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Abstract—Correctly identifying sleep stages is important
in diagnosing and treating sleep disorders. This paper pro-
poses a joint classification-and-prediction framework based
on convolutional neural networks (CNNs) for automatic
sleep staging, and, subsequently, introduces a simple yet
efficient CNN architecture to power the framework. Given a
single input epoch, the novel framework jointly determines
its label (classification) and its neighboring epochs’ labels
(prediction) in the contextual output. While the proposed
framework is orthogonal to the widely adopted classifica-
tion schemes, which take one or multiple epochs as contex-
tual inputs and produce a single classification decision on
the target epoch, we demonstrate its advantages in several
ways. First, it leverages the dependency among consecu-
tive sleep epochs while surpassing the problems experi-
enced with the common classification schemes. Second,
even with a single model, the framework has the capac-
ity to produce multiple decisions, which are essential in
obtaining a good performance as in ensemble-of-models
methods, with very little induced computational overhead.
Probabilistic aggregation techniques are then proposed to
leverage the availability of multiple decisions. To illustrate
the efficacy of the proposed framework, we conducted ex-
periments on two public datasets: Sleep-EDF Expanded
(Sleep-EDF), which consists of 20 subjects, and Montreal
Archive of Sleep Studies (MASS) dataset, which consists
of 200 subjects. The proposed framework yields an over-
all classification accuracy of 82.3% and 83.6%, respectively.
We also show that the proposed framework not only is su-
perior to the baselines based on the common classification
schemes but also outperforms existing deep-learning ap-
proaches. To our knowledge, this is the first work going
beyond the standard single-output classification to con-
sider multitask neural networks for automatic sleep stag-
ing. This framework provides avenues for further studies of
different neural-network architectures for automatic sleep
staging.
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I. INTRODUCTION

I
DENTIFYING the sleep stages from overnight Polysomnog-

raphy (PSG) recordings plays an important role in diagnos-

ing and treating sleep disorders, which affects millions of people

[1], [2]. Traditionally, this task has been done manually by ex-

perts via visual inspection which is tedious, time-consuming,

and is prone to subjective error. Automatic sleep stage classifi-

cation [3], that performs as well as manual scoring, can help to

ease this task tremendously, therefore facilitating home moni-

toring of sleep disorders [4].

The guiding principle of automatic sleep staging is to split

the signal into a sequence of epochs, each of which is usu-

ally 30 seconds long, and the classification is then performed

epoch-by-epoch. In order to uncover a sleep stage at each

epoch, proper features need to be derived from the signal,

such as electroencephalography (EEG). Traditionally, many fea-

tures have been designed based on prior knowledge of sleep.

These hand-crafted features range from time-domain features

[2], [5], [6] to frequency-domain features [6]–[9], via features

derived from nonlinear processes [8], [10]–[12]. Using these

features, the classification goal is often accomplished by con-

ventional machine learning algorithms, such as Support Vector

Machine (SVM) [6], [13], k-nearest neighbors (k-NN) [7], Ran-

dom Forests [14]–[16].

The advent of deep learning and its astonishing progress in

numerous domains have stimulated interest in applying them

for automatic sleep staging. The power of deep networks lies in

their great capability of automatic feature learning from data,

thus avoiding the reliance on hand-crafted features. Significant

progress on results obtained from different sleep staging bench-

mark using various deep learning techniques have been reported

[17]–[25], mirroring a relentless trend where learned features

ultimately outperform and displace long-used hand-crafted fea-

tures. CNN [26], [27], the cornerstone of deep learning tech-

niques, has been frequently employed for the task [18]–[20]. The

weight sharing mechanism at the convolutional layers forces the

shift-invariance of the learned features and greatly reduces the

model’s complexity, consequently leading to improvement of
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Fig. 1. Illustration of (a) the standard classification approach,
(b) the common classification approach with the contextual input of three
epochs, and (c) the joint classification and prediction with the contextual
output of three epochs proposed in this work.

the model’s generalization [26]. Other network variants, such as

Deep Belief Networks (DBNs) [28], Auto-encoder [21], Deep

Neural Networks (DNNs) [23], have also been explored. More-

over, Recurrent Neural Networks (RNNs), e.g. Long Short-Term

Memory (LTSM) [29], which are capable of sequential mod-

elling, have been found efficient in capturing long-term sleep

stage transition and are usually utilized to complement other net-

work types, such as CNNs [17], [22] and DNNs [23]. Standalone

RNNs have also been exploited for learning sequential features

of sleep [25], [30], [31]. The classification is usually performed

therein by the networks in an end-to-end fashion [18]–[20];

a separate classifier, such as SVM, can be used alternatively

[25], [32].

II. MOTIVATION AND CONTRIBUTIONS

A. Motivation

Sleep is a temporal process with slow stage transitions, imply-

ing continuity of sleep stages and strong dependency between

consecutive epochs [33]–[35]. For instance, out of 228,870

epochs in the entire MASS dataset [36] used in this work, 83.3%

pairs of adjacent epochs have the same label. The ratio is still

as high as 79.3%, when two epochs are separated by one epoch.

This nature of sleep has inspired a widely adopted practice in

neural-network-based sleep staging systems, namely the use of

contextual input that augments a target epoch by its surrounding

epochs (many-to-one) in the classification task [17], [18], [20],

[22]. Common input context size is of three and five epochs

[18], [20], [21], [37]. This classification scheme can also be

interpreted as an extension of the standard classification setup,

i.e. determining the sleep stage corresponding to a single epoch

of input signals (one-to-one) [24], [25], [38]. Fig. 1(b) provides

a schematic presentation of contextual input of three epochs

in comparison with the standard one-to-one classification ap-

proach in Fig. 1(a). While multiple-epoch input does not always

provide performance gains, as shown in our experiments, it

poses a problem of inherent modelling ambiguity. That is, when

training a network with contextual input, such as three epochs

illustrated in Fig. 1(b), it remains unclear whether the network

is truly modelling the class distribution of the target epoch at the

center or that of the left and right neighbor. In our experiment,

such a network (i.e. the many-to-one baseline in Section V-C)

achieves an accuracy of 82.1% in determining the labels of the

center epochs. However, when aligning the network output with

those labels of the left and right neighbor, the accuracy is just

marginally lower, reaching 81.1% and 80.8%, respectively. Last

but not least, the contextual input causes the network’s compu-

tational complexity increase at a linear scale due to the enlarged

input size.

In this work, we formulate sleep staging as a joint classifica-

tion and prediction problem. In other words, this is equivalent

to a one-to-many problem, which is an extension of the stan-

dard one-to-one classification scheme while being orthogonal to

the common many-to-one classification scheme. With this new

formulation, given a single target epoch as input, our objective

is to simultaneously determine its label (classification) and its

neighboring epochs’ labels (prediction) in the contextual output,

as demonstrated in Fig. 1(c). By classification, we mean deter-

mining the label of an epoch given its information. In contrast,

prediction implies determining the label of an epoch without

knowing its information. The rationale behind this idea is that,

given the strong dependency of consecutive epochs, using in-

formation of an epoch, we should be able to infer the label of

its neighbors. The major benefit of the joint classification and

prediction formulation are two-fold. First, with the single-epoch

input, the employed model does not experience the modelling

ambiguity and the computational overhead induced by the large

contextual input as previously discussed. Second, the employed

model can produce an ensemble of decisions, which is the key

in our obtained state-of-the-art performance, with a negligible

induced computational cost. Ensemble of models [39], [40], a

well-established method to improve the performance of a ma-

chine learning algorithm, has been found generalizable to au-

tomatic sleep staging, evidenced by conventional methods [6],

[13], [41] and recently developed deep neural networks [17].

However, building many different models on the same data for

model fusion is cumbersome and costly. Opposing to ensemble

of models [6], [13], [17], [41], in our joint classification and pre-

diction formulation, the ensemble of decisions is produced with

a single multi-task model. Afterwards, an aggregation method

can be used to fuse the ensemble of decisions to produce a

reliable final decision.

We further proposed a CNN framework to deal with the joint

problem. Although the proposed framework is generic in the

sense that any CNN can fit in, we employ a simple CNN ar-

chitecture with time-frequency image input. The efficiency of

this architecture for automatic sleep staging was demonstrated

in our previous work [24]. To suit the task of joint classifica-

tion and prediction, we replace the CNN’s canonical softmax

layer with a multi-task softmax layer and introduce the multi-

task loss function for network training. Without confusion, we

will refer to the proposed framework as multi-task framework,
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Fig. 2. Overview of the proposed joint classification and prediction framework.

joint classification and prediction framework, and one-to-many

framework interchangeably throughout this article.

B. Contributions

The main contributions of this work are as follows.

i) We formulate automatic sleep staging as a joint classi-

fication and prediction problem. The new formulation

avoids the shortcomings of the common classification

scheme while improving modelling performance.

ii) A CNN framework is then proposed for the joint prob-

lem. To that end, we present and employ a simple and

efficient CNN coupled with a multi-task softmax layer

and the multi-task loss function to conduct joint classifi-

cation and prediction.

iii) We further propose two probabilistic aggregation meth-

ods, namely additive and multiplicative voting, to lever-

age ensemble of decisions available in the proposed

framework.

iv) Performance-wise, we demonstrate experimentally good

performance on two publicly available datasets: Sleep-

EDF [42], [43] with 20 subjects and MASS [36], a large

sleep dataset with 200 subjects.

III. EVALUATION DATASETS

We used two public datasets: Sleep-EDF Expanded (Sleep-

EDF) and Montreal Archive of Sleep Studies (MASS) in this

work and conducted analyses under both unimodal (i.e. single-

channel EEG) and multimodal conditions (i.e combinations of

EEG, EOG, and EMG channels). It should be noted that even

though we selected the typical EEG, EOG, and EMG channels

in our analyses, the proposed framework, however, can be used

straightforwardly to study other signal modalities.

A. Sleep-EDF Expanded (Sleep-EDF)

Sleep-EDF dataset [42], [43] consists of two subsets: (1)

Sleep Cassette (SC) subset consisting of 20 subjects aged 25–34

aiming at studying the age effects on sleep in healthy sub-

jects and (2) Sleep Telemetry (ST) subject consisting of 22

Caucasian subjects for study temazepam effects on sleep. We

adopted the SC subset in this study. PSG recordings, sampled

at 100 Hz, of two subsequent day-night periods are available

for each subject, except for one subject (subject 13) who has

only one-night data. Each 30-second epoch of the recordings

was manually labelled by sleep experts according to the R&K

standard [44] into one of eight categories {W, N1, N2, N3, N4,

REM, MOVEMENT, UNKNOWN}. Similar to previous works

[20]–[22], N3 and N4 stages were merged into a single stage

N3. MOVEMENT and UNKNOWN were excluded. Since full

EMG recordings are not available, we only used the Fpz-Cz

EEG and the EOG (horizontal) channels in our experiments.

Only the in-bed parts (from lights off time to lights on time)

of the recordings were included as recommended in [20], [21],

[45], [46].

B. Montreal Archive of Sleep Studies (MASS)

MASS comprises whole-night recordings from 200 subjects

(97 males and 103 females with an age range of 18–76 years).

These recordings were pooled from different hospital-based

sleep laboratories. The available cohort 1 was divided into five

subsets of recordings, SS1 - SS5. As stated in the seminal work

[36], heterogeneity between subsets is expected. Opposing to

the majority of previous works which targeted only one homo-

geneous subset of the cohort [22], [23], we experimented with

all five subsets. Each epoch of the recordings was manually la-

belled by experts according to the AASM standard [33] (SS1

and SS3) and the R&K standard [44] (SS2, SS4, and SS5).

We converted them into five sleep stage {W, N1, N2, N3, and

REM} as suggested in [45], [46]. Those recordings with 20-

second epochs were converted into 30-second ones by includ-

ing 5-second segments before and after each epoch. We adopted

and studied combinations of the C4-A1 EEG, an average EOG

(ROC-LOC), and an average EMG (CHIN1-CHIN2) channels

in our experiments. The signals, originally sampled at 256 Hz,

were downsampled to 100 Hz.

IV. JOINT CLASSIFICATION AND PREDICTION

CNN FRAMEWORK

A. Overview

The proposed framework, with a schematic illustration

shown in Fig. 2, can be described in a stage-wise fash-

ion. The raw signals of a certain epoch index n are first

transformed into log-power spectra. The spectra are then

preprocessed for frequency smoothing and dimension re-

duction using frequency-domain filter banks. The resulting
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channel-specific images are then stacked to form a multi-

channel time-frequency image, denoted as Xn . Subsequently,

a multi-task CNN is exercised on the multi-channel time-

frequency image for joint classification and context prediction.

The former task is to maximize the conditional probability

P(yn | Xn) which characterizes the likelihood of a sleep stage

yn ∈ L = {1, 2, . . . , Y }, where L denotes the label set of Y

sleep stages. The latter one is to maximize the conditional prob-

abilities (P(yn−τ | Xn), . . . , P(yn−1 | Xn), P(yn+1 | Xn), . . . ,

P(yn+τ | Xn)) of the neighboring epochs in the output context

size of 2τ + 1. The labels of the epochs in the output context,

where (yn−τ , . . . , yn, . . . , yn+τ ), can be obtained by probability

maximization.

Formally, under this joint classification and prediction for-

mulation, the CNN performs the one-to-many mapping

F̂ : Xn �→ (yn−τ , . . . , yn, . . . , yn+τ ) ∈ L2τ+1
. (1)

Note that the order of the epochs in the neighborhood is encoded

by the order of the output labels. This formulation is orthogonal

to the common classification one with contextual input of size

2τ + 1, in which a network performs the many-to-one mapping

F : (Xn−τ , . . . , Xn, . . . , Xn+τ ) �→ yn ∈ L. (2)

Both formulations (1) and (2) can be interpreted as differ-

ent extensions of the standard one-to-one classification scheme

[24], [25], [38]. They will reduce to the standard one when

τ = 0. However, with our joint classification and prediction for-

mulation, at a certain epoch index n there exists an ensemble

of exact 2τ + 1 decisions, wherein one classification decision

made by itself (i.e. Xn) and 2τ prediction decisions made by its

neighbors (Xn−τ , . . . , Xn−1, Xn+1, . . . , Xn+τ ). These decisions

can be aggregated to form the final decision that is generally

better that any individual ones.

B. Time-Frequency Image Representation

Given a 30-second signal epoch (i.e. EEG, EOG, or EMG),

we firstly transform it into a power spectrum using short-time

Fourier transform (STFT) with a window size of two seconds

and 50% overlap. Hamming window and 256-point Fast Fourier

Transform (FFT) are used. The spectrum is then converted to

logarithm scale to produce a log-power spectrum image of size

F × T , where F = 129 and T = 29.

For frequency smoothing and dimension reduction, the

spectrum is filtered by a frequency-domain filter bank. Any

frequency-domain filter bank, such as the regular triangular one

[24], could serve this purpose. However, it is more favorable

to learn the filter bank specifically for the task at hand. Our re-

cent works in [24], [25] demonstrated that a filter bank learned

by a DNN in a discriminative fashion is more competent than

the regular one in automatic sleep staging. The learned filter

bank is expected to emphasize the subbands that are more im-

portant for the task and attenuate those less important. Hence,

we use the filter bank pretrained with a DNN for preprocessing

here. One such filter bank with M = 20 filters is learned for

each EEG, EOG, and EMG channel. Filtering the log-power

spectrum image reduces its size to M × T . When multiple

Fig. 3. Illustration of the proposed multi-task CNN architecture. The
convolution layer of the CNN consists of two filter sets with temporal
widths w = 3 and w = 5. Each filter set has two individual filters. The
colors of the output layer indicate different subtasks jointly modelled by
the network.

channels are used, we obtain one such time-frequency image for

each channel. For generalization, we denote the time-frequency

image as X ∈ R
P×M×T where P denotes the number of chan-

nels. P = 1, 2, 3 is equivalent to the cases when {EEG}, {EEG,

EOG}, and {EEG, EOG, EMG} are employed, respectively.

C. Multi-Task CNN for Joint Classification and Prediction

Our recent work [24] presented a simple CNN architecture

that was shown efficient for sleep staging. We adapt this archi-

tecture here by tailoring the last layer, i.e. the multi-task soft-

max layer, to perform joint classification and prediction. The

proposed CNN architecture is illustrated in Fig. 3. Opposing

to typical deep CNNs [17], [18], [20], [22], the proposed CNN

consists of only three layers: one over-time convolutional layer,

one pooling layer, and one multi-task softmax layer. This sim-

ple architecture has three main characteristics. First, similar to

those in [22], [47], [48], its convolutional layer simultaneously

accommodates convolutional kernels with varying sizes, and is

therefore able to learn features at different resolutions. Second,

the exploited 1-max pooling strategy at the pooling layer is more

suitable for capturing the shift-invariance property of temporal

signals than the common subsampling pooling since a particu-

lar feature could occur at any temporal position rather than in

a local region of the input signal [47]–[49]. Third, opposing to

the canonical softmax, the multi-task softmax layer is adapted

to suit the joint classification and prediction. Furthermore, the

multi-task loss is introduced for network training.

Assume that we obtain a training set S = {(X(i)
ni

,

(y
(i)
ni −τ , . . . , y(i)

ni
, . . . , y

(i)
ni +τ ))}N

i=1 of size N from the training data.

An epoch i is represented by the multi-channel time-frequency

image X(i)
ni

∈ R
P×M×T as described in IV-B and ni denotes the
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Fig. 4. Ensemble of decisions available at the epoch index n made by the epochs Xi in the neighborhood [n − τ, n + τ ], i.e. n − τ ≤ i ≤ n + τ .

corresponding index of the epoch in the original signal. Each

epoch i is associated with the sequence of one-hot encoding vec-

tors (y
(i)
ni −τ , . . . , y(i)

ni
, . . . , y

(i)
ni +τ ) which represent the sleep stages

of the epochs in the context [ni − τ, ni + τ ] of size 2τ + 1. We

use this training set to train the multi-task CNN for joint classi-

fication and context prediction.

1) Over-Time Convolutional Layer: Each 3-dimensional

filter w ∈ R
P×M×w of the convolutional layer has the tempo-

ral size of w < T while the frequency and channel size entirely

cover the frequency and channel dimension of a multi-channel

time-frequency image input. The filter is convolved with the

input image over time with a stride of 1. ReLU activation [50]

is then applied to the feature map.

The CNN is designed to have R filter sets with different

temporal widths w to capture features at multiple temporal res-

olutions. Each filter consists of Q different filters of the same

temporal width to allow the CNN to learn multiple complemen-

tary features. As a result, the total number of filters is Q × R.

2) 1-Max Pooling Layer: We employ 1-max pooling func-

tion [48], [49] on a feature map produced by convolving a filter

over an input image to retain the most prominent feature. Pool-

ing all feature maps of Q × R filters results in a feature vector

of size Q × R.

With the over-time convolution layer coupled with the 1-max

pooling layer, the CNN functions as a template learning and

matching algorithm. The convolutional filters play the role of

time-frequency templates that are tuned for the task at hand.

Convolving a filter through time can be interpreted as template

matching operation, resulting in a feature map that indicates how

well the template is matched to different parts of the input image.

In turn, 1-max pooling retains a single maximum value, i.e. the

maximum matching score, of the feature map as the final feature.

3) Multi-Task Softmax Layer: Opposing to a classification

network that typically uses the canonical softmax layer for clas-

sification, we propose a multi-task softmax layer to suit joint

classification and prediction. The idea is that the network should

be penalized for both misclassification and misprediction on a

training example. The classification and prediction errors on a

training example i is computed as the sum of the cross-entropy

errors on the individual subtasks:

E (i)(θ) =

ni +τ
∑

n=ni −τ

y(i)
n log

(

ŷ(i)
n (θ )

)

, (3)

where θ and ŷ denote the network parameters and the probability

distribution outputted by the CNN, respectively.

The network is trained to minimize the multi-task cross-

entropy error over N training samples:

E(θ ) = −
1

N

N
∑

i=1

E (i)(θ ) +
λ

2
‖θ‖2

2. (4)

Here, λ denotes the hyper-parameter that trades off the error

terms and the ℓ2-norm regularization term. For further regular-

ization, dropout [51] is also employed. The network training is

performed using the Adam optimizer [52].

D. Ensemble of Decisions and Aggregation

As previously mentioned, one major advantage of the pro-

posed framework is the capacity to produce multiple decisions

on a certain epoch even with a single model (the multi-task

CNN in this case). Practically, the classification and prediction

outputs on a certain epoch may be inconsistent as in ensemble-

of-models methods [39], [40]; aggregation of these multi-view

decisions is necessary to derive a more reliable one. To that end,

we study two probabilistic aggregation schemes: additive and

multiplicative voting.

Let P(yn | Xi ) denote the estimated probability output on the

sleep stage yn ∈ L at the epoch index n given the epoch Xi

in the neighborhood [n − τ, n + τ ], i.e. n − τ ≤ i ≤ n + τ , as

illustrated in Fig. 4. The likelihood P(yn) obtained by additive

and multiplicative voting is given by

P(yn) =
1

2τ + 1

n+τ
∑

i=n−τ

P(yn | Xi ), (5)

P(yn) =
1

2τ + 1

n+τ
∏

i=n−τ

P(yn | Xi ), (6)

respectively. Eventually, the predicted label ŷn is determined by

likelihood maximization:

ŷn = arg max
yn

P(yn), for yn ∈ L. (7)

Between the two aggregation schemes, the multiplicative one

favors likelihoods of categories with consistent decisions and

suppresses likelihoods of those categories with diverged deci-

sions stronger than the additive counterpart [53].
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TABLE I
PARAMETERS OF THE PROPOSED CNN

V. EXPERIMENTS

We aim at achieving several goals in the conducted experi-

ments. Firstly, we prove empirically the feasibility of predict-

ing labels of the neighboring epochs in the output context

concurrently with classifying the current one. Secondly, we

demonstrate the advantages of the joint classification and predic-

tion (i.e. many-to-one) formulation over the commonly adopted

many-to-one scheme as well as the standard one-to-one clas-

sification scheme. Thirdly, we provide performance compari-

son with various developed baseline systems as well as other

deep-learning approaches recently proposed for sleep staging to

illustrate the proposed framework’s efficiency.

A. Experimental Setup

For Sleep-EDF, we conducted leave-one-subject-out cross

validation. At each iteration, 19 training subjects were further

divided into 15 subjects for training and 4 subject for valida-

tion. For MASS, we performed 20-fold cross validation on the

MASS dataset. At each iteration, 200 subjects were split into

training, validation, and test set with 180, 10, and 10 subjects,

respectively. The sleep staging performance over 20 folds will

be reported for both datasets.

B. Parameters

The parameters associated with the proposed CNN are given

in Table I. We varied the number of convolutional filters Q

of the CNN in the set {100, 200, 300, 400, 500, 1000} to

investigate its influence. Furthermore, we experimented with

the output context size of 3 (equivalent to τ = 1). Influence of

this parameter will be further discussed in Section VI.

The network implementation was based on Tensorflow frame-

work [54]. Graphic card NVIDIA GTX 1080 Ti was used for

network training. The network was trained for 200 epochs with

a batch size of 200. The learning rate was set to 10−4 for the

Adam optimizer. During training, the network that yielded the

best overall accuracy on the validation set was retained for evalu-

ation. Furthermore, we always randomly generated a data batch

to have an equal number of samples for all sleep stages to miti-

gate the class imbalance issue commonly seen in sleep data.

C. Baseline Systems

To manifest the advantages offered by the proposed frame-

works, we constructed two baseline frameworks for comparison:

TABLE II
THE PARAMETERS OF THE DEEP CNN BASELINE

� One-to-one: this baseline complies with the standard clas-

sification setup, taking a single epoch as input and pro-

ducing a single decision on its label.
� Many-to-one: this baseline conforms to the commonly

adopted scheme with contextual input and outputs a single

decision on a target epoch. We fixed the contextual input

size to 3, i.e. we augmented a target epoch with two nearest

neighbors on its left- and right-hand side.

Both baseline frameworks were designed to maintain com-

mon experimental settings as those of the proposed one-to-many

framework, i.e. the CNN architecture, the learned filter bank,

etc. However, it is necessary to use the canonical softmax layer

and the standard cross-entropy loss for their classification-only

purpose.

We also developed and repeated the experiments with a typ-

ical deep CNN architecture as an alternative to the proposed

CNN described in Section IV-C. This deep CNN baseline con-

sists of 6 layers (2 convolutional layers, 2 subsampling layers,

and 2 fully connected layers) with their parameters character-

ized in Table II. For simplicity, we refer to our proposed CNN as

1-max CNN to distinguish from the deep CNN baseline. With

these experiments, our goal is to show the generalizability of

the proposed framework regardless the network base as well as

the efficacy of the 1-max CNN in comparison to a typical deep

CNN architecture.

D. Experimental Results

1) Classification vs. Prediction Accuracy: In this experi-

ment, we seek to empirically validate the proposed framework

by demonstrating the feasibility of context prediction. Since we

employed the output context size of 3, without confusion, let us

refer to the network’s subtasks as classification, left prediction,

and right prediction, which correspond to decisions on the input

epoch, its left neighbor, and its right neighbor.

We show in Fig. 5 the accuracy rates of classification, left

prediction, and right prediction subtasks obtained by the 1-

max CNN (with varying number of convolutional filters Q)

and the deep CNN baseline with the different number of input

modalities P . Unlike the classification subtask, the CNNs do

not have access to the signal information of the left and right

neighboring epochs. As a result, inference for their labels re-

lies solely on their dependency with the input epoch. It can be

expected that the accuracy rates of the left and right prediction

subtasks are lower than that of the classification subtask in most

of the cases. Nevertheless, overall both CNNs maintain a good
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Fig. 5. Accuracies of the left prediction subtask, classification subtask, right prediction subtask, multi-task with additive (add.) voting, and multi-task
with multiplicative (mul.) voting obtained with an output context size of 3 (τ = 1) and different number of modalities P. (a) Sleep-EDF and (b) MASS.

accuracy level in prediction relative to the classification accu-

racy, especially in multimodal cases (e.g. P = 2 for Sleep-EDF

and P = 3 for MASS). More specifically, averaging over all

Q and P , the left and right prediction accuracies of the 1-max

CNN are only 2.9% and 1.4% lower than the classification ac-

curacy on Sleep-EDF whereas the respective gaps of 2.2% and

1.3% are seen in MASS. Similar patterns can also be seen with

the deep CNN baseline with the graceful degradation of 4.0%

and 2.5% in Sleep-EDF and 3.3% and 2.2% in MASS corre-

spondingly. These results strengthen the assumption about the

dependency between neighboring PSG epochs and consolidate

the feasibility of joint classification and prediction modelling.

2) Advantages of the Joint Classification and Prediction:

Fig. 5 also highlights the performance improvements obtained

by the joint classification and prediction framework after the ag-

gregation step in comparison to individual subtasks. Averaging

over all P and Q, the 1-max CNN with additive voting leads to

2.8% and 4.5% absolute accuracy gains over the classification

subtask’s accuracy on Sleep-EDF and MASS, respectively. The

gains yielded by the multiplicative voting are even better, reach-

ing 3.0% and 4.7%, respectively. Accordingly, the deep CNN

baseline produces 2.2% and 2.5% absolute gains with additive

voting and 2.6% and 2.8% with multiplicative voting on the two

datasets. Between two voting schemes, the performance gain

of the multiplicative one is slightly better than that of the ad-

ditive counterpart with a difference around 0.2 − 0.3% on both

Sleep-EDF and MASS.

To demonstrate the advantages of the proposed framework

over the common classification schemes, we further compare its

performance and computational complexity with the one-to-one

and many-to-one baseline schemes described in Section V-C.

For simplicity, we utilized all available modalities (i.e. P = 3)

in this experiment and made use of multiplicative-voting ag-

gregation in the proposed framework. Additionally, we set the

number of convolutional filters Q = 1000 when the 1-max CNN

was employed.

Fig. 6. The overall classification accuracy (a)–(c) and the amount of
training time (b)–(d) of the proposed framework in comparison with those
of the one-to-one, and many-to-one schemes on the first cross-validation
fold. We commonly set Q = 1000 while P = 2 for Sleep-EDF and P = 3
for MASS.

Fig. 6 depicts the overall accuracy obtained by the three

frameworks and their computational complexity in terms of the

training time. Note that we only included the training time of the

first cross-validation fold as a representative here and the train-

ing time was expected to scale linearly with the amount of train-

ing data. Four important points should be noticed from the fig-

ure. Firstly, contextual input does not always help as the many-

to-one baseline with the 1-max CNN experiences a performance

drop of 0.6% absolute compared to the one-to-one on MASS

although it improves accuracy rates in other cases. Secondly, the

proposed one-to-many framework consistently outperforms its

counterparts. Adopting the 1-max CNN as the base, our frame-

work outperforms the one-to-one and many-to-one opponents

with 2.5% and 0.2% absolute in Sleep-EDF and 1.0% and 1.6%

absolute in MASS, respectively. Similar gains of 2.5% and 1.0%

in Sleep-EDF; 1.7% and 0.3% in MASS are achieved when

the deep CNN baseline is used. Thirdly, between the network

bases, the 1-max CNN surpasses the deep CNN baseline with an

improvement of 2.6% absolute in Sleep-EDF and 0.9% absolute
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT SYSTEMS DEVELOPED IN THIS WORK. WE MARKED IN BOLD THE FIGURES WHERE

THE COMBINATION OF THE ONE-TO-MANY FRAMEWORK AND 1-MAX CNN OUTPERFORMS ALL OTHER OPPONENTS

in MASS although its architecture is much simpler. Fourthly,

concerning the computational complexity, three times larger in-

put of the many-to-one baseline roughly triples the training time

compared to that of the one-to-one. For instance, 4.0 hours ver-

sus 1.36 hours in MASS can be seen with the 1-max CNN. Dif-

ferently, with the training time of 1.6 hours, using the same net-

work, the proposed framework only increases computing time

by as small as 0.2 hours. The training time of the deep CNN

baseline also exposes similar patterns.

3) Performance Comparison: Table III provides a com-

prehensive performance comparison on the experimental dataset

using different metrics, including overall accuracy, kappa index

κ , average specificity, average sensitivity, and average macro

F1-score (MF1). The comparison covers all combinations of

different frameworks (i.e. the proposed and the baselines) and

network bases (i.e. the proposed 1-max CNN and the deep CNN

baseline). As can be seen, the proposed one-to-many framework

powered by the 1-max CNN (one-to-many + 1-max CNN) out-

performs other combinatorial systems presented in this work

on both datasets and over different combinations of modalities.

There are occasional exceptions where using the 1-max CNN in

the baseline frameworks yields marginally better average MF1

and Sensitivity than one-to-many + 1-max CNN, such as on

MASS with P = 3; however, one-to-many + 1-max CNN re-

mains optimal on other metrics.

To see an overall picture, in Tables IV and V we relate the

proposed method’s accuracy to those reported by previous works

on the two datasets. With this comprehensive comparison, we

also aim at providing a benchmark for future work.

As can be seen from Table IV, the results on Sleep-EDF

vary noticeably due to the lack of standardization in experi-

mental setup. We observe two factors that greatly affects perfor-

mance on this dataset: (1) independent/dependent testing and (2)

whether or not using only in-bed parts of the recordings as rec-

ommended in [16], [20], [21], [46]. Dependent testing happens

when data of a test subject is also involved in training, such

as in Aboalayon et al. [3], and biases the evaluation results.

In addition to in-bed parts (i.e. from lights off time to lights

on time [46]), many previous studies also included other parts,

such as in Supratak et al. [22], or even entire recordings, such

as in Dimitriadis et al. [55] and in Alickovic & Subasi [13],

into their experiments. These add-on data, which are mainly

Wake epochs, often boost the performance as Wake, in general,

is easier to be recognized than other sleep stages. Therefore, the

performance comparison is improper unless two methods use a

similar experimental setup. With respect to this, the proposed

method outperforms other competitors that commonly used in-

dependent testing and in-bed data only. It should be noted that

these results do not cover a large body of studies on the early

version of Sleep-EDF dataset [42], [43] which consists of only

8 PSG recordings.

A few recent attempts has evaluated automatic sleep staging

on a subset [22], [23], [37] rather than the entire 200 subjects of

the MASS dataset. The discrepancy in data makes a direct com-

parison between their results and ours inappropriate. To avoid

possible mismatch in experimental setup, we re-implemented

DeepSleepNet [22] and the deep CNN architecture proposed

by Chambon et al. [37], both of which recently reported the

state-of-the-art results on the MASS subset SS3, for a compat-

ible comparison. Note that we experimented with DeepSleep-

Net1 (CNN) in [22] here, and will leave DeepSleepNet2 (CNN

combined with RNN for long-term context modelling) for fu-

ture work. In addition, we also implemented the deep CNN

proposed by Tsinalis et al. [20] which demonstrated good per-

formance on Sleep-EDF. While our developed baselines (cf.

Table III) are more efficient than these networks under the com-

mon experimental setup used in this work, the improvements

by the proposed multitask 1-max CNN are most prominent, as

can be seen from Table V. More specifically, compared to the

best opponent, DeepSleepNet [22], a margin of 2.9% on overall

accuracy is obtained when all three adopted channels (P = 3)

were used.

For completeness, we show in Table VI the confusion ma-

trices and class-wise performance in terms of sensitivity and

selectivity [45] obtained by the proposed one-to-many frame-

work with the 1-max CNN base. Particularly, one may notice

modest performance on N1 stage, which has been proven chal-

lenging to be correctly recognized [20], [22], [24], [25] due to

its similarities with other stages and its infrequency. Possibili-

ties for improvement would be to over-sample the under-present
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TABLE IV
PERFORMANCES OF THE PROPOSED METHOD COMPARED TO PREVIOUS METHODS ON THE SLEEP-EDF DATASET. NOTICE THE LARGE VARIATION IN THE

ACCURACY RATE DUE TO THE DIFFERENCES IN EXPERIMENTAL SETUP. TOP ACCURACY RATES, SUCH AS IN ABOALAYON et al. [3], ALICKOVIC & SUBASI [13],
AND DIMITRIADIS et al. [55], ARE LIKELY BIASED BY NONINDEPENDENT TESTING AND USAGE OF ENTIRE RECORDINGS RATHER THAN ONLY IN-BED DATA

(CF. V-D3 FOR FURTHER DETAIL)

TABLE V
PERFORMANCES OF THE PROPOSED METHOD COMPARED TO PREVIOUS METHODS ON THE MASS DATASET

aOur implementation. Source code is also available at http://github.com/pquochuy/MultitaskSleepNet.

TABLE VI
CONFUSION MATRICES AND CLASS-WISE PERFORMANCE (SENSITIVITY AND

SELECTIVITY) OBTAINED BY THE PROPOSED ONE-TO-MANY FRAMEWORK

WITH THE 1-MAX CNN BASE

class during training and to explore weighting schemes for a net-

work’s loss [31], [59] so that the network is penalized stronger

if making errors on this infrequent class than other ones. We

further provide alignment of ground-truth and system-output

hypnograms for one subject of the MASS dataset in Fig. 7.

VI. DISCUSSION

In this section, we investigate the causes of the proposed

framework’s performance improvement over the baseline ones.

Furthermore, the proposed framework encompasses several in-

fluential factors, such as the number of convolutional filters Q

of the 1-max CNN, the number of input modalities P , and the

output context size. We will discuss and elucidate their effects

on the framework’s performance. The multitask framework will

also be contrasted against an equivalent ensemble method to

shed light on their similar behaviour.

A. Investigating the Causes of Improvement

To accomplish this goal, we divided the dataset into a non-

transition and transition set and explored how different frame-

works perform on them. Considering MASS for this investiga-

tion, the former set is the major one (83.4% epochs in total)

consisting of epochs with the same label as their left and right

neighbors. The latter, which is the minor set (16.6% epochs

in total), comprises those epochs at stage transitions, i.e. their

labels differ from those of their left/right neighbors or both.

The overall accuracy on these sets are shown in Table VII.

On one hand, the downgrading accuracy on the transition set

reflects the fact that manual labelling of sleep stages if of low

accuracy near stage transitions [60]. Since a 30-second epoch

likely contains the signal information of two transitioning stages
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Fig. 7. Hypnogram of one subject of the MASS dataset (subject 22 of the subset SS1 [36]): (a) ground-truth, (b) the one-to-one baseline framework’s
output, (c) the many-to-one baseline framework’s output, (d) the proposed one-to-many framework’s output. 1-max CNN was commonly used with
Q = 100 and P = 3.

TABLE VII
THE OVERALL ACCURACY OF DIFFERENT FRAMEWORKS ON MASS’S

TRANSITION AND NON-TRANSITION SUBSETS. THE RESULTS ARE OBTAINED

BY 1-MAX CNN BASE WITH Q = 1000 AND P = 3

while only one label is assigned to such an epoch, up to half of

the epoch may not match the assigned label. More often than

not, the labels assigned to these epochs are subjective to the

scorer. The accuracy of the one-to-one baseline framework on

this small subset, which is above the chance level, is likely due

to the bias towards the scorer’s subjectivity. The chance-level

accuracy of the many-to-one and one-to-many frameworks, on

the other hand, can be explained by the fact that taking into

account the left and right neighboring epochs has balanced the

contribution of the two transitioning stages.

Disregarding the ambiguous transition set, the cause of per-

formance improvement turns out to be depending upon the ac-

curacy on the major non-transition set. As can be seen, the

proposed framework outperforms the other two with a gap of

2.7% and 1.3% on this set, respectively. Further investigation on

this set reveals a substantial level of label agreement between the

proposed framework and the one-to-one baseline, up to 91.0%.

However, for the remaining 9.0% epochs on which their la-

bels disagree, the proposed framework yields an accuracy of

60.4%, roughly doubling that obtained by the baseline (30.5%).

Analogously, in comparison with the many-to-one baseline, the

label agreement is as high as 92.0% whereas an accuracy gap

of 15.2% is seen on the dissenting subset with 52.4% of the

proposed framework compared to 37.2% of the baseline.

B. Influence of the Number of Convolutional Filters

In general, more features can be learned by the proposed 1-

max CNN with the increasing number of convolutional filters Q

and one can expect improvement on the performance. However,

influence of Q on the framework’s performance is very modest

as can be seen from Fig. 4. For instance, on Sleep-EDF, fixing

P = 2 and multiplicative voting, using Q = 1000 only brings

up 0.5% absolute accuracy gain over the case of Q = 100 even

though the number of filters is ten times larger. A similar finding

can also be drawn for MASS (P = 3) with a modest improve-

ment of 0.4%. The slight influence of the number of filters Q

suggests that we can maintain a very good performance even

with a much smaller network.

C. Benefits of Multimodal Input

Single-channel EEG has been found prevalent in literature [6],

[20], [22], [24], [25], [61] mainly due to its simplicity. However,

apart from brain activities, sleep also involves eye movements

and muscular activities at different levels. For instance Rapid

Eye Movement (REM) stage usually associates with rapid eye

movements and high muscular activities are usually seen during

the Awake stage. As a result, EOG and EMG are valuable ad-

ditional sources, complementing EEG in multimodal automatic

sleep staging systems [17], [18], [37], [38], [62], [63], not to

mention their importance in manual scoring rules [33], [44].

Fig. 4 reveals and demonstrates the benefit of using EOG and

EMG to complement EEG in the proposed framework. Con-

sistent improvements on overall accuracy can be seen on both

Sleep-EDF and MASS. Taking MASS for example, averaging

over spectrum of Q, as compared to the single-channel EEG,

coupling EEG and EOG leads to an absolute gain of 4.1% and

is further boosted by another 1.1% with the compound of EEG,

EOG, and EMG.

D. The Trade-Off Problem With the Output Context Size

It is straightforward to extend the output context in the pro-

posed framework. Doing so, we are able to increase the number

of decisions in an ensemble, which is expected to enhance the

classification performance [39]. However, extending the output

context confronts us with a trade-off problem. A large context
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Fig. 8. Influence of the output context size to the overall accuracy of
the proposed framework. The results obtained with a common Q = 1000,
in addition, P = 2 (Sleep-EDF) and P = 3 (MASS).

weakens the link between the input epoch and the far-away

neighbors in the output context. Oftentimes, this deteriorates

the prediction decisions on these epochs and, as a consequence,

reduces the quality of individual decisions in the ensemble. The

low quality of these prediction decisions may outweigh the ben-

efits of the increased cardinality, worsening the performance

instead collectively.

To support our argument, we increased the output context size

to 5 (i.e. τ = 2) and repeated the experiment in which we set

Q = 1000 for the 1-max CNN and used P = 2 for Sleep-EDF

and P = 3 for MASS. Fig. 8 shows the obtained performance

alongside those obtained with the output context size of {1,

3} (i.e. τ = {0, 1}). Note that, with the context size of 1, the

framework is reduced to the one-to-one baseline framework de-

scribed in Section V-C. With the context size of 5 the proposed

framework still maintains its superiority over the standard clas-

sification setup, however, a graceful degradation compared to

the context size of 3 can be observed. Specifically, the accu-

racy rates obtained by both additive and multiplicative voting

schemes slightly decline by 0.1% on Sleep-EDF while the re-

spective accuracy losses of 0.3% and 0.2% can be seen on

MASS.

To remedy the weak links between the input epoch and far-

away epochs, one possibility is to combine multiple epochs into

the input to form the contextual input. In addition, it would be

worth exploring incorporation of long-term context (i.e. in order

of dozens of epochs), for example using RNNs as in [17], [22].

However, a detailed study of the proposed frame work in these

many-to-many settings is out of the scope of this article and is

left for future work.

E. Multitask vs. Ensemble

To examine the comparability between the proposed mul-

titask framework with its ensemble equivalence, we repeated

the experiments with the ensemble consisting of three separate

CNNs for individual subtasks: left prediction, classification, and

right prediction. We studied both the 1-max CNN and the deep

CNN baseline here. Again, we set Q = 1000, and P = 2 for

Sleep-EDF and P = 3 for MASS when 1-max CNN was used.

The results obtained with the ensemble models and the proposed

multitask models are contrasted vis-à-vis in Fig. 9.

Our analyses show that the separate CNNs of an ensemble

model perform better than its corresponding multitask model on

the individual subtasks. This is due to the fact that the multitask

Fig. 9. Performance comparison of the proposed multitask 1-max CNN
with its equivalent ensemble model. The results are obtained with Q =

1000, P = 2 with Sleep-EDF and P = 3 for MASS.

model needs to deal with a harder modelling task which com-

bines all the subtasks as a whole. However, after aggregation,

their differences become negligible as can be seen over all CNN

architectures and datasets. More importantly, on both datasets,

the proposed multitask 1-max CNN outperforms the deep CNN

baseline in its both forms, namely multitask and ensemble.

VII. CONCLUSION

This work introduced a joint classification and prediction for-

mulation wherein a multi-task CNN framework is proposed for

automatic sleep staging. Motivated by the dependency nature

of sleep epochs, the framework’s purpose is to jointly perform

classification of an input epoch and prediction of the labels of

its neighbors in the context output. While being orthogonal to

the widely adopted many-to-one classification scheme relying

on contextual input, we argued that the proposed framework

avoids the shortcomings experienced by the many-to-one ap-

proach, such as the inherent modelling ambiguity and the in-

duced computational overhead due to large contextual input.

More importantly, due to multitasking, the framework is able

to conveniently produce multiple decisions on a certain epoch

thereby forming the reliable final decision via aggregation. We

demonstrated the generalizability of the framework on two pub-

lic datasets, Sleep-EDF and MASS.
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