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The development of the Internet and communication technology has ushered in a new era of the Internet of Things (IoT).
Moreover, with the rapid development of artificial intelligence, objects are endowed with intelligence, such as home automation
and smart healthcare, which are typical applications of artificial intelligence technology in IoT. With the rise of convolutional
neural network (CNN) in the field of computer vision, more and more practical applications need to deploy CNN on mobile
devices. However, due to the large amount of CNN computing operations and the large number of parameters, it is difficult to
deploy on ordinary edge devices. The neural network model compression method has become a popular technology to reduce
the computational cost and has attracted more and more attention. We specifically design a small target detection network for
hardware platforms with limited computing resources, use pruning and quantization methods to compress, and demonstrate in
VOC dataset and RSOD dataset on the actual hardware platform. Experiments show that the proposed method can maintain a
fairly accurate rate while greatly speeding up the inference speed.

1. Introduction

In recent years, with the rapid development of the mobile
infrastructure of IoT and the increasing popularity of the
application of IoT, the complexity and operability of various
mobile applications have been continuously increasing, and
the requirements for the intelligence of mobile applications
are getting higher and higher. At the same time, artificial
intelligence has been gradually applied to all aspects of IoT,
such as home automation [1], smart healthcare [2], smart
security [3], autopilot [4], and other fields.

In recent years, convolutional neural network (CNN) is
regarded as one of the best techniques for understanding
image content and has shown great performance in image
classification [5], segmentation [6], and detection [7] tasks.
The features of CNN such as local connection, weight shar-
ing, and pooling operations can effectively reduce the com-
plexity of the network and reduce the number of training
parameters. Since the advent of AlexNet [8], most frontrun-

ners in image processing competitions have adopted CNN-
based methods.

However, current state-of-the-art CNN cannot adapt
well to today’s smart mobile devices. Especially, in tasks with
higher complexity like target detection, computing power
and on-device memory has become the two major bottle-
necks for the CNN model deployment on the mobile side.
Therefore, many recent research is aimed at reducing the
model computing operations and model parameters with
minimal accuracy losses. However, most model compression
methods are performed on classification models. Common
classification networks usually have small input resolution
and simple model architecture, while detection network usu-
ally has a larger input resolution and more complicated
architecture. Detection network may also include multiple
inputs, as well as some postprocessing, which put forward
higher requirements for the design of the network compres-
sion algorithm. Common compression methods include
pruning [9], quantization [10], and distillation. Model
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pruning methods can usually be divided into two types:
structured and unstructured. Unstructured pruning
methods usually only work on specific hardware due to the
sparsity on neuron level [11]. Existing target detection data-
sets have prominent target features and clear details. How-
ever, in practical applications, due to the high shooting
height, the target size is too small compared to the image,
and the target features are incomplete, and the target occurs
a certain degree of deformation affected by the shooting
angle; the relative motion between the target and the drone
causes the target background to change significantly, etc.,
making the task of drone image target detection challenging.
In order to meet the above needs and solve the technical dif-
ficulties of UAV target detection, in recent years, researchers
have carried out a series of related research. Traditional
UAV image target detection methods include frame differ-
ence method, background subtraction method, sliding
window-based feature extraction algorithm [12], mean-
shift algorithm, and edge detection algorithm, and recently,
deep learning methods are proposed, for examples, fast deep
neural networks with knowledge guided training and pre-
dicted regions of interests [13], small unmanned aerial vehi-
cle [14], object-based hierarchical change detection [15],
application of unmanned aerial vehicles [16], and real-time
implementation using GPUs [17]. Traditional sliding
window-based features are usually artificially designed
Histogram of Oriented gradient features (HoG) [18], Scale-
invariant feature transform features (SIFT) [19], Haar-like
wavelet features [20], etc. This method for implementing
feature has high computational complexity and cannot be
detected in real time. In 2012, S. Janand others combined
the multiscale mean-shift algorithm with the edge informa-
tion of the target to solve the saliency object detection of
images taken by the drone. In addition, there are various
real-time moving object detections in aerial surveillance
algorithms such as local null space pursuit [21]. These
methods are slow in calculation and weak in robustness
and cannot meet the actual application requirements of
real-time detection. In 2016, researchers used neural net-
works to detect rice field weeds from aerial images of drones
flying at a height of 50 meters [22]. Zhang and others
searched regions of interest (ROIs) based on the characteris-
tics of adjacent parallel lines [23] and determined the final
airport area through transfer learning on the AlexNet net-
work. Xiao and others used the new GoogleNet-LF model
to extract multiscale deep integrated feature combination
SVM for detection and recognition [24]. In 2018, Wang
and others used CNN target detectors with RetinaNet [25]
as the backbone network to perform pedestrian detection
on the Stanford drone data set [26] and verified the targets
of the CNN-based target detector on the drone image advan-
tages in detection. In the highly complex tasks such as target
detection, computing power and memory space become the
two bottlenecks in the deployment of the model on the
mobile terminal. Therefore, many recent research results
are aimed at reducing the amount of model calculation
and model parameters and affecting the model accuracy as
low as possible. However, most of the model compression
methods are based on the classification model. Common

classification models usually have small input resolution
and simple model structure, while target detection models
usually have larger input resolution and more complex net-
work structure. The target detection model may also include
multiple inputs and some postprocessing processes, which
put forward higher requirements for the design of model
compression algorithm. Xiao et al. [27] introduced compar-
ative learning into model distillation. The main idea of
contrastive learning is to learn a representation. In some
metric spaces, the positive sample pairs are close together,
and the negative sample pairs are separated as much as pos-
sible. The author models the contrast loss between each layer
of teacher network and student network, so that the teacher
network and student network are not only consistent in the
prediction probability of output but also similar in internal
representation. The introduction of comparative learning
further improves the effect of model distillation. Tian et al.
[28] proposed the variational student method. It combines
the compressibility of knowledge distillation framework
and the sparsity and guiding ability of variational reasoning
technology. The author creates a sparse student network.
The sparsity of the network is introduced by optimizing
the variational parameters of the loss function based on var-
iational reasoning. This is achieved by using the knowledge
learned from the teacher network. The author considers
Bayesian neural network in a general knowledge distillation
framework, in which students adopt a variational penalty
least squares objective function. Model compression is a very
important part of neural network model training and
deployment. Most neural network deployment tools inte-
grate the model compression technology of quantification
after training. However, a widely applicable model compres-
sion tool is still very rare. Distiller [29] is a toolkit that
supports multiple model compression methods. It supports
structural and unstructured pruning, quantification after
and during training, and knowledge distillation methods.
However, these functions can only be used in the classifica-
tion model. For the more complex target detection model,
it only supports unstructured pruning. And it does not pro-
vide the interface related to embedded deployment, which
hinders the deployment of the final model. The situation of
paddleslim is similar to that of distiller, and it also lacks sup-
port for target detection network. Recently, TensorFlow [30]
supports unstructured model pruning and quantization
algorithms during training. Relying on TensorFlow Lite,
TensorFlow’s model can be easily deployed in the embedded
segment. The latest version of PyTorch [31] also supports
some basic quantitative tools but less support for the deploy-
ment of embedded platforms.

As the previous works, the popular object detection algo-
rithms are usually based on convolutional neural networks,
which are difficult to be deployed on platforms with limited
computational resources such as embedded platforms due to
the limitation of computational amount and large number of
parameters. However, with the increasing demand for object
detection task in the industry, the detection speed of the
common object detection model is not up to the standard.
Although the computing power of embedded platform is
developing rapidly in recent years, the large amount of
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computation and the large number of parameters of object
detection algorithm are still the main factors that restrict
the practical application of object detection algorithm.
Therefore, it is of great significance to study the model com-
pression algorithm of object detection algorithm for the
application of object detection algorithm in industry. In this
paper, an object detection network suitable for embedded
platform deployment is optimized and designed through
in-depth study of object detection algorithm. On the basis
of optimized network, the object detection network com-
pression algorithm based on pruning and quantization is
proposed, which can greatly compress the model size and
improve the reasoning speed of the model while maintaining
the accuracy of the model. The structured pruning method
usually prunes on the channel level, which can be accelerated
on common hardware. Quantization methods can generally
be divided into posttraining quantization and quantization
during training. Quantization converts floating-point num-
bers to integers symmetrically or asymmetrically according
to the quantization bit depth, zero point, and scale parame-
ters. Posttraining quantization usually calculates the quanti-
zation parameters of each layer on the calibration set.

The channel pruning algorithm can be divided into three
steps: sparse training, channel parameter pruning, and con-
stant channel elimination. The purpose of sparsity training is
to make the parameters of the model produce structured
sparsity, which is convenient for subsequent screening of
channels that have little impact on the accuracy of the
network. Structured sparsity means that sparsity occurs not
only on a single parameter but also on the whole channel.
The second step is to cut out the channels that have little
impact on the accuracy. Generally, the closer the parameter
to 0, the less the impact on the accuracy of the network.
When cutting off the channel, the influence of residual struc-
ture and other structures should be considered to prevent
the structure of the network from being damaged. Finally,
constant channel elimination can eliminate the influence of
constant channel and restore the accuracy of the model. In
the process of model quantization, we first need to insert a
pseudo quantization module into the model. The purpose
of this step is to reduce the quantization loss caused by the
model quantization process, and the quantization parame-
ters can also be introduced into the calculation diagram.
Then, quantitative training, in which the weight and quanti-
tative parameters of the learning model, will be optimized at
the same time. Finally, the trained model is transformed into
a quantized model. In this step, the learned quantization
parameters are applied to the model weight, and the model
weight is transformed into a low-precision representation.
A pseudo quantization operation corresponds to a tensor,
which corresponds to the quantization parameters of the
tensor. The pseudo quantization operation has two func-
tions: one is to simulate the quantization loss, and the other
is to introduce the quantization parameters into the calcula-
tion diagram, so that the back propagation can optimize the
quantization parameters. Therefore, we need to add pseudo
quantization operation after all tensors to let them learn
the quantization parameters of the tensor. These tensors
include each operation weight tensor, input tensor, and out-

put tensor. In convolutional networks, most operations can
be reduced to three categories: product, addition, and
connection. These three operations will change the value
domain distribution of the tensor and affect the quantization
parameters of the tensor. In addition, the nonlinear activa-
tion function will also affect the value range distribution of
the tensor. However, the activation functions used in this
paper are ReLU activation functions, which can be regarded
as piecewise linear. One difficulty of pseudo quantization is
how to reverse broadcast the quantized tensor. There are
many undefined points in the function curve of pseudo
quantization operation. In this paper, we choose to estimate
the derivative directly.

In this paper, we apply quantization during training, aka
quantization aware training (QAT), that learns and observes
weights and quantization parameters at the same time,
which can achieve accuracy closer to the floating-point
model. And then, there are different computation graphs
during training and inference. In training graph, we simulate
quantized convolution operation through the fake-
quantization module and fuse the BN layer parameters into
the convolution weights to better fit the actual value. The
distillation method achieves model compression by transfer-
ring the knowledge of the trained large model to a smaller
model. So, the higher performance is achieved for this
method. Common compression methods usually only dem-
onstrate on large models. However, in order to be able to
deploy the CNN on platforms with limited computing
resources, choose a small network designed specifically for
mobile devices, and then, use the compression technique to
achieve better results. We use channel pruning and quanti-
zation methods to compress the small detection network
and test inference time on actual hardware.

2. Proposed Method

In this section, we discuss the details of the methods and
principles used to compress the object detection network.
First, we describe the architecture of the proposed detection
network and then discuss the algorithm of pruning and
quantization methods, respectively.

2.1. Network Architecture. We optimized the recognition
network as follows. The target recognition network based
on deep learning with good generalization is used to com-
plete the target recognition of airports, bridges, and ports
under low resolution. The following introduces the identifi-
cation of the backbone structure of the network, candidate
frame generation in the network, calculation of the network
loss function, and training strategies.

First, the basic structure of the remote sensing image
target recognition network under low resolution is intro-
duced. The basic structure of the remote sensing target rec-
ognition network used in this subject is shown in Figure 1;
the basic network structure of the VGG16 is continued on
the network backbone structure. The first five layers still
use the five convolutional layers of the VGG16 network, dis-
carding the fully connected layers of the sixth and seventh
layers of the VGG16 network, while using the astrous
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algorithm, using the convolutional method to construct two
new convolution floor.

The conventional pooling layer in a deep neural net-
work causes a decrease in resolution while increasing the
receptive field, and the decrease in resolution loses some
feature information. The advantage of this hole convolution
is to avoid the decrease in resolution caused by pooling. The
comparison between hole convolution and ordinary convo-
lution is shown in Figure 2. It can be seen from the figure
that under the same calculation parameters, a larger recep-
tive field can be obtained by using hole convolution instead
of ordinary convolution.

After the newly added sixth and seventh convolutional
layers, three more convolutional layers (conv8, conv9, and
conv10) are added, and layer is added to the network at
the end to convert the output feature MAP of the previous
layer into a one-dimensional vector. For the remote sensing
targets studied in this subject, there is a large intraclass gap
for the same type of target, and there is still a problem of
scale gap for the same type of target. Therefore, multiscale
recognition is particularly important. Considering the scale
change of the target object, the network outputs feature
MAPs of different scales at different layers and sends them
to the detector to predict the degree of confidence and posi-
tion coordinate offset of each category. As shown in Figure 3,
the front-most feature MAP is output after the Conv4_3
layer. The feature MAPs of the first few layers in the network
describe the shallower features in the input image, and their
receptive fields are relatively small. In contrast, the deeper
feature MAPs are responsible for describing the more
advanced composite features. Their lower-level feature
MAPs of receptive fields are larger, and it also has stronger
advanced semantic information. At the end of the network,
in order to avoid the result that the same target is detected
by the multilayer feature detector at the same time, a non-
maximum suppression process is added, as shown in
Figure 3. From this, the final test result is obtained. The net-
work backbone structure does not use a fully connected
layer. On the one hand, the output of each layer can only feel
the characteristics of the area near the target, not the global
information. On the other hand, it also reduces the number
of computing parameters in the network.

The architecture of proposed object detection network is
shown in Figure 4. We choose MobileNetv2 as our feature
extractor. MobileNetv2 is a small network designed specifi-
cally for mobile devices, which maintains high accuracy
while having a small amount of operations. MobileNetv2
greatly reduces computing operations through the depth-
wise convolutions and inverse residual structure and is more
friendly to CPU. It achieved 72.0% Top-1 accuracy on the
ImageNet dataset.

The postprocessing of the network is mainly composed of
decoding and nonmaximum suppression (NMS). Decoding
converts the outputs of the convolutional layer into predictive
value of the bounding boxes. The shape of the tensor is B ×
H ×W × A × ðC + 5Þ, where B is the batch size, H and W
are the height and width of the feature MAP, A is the number
of anchors, andC is the number of categories. The last 5 values
of the last dimension are the offsets from the center of the grid
point and one foreground probability, denoted
asðx̂min, ŷmin, x̂max, ŷmax, pFÞ. Let the grid points of the feature
MAP bePi,j = ðxi, yjÞ = ði, jÞ 0 ≤ i ≤W, 0 ≤ j ≤H. The rela-
tionship between the decoded coordinates and the outputs of
the convolution layer will be:

xmin, yminð Þ = P + exp x̂min, ŷminð Þð Þ + 0:5,
xmax, ymaxð Þ = P + exp x̂max, ŷmaxð Þð Þ + 0:5:

ð1Þ

xmin, ymin are the elements of the images, and P is the grid
points of the feature MAP. We apply NMS on the decoded
outputs of detection heads to get the finally bounding boxes.
In detection head, we use BCE loss and GIOU loss [22] for
classification and box regression.

2.2. Pruning. The channel pruning algorithm can be divided
into three steps: sparse training, pruning, and fine-tuning,
which is shown in Figure 5. The pruning process can be car-
ried out once or multiple times.

For sparse training, in the training process, L1 norm
penalty is applied to γ of the BN layer after the convolutional
layer that needs to be sparse. The specific steps of sparse
training are as follows. Schematic diagram of channel prun-
ing is shown in Figure 6.
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Figure 1: Basic structure of low-resolution remote sensing image recognition network.
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Let the shape of the current layer convolution kernel be
ðN in,Nout, Kh, KwÞ. Then, the convolution kernel after prun-
ing is shown in Equation (2).

Fx′ = Fx Min,Mx, : , :½ �, ð2Þ

where N in,Nout, Kh, Kw represent the number of input
channels, the number of output channels, and the convolu-
tion kernel height and width, respectively. A½M1,M2� means
filtering out and restructuring A by M1,M2dimension-wise.
Colon indicates a mask of all ones.

Finally, set current layer’s pruning mask Mx as the next
layer’s input pruning mask Min.

For depth-wise convolution, the depth-wise convolution
can be seen as a convolution with the same number of
groups as the number of input channels and output chan-
nels. For this type of convolution, it is only necessary to
remove the corresponding convolution kernel according to

the input pruning mask Min, then set the number of output
channels and the number of groups to the new number of
input channels.

2.3. Quantization. We have different computation graph
during training and inference. The training graph and the
inference graph are shown in Figure 7.

In training graph, we simulate quantized convolution
operation through the fake-quantization module and fuse
the BN layer parameters into the convolution weights to
better fit the actual value. We obverse the range of values
after each convolution and activation to calculate the
quantization parameters. We use 8-bit signed integers to
quantize the 32-bit floating-point weights and 8-bit
unsigned integers for the activations. Both network input
and convolution weights are quantized to 8-bit integers.
However, since the biases of convolution are sensitive to
errors, 32-bit unsigned integers are used for quantization.

(a) (b)

Figure 2: Comparison of ordinary convolution (a) and hole convolution (b).
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The inference graph only contains quantized convolution
operations, since batch-norm layers have been fused into
pervious convolution weights.

3. Experiments

This section gives a comparison between proposed network
and other state-of-art lightweight detection networks. Then,
we show the acceleration of pruning and quantization.

We train our model on the VOC dataset. We set training
epoch to 80 for all cases, using standard data augment
methods, including random cropping and horizontal flip-
ping, and additionally using mixup. Adopting Adam optimi-
zation algorithm, cosine annealing learning rate strategy
with warming up, the initial learning rate is 4e-3, and the
batch size is 16.

The target detection model compression algorithm is
evaluated, so the main technical indicators of the algorithm
also focus on the performance of the model before and after
compression. The technical index shall reflect the compres-
sion effect of the compression algorithm on the model
performance in terms of computation and memory use.
On the server side, the original target detection model is
obtained through the target detection training algorithm.
Then, the original model is compressed by pruning and
quantization through the target detection model compres-
sion algorithm. Then, with the help of model deployment
tools. The original model and the compressed model are
compared in multiple indexes, and then, a number of techni-
cal index results are obtained.

According to the needs of the subject, four technical
indexes are proposed, such as compression ratio, model cal-
culation, reasoning delay, and accuracy loss, as follows. (1)
Compression ratio refers to the ratio of the original model
storage space (in bytes) to the compressed model storage
space. Compression ratio greater than 6; (2) model calcula-
tion quantity refers to the quantity of all multiply accumu-
late (MAC) operations during forward reasoning of target
detection model. The calculation amount of the compressed
model is less than 15 MACs; (3) reasoning delay refers to the
time consumed from reading the input image to returning
the result of forward reasoning in the process of predicting
the image by the target detection model. The reasoning delay
of the compressed model is less than 50ms; (4) accuracy loss
refers to the difference between the original model and the
compressed model in evaluating the mean of average preci-
sion (MAP) index on the validation set data set and between
the original model and the compressed model MAP. Accu-
racy loss is less than 5%.

As a result, proposed model got 78.46% of the test set
MAP under the input image size of 512 × 512. FLOPs of
our model is 4.25G MACs, and the number of parameters
is 6.775M. See Table 1 for comparison with other network
in terms of accuracy, MACs, and number of parameters.

Thematerials andmethods section should contain sufficient
detail so that all procedures can be repeated. It may be divided
into headed subsections if several methods are described.

We have evaluated the versions of Yolo algorithms, and
the most advanced Yolo algorithms are YOLOv3 and
YOLOv4. YOLOv3 divides the input image into multiple
grids on a two-dimensional plane. If the IOU between the
detection frame and the predefined anchor frame of a detec-
tion target is greater than the threshold, the feature map out-
put vector is responsible for predicting the target. YOLOv3
clusters the detection frames on the data set and divides
them into 9 groups according to IOU distance. Using the
predefined anchor box, YOLOv3 can assign different targets
to different detection heads according to scale and aspect
ratio. YOLOv3 uses darknet-53 as a feature extractor.
Darknet-53 has the same amount of computation as resnet-
50, but its speed and performance exceed resnet-50. YOLOv3
also introduces the idea of feature pyramid network (FPN).
After darknet-53, the feature maps of different scales are
fused and divided into three detection heads to predict
large-, medium-, and small-scale targets, respectively.
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Figure 4: Architecture of the proposed object detection network.
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All model in Table 1 was evaluated on the VOC 2007 test
set at the input image size of 512 × 512. By comparison, the
proposed model is close to the YOLOv3 in accuracy, but
both MACs and the number of parameters are reduced a
lot. Compared with Tiny YOLOv3 and YOLO Nano, we still
have great advantages in accuracy and MACs.

The hyperparameter settings of sparse training are the
same as previous. In sparse training, we set the sparse rate
to 0.01 and reached 75.65%MAP on VOC 2007 test set. After
pruning 40% of channels and fine-tuning for 20 epochs, it
finally reached 75.44% test set MAP, which decreased by
3.0% compared with the unpruned model. MACs were
reduced to 2.606G, and the number of parameters was
reduced to 2.31M. Compared with the unpruned model, it
was reduced by 38.6% and 65.9%, respectively. The number
of channels of each layer before and after pruning is shown
in Figure 8. See Table 2 for detailed comparison.

We then apply quantization on 40% pruned model.
Training settings are the same as above. We choose 8-bit
quantization, freezing BN layer parameters after 10 epochs,
and freezing quantization parameters after 15 epochs. The
quantized model achieved 76.74% MAP on test set, a
decrease of 1.7% from the original model. We benchmark
all models on E5-2630 v4 CPU, and the network input is
512 × 512. The benchmark is performed on the first 100 test
set images of VOC dataset. See Table 3 for details.

After pruning and quantization on original model, we
achieved 4.76 times acceleration on CPU, and there is only
a small loss of accuracy.

We also experiment on RSOD dataset [32]. The RSOD
dataset is an open dataset for object detection in remote sens-
ing images. The dataset includes aircraft, oil tank, play-
ground, and overpass. The image sizes range from
500 × 500 to 2000 × 1000. We randomly select 80% of the
original images as the training set and 20% as the test set.
As a result, the training and test sets include 752 images
and 187 images, respectively.

During training, we randomly crop a 512 × 512 patch on
original images and then scale it to the size of 320~608. We
apply similar augmentation as before but add horizontal
flipping. We pad the test images to nearest multiple of 32
and evaluate on original size. The model is trained by 20k

iterations in total, and other training hyperparameter
settings are as same as before.

In sparse training, we set sparse ratio to 0.1 and round
remaining number of channels to multiple of 8. To avoid

Orginal
network
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training

Pruning
channels Fine-tune Purned

network

Figure 5: Flow chart of channel pruning.
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pruning out all channels, we set the minimum number of
channels to 16.

As showed in Table 4, our model reached 92.59% MAP
on test set. We found that 85% of pruning on model greatly
reduce FLOPs to 1.335G MACs, and the number of param-
eters is 180.5K, nearly 37x smaller than unpruned model
with trivial accuracy drop.

We found that if pruning ratio higher than 85%, MAP
drops sharply. The pruning limit is around 0.876 in this case,
perhaps that is why.

For comparison, we also draw a figure shown the num-
ber of channels with and without pruning (see Figure 9).
Note that the layers as main stem of residual blocks make
up most of FLOPs.

Finally, we quantize the 85% pruned model with
QAT. We benchmark 100 images on CPU with 512 ×
512 input. Table 5 shows comparison between original,
pruned, and quantized model. Our final model is 6.31
times faster than original one. The size of final model is
only 253KB.

Table 1: Comparison of the accuracy, MACs, and number of parameters.

Name MAP MACs Params

YOLOv3 [20] 79.2% 49.8G 59.25M

Tiny YOLOv3 [20] 61.3% 8.36G 8.5M

YOLO Nano [26] 71.7% 6.92G 1.1M

Ours 78.46% 4.25G 6.775M
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Figure 8: Comparison of the number of channels per layer before and after pruning on VOC dataset.

Table 2: Comparison between original and pruned model on VOC dataset.

Name MAP MACs Params

Original 78.46% 4.25G 6.775M

30% pruned 76.30% 3.195G 3.463M

40% pruned 75.44% 2.606G 2.308M

Table 3: Benchmark for original, pruned, and quantized model on VOC dataset.

Name MAP MACs Params Inference time Speedup

Original 78.46% 4.25G 6.775M 126.6ms 1

40% pruned 75.44% 2.606G 2.308M 102.7ms 1.23

40% pruned + quantized 76.74% — — 26.6ms 4.76
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In the future practical application, the compressed algo-
rithm needs to be deployed to the embedded platform for
the convolutional neural network target detection system on
the embedded platform. Its core technology is the target detec-
tion algorithm and network model compression algorithm. It
is required to realize target detection based on convolutional
neural network at the embedded end. Control the calculation
amount of the model below 25 FLOPs. Because the task
requires that the target detection algorithm needs to be
deployed on the embedded end, it is necessary to select a target
detection algorithm that can balance speed and accuracy and
is easy to deploy at the same time. Therefore, in future practi-
cal applications, attention should be paid to the power con-
sumption of the platform required in practical applications.

4. Conclusions

We propose a lightweight object detection model for hard-
ware platforms with limited computing resources. We
achieved this by designing a small network, channel pruning,

and quantization. After pruning and quantization, we bench-
mark proposed model on VOC dataset and RSOD dataset,
which achieved 4.76 and 6.31 times acceleration on common
CPU with minor accuracy loss. In the future work, the pros-
pects of work and research are listed as follows. In terms of
channel pruning, pruning methods can be designed for
special network structures such as residual structure, packet
convolution, deep separable convolution, and Se module,
including sparsity method and pruning channel selection
strategy, so as to support target detection networks with more
updated structures and achieve higher compression ratio. In
the combination of compression methods, more model com-
pression methods can be added, such as distillation and layer
pruning. Combining more compression methods can further
improve the compression ratio of the compression algorithm.

Data Availability

We have not used specific data from other sources for the
simulations of the results. The two popular datasets in this

Table 4: Comparison between original and pruned model on RSOD dataset.

Name MAP MACs Params

Original 92.59% 4.248G 6.689M

30% pruned 91.76% 3.274G 3.506M

60% pruned 91.38% 2.334G 1.085G

80% pruned 90.78% 1.650G 326.3K

85% pruned 90.81% 1.335G 180K

90% pruned 63.53% 1.113G 84.9K
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Figure 9: Comparison of the number of channels per layer before and after pruning on RSOD dataset.

Table 5: Benchmark for original, pruned, and quantized model on RSOD dataset.

Name MAP MACs Params Inference time Speedup

Original 92.59% 4.25G 6.689M 131.3ms 1

85% pruned 90.81% 1.335G 180.5M 180.5ms 2.25

85% pruned + quantized 91.15% — — 20.8ms 6.31
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paper, VOC dataset and RSOD dataset, are free download
with the website: https://pjreddie.com/projects/pascal-voc-
dataset-mirror/ and https://github.com/RSIA-LIESMARS-
WHU/RSOD-Dataset-.
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