
4008 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 8, AUGUST 2008

Joint CFO and Channel Estimation for Multiuser
MIMO-OFDM Systems With Optimal Training

Sequences
Jianwu Chen, Yik-Chung Wu, Shaodan Ma, and Tung-Sang Ng, Fellow, IEEE

Abstract—This paper addresses the problem of joint carrier
frequency offset (CFO) and channel estimation in multiuser mul-
tiple-input–multiple-output (MIMO) orthogonal frequency-di-
vision multiplexing (OFDM) systems. To choose the optimal
training sequences with the goal of providing the smallest esti-
mation mean square error (MSE), the asymptotic Cramér–Rao
bounds (asCRBs) are derived. The optimal training sequences are
designed that minimize the asCRBs for both CFO and channel
estimation under the constraint that the asCRBs being channel
independent. A joint CFO and channel estimator is derived based
on the maximum likelihood (ML) criterion. A computationally
efficient method using importance sampling technique is proposed
to solve the highly demanding multidimensional exhaustive search
required by the ML multi-CFO estimation. Simulation results
illustrate the merits of the proposed training sequences and also
verify the effectiveness of the proposed estimation scheme.

Index Terms—Carrier frequency offset, channel estimation,
Cramér–Rao bound (CRB), importance sampling, maximum
likelihood, multiple-input–multiple-output (MIMO), orthogonal
frequency-division multiplexing (OFDM).

I. INTRODUCTION

M
ULTIPLE-INPUT–MULTIPLE-OUTPUT (MIMO)

orthogonal frequency-division multiplexing (OFDM)

system has attracted much attention recently and it is widely

regarded as a potential candidate for fourth-generation (4G)

broadband wireless communication networks due to its ability

to mitigate intersymbol interference (ISI) and to enhance system

capacity [1]. With spatial multiplexing (e.g., Bell Labs layered

space–time (BLAST) architecture), the system throughput can

be improved by transmitting independent data streams on dif-

ferent antennas simultaneously [2]. With OFDM, the frequency

selective fading channel is transformed into a set of frequency

flat fading channels, making equalization much simpler than

single carrier systems. Compared with other OFDM-based

techniques, such as MIMO-OFDMA, MIMO-OFDM systems
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promise a much higher spectral efficiency due to the use of

spatial multiplexing. While researches on detection and de-

coding of MIMO-OFDM systems [3]–[5] have been recently

reported, efficient synchronization and channel estimation of

such systems are relatively unexplored. The purpose of this

paper is to fill this gap.

In general, to fully exploit the potentials of MIMO-OFDM

systems, three issues should be considered: time synchroniza-

tion, frequency synchronization and channel estimation. Similar

to other multicarrier-based techniques, MIMO-OFDM system is

highly sensitive to carrier frequency offsets (CFOs) caused by

oscillator mismatches and/or Doppler shifts. For coherent data

detection, the knowledge of channel impulse response (CIR)

is indispensable at receiver. Compared to frequency synchro-

nization and channel estimation, time synchronization is rela-

tively less critical since OFDM systems have some tolerances

to timing errors due to the cyclic prefix (CP) insertion [6]. In

this paper, the focus is therefore on frequency synchronization

and channel estimation.

In many OFDM systems, CFO and channel estimation are

tackled separately with the aid of different training sequences

[7]–[10]. In these well established schemes, channel estimation

is performed after frequency synchronization procedure and as-

sumes frequency synchronization is perfectly achieved [9], [10].

Unfortunately, in practice, such an assumption is rarely valid

in the presence of noise [7], [8]. The residual CFO due to fre-

quency synchronization error will degrade the performance of

channel estimation significantly [11]. A reasonable solution to

this problem is to estimate CFO and channel simultaneously

based on common training sequences, which has been high-

lighted in [12] and [13]. However, in these schemes [12], [13],

training sequences are proposed without proof of optimality.

In the literature, most of the existing works addressing the

problem of optimal training sequence design for joint CFO and

channel estimation focus on single carrier systems (e.g., [14],

[15] and [16]). In [14], the design of optimal training sequence is

first investigated for SISO systems using worst case asymptotic

CRBs (asCRB). It was found that a white sequence is optimal in

the sense of minimizing the worst case asCRBs. This approach

was extended to single user MIMO case in [16]. In the consid-

ered system of [16], only one CFO between the transmitter and

receiver is assumed. To remove the channel effects on CFO es-

timation, the training sequences are chosen such that the perfor-

mance of CFO estimation is independent to the channel realiza-

tions. In [15], a more general MIMO system with different CFOs

for distinct transmit antennas is considered for the flat-fading
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channel only. More recently, in [17], the optimal training se-

quences for MIMO-OFDMA have been derived in the sense of

minimizing the asCRBs for CFO and channel separately.

In this paper, the problem of joint CFO and channel estima-

tion in multiuser MIMO-OFDM systems is investigated, where

all users can utilize all available subcarriers simultaneously and

each user is assumed to have distinct CFO with respect to the re-

ceiver. The channels in this paper are frequency selective fading

channels, which are different from the case in [15]. The con-

tributions of this paper are as follows. First, the conditions for

the optimal training sequences are derived based on asymptotic

analyses. The proposed training sequences are optimal in the

sense of simultaneously minimizing both the asCRBs for CFO

and channel estimation under the constraint that the asCRBs

being channel independent. Compared with [17], the training

sequences in this paper are designed to jointly minimize both

asCRBs for frequency offset and channel, while the training

sequences in [17] are designed by minimizing the asCRBs for

CFO and channel separately. Furthermore, based on the asymp-

totic optimal condition, we present explicitly how to construct

the optimal training sequences with finite length. Second, a joint

maximum likelihood (ML) estimator is derived. It is found that

the ML multi-CFO estimation is very challenging due to the

need of multidimensional exhaustive search. To overcome this

problem, the importance sampling technique is exploited. Based

on the derived optimal training sequences, we designed an effi-

cient and simple importance function considering both the esti-

mation performance and ease of sample generation. Third, with

the proposed importance function, we designed a novel mod-

ified ratio-of-uniform method in sample generation, which re-

mains computationally efficient for any CFO estimation range.

The rest of this paper is organized as follows. In Section II,

the considered MIMO-OFDM system model is presented. The

optimal training sequence design for joint CFO and channel es-

timation is investigated in Section III through CRB analyses.

In Section IV, the ML estimator for the joint CFO and channel

estimation is derived and an efficient algorithm based on impor-

tance sampling is proposed to reduce the complexity. Section V

presents simulation results to validate the proposed training de-

sign and estimation scheme. Concluding remarks are given in

Section VI.

Notations: , and denote the inverse, the trans-

pose, and the conjugate transpose operations, respectively, and

denotes the Kronecker product. The identity and zero

matrix are denoted by and , respectively, and rep-

resents the norm operation for a vector . Throughout the paper,

MATLAB notations for matrix and vector are used.

II. SIGNAL MODEL

In the considered MIMO-OFDM system, users transmit

different data streams simultaneously using the same set of sub-

carriers to the base station (BS), which is equipped with

antennas and is responsible for decoding the symbols for each

user. For each user, only one transmit antenna is assumed. It is

reasonable to assume that the receive antennas at BS share the

same oscillator while all users are driven by different oscilla-

tors. Thus, the data streams from different users will experience

different CFOs. Before initiating the transmission, the timing

for each user is acquired by using the downlink synchroniza-

tion channel from BS. Consequently, the transmissions from all

users can be regarded to be quasi-synchronous [6].

The data stream from user is first segmented into blocks

of length (denoted as ) and

then modulated onto different subcarriers by left multiplying

an -point inverse FFT matrix , where is the FFT matrix

with . After inserting

a CP of length into each block of the time domain signal

(denoted as ), the augmented block is serially trans-

mitted through the multipath channel. Let the channel impulse

response (including all transmit/receive filtering effects) be-

tween the th user and the th receive antenna be denoted as

where is the channel

length. Denoting the timing offset on this ray caused by prop-

agation delay as , the compound channel response can be

written as , where is

the upper bound on the compound channel length. Since for

coherent data detection, only the estimates of the compound

channels are required, the estimation of timing offsets

becomes dispensable. Through combining the timing offsets

and the exact channel , the system can be regarded as

a perfectly synchronous system with the compound channels

. Thus, without loss of generality, in the following we

assume for simplicity. For user , the normalized

CFO (between the oscillator at user and that of the base

station) is denoted as . At the BS, after removal of CP, the

signal from user to the th receive antenna is given by

(1)

where

(2)

(3)

(4)

(5)

(6)

Since the received signal at the th receive antenna of the base

station is the sum of signals from all users and noise, the re-

ceived signal at this antenna is given by

(7)

In above, the vector is complex white Gaussian noise with

zero mean and covariance matrix .

Denoting , ,

, with

, the signal model from (7) can be

rewritten as

(8)

where

(9)
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Remark 1: Although in this paper, only the case where each

user equips with one antenna is considered, the above signal

model can be easily generalized to the case where each user

equips with more than one antenna. The only extra constraint

required is that the unknown CFOs for different antennas of the

same user should be equal.

Remark 2: Although in the above signal model, there is an

implicit assumption that the upper bound of the sum of the

channel delay spread and propagation delay for each user is

less than the length of CP , the considered system model

is practical. The reasons are that the timing offsets due to dif-

ferent propagation delays are limited to several samples only,

and in practical OFDM systems the CP is always longer than

the exact channel order. It should also be noted that with fixed

, this assumption limits the distance between the base sta-

tion and mobile users (i.e., the cell radius in a cellular system).

However, this limitation can be eliminated by using a longer CP,

which is a system design parameter.

III. TRAINING SEQUENCE DESIGN

The optimal training sequence design in this paper is based

on CRB analyses due to the fact that the ML estimator can

asymptotically approach this bound ([14]–[16]). Since the ad-

ditive noise in the signal model (8) is white and circular, the

received signal is complex circular with mean

and covariance matrix . The Fisher information

matrix for is given by

(10)

where denotes for expression simplicity, and

...
...

. . .
...

(11)

(12)

(13)

The CRB matrix can be obtained by inverting the above

Fisher information matrix . Through some manipulations, the

result is given by (14), shown at the bottom of the page, where

(15)

(16)

(17)

Notice that when there is only one user, will be a scalar

and (14) reduces to (9) of [14]. Using similar mathematical ma-

nipulations as those in [14, Appendix I], the CRB for and

are obtained as

(18)

(19)

In the CFO-free case, the joint CFO and channel estimation

reduces to a pure channel estimation problem which has been

extensively studied in [16], [18] and [19]. For this case, the CRB

for the channel estimation in (19) is simplified to

(20)

where

(21)

is assumed to be of full column rank to guarantee is in-

vertible. It is known that the condition for optimal training in

the sense of minimizing is [18]

(22)

With this condition, two optimal training sequences over one

OFDM symbol are proposed in [18] using the basic properties

of the discrete Fourier transform: the first type has code-divi-

sion multiplexing (CDM) pilot allocation in frequency domain,

called CDM(F) pilot; the other type has equally spaced disjoint

pilot tones in the frequency domain, called FDM pilot.

(14)
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In the presence of CFO, two cases are possible: 1) if all the

users share the same CFO (only one CFO needs to be esti-

mated), a special kind of FDM sequence is proposed in [16]

such that the CRB for the CFO estimation is channel-indepen-

dent; 2) if multiple CFOs are present, the conditions for the op-

timal training sequence become very complicated because the

exact CRBs have a complex dependence on the channel gains

and the frequency offsets. To proceed, we turn to the asymp-

totic CRBs (when the number of subcarriers is infinite) instead.

In the asymptotic analysis, it is reasonable to assume that the

time domain training signals are zero-mean random sequences.

Then, exploiting the results of [15, eq. (51)], we have the fol-

lowing equations:

(23a)

(23b)

(23c)

where

...
...

. . .
...

(24)

(25)

It is noted that the matrix is a positive definite

matrix since has full column rank. Similar to

[14], the normalized CRB is denoted as

with the block-diagonal matrix

and the corresponding FIM is denoted as . Using the

results of (23), it is readily to obtain . Since

, using a similar approach in

above CRB derivation, the asymptotic CRB for and are

obtained as [20]

(26)

(27)

where

(28)

(29)

Based on the fact that is a real positive-definite

matrix, it is readily to prove that [20]

(30)

Furthermore, since is a positive-definite matrix, based on [21,

Theorem 7.7.8], we have

(31)

In (30) and (31), the equalities hold if and only if ,

; . From (26), (27), (30), and (31), we can

obtain the following two inequalities:

(32)

(33)

with the equalities hold if and only if

(34)

The above two inequalities (32) and (33) mean that for any non-

block diagonal matrix , its block diagonal version defined as

always has smaller

and . That implies the matrix

should be designed as a block diagonal matrix, which means

the training sequences from different users should be uncorre-

lated. Based on this condition, the direct approach to proceed

is to choose the sequences (contained in ) that minimize

the right-hand side (RHS) terms in (32) and (33). However, the

solutions to this problem are found to be channel dependent.

This renders the training design impractical. Here, inspired by

the idea in [16], we choose training sequences that make the

RHS terms in (32) and (33) channel independent. In order to

fulfill this objective, the training sequences have to satisfy the

following condition:

(35)

where is the transmission power of the user . Under this

condition (together with is block diagonal), we have

(36)

(37)

From above, it is clear that given any channel realization, all

users should transmit the training sequences using the maximum

power permitted in order to obtain the best performance [i.e.,

minimize (36) and (37)]. Without loss of generality, all training

sequences are assumed to be transmitted at the same power, so

the condition for the optimal training in the sense of minimizing
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and under the constraint that

the asCRBs are channel independent is given by

(38)

It is observed that the conditions for (38) are equivalent

to plus one of the following conditions: 1)

, ; or 2) . Since the

CFOs of user and may be equal (i.e., ), we need

, in order to make the design valid in

all possible situations. Together with , we have

(39)

From (22) and (39), it is clear that for the considered MIMO-

OFDM system, the optimal training sequences proposed in [18]

(i.e., CDM(F) and FDM sequences) for channel estimation in

the absence of CFO are also asymptotically optimal for joint

CFO and channel estimation. However, for a practical system

with finite subcarriers, it is still unclear how the CDM(F) and

FDM training sequences behave.

Since the sequences in [18] satisfy (39) and, thus, share the

common asCRBs, the optimal sequence can be regarded as the

one whose finite sample CRBs (18) and (19) are closest to the as-

CRBs (26) and (27). It is pointed out in [14] that colored training

sequences with high correlation coefficients could have their fi-

nite sample CRBs depart from the asCRBs, so it is sensible to

compare the sequences with respect to their correlation prop-

erties. For the FDM sequence, the corresponding time domain

signal is repetitive due to the equally paced pilot tones in the

frequency domain. Thus if the number of nonzero tones in the

FDM training is small, the time domain training signal will be

highly correlated because of the small repetition length. Com-

pared with the FDM sequence, the CDM(F) sequence has a long

correlation length, so it is expected to have a better performance

than the FDM like sequence. In the next section, this point will

be verified by simulations. Thus, we propose the CDM(F) pilots

[18] for the joint CFO and channel estimation

(40)

where and are random variables in with respect to

and , respectively.

Remark 3: Actually, the training design (35) can also be

shown to be minmax optimal using the similar approach in

[14]. In other words, the training sequences (35) minimize the

RHS of (32) and (33) corresponding to the worst-case channel.

Remark 4: From (39), the optimal training design for joint

CFO and channel estimation is the one that can asymptotically

decouple the parameter estimations for different users. That

means for systems with infinite subcarriers, the best perfor-

mance of estimation is achieved when the CFO and channels

for each user can be estimated separately. Another scheme

for separating the estimations for different users is to use time

division multiplexing (TDM) sequences similar to the work in

[22]. Though exploiting the TDM sequences leads to a scheme

with low complexity, it will be shown in the simulation section

that with the same training overhead, this TDM training scheme

suffers a significant performance loss compared to the proposed

training scheme.

Remark 5: It might seem that both [17] and this work design

the optimal training sequences based on time domain proper-

ties, therefore, from this perspective, there is no difference for

MIMO-OFDMA or MIMO-OFDM/SDMA in the pilot design.

However, the assumptions and scopes of the results in [17] and

this paper are different. The differences of the two works are

summarized as follows.

• In this paper, the optimal training sequences are derived

by simultaneously minimizing both asCRBs for CFO

and channel under

the constraint that the asCRBs being channel indepen-

dent. On the other hand, in [17], the optimal sequences

are designed in the sense of minimizing the asCRB for

frequency and channel estimation separately. Besides, the

results in [17] require both the subcarrier number and

the channel length to be large enough. On the contrary,

our proof is valid for any .

• In practical construction of the training sequence with fi-

nite length, we further present the explicit design.

IV. JOINT CFO AND CHANNEL ESTIMATION

A. ML Estimation

Based on the signal model in (8), the ML estimates of param-

eters is given by maximizing

(41)

or equivalently minimizing

(42)

where and are trial values of and , respectively. Due to

the linear dependence of parameter in (8), the ML estimate

for the channel vector (when are fixed) is given by

(43)

Putting into (42), the estimate of can be obtained as

(44)

where . The above

CFO estimation in (44) requires an exhaustive search over the

multidimensional space spanned by , which may be too com-

putationally expensive in implementation.
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Remark 6: If the training sequences are designed such that

(39) is satisfied and when the number of subcarriers is large

enough, we have the following:

...
. . .

...
...

(45)

Then the CFO estimation for all users in (44) will be decoupled

as

(46)

Unfortunately, (45) and (46) hold exactly only when the number

of subcarriers is infinite. For a practical system with finite sub-

carriers, the results from (46) are only approximated solutions

to the original estimation problem. In the simulation section,

we will show that the decoupled estimator in (46) suffers great

performance loss when the number of subcarriers is not large

enough. Thus, an efficient algorithm which can find the exact

solution of (44) with affordable complexity is needed.

Remark 7: For the pilot-aided estimation problem to be valid,

a necessary condition is the existence of .

Due to the fact that

and , the following

requirement is needed: . Thus, we conclude that

at most users can be involved in the system during the

joint CFO and channel estimation period. This constraint is

not restrictive in practical wireless network applications due

to the large number of subcarriers and the relatively small .

For example, for WiMax setup ( , ), a large

number of users can be supported.

B. Estimation via Importance Sampling

For the problem in (44), though iterative approaches, such

as alternating projection and EM algorithms ([6], [23]) can be

used, a good initial guess of the CFOs is required. Besides, there

is no guarantee that an estimate obtained iteratively will be the

global maximum. To avoid this, Pincus [24] showed that it is

possible to obtain a closed form solution for the parameter

that guarantees to be the global solution. Based on the theorem

given by Pincus, the that yields the global maximum of ,

is given by

(47)

where is a design parameter. If we denote

, the normalized version of can be ob-

tained by

(48)

Then, the function has all the properties of a probability

density function (pdf), so it is termed as the pseudo-pdf in .

With this definition and (47), the optimal solution of in (44)

is

(49)

for some large value of . Due to the fact that the frequency off-

sets ( , ) has the properties of a circular random

variable, the estimate for in (49) can be rewritten as

(50)

where denotes the operation of finding the angle of the com-

plex number. The advantage of using (50) instead of (49) is that

(50) eliminates a potential bias in .

In [25], importance sampling is used to compute the multi-

dimensional integral in (50). This approach is based on the ob-

servation that integrals of the type can be

expressed as

(51)

where

(52)

with . In above, the function is called the im-

portance function and its normalized version has all the

properties of a pdf. Then, the RHS of (51) can be expressed

as the expected value of with respect to the

pseudo-pdf . If we can generate realizations of according

to , the value of the integral in (51) can be found by the

Monte Carlo approximation as

(53)

where is the number of realizations and is the th realiza-

tion of the vector generated according to the pseudo-pdf .

With , we can obtain the estimate of CFO

using importance sampling as

(54)

Note that it is only necessary to calculate the angle of the com-

plex value in (54). The equivalent but simplified estimator is

given by

(55)

In general, the estimator (55) converges to (47) by the Strong

Law of Large Number regardless the choice of the function

. However, there are obviously some choices of that

are better than others in terms of computational complexity.

From [26], the optimal importance function which mini-

mizes the variance of the estimator for a fixed number of real-

izations is given by

(56)
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Since , holds. Thus we

have

(57)

It is obvious that the optimal importance function for the

estimator at hand should be a scaled version of . However,

when is chosen like this, the implementation of the esti-

mator in (55) will be challenging due to the difficulty in sample

generation from a multidimensional pdf. Considering the per-

formance and ease of sample generation, the exploited impor-

tance function is relaxed to be a close approximation of

, and at the same time it should be as simple as possible to

facilitate sample generation [27].

From (46), it is noted that if the training sequences are de-

signed such that (39) is satisfied, in (44) become sepa-

rable in . Based on this observation and the considerations

aforementioned, the importance function is designed as

(58)

Then the generation of realizations of reduces to the genera-

tion of independent realizations of following the pseudo-

pdfs

(59)

where is the estimation range of CFOs.

Remark 8: In general, with any importance function, the pro-

posed estimator (55) can guarantee to obtain the global optimal

solution as long as is large enough [27]. All the above efforts

on importance function selection are based on the complexity

consideration. Since the cost function (44) is derived based on

the ML criterion, the performance of the proposed estimator

(55) would approach the derived CRB asymptotically.

Remark 9: In the literature, several sequential monte carlo

based methods (e.g., particle filter) have been proposed for

tracking time varying synchronization and channel parameters

[28]–[30]. Notice that the present work is dealing with one-shot

estimation based on ML framework. Due to the difference in

problem natures, the methods in [28]–[30] are not applicable to

the present problem.

C. Efficient Algorithms for Sample Generation

It is pointed out in [25] that there are two major sources of

computations in the importance sampling approach: the first one

is the generation of realizations using the pseudo-pdf (59); and

the second one is the calculation of the coefficient

in (55). Since the complexity of the second step is constant for

a fixed , to reduce the complexity of the whole algorithm, it is

critical to focus on the first one.

To generate realizations of according to the pseudo-pdf

, several methods are available in the literature [31]–[33].

The conceptually simplest one is the inverse cumulative den-

sity function (CDF) approach, which is employed in [25]. For

the inverse CDF approach, a random variable uniformly dis-

tributed in (0,1) is generated first and then the realization of

can be obtained by solving the equation , where

can be regarded as the CDF of the

pseudo-pdf . To solve the equation, 24 evaluations of

are needed even if the golden search is exploited [25].

Besides, for one evaluation of , the has to be

evaluated for many times due to the inherent complexity in nu-

merical integration. Thus, the complexity for the inverse CDF

method is very high and not suitable for the problem at hand.

It is desirable to exploit other techniques which can reduce the

evaluation times of pdf for generating .

Here we propose to use the ratio-of-uniform method, since

this technique is quite fast and has a moderate performance [33].

This method is based on the fact that, if (U,V) is uniformly dis-

tributed over the set , then

has the probability density function as . To imple-

ment this method, the following procedures are needed [33]:

1) Choose a rectangle which encloses . From [34], a

simple form of the rectangle that encloses can be ob-

tained by

(60)

where .

2) Generate two random variables in the domain

under a uniform distribution.

3) If the generated random variables satisfies

, one realization of is generated as ;

otherwise reject the and go back to the step 2.

For the system with small estimation range , the above

method can work efficiently. However, in practical systems,

there definitely are some cases where a moderate or large

CFO estimation range is preferred, such as in the presence of

large frequency synchronization errors during initialization or

with large Doppler shift caused by rapid increase of moving

speed. When the estimation range is moderate or large, the

region for random variable in (60) may be large. In this case,

after generating , the chance for rejecting this pair is

large such that the step 2 has to be repeated for many times to

generate one realization of . In other words, the number of

evaluation times of is significant for generating one

successfully.

To reduce the complexity in this situation, we revised the first

step of the above method as follows. Denoting as a rough

estimate of the maximal point of , we define

(61)
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Fig. 1. Idea of the proposed sample generation method.

where . If the generated satisfies

, the value of will be accepted

as a realization of . This idea can be illustrated by Fig. 1.

Since approximately corresponds to the maximal point of

the function , which is normally near the real CFO value,

most realizations of will be around the . If we shift the zero

point to and construct a new axis framework, the bounds of

in (61) can always be small values even if the real CFO is

large.

Remark 10: Although a matrix inverse (see (58))

is included in , this term can be calculated offline. Fur-

thermore, because the estimation range is a design parameter

which is known at receiver, the term in (59) can

also be calculated once and stored.

Remark 11: It is noticed that searching the maximum of the

function in step one is equivalent to finding the solution

of (46). The complexity is affordable since only multiple one-

dimensional search are needed. This step can be regarded as a

coarse search for the parameters to be estimated.

Remark 12: Using the proposed method, the generation of

is only loosely coupled with the estimation range through the

bound of . It is shown in the simulation section that, with dif-

ferent estimation ranges, the complexity of the proposed sample

generation algorithm is almost constant. This is a significant

advantage over the conventional CFO estimation schemes, in

which the required computation increases in proportion to the

estimation range.

V. SIMULATION RESULTS AND DISCUSSIONS

A. Simulation Setup

In this section, simulation results are presented to demon-

strate the effectiveness of the proposed schemes. The considered

MIMO-OFDM system has the following parameters: ,

, . The channel response for each user, is gen-

erated according to the HIPERLAN/2 channel model with eight

paths [35]. In details, the channel taps are modeled as

independent and complex Gaussian random variables with zero

mean and an exponential power delay profile

(62)

where parameter denotes the power of user observed at the

receive antenna . Since the receive antennas at the base station

Fig. 2. CRB, asCRB of CFO estimation for different training sequences.

are co-located, we have . In the simu-

lation, it is assumed that the users’ signals arrive at the base sta-

tion with equal power, so holds. Without loss of

generality, the normalized CFOs for all user ( )

in each packet are generated as random variables uniformly dis-

tributed in . Notice that this corresponds to a large

CFO range. The proper choice of the design parameter can

significantly reduce the number of realizations needed for one

estimation. Following the suggestions in [25], in the simulation,

we choose . For each CFO estimate, 5000 realizations

are generated for the importance sampling estima-

tion. The signal-to-noise ratio (SNR) used in the simulation is

defined as the , where is the total power of the re-

ceived signal at the receiver. Since there are multiple CFOs and

channels to be estimated in the scheme, the MSE performance

is defined as

All the simulation results of the proposed algorithm are aver-

aged over 200 Monte Carlo runs.

B. Validity of the Proposed Pilot

In Fig. 2 and Fig. 3, the CRBs and asCRBs for the CFO and

channel estimation with different training sequences are plotted

. Three kinds of training sequences are assessed in

the simulation, one is the proposed CDM(F) sequence in (40)

and the other two are FDM sequences in [18]. For the FDM

sequences, the number of non-zero tones is denoted as . In

both figures, it is noticed that all the test sequences have the

same asCRBs as expected. For the CDM(F) sequence, its CRB

is the closest to the asCRB while the CRBs of the two FDM se-

quences depart from the asCRBs with the decrease of . Recall

that when becomes smaller, the FDM sequences will be more

correlated due to its shorter correlation length. Fig. 2 and Fig. 3

clearly validate the pilot design in Section III.
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Fig. 3. CRB, asCRB of channel estimation for different training sequences.

Fig. 4. CRB, asCRB, and MSE for the proposed CFO estimator versus different
number of subcarriers.

C. Asymptotic Performance

In Figs. 4 and 5, the CRB, asCRB, and MSE for the CFO and

channel estimation using the proposed scheme are pre-

sented versus different number of subcarriers . The SNR in

this simulation is set as 10 dB. It is noticed that even when is

small, there is only a small gap between the CRB and asCRB,

which further validates the training design based on the asCRB

in Section III. Besides, it should also be pointed out that the gap

between CRB and asCRB becomes minimal with the increase

of . In both figures, the MSEs from simulations meet the re-

spective CRB quite well, which show that the proposed scheme

is efficient. The performances of the joint CFO and channel es-

timation scheme using the decoupled CFO estimator in (46) are

also included in the two figures as references. It is noticed that

for the decoupled estimator, a significant performance loss oc-

curs when the number of subcarriers is small. On the other hand,

the gap between the decoupled estimator and the proposed esti-

mator decreases when the number of subcarriers increases This

implies that when the number of subcarriers is large, we can use

Fig. 5. CRB, asCRB, and MSE for the channel estimator versus different
number of subcarriers.

Fig. 6. The MSE performance for the proposed CFO estimator K = 2; 4.

the decoupled estimator, which is computational efficient with

marginal loss of performance.

D. Efficiency of the Proposed Estimation Scheme

To show the effectiveness of the proposed scheme in the

whole SNR region of interested, the MSE performance of the

CFO and channel estimators are plotted versus SNR (with 2 and

4 users) in Fig. 6 and Fig. 7. The CRBs are also shown in the

two figures as references. For the proposed CFO and channel

estimator, the MSEs always coincide with the respective CRBs

which means that the proposed estimation scheme is efficient.

E. Proposed Pilot Versus TDM Pilot

If the TDM sequences are used in the training, the estima-

tion of the CFO and channel for each user can be performed

separately like a single user case. To obtain a fair comparison,

the length of the whole training block is fixed and all users share

the entire training block equally. For example, if there are 2 user

in the system, the TDM training sequence for each user has 32
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Fig. 7. The MSE performance for the proposed channel estimator K = 2; 4.

Fig. 8. The MSE comparison for CFO estimation using the proposed training
sequences and TDM type training sequences.

samples in the time domain. All the training sequences are con-

structed by white sequences. Since CRB is the lower bound of

estimation performance, it is sensible to compare the CRB of

CFO and channel estimation in TDM training case (derived in

[14]) with the performance of the proposed scheme. It is shown

in Fig. 8 and Fig. 9 that for the TDM training, there will be a

significant performance loss compared to the proposed scheme.

F. Complexity Comparison

At last, the complexity analysis is performed. For the problem

in (44), the ML estimator using exhaustive search is imprac-

tical for implementation due to the high complexity. The decou-

pled CFO estimator in (46) has a reduced complexity, but this

estimator cannot yield the optimal solution when the number

of subcarriers is finite. For the proposed estimator using im-

portance sampling, as mentioned previously, the complexity is

determined by the samples generation. To show the computa-

tional advantage of the proposed approach, in Fig. 10, the aver-

aged pdf evaluation times for generating one realization of

is plotted versus . The same results for the inverse

CDF method and the original ratio-of-uniform method are also

included as comparisons. The SNR in the simulation is set as

Fig. 9. The MSE comparison for channel estimation using the proposed
training sequences and TDM type training sequences.

Fig. 10. The averaged pdf evaluation times for generating one realization
of ! .

20 dB. It is noticed that for any estimation range, the pdf eval-

uation times needed for inverse CDF method is far larger than

that of the other two approaches. For the original ratio-of-uni-

form method, the complexity is comparable with the proposed

method when estimation range is small. However, its com-

plexity increases quickly with the increase of . Compared with

the above two methods, the proposed method has the lowest

complexity, which remains constant for all estimation range. In

fact, while cannot be seen in Fig. 10 because of the scale of

the figure, the proposed method only needs 2–3 evaluations of

for each successful generation of , regardless of the

estimation range .

VI. CONCLUSION

In this paper, the problem of joint CFO and channel esti-

mation in multiuser MIMO-OFDM system has been consid-

ered. Based on the asymptotic CRB analyses and under the con-

straint that the performance limits of CFO and channel estima-

tion are channel independent, the condition for optimal training
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sequences has been derived. Among the two well-known classes

of sequences that satisfy the optimal condition, it was found

that the CDM(F) sequences perform better than FDM sequences

when the number of subcarriers is finite. The joint ML CFO and

channel estimator was then derived. However, direct implemen-

tation is impractical due to the multidimensional search required

in the CFO estimation. Unlike the conventional iterative algo-

rithms usually used in multidimensional optimization, a monte

carlo importance sampling based estimator has been proposed to

solve this problem. To reduce the complexity in implementation,

an efficient importance function and a novel modified sample

generation algorithm have been proposed. The proposed scheme

has two merits: 1) global optimality is naturally guaranteed;

2) the algorithm has almost constant complexity for different es-

timation ranges. Simulation results have clearly illustrated the

merits of the proposed training sequence design and also veri-

fied the effectiveness of the proposed scheme.
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