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Abstract—1 In this paper, a novel pilot-aided algorithm is
developed for MIMO-OFDM systems operating in fast time-
varying environment. The algorithm has been designed to work
both with parametric L-path channel model (with known path
delays) and equivalent discrete-time channel model to jointly
estimate the multi-path Rayleigh channel complex amplitudes
(CA) and Carrier Frequency Offset (CFO). Each CA time-
variation within one OFDM symbol is approximated by a Basis
Expansion Model (BEM) representation. An Auto-Regressive
(AR) model is built for the parameters to be estimated. The
algorithm performs estimation using Extended Kalman Filtering.
The channel matrix is thus easily computed and the data symbol
is estimated without Inter-sub-Carrier-Interference (ICI) when
the channel matrix is QR-decomposed. It is shown that our
algorithm is far more robust to high speed than the conventional
algorithm, and the performance approaches that of the ideal case
for which the channel response and CFO are known.

I. INTRODUCTION

Multiple-Input-Multiple-Output (MIMO) antennas with Or-

thogonal Frequency Division Multiplexing (OFDM) provide

high data rates and are robust to multi-path delay in wireless

communications. Channel parameters are required for diversity

combining, coherent detection and decoding. Therefore, chan-

nel estimation is essential to design MIMO-OFDM systems.

For MIMO-OFDM systems, most of the channel estimation

schemes have focused on pilot-assisted approaches [1][2][3],

based on a quasi-static fading model that allows the channel

to be invariant within a MIMO-OFDM block. However, in

fast-fading channels, the time-variation of the channel within a

MIMO-OFDM block results in the loss of subcarrrier orthogo-

nality, and consequently intercarrier interference (ICI) occurs

[4][5]. Therefore, the channel time-variation within a block

must be considered to support high-speed mobile channels.

On the other hand, similarly to the single-input single-output

(SISO) OFDM, one of the disadvantages of MIMO-OFDM

lies in its sensitivity to carrier frequency offset (CFO) due to

carrier frequency mismatches between transmitter and receiver

oscillators. As for the Doppler shift, the CFO produces ICI

1Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

and attenuates the desired signal. These effects reduce the

effective signal-to-noise ratio (SNR) in OFDM reception such

that the system performance is degraded [6] [7]. Most of the

reported works consider that all the paths present identical

Doppler shifts. Hence, they group together the Doppler shift

and CFO due to oscillator mismatch to obtain a single offset

parameter [8] for each channel branch. However, this model

is not sufficiently accurate since separate offset parameters are

required for each propagation path given that the Doppler shift

depends on the angle of arrival, which is particular to each

path. Recently, it has been proposed to directly track channel

paths to take into account separate Doppler shifts for each

path ([9][10] for SISO and [11] for MIMO). Those works

estimate the equivalent discrete-time channel taps ([10]) or

the real path Complex Amplitudes (CA) ([9][11]) which are

both modeled by a basis expansion model (BEM). The BEM

methods include Karhunen-Loeve BEM (KL-BEM), prolate

spheroidal BEM (PS-BEM), complex exponential BEM (CE-

BEM) and polynomial BEM (P-BEM).

However the CFO due to the mismatch between transmitter

and receiver oscillators is not taken into account in those

algorithms. The idea of joint channel and CFO estimation has

been initially proposed for SISO-OFDM systems in [12] and

then extended to MIMO-OFDM systems [13]. The authors

proposed an algorithm based on Extended Kalman Filtering

(EKF) and on equivalent discrete-time channel model. But the

fast time-variation of the channel was not taken into account.

In this paper, we propose a complete algorithm capable

of jointly estimating the CFO and the path CA, by taking

into account the fast variation of each path CA in MIMO

environment.

Generally, it is preferable to directly estimate the physical

channel parameters [14] [9] [11] instead of the equivalent

discrete-time channel taps [10]. Indeed, as the channel delay

spread increases, the number of channel taps also increases

and a large number of BEM coefficients have to be estimated.

This requires more pilot symbols. Hence, using a parametric

channel model rather than an equivalent discrete channel

model enables to reduce the signal subspace dimension [14].

Additionally, estimating the physical propagation parameters

means estimating path delays and path CA. Note that in Radio-



2

Frequency transmissions, the delays are quasi-invariant over

several MIMO-OFDM blocks [15] [4] (whereas the CA may

change significantly, even within one MIMO-OFDM block).

In this work, the delays are assumed perfectly estimated and

quasi-invariant. It should be noted that an initial, and generally

accurate estimation of the number of paths and delays can

be obtained by using the MDL (minimum description length)

and ESPRIT (estimation of signal parameters by rotational

invariance techniques) methods [14][9].

This paper is organized as follows: Section II introduces

the MIMO-OFDM system and the BEM modeling. Section

III describes the state model and the Extended Kalman Filter.

Section IV covers the algorithm for joint channel and CFO

estimation together with data recovery. Section V presents the

simulations results which validate our technique. Finally, our

conclusions are presented in Section VI.

The notations adopted are as follows: Upper (lower) bold

face letters denote matrices (column vectors). [x]k denotes

the kth element of the vector x, and [X]k,m denotes the

[k,m]th element of the matrix X. The row and column indices

start from 0 (and not 1). We will use the matlab notation

X[k1:k2,m1:m2] to extract a submatrix within X from row k1 to

row k2 and from column m1 to column m2. IN is a N ×N
identity matrix and 0N is a N×N matrix of zeros. diag{x} is a

diagonal matrix with x on its main diagonal and blkdiag{X,Y}
is a block diagonal matrix with the matrices X and Y on

its main diagonal. The superscripts (·)T , (·)∗ and (·)H stand

respectively for transpose, conjugate and Hermitian operators.

Tr(·) and E[·] are respectively the determinant and expectation

operations. J0(·) is the zeroth-order Bessel function of the first

kind. ∇x represents the first-order partial derivative operator

i.e., ∇x = [ ∂
∂x1

, ..., ∂
∂xN

]T .

II. MIMO-OFDM SYSTEM AND CHANNEL MODELS

A. MIMO-OFDM System Model

Consider a MIMO-OFDM system with NT transmitter

antennas, NR receiver antennas, N sub-carriers, and a cyclic

prefix length Ng . The duration of a MIMO-OFDM block

is T = NbTs, where Ts is the sampling time and Nb =

N + Ng . Let xn
def
=

[
x
(1)T

n , x
(2)T

n , ..., x
(NT )T

n

]T
be the nth

transmitted signal block, where x
(t)
n

def
=

[
x
(t)
n [−N

2 ], x
(t)
n [−N

2 +

1], ..., x
(t)
n [N2 − 1]

]T
is the nth signal vector transmitted by

the tth transmitter antenna and the data symbol {x
(t)
n [k]}

is transmitted on the kth sub-carrier. The data symbol are

normalized (i.e.,E
[
x
(t)
n [k]x

(t)∗
n [k]

]
= 1). The frequency mis-

match between the oscillators used in the radio transmitters

and receivers causes a CFO. In multi-antenna systems, each

transmitter and receiver typically requires its own Radio Fre-

quency - Intermediate Frequency (RF-IF) chain. Consequently,

each transmitter-receiver pair has its own mismatch parameter,

yielding separate CFO. In a NT×NR MIMO system this leads

to NTNR different CFO. However, if transmitter or receiver

antennas share RF-IF chains, fewer different CFO occur. The

system model describes the general case where it is necessary

to compensate for NTNR CFO. Assume that the MIMO

channel branch between the tth transmit antenna and the rth

receive antenna (called (r, t) branch from now on) experiences

a normalized frequency shift ν(r,t) = ∆F (r,t)NTs, where

∆F (r,t) is the absolute CFO. All the normalized CFO can

be stacked in vector form:

ν
def
=

[

ν(1,1), . . . , ν(1,NT ), . . . ,

ν(r,1), . . . , ν(r,NT ), . . . , ν(NR,NT )
]T

(1)

After transmission over a multi-path Rayleigh

channel, the nth received MIMO-OFDM block

yn
def
=

[
y
(1)T

n , y
(2)T

n , ..., y
(NR)T

n

]T
, where y

(r)
n

def
=

[
y
(r)
n [−N

2 ], y
(r)
n [−N

2 + 1], ..., y
(r)
n [N2 − 1]

]T
is the nth

received OFDM symbol by the rth receiver antenna, is given

in the frequency domain by [4] [10]:

yn = Hn xn + wn (2)

where wn
def
=

[
w

(1)T

n ,w
(2)T

n , ...,w
(NR)T

n ]
]T

with w
(r)
n

def
=

[
w

(r)
n [−N

2 ], w
(r)
n [−N

2 +1], ..., w
(r)
n [N2 −1]

]T
a white complex

Gaussian noise vector of covariance matrix NTσ
2IN . The

matrix Hn is a NRN × NTN MIMO channel matrix given

by:

Hn
def
=






H(1,1)
n · · · H(1,NT )

n

...
. . .

...

H(NR,1)
n · · · H(NR,NT )

n




 (3)

where H(r,t)
n is the (r, t) branch channel matrix. The elements

of channel matrix H(r,t)
n can be written in terms of equivalent

channel taps [5]
{

g
(r,t)
l,n (qTs) = g

(r,t)
l (nT +qTs)

}

or in terms

of physical channel parameters [9] (i.e. delays
{
τ
(r,t)
l

}
and

CA
{

α
(r,t)
l,n (qTs) = α

(r,t)
l (nT + qTs)

}

), yielding Eq. (4) and

(5), respectively.

L′(r,t) < Ng is the number of channel taps and L(r,t) the

number of paths for the (r, t) branch. The delays are normal-

ized by Ts and not necessarily integers (τ
(r,t)
l < Ng). The

L(r,t) elements of
{

α
(r,t)
l,n (qTs)

}

are uncorrelated. However,

the L′(r,t) elements of
{

g
(r,t)
l,n (qTs)

}

are correlated, unless

the delays are multiple of Ts as is commonly assumed in the

literature. They are wide-sense stationary (WSS), narrow-band

zero-mean complex Gaussian processes of variances σ
(r,t)
gl

2

and σ
(r,t)
αl

2
, with the so-called Jakes’ power spectrum of max-

imum Doppler frequency fd [16]. The average energy of each

(r, t) branch is normalized to one, i.e.,

L′(r,t)−1∑

l=0

σ(r,t)
gl

2
= 1

and

L(r,t)−1∑

l=0

σ(r,t)
αl

2
= 1.

In the next sections, we present the derivations for the

second approach (physical channel). The results of the first

approach (channel taps) can be deduced by replacing L(r,t) by

L′(r,t) and the set of delays
{
τ
(r,t)
l

}
by

{
l, l = 0 : L′(r,t)−1

}
.

B. BEM Channel Model

Let L
def
=

∑NR

r=1

∑NT

t=1 L
(r,t) be the total number of paths

for the MIMO channel. There are Nb samples to be estimated
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[H(r,t)
n ]k,m =

1

N

L′(r,t)−1∑

l=0

[

e−j2π(m
N

− 1
2 )·l

N−1∑

q=0

ej2π
ν(r,t)q

N g
(r,t)
l,n (qTs)e

j2πm−k
N

q
]

(4)

=
1

N

L(r,t)−1∑

l=0

[

e−j2π(m
N

− 1
2 )τ

(r,t)
l

N−1∑

q=0

ej2π
ν(r,t)q

N α
(r,t)
l,n (qTs)e

j2πm−k
N

q
]

(5)

for each path CA due to the fast time-variation of the channel,

yielding a total of LNb samples for the whole MIMO channel.

In order to reduce the number of parameters to be estimated,

we resort to the Basis Expansion Model (BEM). In this section,

our aim is to accurately model the time-variation of α
(r,t)
l,n (qTs)

from q = −Ng to N − 1 by using a BEM.

Suppose α
(r,t)
l,n represents an Nb×1 vector that collects the

time-variation of the lth path of the (r, t) branch within the

nth MIMO-OFDM block:

α
(r,t)
l,n

def
=

[
α
(r,t)
l,n (−NgTs), ..., α

(r,t)
l,n

(
(N − 1)Ts

)]T
(6)

Then, each α
(r,t)
l,n can be expressed in terms of a BEM as:

α
(r,t)
l,n = α

(r,t)
BEMl,n

+ ξ
(r,t)
l,n = B c

(r,t)
l,n + ξ

(r,t)
l,n (7)

where the Nb×Nc matrix B is defined as: B
def
= [b0, ...,bNc−1].

The Nb × 1 vector bd is termed as the dth expansion basis.

c
(r,t)
l,n

def
=

[
c
(r,t)
l,n [0], ..., c

(r,t)
l,n [Nc − 1]

]T
represents the Nc BEM

coefficients and ξ
(r,t)
l,n represents the corresponding BEM mod-

eling error, which is assumed to be minimized in the MSE

sense [17]. Under this criterion, the optimal BEM coefficients

and the corresponding model error are given by:

c
(r,t)
l,n =

(
BHB

)−1
BHα

(r,t)
l,n (8)

ξ
(r,t)
l,n = (INb

− S)α
(r,t)
l,n (9)

where S = B
(
BHB

)−1
BH is a Nb × Nb matrix. Then, the

MMSE approximation for all BEM with Nc coefficients is

given by:

MMSE
(r,t)
l

def
=

1

Nb

E
[

ξ
(r,t)
l,n ξ

(r,t)
l,n

H]

(10)

=
1

Nb

Tr
((

INb
− S

)
R(r,t)

αl
[0]

(
INb

− SH
))

(11)

where R(r,t)
αl

[s]
def
= E

[

α
(r,t)
l,n α

(r,t)
l,n−s

H
]

is the Nb ×Nb correla-

tion matrix of α
(r,t)
l,n with elements given by:

[R(r,t)
αl

[s]]k,m = σ(r,t)
αl

2
J0

(

2πfdTs(k −m+ sNb)

)

(12)

Various traditional BEM designs have been reported to model

the channel time-variations, e.g., the Complex Exponential

BEM (CE-BEM) [B]k,m = e
j2π(

k−Ng

Nb
)(m−Nc−1

2 )
which leads

to a strictly banded frequency-domain matrix [18], the Gener-

alized CE-BEM (GCE-BEM) [B]k,m = e
j2π(

k−Ng

aNb
)(m−Nc−1

2 )

with 1 < a ≤ Nc−1
2fdT

which is a set of oversampled complex

exponentials [17], the Polynomial BEM (P-BEM) [B]k,m =

(k −Ng)
m [9] and the Discrete Karhuen-Loeve BEM (DKL-

BEM) which employs basis sequences that correspond to the

most significant eigenvectors of the autocorrelation matrix

R(r,t)
αl

[0] [19]. From now on, we can describe the MIMO-

OFDM system model derived previously in terms of BEM.

Substituting (7) in (2) and neglecting the BEM model error,

one obtains after some algebra:

yn = Kn(ν) · cn + wn (13)

where the LNc × 1 vector cn and the NRN × LNc matrix

Kn(ν) are given by:

cn
def
=

[

c(1,1)
T

n , ..., c(1,NT )T

n , ..., c(NR,NT )T

n

]T

(14)

c(r,t)n

def
=

[

c
(r,t)T

0,n , ..., c
(r,t)T

L(r,t)−1,n

]T

Kn(ν)
def
= blkdiag

{

K
(1)
n (ν(1)), ...,K(NR)

n (ν(NR))
}

K
(r)
n (ν(r))

def
=

[

K
(r,1)
n (ν(r,1)), ...,K(r,NT )

n (ν(r,NT ))
]

K
(r,t)
n (ν(r,t))

def
=

1

N

[

Z
(r,t)
0,n (ν(r,t)), ...,Z

(r,t)

L(r,t)−1,n
(ν(r,t))

]

Z
(r,t)
l,n (ν(r,t))

def
=

[

M
(r,t)
0 (ν(r,t)) diag{x(t)

n } f
(r,t)
l , ...,

M
(r,t)
Nc−1(ν

(r,t)) diag{x(t)
n } f

(r,t)
l

]

where ν(r) def
=

[
ν(r,1), . . . , ν(r,NT )

]T
. Vector f

(r,t)
l is the lth

column of the N×L(r,t) Fourier matrix F(r,t) whose elements

are given by:

[F(r,t)]k,l = e−j2π( k
N

− 1
2 )τ

(r,t)
l , (15)

and M
(r,t)
d is a N ×N matrix whose elements are given by:

[

M
(r,t)
d (ν(r,t))

]

k,m
=

N−1∑

q=0

ej2π
ν(r,t)q

N [B]q+Ng,d ej2π
m−k
N

q .

(16)

Moreover, the channel matrix of the (r, t) branch can be easily

computed by using the BEM coefficients [4]:

H(r,t)
n =

Nc−1∑

d=0

M
(r,t)
d (ν(r,t))diag{F(r,t)χ

(r,t)
d,n } (17)

where χ
(r,t)
d,n

def
=

[
c
(r,t)
0,n [d], ..., c

(r,t)

L(r,t)−1,n
[d]

]T
. Eq. (17) will be

used in the following to obtain an estimated channel matrix

from the estimated CFO and BEM coefficients.

III. AR MODEL AND EXTENDED KALMAN FILTER

A. The AR Model for cn
The optimal BEM coefficients c

(r,t)
l,n are correlated complex

Gaussian variables with zero-means and correlation matrix
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given by:

R(r,t)
cl

[s]
def
= E[c

(r,t)
l,n c

(r,t)
l,n−s

H
]

=
(
BHB

)−1
BHR(r,t)

αl
[s]B

(
BHB

)−1
(18)

Since the coefficients c
(r,t)
l,n are correlated Gaussian variables,

their dynamics can be correctly modeled by an auto-regressive

(AR) process [20] [21] [9] . A complex AR process of order

p can be generated such that:

c
(r,t)
l,n =

p
∑

i=1

A(i)c
(r,t)
l,n−i + u

(r,t)
l,n (19)

where A(1), ...,A(p) are Nc×Nc matrices and u
(r,t)
l,n is a Nc×1

complex Gaussian vector with covariance matrix U
(r,t)
l . From

[9], it is sufficient to choose p = 1 to correctly model the

path CA. The matrices A(1) = A and U
(r,t)
l are the AR

model parameters obtained by solving the set of Yule-Walker

equations:

A = R(r,t)
cl

[1]
(

R(r,t)
cl

[0]
)−1

(20)

U
(r,t)
l = R(r,t)

cl
[0] + AR(r,t)

cl
[−1] (21)

Using (19), we obtain the first-order AR approximation for

the dynamics of cn:

cn = Ac · cn−1 + ucn (22)

where Ac
def
= blkdiag {A, ...,A} is a LNc × LNc matrix

and ucn
def
=

[

u
(1,1)T

0,n , ...,u
(NR,NT )T

L(NR,NT )−1,n

]T

is a LNc × 1

zero-mean complex Gaussian vector with covariance matrix

Uc
def
= blkdiag

{

U
(1,1)
0 , ...,U

(NR,NT )

L(NR,NT )−1

}

.

B. The AR Model for νn

Let us write the global first-order AR model for νn as

follows:

νn = Aν · νn−1 + uνn (23)

where the state transition matrix is of size NRNT ×NRNT .

Since the CFO can be assumed as constant during the obser-

vation interval, Aν is considered to be close to the identity

matrix Aν = aINRNT
, where a is typically chosen between

0.99 and 0.9999 [22][13]. The NRNT × 1 state noise vector

uνn is assumed to be zero-mean complex Gaussian. The state

noise covariance matrix is Uν = σ2
uν

INRNT
where σ2

uν
is the

variance of the state noise associated with CFO. The value

of the state noise variance depends on the parameter a, as

explained in Appendix.

C. State equation

Now, let us write the state-variable model. The state vector

at time instance n consists of the BEM coefficients cn and the

vector of CFO νn:

µn
def
=

[
cTn , νT

n

]T
(24)

There are LNc BEM coefficients and NTNR CFO values in

the state vector of dimension LNc + NTNR × 1. Then, the

linear state equation may be written as follows:

µn = A · µn−1 + un (25)

where the state transition matrix is defined as follows:

A
def
= blkdiag {Ac, Aν} (26)

The LNc + NRNT × 1 noise vector is such that un
def
=

[
uT

cn, uT
νn

]T
with covariance matrix U

def
= blkdiag {Uc, Uν}.

D. Extended Kalman Filter (EKF)

The measurement equation (13) can be reformulated as:

yn = g (µn) + wn (27)

where the nonlinear function g of the state vector µn is defined

as g (µn) = Kn(ν) · cn. Nonlinearity of the measurement

equation (27) is caused by CFO. The BEM coefficients are

still linearly related to observations. Since the measurement

equation is nonlinear, we use the Extended Kalman filter to

adaptively track µn. Let µ̂(n|n−1) be our a priori state estimate

at step n given knowledge of the process prior to step n, µ̂(n|n)

be our a posteriori state estimate at step n given measurement

yn and, P(n|n−1) and P(n|n) are respectively the a priori and

the a posteriori error estimate covariance matrix of size LNc+
NRNT ×LNc +NRNT . We initialize the EKF with µ̂(0|0) =
0LNc+NRNT ,1 and P(0|0) given by:

P(0|0) = blkdiag
{

Rc[0], σ2
uν

INRNT

}
(28)

Rc[s] = blkdiag
{

R(1,1)
c [s], ...,R(NR,NT )

c [s]
}

R(r,t)
c [s] = blkdiag

{

R(r,t)
c0

[s], ...,R(r,t)
c
L(r,t)−1

[s]
}

where R(r,t)
cl

[s] is the correlation matrix of c
(r,t)
l,n defined in

(18). To derive the EKF equations, we need to compute the

Jacobian matrix Gn of g (µn) with respect to µn and evaluated

at µ̂(n|n−1):

Gn
def
= ∇T

µn
g (µn)

∣
∣
µn=µ̂(n|n−1)

=
[

∇T
cn

g (µn)
∣
∣
µn=µ̂(n|n−1)

, ∇T
νn

g (µn)
∣
∣
µn=µ̂(n|n−1)

]

(29)

Let us define µ
(r)
n

def
=

[

µ
(r,1)T

n , . . . ,µ
(r,NT )T

n

]T

and

µ
(r,t)
n

def
=

[

c
(r,t)T

n ν
(r,t)
n

]T

. After computation, we find:

Gn =
[

Kn(νn)|νn=ν̂(n|n−1)
, Vn(µn)|µn=µ̂(n|n−1)

]

(30)

where

Vn(µn)
def
= blkdiag

{

V
(1)
n (µ(1)

n ), ...,V(NR)
n (µ(NR)

n )
}

V
(r)
n (µ(r)

n )
def
=

[

v(r,1)(µ(r,1)
n ), . . . , v(r,NT )(µ(r,NT )

n )
]

v(r,t)(µ(r,t)
n )

def
= K

′(r,t)
n (ν(r,t)n ) · c(r,t)n

K
′(r,t)
n (ν(r,t)n )

def
=

1

N

[

Z
′(r,t)
0,n (ν(r,t)n ), ...,Z

′(r,t)
L−1,n(ν

(r,t)
n )

]

Z
′(r,t)
l,n (ν(r,t)n )

def
=

[

M′

0(ν
(r,t)
n ) diag{x(t)

n } f
(r,t)
l , ...,

M′

Nc−1(ν
(r,t)
n ) diag{x(t)n } f

(r,t)
l

]
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The elements of the N ×N matrix M′

d(ν) are given by:

[

M′

d(ν
(r,t)
n )

]

k,m
=

N−1∑

q=0

j2π
q

N
ej2π

ν
(r,t)
n q

N [B]q+Ng,d ej2π
m−k
N

q

(31)

The EKF is a recursive algorithm composed of two stages:

Time Update Equations and Measurement Update Equations,

defined as follows:

Time Update Equations:

µ̂(n|n−1) = Aµ̂(n−1|n−1)

P(n|n−1) = AP(n−1|n−1)A
H + U (32)

Measurement Update Equations:

Kn = P(n|n−1)G
H
n

(

GnP(n|n−1)G
H
n +NT .σ

2INRN

)−1

µ̂(n|n) = µ̂(n|n−1) + Kn

(
yn − g

(
µ̂(n|n−1)

))

P(n|n) = P(n|n−1) − KnGnP(n|n−1) (33)

where Kn is the Kalman gain. The Time Update Equations are

responsible for projecting forward (in time) the current state

and error covariance estimates to obtain the a priori estimates

for the next time step. The Measurement Update Equations

are responsible for the feedback, i.e., for incorporating a new

measurement into the a priori estimate to obtain an improved

a posteriori estimate. The Time Update Equations can also

be thought of as predictor equations, while the Measurement

Update Equations can be thought of as corrector equations.

IV. JOINT DATA DETECTION AND PARAMETER

ESTIMATION

A. Proposed algorithm

The algorithm uses Np pilots subcarriers evenly inserted

into the N subcarriers. The pilot positions are the same for

all the transmitter antennas, yielding the set of pilot indices

P = { nLf + (t− 1)N, n = 0 . . . Np − 1, t = 1 . . . NT },

where Lf is the distance between two adjacent pilots. The

data is detected with a QR-equalizer [9] with free Inter-Carrier-

Interference (ICI) thanks to a QR-decomposition.

The general principle is as follows : to detect the data sym-

bols xn, we need to perform an equalization which requires

the knowledge of the channel matrix Hn (see Eq. (2) for

the transmission model and Eq. (3) for the definition of the

channel matrix). However, the data symbols xn are required

to estimate the channel matrix. To alleviate this contradiction,

a predicted version of the channel matrix Ĥ(n|n−1) obtained

with xn unknown is computed. Ĥ(n|n−1) is subsequently

updated into Ĥ(n|n) through the EKF measurement update

equations (33) with the current received OFDM symbol yn.

The current data symbol x̂(n|n) is finally retrieved from this

updated channel matrix Ĥ(n|n).

The algorithm for the nth OFDM symbol is depicted in

details in Fig. 1. From the previous OFDM symbol (n − 1),

we execute the EKF Time Update Equations (32) to obtain the

prediction parameters µ̂(n|n−1). The predicted version of the

channel matrix Ĥ(n|n−1) is computed from µ̂(n|n−1) instead

of µn with Eq. (17). Therefore, the equalization task is now

possible since a version of the channel matrix is available.

Before this step, the contribution of the pilots to yn is removed:

y′n = yn − Ĥ(n|n−1) · xpn
(34)

where the vector xpn
is a NTN × 1 vector composed of

the pilots at the pilot positions and 0 elsewhere. With the

assumption that Ĥ(n|n−1) · xpn
= Hn · xpn

, we obtain a new

version of the transmission model that only includes the data:

y′n = Hdata
n · xdata

n + wdata
n (35)

where the NRN ×NT (N −Np) matrix Hdata
n is obtained by

removing the NTNp columns of Hn at the pilot positions P .

xdata
n and wdata

n are NT (N − Np) × 1 vectors built from xn

and wn, respectively, by removing the vector elements at pilot

positions P .

Equalization is performed on this model, yielding a first

version of the detected data symbols x̂(n|n−1). The Mea-

surement Update Equations (33) are then computed by using

x̂(n|n−1) instead of xn in Eq. (30). Finally, a new equalization

is performed with the updated parameters µ̂(n|n) to obtain the

updated version of the data symbols x̂(n|n).

The algorithm is initialized with µ̂(0|0) = 0LNc+NRNT ,1,

and P(0|0) computed with Eq. (28).

B. Computational Complexity

The purpose of this section is to determine the imple-

mentation complexity in terms of the number of the multi-

plications needed for our algorithm. The matrices F(r,t) are

pre-computed and stored if the delays are invariant for a

great number of OFDM symbols. The computational cost of

computing the different terms and processes of the algorithm

is given by Table I. The complexity analysis of Time Update

Equations and Measurement Update Equations of the Kalman

filter in Table I uses the fact that A is a sparse matrix.

In practice, L, NT , NR and Nc are much smaller than N ,

therefore, the computational complexity of our algorithm is

O(N3
RN

3). So we can say that our proposed algorithm and

the algorithm proposed in [13] have asymptotically the same

complexity (same order of growth). The algorithm in [13] will

be used for performance comparison in Section V.

V. SIMULATION

In this section, the performance of our recursive algorithm

is evaluated in terms of Mean Square Error (MSE) for joint

CA and CFO estimation and Bit Error Rate (BER) for data

detection. We consider two antennas at the transmitter and

two antennas at the receiver (NT = NR = 2). A normalized

4-QAM MIMO-OFDM system with N = 128 subcarriers,

Ng = N
8 , Np = N

4 pilots (i.e., Lf = 4), and 1
Ts

= 2MHz
was used.

Both parametric and equivalent discrete channel models

are being discussed. We recall that the derivations have been

carried out for the parametric model, although the equations

for the equivalent discrete-time channel model can also be

obtained by substituting the set of delays
{

τ
(r,t)
l

}

by the tap

indices (see Section II-A).
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Time 

update 

Eq. (32)

From previous

OFDM symbol

(n-1):

Compute

channel

matrix

Eq. (17)

Remove

the ICI due 

to pilots 

Eq. (34)

Equalization

From current received

OFDM symbol (n):

Measurement

update 

Eq. (33)

Compute

channel

matrix

Eq. (17)

Remove the 

ICI due to 

pilots

+ Equalization

Fig. 1. Joint Data Detection, channel estimation and CFO estimation algorithm.

Term or process Computational cost (number of multiplications)

M
(r,t)
d

(ν
(r,t)
n ) N3

M′

d
(ν

(r,t)
n ) N3

K
(r,t)
n (ν

(r,t)
n ) N(N + 1)LNc

K
′(r,t)
n (ν

(r,t)
n ) N(N + 1)LNc

Vn(µn) NNcL
Hn NNc(NNTNR + L)

Removing ICI NpNTNNR

QR-decomposition 2
3
N3

d
+N2

d
+ 1

3
Nd − 2 with Nd = NRN

data QR-detection 1
2
N ′

d
(N ′

d
+ 1) with N ′

d
= NT (N −Np)

Time Update Equations (LN2
c +NTNR) + (LN2

c +N2
T
N2

R
)(LNc +NTNR)

Measurement Update Equations 2NRN(LNc +NRNT )2 +NRN(LNc +NRNT )(2NRN + 1) +NRNTN2 + (NRN)3

TABLE I
COMPUTATIONAL COMPLEXITY

In Section V-A, the parametric channel model is being

considered with a classical scenario with one base station

and one mobile receiver, and one CFO parameter to be

estimated. Section V-B deals with the equivalent discrete

channel model and considers a more pessimistic scenario

where each transmitter and receiver requires its own RF-IF

chain. For this scenario, the number of CFO parameters to

be estimated (NTNR = 4) is the largest. This scenario could

correspond to the area of coordinated base stations or network

MIMO. Performance comparisons have been carried out with

the algorithm proposed in [13].

A. Parametric channel model

We assume that all the (r, t) channel links, r = 1, . . . , NR,

t = 1, . . . , NT share the same path delays and fading prop-

erties (i.e., the same number of paths, of σ
(r,t)
αl

2
and τ

(r,t)
l )

since the antennas are very close to each other, which is

typical in practice. The Rayleigh channel model given in [9]

[11](L(r,t) = 6 paths and maximum delay τmax = 10Ts, see

Table II) was chosen. The MSE will be computed for both path

CA and CFO to evaluate the estimation performance. First, let

us define:

α̂(n|n)
def
= blkdiag{B, . . . ,B

︸ ︷︷ ︸

L times

} ·
(
µ̂(n|n)

∣
∣
[0:NcL−1]

)

αn
def
=

[

α
(1,1)T

0,n , . . . ,α
(1,1)T

L(1,1)−1,n
, . . . ,

α
(1,NT )T

0,n , . . .α
(NR,NT )T

L(NR,NT )−1,n

]T

ν̂(n|n)
def
= µ̂(n|n)

∣
∣
[NcL:NcL+Nν ]

Path number Average Power (dB) Delay (Ts)

0 -7.219 0

1 -4.219 0.4

2 -6.219 1

3 -10.219 3.2

4 -12.219 4.6

5 -14.219 10

TABLE II
RAYLEIGH CHANNEL PARAMETERS

where Nν is the number of CFO to be estimated. The MSE

of the path CA (denoted MSEα) and the MSE of the CFO

(denoted MSEν) are computed as follows (we recall that L is

the total number of paths for the MIMO channel, see Section

II-B):

MSEα
def
=

1

K

K−1∑

n=0

1

NbL

(
α̂(n|n) −αn

)H (
α̂(n|n) −αn

)

(36)

MSEν
def
=

1

K

K−1∑

n=0

1

Nν

(
ν̂(n|n) − νn

)H (
ν̂(n|n) − νn

)
(37)

where K is set to 1000 in our simulations. The MSE and the

BER were evaluated under a rapid time-varying channel with

fdT = 0.1 (corresponding to a vehicle speed of 300km/h at

fc = 5 GHz). A GCE-BEM with Nc = 4 was initially chosen

to model the path CA of the channel and ν = 0.1.

The tracking capability of our proposed algorithm is first

demonstrated as a function of time. Real and imaginary parts

of one trajectory example of α
(r,t)
l,n are plotted in Fig. 2 for

r = 1, t = 1 and l = 0, . . . , 5 at Eb/N0 = 20 dB. After an

initial transient, the algorithm locks on to the true value of the
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Fig. 2. Time domain tracking of the path CA at Eb/N0 = 20 dB and
fdT = 0.1 for r = 1, t = 1, a = 0.99

path CA and tracks them closely, even for the paths with low

average power.

The convergence results for the CFO is shown in Fig. 3 for

different values of the CFO tracking parameter a (see Section

III-B). To emphasize the effect of a, simulations are performed

in Data-Aided mode. Classically, a is chosen from 0.99 up

to 0.9999 [13][22]. The estimated CFO is initialized to zero

(see Section III-D). It is observed that the convergence time

increases with a, which is an expected result. On the other

hand, the MSE is expected to decrease with increasing values

of a, which can be observed in Fig. 4. However, the gain

in MSE performance is too small to impact the BER, which

remains constant for any values of a (see Fig. 5). So it turns

out that our system is relatively independent of a.

Fig. 6 shows the CA MSE as a function of Eb/N0. For refer-

ence, the MSE obtained in Data-Aided (DA) mode (knowledge

of the data symbols) is also plotted. In addition to the MSE of

the estimated CA (see Eq. (36)), we added the MSE obtained

with the predicted CA by substituting α̂(n|n) with α̂(n|n−1)

in Eq. (36). As expected, it is observed that both predicted

and estimated MSE approach their DA curve when Eb/N0

is increased. Indeed, for large Eb/N0 values, the number of

detection errors is small. On the other hand, it is seen that

the estimated curve is far better than the predicted curve for

each Eb/N0. Hence, it can be concluded that the measurement

update task (Eq. (33)) is still efficient, even when the equations

are computed with the predicted data symbols x̂(n|n−1) (see

Section IV-A).

Then, to evaluate the performance of our joint algorithm,
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Fig. 3. Time domain tracking of CFO at Eb/N0 = 20 dB and fdT = 0.1
for different values of a
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Fig. 4. MSE of the CFO estimation (MSEν ) as a function of a at Eb/N0 =
5, 15, 25 dB for fdT = 0.1, ν = 0.1

the curves obtained with the perfect knowledge of the CFO

are plotted. It is seen that the performance in terms of CA

estimation are unchanged. So, it turns out that the CFO

estimation does not impact the CA estimation.

Let us now discuss the CFO estimation. Fig. 7 shows

the MSEs for the CFO obtained with the predicted and the

estimated parameter. Similarly to the CA MSE, the curves

in DA mode and with the perfect knowledge of the CA are

shown. First, it is observed that the estimated curve is very

close to the predicted one. This is due to the fact that the CFO

is constant in our model, and so the AR-model is not very

accurate. Unlike for the CA estimation task, the knowledge

of the unwanted parameter highly increases the performance

of the CFO estimation because the CA rapidly varies in time,

yielding high MSE. The impact of their estimation, due to this

high MSE, is not negligible on the CFO estimation task.

Figure 8 gives the corresponding BER curve. A lower bound

for the BER performance is given by using the ideal channel
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Fig. 6. MSE of the CA estimation (MSEα) as a function of Eb/N0 for
fdT = 0.1, ν = 0.1

state information (CSI), i.e. perfectly known CA and CFO at

the receiver. Together with this reference curve, we also plotted

the BER curves obtained with the perfect knowledge of the

CFO only, and the CA only. As expected, the parameter that

degrades the most the performance is the CA, due to the high

mobility of the channel.

Figures 9 and 10 show the impact of the number of BEM

coefficients Nc to the performance for different BEMs. The

considered BEM are the P-BEM, the GCE-BEM, and the

DKL-BEM (see Section II-B). For low Eb/N0 values, the

P-BEM is the most efficient in terms of MSE, but the gain

is negligible on the BER. However, for large Eb/N0 values,

the gain in terms of MSE obtained with the GCE-BEM and

DKL-BEM impacts the BER. Hence, it turns out that the best

trade-off is to choose Nc = 3 and either the GCE-BEM or

the DKL-BEM. Nevertheless, these two BEMs require some

a-priori information (Doppler frequency fd for the GCE-BEM

and correlation matrix for the DKL-BEM) which is not the
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Fig. 7. MSE of the CFO estimation (MSEν ) as a function of Eb/N0 for
fdT = 0.1, ν = 0.1
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Fig. 8. Bit Error Rate (BER) as a function of Eb/N0 for fdT = 0.1,
ν = 0.1

case for the P-BEM. It is noteworthy that the BER would be

more sensitive to the estimation errors with a higher order

modulation (we recall that we used a QPSK modulation).

B. Equivalent discrete channel model - comparison with the

algorithm of [13]

Here, we consider the equivalent discrete channel model

where 4 CFO have to be estimated (one per sub-channel).

This scenario could correspond to the area of coordinated base

stations or network MIMO. The CFOs have been arbitrarily

fixed to 0.1, 0.07,−0.1,−0.05. For the sake of comparison,

we also show the performance of the algorithm proposed

in [13], called the classical algorithm from now on. This
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Fig. 10. BER as a function of Nc for different BEM, fdT = 0.1

algorithm is also based on extended Kalman filtering to carry

out channel taps and CFO estimation together with data

detection. Note that the simulations presented in [13] have

been carried out in Decision-Directed (DD) mode only, i.e.

only decoded data symbols are used to perform the filtering.

However, when introducing their algorithm, the authors also

stated that in case of high mobility, pilot signals are also

needed [13][23]. So to compare both algorithms, we insert

pilots in the algorithm following our pilot scheme (see Section

IV-A). The same channel as in [13] has been selected i.e. a

power loss [0,−1,−3,−9][dB] and delay profile [0, 1, 2, 3]µs
(i.e. [0Ts, 2Ts, 4Ts, 6Ts]), which corresponds to a urban type

of scenario. We also fix the same parameter a = 0.99 as in

[13].

First, simulations for different speeds ranging from 30 km/h

up to 300 km/h have been performed at 20 dB (see Fig. 11).
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prediction − conventional algorithm
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Fig. 11. BER performance for variable terminal velocity (Eb/N0 = 20dB)

For reference, the performance of the algorithm is given by

using the ideal channel state information (CSI).

For the classical algorithm, the performance degrades

rapidly as the speed is increased. This is expected since this

algorithm does not take into account the ICI due to mobility.

However, we observe that our algorithm is far more robust to

speed. The prediction performance degrades with the speed

but is clearly compensated by the estimation.

VI. CONCLUSION

In this paper, a new algorithm which jointly estimates path

Complex Amplitudes (CA) and Carrier Frequency Offsets

(CFO) in MIMO environments has been presented. The al-

gorithm is based on a parametric channel model or equivalent

discrete channel model. Within one OFDM symbol, each time-

varying CA is approximated by a Basis Expansion Model

(BEM) representation. The dynamics of the BEM coefficients

and that of the CFO parameters are modeled by first-order

auto-regressive processes. Parameter estimation is performed

by Extended Kalman Filtering and the data recovery is carried

out by means of a QR-equalizer. Compared to the conventional

algorithm, simulation results show the good robustness of our

algorithm to fading rate for normalized Doppler frequency val-

ues fdT up to 0.1. For this very high mobility, the performance

of the joint estimation algorithm in terms of Bit Error Rate is

close to the performance obtained with perfect knowledge of

channel and CFO as long as 3 BEM coefficients are used with

either the GCE-BEM or the DKL-BEM.

APPENDIX

In this section, we detail the computation of the state noise

variance σ2
uν

. For the sake of simplicity, only the scalar case

is performed. The vectorial case can be easily extended from

this. The scalar version of (23) is as follows:

νn = a · νn−1 + uνn
(38)
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First, let us define the correlation function of ν:

Rν [m] = E [νnνn−m] (39)

Using (38) in (39) yields:

Rν [m] = a ·Rν [m− 1] + E [uνn
νn−m] (40)

Then, we compute (40) for m = 1 and m = 0, yielding:

Rν [1] = a ·Rν [0] (41)

Rν [0] = a ·Rν [−1] + σ2
uν

(42)

Note that the expectation E [uνn
νn−m] equals zero for m = 1

since νn−1 only depends on uνn−1
(and not on uνn

) on the one

hand, and on the other hand uνn
is zero-mean white Gaussian

noise.

Combining (41) and (42) yields:

σ2
uν

=
(
1− a2

)
Rν [0] (43)

since Rν [−1] = Rν [1].
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