease when K varies from 2 to 10, and then decrease with

a smoother slope. Hence, the gain in performance is important

only for small values of K, then the gain becomes negligible.

A good trade off would be to choose K = 10, but the value of
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Fig. 1. An EM trajectory for different values of fdT with Eb/N0 = 20 dB
and K = 2, ν = 0.35
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Fig. 2. Q functions at Eb/N0 = 20 dB and fdT = 0.1, K = 2, ν = 0.35

K depends on the standard. A typical value is K = 2. In the

sequel, we will perform simulations with K = 2 and K = 5.

Fig. 5 shows the MSE performance of the path CG es-

timation for the forward step and the backward step. For

reference, the HCRB has been plotted. The parameters values

are ν = 0.35, Nc = 3 and fdT = 0.1. Simulations have

been performed for both K = 2 and K = 5. As expected the

backward step consistently outperforms the performance of the

forward step. This is understood since the backward step uses

the whole received sequence. Note also that the backward step

reaches the HCRB. On the other hand, the improvement given

by the backward step is more important with K = 5 than with

K = 2. The gain in performance as a function of the block

size can also be observed with the HCRB in Fig. 4. The MSE

for the MAP algorithm [25] has also been plotted. It is similar

to that obtained with the proposed EM algorithm.

Fig. 6 shows the MSE performance of the CFO estimation

for the proposed EM algorithm and the MAP algorithm. The

MSE of CFO MAP estimate is far from the bound, and is

0 20 40 60 80 100
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−0.5

0

0.5

1

1.5

EM iteration index (i)

C
F

O

ν=−1.2
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Fig. 3. EM trajectories for different values of ν at Eb/N0 = 20 dB and
fdT = 0.15, K = 2
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Fig. 4. HCRB versus K for (a) the CG estimation, (b) the CFO estimation
with fdT = 0.1 and Nc = 3

quasi the same as the MSE of CFO EM estimate. Since we

take the expectation of the hybrid FIM with respect to the

channel statistics, the HCRB is not necessarily tight for the

CFO estimation. This is similar to what is observed with the

modified CRB for the CFO in the case of non-data aided

systems where the expectation of the FIM is taken with respect

to the unknown data before taking the inverse.
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Fig. 6. MSE performance of the CFO estimation versus Eb/N0 for (a)
K = 2, (b) K = 5 ; fdT = 0.1, Nc = 3

B. Tracking algorithm

The proposed EM algorithm is used as an acquisition

algorithm on the first K OFDM symbols of the frame, as-

suming the knowledge of all the transmitted symbols xk, k =
0 . . . K − 1. In order to propose a complete algorithm able

to perform detection, we propose using the tracking algo-

rithm of [15]. This tracking algorithm proceeds in order

to jointly make CG estimation and data detection, based

on pilots symbols evenly inserted in each OFDM symbol.

The pilot positions are given by the set of pilot indices

P = { nLf , n = 0 . . . Np − 1}, where Lf is the distance

between two adjacent pilots and Np is the number of pilots.

The algorithm is an on-line algorithm, i.e. it operates on each

OFDM symbol. The CG tracking is based on Kalman filter,

using the CG estimated in the acquisition phase as an initial
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Fig. 7. BER of the proposed tracking algorithm for Lf = 8, Lf = 16 and
N = 128, N = 512

value. It should be noted that we use the estimated CFO to

remove its effect on the received symbols. The switch between

our acquisition algorithm and this tracking algorithm makes

sense since both algorithms rely on an AR(1) dynamical model

of the BEM representation of the CG variations, used for the

Kalman filter.

Fig. 7 shows the obtained BER for N = 128 and N = 512.

For the sake of comparison, the performance of the algorithm

obtained with perfect channel state information (CSI) is also

given. As expected, the BER is closer to the one obtained

with perfect CSI when using a higher number of pilots. Also,

the BER with N = 512 is more favorable than with N = 128
(note that the bandwidth is larger with N = 512, the subcarrier

spacing remaining constant). Hence, to test the robustness

of the algorithm in the sequel, we will choose the most

unfavorable case N = 128.

C. Robustness of the tracking algorithm to imperfect delay
and Doppler frequency knowledge

Fig. 8 measures the effect of an imperfect delay knowledge

on the BER performance of our proposed tracking algorithm.

SD denotes the standard deviation of the time delay errors

(modeled as zero mean Gaussian variables). As expected

(common drawback to any parametric channel estimator), the

algorithm performance decreases with respect to the delay

error. However, the algorithm is not very sensitive to a delay

error SD < 0.2Ts in low SNR, and SD < 0.1Ts in high

SNR, for both Np = 8 and Np = 16. And when increasing the

number of pilot subcarriers to Np = 16, sensibility to delay

error decreases. These required performance for the delays

acquisition can well be obtained when using high resolution

algorithms [14], thanks to the quasi invariance of the delays

(with respect to the scale of the sampling time Ts) during a
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Fig. 9. BER of the proposed tracking algorithm for imperfect knowledge of
the Doppler frequency for (a) Np = 16, (b) Np = 8

large number of OFDM symbols (see also performance in [15]

obtained by the ESPRIT method [14]).

Robustness to imperfect Doppler frequency is investigated

in Fig. 9. The algorithm is not sensitive to a Doppler frequency

error SD < 0.01/T for both Np = 8 and Np = 16. Similarly

to the delay error, increasing the number of pilots increases

the robustness to Doppler frequency errors.

We now study the effect of the wrong estimate of L = 6 on

our algorithm with Np = 16. A study on this issue was made

in [15] for time-varying channels estimation (without CFO).

Le stands for the estimate of L. In case of an overestimated

(Le = 7 and Le = 8), it is shown that such a mismatch

ends up in slight degrades of performance as shown in 10.

However, in case of underestimated (Le = 5 and Le = 4), the

performance of our algorithm suffers from this disappearing

of paths especially at moderate and high Eb/N0 region. This
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Fig. 10. BER of the proposed tracking algorithm for imperfect knowledge
of the number of paths L

result is similar to the result obtained in [15]. However as [15],

by using a robust method like the minimum description length

(MDL) to estimate L, we can make our algorithm correctly

performs without a priori knowledge of L.

D. Performance comparison

In this section, we compare our proposed algorithm with

the algorithm of [9]. This algorithm is based on the extended

Kalman filtering to carry out channel taps and CFO estimation

together with data detection. Note that it operates on equivalent

discrete channel model only, and not on the parametric channel

model. The simulations presented in [9] have been carried out

in Decision-Directed (DD) mode only (after the acquisition

step), i.e. only decoded data symbols are used to perform

the filtering. However, when introducing their algorithm, the

authors also stated that in case of high mobility, pilot signals

are also needed [9][29]. So to compare both algorithms, we

insert pilots in the algorithm following the pilot scheme of our

tracking algorithm [15]. We use the same parameters as in [9]

to perform the simulations, i.e. a 4-taps discrete channel with

power loss [0,−1,−3,−9][dB] and delay profile [0, 1, 2, 3]µs
, (which corresponds to a urban type of scenario), a carrier

frequency of 2.4 GHz and a bandwidth 1/Ts = 1 MHz.

Simulations for three different speeds, 30 km/h, 150 km/h

and 300 km/h have been performed for an SNR equal to 20 dB

(see Fig. 11). For reference, the performance of the algorithm

is given by using the ideal channel state information (CSI). It is

observed that our algorithm is far more robust to mobility than

the literature algorithm proposed in [9]. This is logical since

our algorithm has been devised to handle the high mobility,

which is not the case of [9]. But to the best of our knowledge,

we do not know an algorithm which performs channel and

CFO estimation together with data detection in the presence

of very high mobility.
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VI. CONCLUSION

In this paper, a new algorithm which jointly estimates path

Complex Gains (CG) and Carrier Frequency Offset (CFO) in

the presence of very high mobility has been presented. The

algorithm is based on the EM algorithm. Within one OFDM

symbol, each time-varying CG is approximated by a Basis

Expansion Model (BEM) representation. The dynamics of the

BEM coefficients are modeled by first-order auto-regressive

processes. The algorithm operates in two steps, an acquisition

step (pilot OFDM symbols) and a tracking step. Moreover, we

have derived a closed-form exact Hybrid Cramér-Rao Bound

(HCRB) for joint CFO and CG estimation in the presence

of very high mobility. In contrast to the existing CRB for

the estimation of fast time-varying CGs, the calculated bound

does not assume a BEM, and hence represents the true lower

bound. Simulation results have shown that the CG estimation

reaches the HCRB. We also show that the proposed EM-based

algorithm is a computationally less demanding technique than

the MAP algorithm, with quasi same performance. Simulations

have also shown that our algorithm addresses the problem

of high mobility more efficiently than an existing algorithm.

The proposed algorithm is also quite robust to reasonable

uncertainties on the delays and the doppler frequency.

APPENDIX A

COMPUTATION OF THE Q FUNCTION

Taking the expectation with respect to c conditioned on y,

given the current parameter estimate ν̂(i), and removing the

terms that do not depend on ν, we obtain from (18):

Q(ν, ν̂(i)) = −
1

σ2

K−1
∑

k=0

Tr
{

Ec|y,ν̂(i)

[

(yk − mk(ν)) (yk − mk(ν))
H
]}

(32)

From (32), we find:

Q(ν, ν̂(i)) = −
1

σ2

K−1
∑

k=0

Tr
{

ykyHk +Kk(ν)P
(i)
k|KK

H
k (ν)

−ykĉ
(i)H

k|K K
H
k (ν) −Kk(ν)ĉ

(i)
k|KyHk

}

(33)

where P
(i)
k|K

def
= Ec|y,ν̂(i)

[

ckcHk
]

and ĉ
(i)
k|K

def
= Ec|y,ν̂(i) [ck]. Let

us define:

S
(i)
k|K

def
= Ec|y,ν̂(i)

[

(ck − ĉ
(i)
k|K)(ck − ĉ

(i)
k|K)H

]

= P
(i)
k|K − ĉ

(i)
k|K ĉ

(i)H

k|K (34)

Then, by using (34) in (33), we find (21).

APPENDIX B

COMPUTATION OF THE HCRB

In this appendix, we provide the main steps leading to the

computation of the HCRB. First, we rearrange the system

model given in (1) as follows:

yk = Hk(ν) ·αk + wk (35)

Let us define Ω(ν) =
[

ej2π
0ν
N , . . . , ej2π

(N−1)ν
N

]T

. The N ×

LN matrix Hk(ν) is defined as follows :

Hk(ν) = W · diag {Ω(ν)} ·Lk (36)

with the N × LN matrix Lk given by:

[Lk]p,q =

{

wH
p diag {xk} fl if q = p+ lN , l = 0 . . . L− 1

0 else
(37)

The N × N matrix W is the Fourier matrix

([W ]n,p = 1√
N
e−j2π np

N ) and vector wp is the pth column of

W .

1) Computation of: Eα

[

Fi(α, ν)
]

First, we partition the matrix Fi(α, ν) as follows:

Fi(α, ν) =

[

Fi11(α,ν) Fi12(α,ν)

Fi21(α,ν) Fi22(α,ν)

]

where the submatrices are defined as follows:

Fi11(α,ν) = Ey|α,ν

[

−∆α

α
ln
(

p(y|α, ν)
)

|ν
]

Fi12(α,ν) = Ey|α,ν

[

−∆ν
α

ln
(

p(y|α, ν)
)

|ν
]

Fi21(α,ν) = Ey|α,ν

[

−∆α

ν ln
(

p(y|α, ν)
)

|ν
]

Fi22(α,ν) = Ey|α,ν

[

−∆ν
ν ln

(

p(y|α, ν)
)

|ν
]

Computation of Eα [Fi11(α,ν)]: the observation model is pre-

sented in (35). Using the whiteness of the noise w =
[w0

T , ...,wK−1
T ]T , we obtain:

∆α

α
ln

(

p(y|α, ν
)

=

K−1
∑

k=0

∆α

α
ln
(

p(yk|αk, ν)
)

(38)

It is important to note that each term of the summation (38) is

a KLN×KLN block diagonal matrix with only one nonzero

LN × LN block matrix, namely:

∆α

α
ln
(

p(y|α, ν)
)

[i(k),i(k)]
= ∆αk

αk
ln
(

p(yk|xk,αk, ν)
)

(39)
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where i(k) = kLN : (k + 1)LN − 1 with k ∈ [0,K − 1]. As

a direct consequence, ∆α

α
ln
(

p(y|α, ν)
)

is a block diagonal

matrix with the kth diagonal block given by (39). Hence, we

obtain:

Eα [Fi11(α,ν)] = blkdiag {J 0(ν),J 1(ν), ...,JK−1(ν)}

where J k(ν) is a LN × LN matrix defined as:

J k(ν) = Ey,α|ν
[

−∆αk
αk

ln
(

p(yk|αk, ν)|ν
)]

(40)

It remains to compute the log-likelihood function in (40). The

vector yk for given αk is a complex Gaussian vector with

mean vector mk(ν) = Hk(ν)αk and covariance matrix σ2IN .

Thus, p(yk|αk, ν) is defined as:

p(yk|αk, ν) = Ce−
1
σ2 (yk−mk(ν))

H(yk−mk(ν)) (41)

where C is a constant. By taking the second derivative of the

natural logarithm ln of (41) with respect to αk, we simply

obtain:

J k(ν) =
1

σ2
H

H
k (ν)Hk(ν) (42)

Computation of Eα [Fi22(α,ν)] : As for the computation of

Eα [Fi11(α,ν)], using the whiteness of the noise, we have that:

∆ν
ν ln

(

p(y|α, ν)
)

=

K−1
∑

k=0

∆ν
ν ln

(

p(yk|αk, ν)
)

From (41), it follows that:

−∆ν
ν ln

(

p(yk|αk, ν)
)

=
1

σ2

(

−yH
k ∆ν

ν (mk(ν))

−∆ν
ν

(

mH
k (ν)

)

yk +∆ν
ν

(

mH
k (ν)mk(ν)

))

Then, we compute the expectation with respect to y, yielding:

Ey|α,ν

[

−∆ν
ν ln

(

p(yk|αk, ν)
)]

=
1

σ2

(

−mH
k ∆ν

ν (mk(ν))

−∆ν
ν

(

mH
k (ν)

)

mk +∆ν
ν

(

mH
k (ν)mk(ν)

))

,

since mk(ν) = Hk(ν)αk is the mean of yk. Us-

ing ∆ν
ν(A(ν)B(ν)) = ∆ν

ν(A(ν))B(ν) + A(ν)∆ν
ν(B(ν)) +

2∇νA(ν)∇νB(ν) with A(ν) and B(ν) some matrices depend-

ing on ν, we obtain:

Ey|α,ν

[

−∆ν
ν ln

(

p(yk|αk, ν)
)

|ν
]

= 2αH
k J

′

k(ν)αk (43)

where J
′

k(ν) is a LN × LN matrix defined as:

J
′

k(ν) =
1

σ2
H

′H
k (ν)H

′

k(ν)

where H
′

k(ν)
def
= ∇ν (Hk(ν)) is obtained by replacing Ω(ν)

with Ω
′(ν) in (36), with:

Ω
′(ν) =

[

j2π
0

N
ej2π

0ν
N , . . . , j2π

(N − 1)

N
ej2π

(N−1)ν
N

]T

Then, computing Eα

[

αH
k J

′

k(ν)αk

]

yields, after short

derivations, the sum of all the elements of the LN × LN

matrix
(

R(0)
α

T
◦J ′

k(ν)
)

, that can be written as :

Eα

[

αH
k J

′

k(ν)αk

]

= Tr
{

R(0)
α

J
′

k(ν)
}

where R(0)
α

def
= E

[

αkα
H
k

]

is given by:

R(0)
α [i(l),i(l)] = R(0)

αl
for l∈[0,L−1]

with i(l) = lN : (l + 1)N − 1 and R(p)
αl

defined in (5).

Collecting all the obtained results, we finally get:

Eα [Fi22(α,ν)] = 2

K−1
∑

k=0

Tr
{

R(0)
α

J
′

k(ν)
}

(44)

Then, it is easily shown, by following a similar reasoning as

above, that Eα [Fi12(α,ν)] = Eα [Fi21(α,ν)] = 0.

2) Computation of Eα

[

−∆α

α
ln
(

p(α)
)]

: α is a complex

Gaussian vector with zero mean and covariance matrix Rα of

size KLN ×KLN defined as:

Rα[i(l,p),i(l,p′)] = R(p−p′)
αl

for l∈[0,L−1] p,p′∈[0,K−1] (45)

where i(l, p) = lN+pLN : (l+1)N−1+pLN and R(p)
αl

is the

correlation matrix of αl,k defined in (5). Thus, the probability

density function p(α) is defined as:

p(α) =
1

|πRα|
e−α

HR−1
α

α (46)

Taking the second derivative of the natural logarithm of (46)

with respect to α and making the expectation over α, we

simply obtain that:

Eα

[

−∆α

α
ln

(

p(α)
)]

= R−1
α

Collecting all those results yields the expression of the HCRB

(29).
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