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Abstract
Visual tracking of generic objects is one of the fundamental but challenging problems in computer vision. Here, we propose
a novel fully convolutional Siamese network to solve visual tracking by directly predicting the target bounding box in an
end-to-end manner. We first reformulate the visual tracking task as two subproblems: a classification problem for pixel
category prediction and a regression task for object status estimation at this pixel. With this decomposition, we design a
simple yet effective Siamese architecture based classification and regression framework, termed SiamCAR, which consists of
two subnetworks: a Siamese subnetwork for feature extraction and a classification-regression subnetwork for direct bounding
box prediction. Since the proposed framework is both proposal- and anchor-free, SiamCAR can avoid the tedious hyper-
parameter tuning of anchors, considerably simplifying the training. To demonstrate that a much simpler tracking framework
can achieve superior tracking results, we conduct extensive experiments and comparisons with state-of-the-art trackers on a
few challenging benchmarks. Without bells and whistles, SiamCAR achieves leading performance with a real-time speed.
Furthermore, the ablation study validates that the proposed framework is effective with various backbone networks, and can
benefit from deeper networks. Code is available at https://github.com/ohhhyeahhh/SiamCAR.
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1 Introduction

Visual tracking, in particular single object tracking (Ross
et al., 2008;Huang et al., 2016; Lukežič et al., 2018;Ma et al.,
2018b; Sui et al., 2019), has received considerable attention
in the computer vision community due to its wide appli-
cations such as intelligent video analysis, human–machine
interaction, and autonomous driving. In the past decade, sig-
nificant progress has beenmade on visual tracking. However,
it remains a challenging task especially for real-world appli-
cations, as objects in unconstrained conditions often suffer
from illumination/scale variations, background clutters and
heavy occlusions. Moreover, the appearance of non-rigid
objects may change significantly due to extreme pose varia-
tion.
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Researchers endeavor to address challenging issues from
different aspects including feature extraction (Henriques
et al., 2014; Horst et al., 2015), template updating (Val-
madre et al., 2017; Gao et al., 2019), classifier design (Zhang
et al., 2017a) and bounding box regression (Danelljan et al.,
2019). The introduction of correlation filter methods (Bolme
et al., 2010; Danelljan et al., 2016a; Henriques et al., 2014;
Li et al., 2017; Zhang et al., 2017b; Liu et al., 2016)
improves the tracking performance significantly in terms of
both efficiency and accuracy. Early work on feature extrac-
tion mainly uses color features, texture features or other
hand-crafted ones. Benefiting from the rapid development
of deep learning, deep convolutional neural network (CNN)-
based features have widely been adopted in recent years
(Nam et al., 2016; Ren et al., 2017; Ma et al., 2018a). For
general object tracking, the target is only depicted in the first
frame of a sequence, hence constructing an offline model
yields insufficient target-specific information. To solve the
problem, online tracking methods that update model at test-
time have shown benefits on adaptiveness (Nam et al., 2016;
Bhat et al., 2019a; Danelljan et al., 2019; Bhat et al., 2019b).
Although the adaptability of trackers can be improved via
template updating, online tracking sometime is less efficient.
Besides, template updating often suffers from tracking drift
when the target appearance drastically changes across time.
Recent studies demonstrate that the Siamese architecture
based online training and offline tracking approaches with
CNNs have achieved a good balance between accuracy and
efficiency (Bertinetto et al., 2016; Li et al., 2018, 2019; Zhu
et al., 2018).

Classical Siamese networks such as SiameseFC
(Bertinetto et al., 2016) formulate the visual tracking task
as a target matching problem and aim to learn a general
similarity map between the target template and the search
region. Since one single similarity map typically contains
limited spatial information, a common strategy is to per-
form matching on multiple scales of the search regions to
determine the object scale variation (Bertinetto et al., 2016;
He et al., 2018; Valmadre et al., 2017), which may explain
why these trackers are computationally heavy. SiamRPN (Li
et al., 2018) attaches the Siamese network a subnetwork for
extraction of region proposals (RPN). Benefiting from the
proposal refinement, SiamRPN avoids the time-consuming
step of extracting multi-scale feature maps for achieving
object scale invariance. It shows state-of-the-art results on
multiple benchmarks. Later works such as DaSiam (Zhu
et al., 2018), C-RPN (Fan and Ling, 2019) and SiamRPN++
(Li et al., 2019) improve upon SiamRPN. However, since
anchors are introduced for region proposal generation, these
trackers can be sensitive to the numbers, sizes and aspect
ratios of anchor boxes, and expertise on hyper-parameter tun-
ing is crucial to obtain successful tracking results with these
trackers.

Fig. 1 Location of a bounding box at the central pixel (upper ) vs.
location of a bounding box at each target pixel (lower ). As shown in
the upper image, a central location (x, y) with the respecting width
and height (w, h) denotes the target bounding box. Limited supervised
information is supplied by this definition. The lower image shows that
by denoting a 4D distance vector (l, r , t, b), each target location can
devote to the bounding box. Notice that l + r and t + b represent the
predicted width and height of the target. By this definition, per-pixel
supervised information including its foreground confidence cls and its
distances (l, r , t, b) to the four sides of the target bounding box can be
used in tracking

In this paper, we investigate eliminating the above-
mentioned issues of the Siamese architecture based trackers
in an effective anchor-free fashion. The question thatwewant
to answer here is that, can we solve the tracking problem by
directly regressing the target bounding box in an end-to-end
manner? Existing methods like GOTURN (Held et al., 2016)
have verified the feasibility of the end-to-end regression
approach, with limited success in terms of tracking accuracy.
Also, when implementing with deeper backbone networks,
training is typically difficult to converge. Our observation
is that the information supplied by a bounding box is not
sufficiently rich. As shown in Fig. 1, if just locating the
bounding box at the center of the object, only one bounding
box with the central pixel would be considered in the search
region. This will result in limited supervision. To address
this issue, all pixels in the search region should be taken
into account to contribute to the prediction. For each pixel,
we can investigate its target category, and its distances to
the four sides of the target bounding box. Motivated by this,
we reformulate the visual tracking task into two subprob-
lems: the classification task for pixel category prediction and
regression for object bounding box estimation at this pixel.
With such decomposition, the tracking task can be solved
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in a per-pixel prediction manner. We then design a simple,
yet effective Siamese architecture based fully convolutional
classification and regression network, termed SiamCAR, to
learn the classification and regressionmodels simultaneously
in an end-to-end manner.

Essentially, the tracking model consists of two branches.
One classification branch aims to predict a category label for
each spatial location, and one regression branch focuses on
prediction of the location of a bounding box using regression.
Different from RPNmodels (Li et al., 2018; Zhu et al., 2018;
Li et al., 2019), which use two response maps for region
proposal detection and regression respectively, the proposed
model uses one unique response map to predict object loca-
tion and bounding box directly. Existing cross-correlation (Li
et al., 2019, 2018; Bertinetto et al., 2016) operations take the
template feature as a whole for global similarity matching
to obtain the response map, which leads to the desirable fact
that the response of the target center is least affected by the
background. As a result, the center pixel of a target tends
to offer the most accurate regression result, while pixels far
away from the center of a target tend to produce low-quality
predicted bounding boxes. To deal with this issue, a localiza-
tion quality estimation (LQE) branch is associated with the
classification branch to provide accurate ranking scores that
can benefit the target center prediction and improve tracking
performance. Based on this, a coarse-to-fine bounding box
tracking strategy is designed to boost the final prediction.

SiamCARadopts the strategy of online training and offline
tracking. The framework is a fully convolutional network
with pixel-wise prediction, which is very simple in design,
yet powerful in performance. SiamCAR is both anchor and
proposal free, thus the number of hyper-parameters being sig-
nificantly reduced. Without bells and whistles, the proposed
tracker achieves the state-of-the-art tracking performance in
terms of both accuracy and speed. The work here is an exten-
sion of our previous work (Guo et al., 2020). In comparison
with the previous version, the new contributions are as fol-
lows.

1. We now propose a new coarse-to-fine tracking strategy,
which replaces the original average top-k tracking in the
previous version (Guo et al., 2020), to further improve the
tracking accuracy.

2. We have conducted experiments on more benchmark
datasets including TrackingNet (Muller et al., 2018),
OTB-100 (Wu et al., 2015) and VOT2020 (Matej et al.,
2021).We have also includedmore comparisonswith new
state-of-the-art trackers.

3. We have provided more thorough discussions and details
in this version.

2 RelatedWork

In this section, we mainly review the most relevant work.
Specifically, Siamese architecture based trackers are dis-
cussed since they dominate the tracking performance in
recent years. Some related fully convolutional networks with
pixelwise prediction are also reviewed.

2.1 Tracking by Siamese Architectures

As one of the pioneeringworks, GOTURN (Held et al., 2016)
trains a Siamese convolutional network to regress the bound-
ing box directly. SinceGOTURN tracks via an offline learned
generic relationship between the object’s appearance and
motion, it is difficult to handle the unseen “motions” that are
not covered by training samples. Different from GOTURN,
SiamFC (Bertinetto et al., 2016) proposes to solve the track-
ing problem by learning similarity between the template and
search region. Inspired by its success, researchers have fol-
lowed the work and proposed updated models (Dong and
Shen, 2018; Valmadre et al., 2017; He et al., 2018; Guo et al.,
2017). CFNet (Valmadre et al., 2017) introduces the correla-
tionfilter layer to theSiamFCframework andperformsonline
tracking to improve the accuracy. By modifying the Siamese
brancheswith two online transformations, DSiam (Guo et al.,
2017) proposes to learn a dynamic Siamese network, which
achieves better tracking accuracy with acceptable tradeoff of
speed. To enhance the model discrimination and adaptive-
ness, RASNet (Wang et al., 2018) introduces the attention
mechanism to adapt the trackingmodelwithout online updat-
ing. SA-Siam (He et al., 2018) builds a two-fold Siamese
network, with a semantic branch and an appearance branch.
The two branches are trained separately to keep the het-
erogeneity of features, but combined at the testing time to
improve the tracking accuracy. In order to tackle the scale
variation problem, these Siamese networks resort to multi-
scale searching which can be time-consuming.

Inspired by the region proposal network for object detec-
tion (Ren et al., 2015), the SiamRPN (Li et al., 2018) tracker
performs the region proposal extraction using the output of a
Siamese network. By jointly learning a classification branch
and a regression branch for region proposal, SiamRPNavoids
the time-consuming step of extracting multi-scale feature
maps. However, it has difficulty in dealing with distrac-
tors with similar appearance to the target object. Based on
SiamRPN, DaSiamRPN (Zhu et al., 2018) increases the hard
negative training data during the training phase. Through
data enhancement, they improve the discrimination of the
tracker, hence amuchmore robust tracking result is obtained.
The tracker is further extended to long-term visual track-
ing. Although these aforementioned approachesmodified the
original SiamFC (Bertinetto et al., 2016) onmany aspects, the
performance stallmainly because the backbone network used
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(AlexNet) is weak. SiamRPN++ (Li et al., 2019) replaces
AlexNet with ResNet-50 (He et al., 2016). Meanwhile, it
randomly shifts the object location in the search region dur-
ing training to eliminate the center bias. Such simple tricks
surprisingly boost tracking accuracy.

Anchors are adopted in these RPN based trackers for gen-
erating region proposals. Besides, anchor boxes can make
use of the deep feature maps and avoid repeated computa-
tion, which can significantly speed up the tracking process.
State-of-the-art trackers, such as SPM (Wang et al., 2019)
and SiamRPN (Li et al., 2018), can work in a very high
frame rate. Although SiamRPN++ (Li et al., 2019) adopts
a very deep neural network, it still works at a real-time
speed. Nevertheless, the performance of anchor-based track-
ers can sometimes be very sensitive to the hyper-parameters
of anchors, which need to be carefully tuned to achieve ideal
performance. Moreover, since the size and the aspect ratio
of anchor boxes are fixed, even with tuned parameters, these
trackers still face difficulty in processing objects with large
shape deformation and pose variation. Moreover, the design
of anchors is also tightly related to the object category. Thus,
fixing the design of anchorswill make the tracker less generic
in terms of tracking multiple categories of objects.

2.2 Fully Convolutional Networks for Pixelwise
Prediction

In recent years, researchers demonstrate anchor-free detec-
tion frameworks achieving improved performance in object
detection and multi-object tracking (Duan et al., 2019; Law
and Deng, 2018; Zhou et al., 2019, 2020). These anchor-free
detectors like CenterNet (Duan et al., 2019) and CornetNet
(Law and Deng, 2018) both can be seen as corner keypoints
based detection methods. However, they are not effectively
explored for Siamese based single object tracking since
spatial information about the corners cannot be explicitly
encoded in the response map. Recently, fully convolutional
networks (FCNs) that solve vision problems in a pixelwise
prediction manner have extensively studied in semantic seg-
mentation (Tian et al., 2019a; Shelhamer et al., 2017; Long
et al., 2015) and object detection (Tian et al., 2019b; Huan
et al., 2015; Dai et al., 2016). Long et al. (2015) first show
that an end-to-end FCN achieves great success in semantic
segmentation. Then, researchers leverage the framework for
object detection tasks. DenseBox (Huan et al., 2015) shows
an end-to-end FCN framework which directly predicts the
object class confidences andboundingboxes through all loca-
tions of an image. Tian et al. (2019b) propose a one-stage
FCN framework termed FCOS for generic objection detec-
tion, which eliminates both anchor boxes and proposals, yet
achieving comparable detection accuracy. The key insight of
such an FCN framework for object detection is predicting a
class category and a localization vector for each spatial loca-

tionon a featuremap,where the localizationvector represents
the relative distances to the four sides of the target bounding
box at this location. Accordingly, our motivation for solving
the visual tracking problem meets the core of FCN.

In this paper, we show that the above-mentioned issues
of Siamese based trackers can be greatly alleviated with a
carefully designed Siamese fully convolutional framework
in an end-to-end per-pixel prediction manner. Moreover, we
demonstrate that a tracker with a much simpler structure can
achieve even better performance than previous state-of-the-
art methods.

3 Our Method

We now introduce our SiamCAR network in detail. As
mentioned, we decompose the tracking task into two sub-
problems as classification and regression, and then solve
them in a per-pixel prediction manner. The proposed frame-
work mainly consists of two simple subnetworks. The first
one is a Siamese network adopted for feature extraction, and
the second one is the classification and regression subnet-
work for direct bounding box prediction. As show in Fig. 2,
the entire system can be implemented as a neat fully con-
volutional network, simple and easy to interpret. In Section
3.1, we introduce the designs of the subnetwork for feature
extraction. In Section 3.2, we develop algorithms for target
bounding box prediction with classification for pixel cate-
gory and regression for bounding box at this pixel. Finally,
we introduce the coarse-to-fine tracking strategy to boost the
final prediction.

3.1 Feature Extraction

Here, we take advantage of the Siamese architecture with
convolutional neural networks to construct a Siamese subnet-
work for visual feature extraction. The subnetwork consists
of two branches: a target branch which takes the tracking
template patch Z as input, and a search branch which takes
the search region X as input. The twobranches share the same
CNN architecture as their backbone models, which outputs
two feature maps ϕ(Z) and ϕ(X). In order to embed the
information of these two branches, a response map R can be
obtained by performing the cross-correlation on ϕ(X) with
ϕ(Z) as a kernel (Bertinetto et al., 2016). Since we need
to decode the response map R in the subsequent bounding
box prediction subnetwork to obtain the location and scale
information of the target, we hope that the response map R
can retain abundant information association. However, the
cross-correlation layer can only generate a single-channel
compressed response map, which lacks useful features and
important information for latter decoding, as suggested by
Li et al. (2019) that different feature channels typically take
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Fig. 2 Illustration of the proposed framework SiamCAR: The left side
is a Siamese subnetwork with a depth-wise cross correlation layer
(denoted by �) for multi-channel semantic response map extraction.
The right side shows the classification and regression subnetwork for
bounding box prediction, which is taken to decode the location and
scale information of the object frommulti-channel responsemap. Given
a video sequence, the object denoted in the first frame is served as
the template patch, which is fixed and unupdated during the whole
tracking period. For a search region in the current frame, its target
bounding box can be depicted by a location with relative 6D vector
B = (cls, cen, l, t, r , b), while cls represents the foreground confi-

dence score output by the foreground-background classification branch,
and (l, r , t, b) represent the distances to the four sides of the bounding
box output by the distance regression branch. Here cen represents the
center-ness score output by the attached center-ness branch, which is
adopted to measure the distance between this location and the target
center. Meanwhile, a coarse-to-fine tracking strategy is introduced to
calculate the final tracking result through the output predictions of the
proposed framework. Note that the framework can be implemented as a
fully convolutional network, which is simple, neat and easy to interpret

distinct semantic information. Inspired by them, we also use
a depth-wise correlation layer to produce multiple semantic
similarity maps:

R = ϕ(X)�ϕ(Z), (1)

where � denotes the channel-wise correlation operation. The
generated response map R has the same number of channels
as ϕ(X), and it contains rich information for classification
and regression.

Since CNN features are extracted with multiple layers,
these layers encode features of different aspects with differ-
ent levels. Low-level features such as edge, corner, color and
shape that represent better visual attributes are indispensable
for localization, while high-level features are better to rep-
resent semantic attributes that are crucial for discrimination.
Thus, only using the feature of the last layer may lead to
deviation. Many methods take advantage of fusing both low-
level and high-level features to improve the tracking accuracy
(Ma et al., 2018a; Li et al., 2019; Wang et al., 2019). Here
we also consider to aggregate multi-layer deep features for
tracking. We use the modified ResNet-50 to be the back-
bone network, same as in SiamRPN++ (Li et al., 2019). To
achieve better inference for recognition and discrimination,
we combine the features extracted from the last three resid-
ual blocks of the backbone, which are denoted respectively as
F3(X), F4(X), F5(X). Specifically, we perform a channel-
wise concatenation:

ϕ(X) = Cat(F3(X),F4(X),F5(X)), (2)

where Fi=3,4,5(X) includes 256 channels. Consequently,
ϕ(X) contains 3 × 256 channels.

The Depth-wise Cross Correlation is performed between
the searchingmap ϕ(X) and the template map ϕ(Z) to obtain
a multi-channel response map. The response map is then
convoluted with a 1×1 kernel to reduce its dimension to 256
channels. Through the dimension reduction, the number of
parameters can be significantly reduced, and the following
computation can be sped up. The final dimension-reduced
response map R∗ is adopted as the input to the classification-
regression subnetwork for bounding box prediction.

3.2 Bounding Box Prediction

Each location (i, j) in the response map R∗ can be mapped
back onto the input search region as (x, y). The RPN-based
trackers consider the corresponding location on the search
region as the center of multi-scale anchor boxes, and regress
the target bounding box with these anchor boxes as refer-
ences. Different from them, our network directly classifies
and regresses the target bounding box at each location. The
associated training can be accomplished by the fully con-
volutional operation in an end-to-end fashion, which avoids
tricky parameter tuning and reduces human intervention.

The tracking task is decomposed into two subtasks: a
foreground-background classification branch to predict the
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Fig. 3 Illustration of the coarse-to-fine tracking strategy. For the current
tracking frame, the proposed classification-regression subnetwork out-
puts six maps: the cls map, the cen map, and the l, r , t, bmaps. During
the coarse detection operation, a Hanming map han output by a cosine
window is introduced to boost the center bias. By mapping the coarse

detection into the response map, a ROI can be obtained. During the
refinement operation, the center location is computed by up-sampling
the corresponding ROI region of the cen and l, r , t, b maps to the same
resolution of the search rigion. The final target bounding box is achieved
by this center location and its relative distance vector (l, r , t, b)

category for each location, and a distance regression branch
to estimate the target bounding box at this location (see Fig. 2
for an illustration of the subnetwork). For a response map
R∗

w×h×m extracted using the Siamese subnetwork, the clas-
sification branch outputs a classification featuremap Acls

w×h×2
and the regression branch outputs a regression feature map
Areg

w×h×4. Here w and h represent the width and the height
of the extracted feature maps respectively. As that shown in
Fig. 2, each point (i, j, :) in Acls

w×h×2 contains a 2D vector,
which represents the foreground and background scores of
the corresponding location in the input search region. Simi-
larly, each point (i, j, :) in Areg

w×h×4 contains a 4D distance
vector t(i, j) = (l, t, r , b), which represents the distances
from the corresponding location to the four sides of the
bounding box in the input search region.

Since the ratio of areas occupied by the target and the
background in the input search region is not very large, sam-
ple imbalance is not a problem. Therefore, we simply adopt
the cross-entropy loss for classification and the IoU loss for
regression. Let (x0, y0) and (x1, y1) denote the left-top and
right-bottom corner of the ground truth bounding box, and let
(x, y) denote the corresponding location of point (i, j), the
regression targets t̃(i, j) at A

reg
w×h×4(i, j, :) can be calculated

by:

t̃0(i, j) = l̃ = x − x0, t̃
1
(i, j) = t̃ = y − y0,

t̃2(i, j) = r̃ = x1 − x, t̃3(i, j) = b̃ = y1 − y.
(3)

With t̃(i, j), the IoU between the ground-truth bounding box
and the predicted bounding box can be computed. Then we
compute the regression loss using

Lreg = 1
∑

I(t̃(i, j))

∑

i, j
I(t̃(i, j))L IoU (Areg(i, j, :), t̃(i, j)),

(4)

where L IoU is the IoU loss as in Yu et al. (2016) and I(·) is
an indicator function defined by:

I(t̃(i, j)) =
{
1 if t̃ k(i, j) > 0, k = 0, 1, 2, 3
0 otherwise.

(5)

The target center plays an important role for locating a tar-
get bounding box. An observation is that the locations far
away from the center of a target tend to produce low-quality
predicted bounding boxes, which reduces the performance
of the tracking system. This is because the more far away
from the center, the more significant the background inter-
ference is. Therefore, we investigate to add a localization
quality estimation (LQE) branch associated with the classi-
fication branch. The output of this branch should depict the
attribute of a location in relate to the target center. There are
many algorithms to achieve this effect, such as the Gaussian
distribution with the target center as the mean (Zhou et al.,
2019, 2020), or the center-ness algorithm presented in FCOS
(Tian et al., 2019b). Here we take the center-ness algorithm
to produce the localization quality estimation. As shown in
Fig. 2, the branch outputs a center-ness feature map Acen

w×h×1,
where each point value gives the center-ness score of the cor-
responding location. The score C(i, j) in Acen

w×h×1(i, j) is
defined by

C(i, j) = I(t̃(i, j)) ∗
√

min(l̃, r̃)

max(l̃, r̃)
× min(t̃, b̃)

max(t̃, b̃)
, (6)
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whereC(i, j) is in contrastwith the distance between the cor-
responding location (x, y) and the target center in the search
region. If (x, y) is a location within background, the value of
C(i, j) is set to 0. The center-ness loss can be computed as

Lcen = −1
∑

I(t̃(i, j))

∑

I(t̃(i, j))==1
C(i, j) ∗ log Acen

w×h×1(i, j)

+(1 − C(i, j)) ∗ log(1 − Acen
w×h×1(i, j)). (7)

A visual description of the center-ness score for each pixel in
the bounding box is given in Fig. 1. By introducing the center-
ness branch, the center of an object can be better predicted,
and the outliers can be eliminated.

To sum up, the overall loss function is

L = Lcls + λ1Lcen + λ2Lreg, (8)

where Lcls represents the cross-entropy loss for classifica-
tion. Constants λ1 and λ2 weight the center-ness loss and the
regression loss. During training, we empirically set λ1 = 1
and λ2 = 3 for all experiments.

3.3 The Coarse-to-Fine Tracking Phase

Tracking aims at predicting a bounding box for the tar-
get in the current frame. To decode the object status from
the response map, for each location (i, j), the proposed
classification-regression subnetwork produces a 6D vector
Ti j = (cls, cen, l, t, r , b), where cls represents the fore-
ground score of classification, cen represents the center-ness
score, and l + r and t + b represent the predicted width and
height of the target in the current frame. In the real tracking
process, we observed that the jitter error may appear between
adjacent frames if only use Non-Maximum Suppression to
estimate the target bounding box. The reason is that the most
accurate regression result should be given by the location of
the target center, of which the response is least affected by the
background. Since our model solves the object tracking with
a per-pixel prediction manner, each location is relative to a
predicted bounding box. Any inaccurate value may lead to
prediction errors of the target center and scale. To eliminate
the problem, we adopt a coarse-to-fine strategy to estimate
the target center, achieving much stable and accurate bound-
ing box.

Coarse detection During tracking, the size and aspect
ratio of the bounding box typically see minor change across
consecutive frames. To supervise the prediction using this
spatio-temporal consistency, we adopt a scale change penalty
pi j as similar to that in Li et al. (2018; 2019), Fan and
Ling (2019) to re-rank the foreground classification score
cls, which admits an updated 6D vector PTi j = (clsi j ×

pi j , cen, l, t, r , b). Then the tracking phase can be formu-
lated as:

q = argmax
i, j

{(1 − λd)clsi j × pi j × ceni j + λd Hi j }, (9)

where H is the cosine window and λd is a balance weight-
ing scalar (0 ≤ λd ≤ 1). The penalty and cosine window
can discourage large displacement and large scale change in
size and ratio during the tracking phase, thus alleviating the
influence of distractors. However, they also produce a side
effect that the output q with the highest scoremay be deviated
from the target center. Consequently, the queried location q
may be a target pixel near the center but not the center point
itself. Accordingly, we take its l, t, r , b to determine a coarse
bounding box Bcoarse, within which the target center is esti-
mated by the following region refinement operation.

Refinement As mentioned before, each location (i, j) in
the response map R∗ can be mapped back onto the input
search region as (xi , y j ). Let RoI = {(i, j)|(xi , y j ) ∈
Bcoarse} denotes a region of interest, obviously the resolu-
tion of pixels in RoI is 1/stride of those in Bcourse. In the
proposed architecture, the stride is set as 8. Then, we can
apply the Bicubic Interpolation with a scale 8 to up-sample
the corresponding RoI region of maps Acen and Areg . Thus,
the up-sampled maps Acen

up and Areg
up will have the same res-

olution as the search region. The location with the highest
value in Acen

up is considered as the target center prediction of
the center-ness branch, that is:

q∗
up = argmax

i, j
{Acen

up }. (10)

By taking a simple linear transformation, we can get its
corresponding location (xcen, ycen) on the search region.
According to q∗

up, the corresponding vector in the map Areg
up

is (lup, tup, rup, bup). It is empirically observed that the vec-
tor has the following characteristics: |lup − rup| ≈ 0 and
|tup − bup| ≈ 0. Therefore, we take use of lup + rup as width
of the target and tup + bup as height. The reason is that the
values l, r , t, b are predicted by four different channels of the
regression branch, their regression errors can be regarded as
independent to each other. Thus, the regression error can be
averaging reduced through this simple operation. By refine-
ment, the final output bounding box of the tracking model
is:

B f ine = (xcen, ycen, lup + rup, tup + bup) (11)

where (xcen, ycen) represents the center location of the object,
lup + rup represents the weight and tup + bup represents the
height of the bounding box.
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By leveraging the coarse-to-fine strategy, the proposed
framework can output a more accurate and stable final track-
ing result. Ablation studies demonstrate the effectiveness of
this tracking strategy. The whole tracking phase is intuitively
shown in Fig. 3.

4 Experiments and Results

4.1 Implementation Details

The proposed SiamCAR is implemented in Python with
PyTorch and trained on4RTX2080Ti cards. For fair compar-
ison, the input size of the template patch and search regions
are set as the samewith SiamRPN++ (Li et al., 2019), respec-
tively to 127 pixels and 255 pixels. In fact, the proposed
framework can work with both shallow and deeper back-
bone architectures (shown in the ablation study in Section
5.2). In this section, we adopt the modified ResNet-50 in
SiamRPN++ (Li et al., 2019) as the backbone to conduct the
comparion experiments. The network is pretrained on Ima-
geNet (Russakovsky et al., 2015). Thenwe use the pretrained
weights as initialization to train our model.

Training Details During the training process, the batch
size is set as 96 and totally 20 epochs are performed by using
stochastic gradient descent (SGD) with an initial learning
rate 0.001. For the first 10 epochs, the parameters of the
Siamese subnetwork are frozen when training the classifi-
cation and regression subnetwork. For the last 10 epochs,
the last 3 blocks of ResNet-50 are unfrozen for training.
The whole training phase takes around 42 hours. We train
our SiamCAR with the data from the COCO (Lin et al.,
2014), ImageNet DET, ImageNet VID (Russakovsky et al.,
2015) andYouTube-BB (Real et al., 2017) datasets for exper-
iments on the UAV123 (Muller et al., 2016), OTB-100 (Wu
et al., 2015) and VOT2020 (Matej et al., 2021) datasets. For
experiments on the TrackingNet (Muller et al., 2018) dataset,
we replace YouTube-BB (Real et al., 2017) with the Track-
ingNet training set to train themodel. It should be noticed that
for experiments on the GOT-10K (Huang et al., 2018) and
LaSOT (Fan et al., 2019) datasets, our SiamCAR is trained
with only the specified training set provided by the official
website for fair comparison.

Testing Details The testing phase uses the offline tracking
strategy. Only the object in the initial frame of a sequence
is adopted as the template patch. Consequently, the target
branch of the Siamese subnetwork can be pre-computed and
fixed during the whole tracking period. The search region in
the current frame is adopted as the input of the search branch.
In Fig. 3 we show the whole tracking process. With the out-
puts of classification-regression subnetwork, a location q is

queried through Equation (9). In order to achieve a more
stable and smoother prediction between adjacent frames, a
coarse-to-fine strategy introduced in Section 3.3 is adopted
to compute the final tracking result, and the queried location
q refers to the coarse predicting bounding box. For evalua-
tions on different datasets, we use the official measurements
provided there, which can be different from each other.

4.2 Results on GOT-10K

GOT-10K (Huang et al., 2018) is a recently released large-
scale and high-diversity benchmark for generic object track-
ing in the wild. It contains more than 10, 000 video segments
of real-world moving objects. Fair comparison of deep track-
ers is ensured with the protocol that all approaches use the
same training and testing data provided by the dataset. The
classes in training dataset and testing dataset are zero over-
lapped. The provided evaluation metrics include success
plots, average overlap (AO) and success rate (SR). The AO
represents the average overlaps between all estimated bound-
ing boxes and ground-truth boxes. The SR0.5 represents the
rate of successfully tracked frames whose overlap exceeds
0.5, while SR0.75 represents this overlap exceeds 0.75.

We evaluate SiamCAR on GOT-10K and compare it
against state-of-the-art trackers including SiamRPN++ (Li
et al., 2019), SiamRPN (Li et al., 2018), ATOM (Danelljan
et al., 2019), SPM (Wang et al., 2019) and other baselines
or state-of-the art approaches. Figure 4 shows the success
plots of all comparing trackers. The quantitative results of
trackers on the average overlap and success rate are listed
in Table 1, where the Top-2 results are highlighted in italic
and bold respectively. Overall, the proposed tracker performs
best in terms of allmetrics.Our SiamCARsurpasses the base-

Fig. 4 Success plots on the GOT-10K (Huang et al., 2018) dataset. Our
SiamCAR significantly outperforms the baselines and other state-of-
the-art methods
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Table 1 Evaluation on the GOT-10K (Huang et al., 2018) dataset

Tracker AO SR0.5 SR0.75 FPS Hardware Implementation

KCF (Henriques et al., 2014) 0.203 0.177 0.065 94.66 CPU Matlab

fDSST (Danelljan et al., 2016a) 0.206 0.187 0.075 30.43 CPU Matlab

SRDCF (Danelljan et al., 2015) 0.236 0.227 0.094 5.58 CPU Matlab

Staple (Luca et al., 2016) 0.246 0.239 0.089 28.87 CPU Matlab

SAMF (Li and Zhu, 2014) 0.246 0.241 0.084 7.43 CPU Matlab

DSST (Danelljan et al., 2014) 0.247 0.223 0.081 18.25 CPU Matlab

DAT (Pu et al., 2018) 0.251 0.242 0.048 45.52 CPU Matlab

MEEM (Zhang et al., 2014) 0.253 0.235 0.068 20.59 CPU Matlab

BACF (Kiani et al., 2017) 0.260 0.262 0.101 14.44 CPU Matlab

CFnet (Valmadre et al., 2017) 0.293 0.265 0.087 35.62 Titan X Matlab

MDnet (Nam and Han, 2016) 0.299 0.303 0.099 1.52 Titan X Python

ECO (Danelljan et al., 2017) 0.316 0.309 0.111 2.62 CPU Matlab

CCOT (Danelljan et al., 2016b) 0.325 0.328 0.107 0.68 CPU Matlab

SiamFC (Bertinetto et al., 2016) 0.374 0.404 0.144 25.81 Titan X Matlab

SPM (Wang et al., 2019) 0.513 0.593 0.359 72.30 Titan Xp Python

SiamRPN++ (Li et al., 2019) 0.517 0.616 0.325 49.83 RTX 2080 Ti Python

ATOM (Danelljan et al., 2019) 0.556 0.634 0.402 20.71 GTX-1050 Python

SiamCAR 0.581 0.683 0.441 52.20 RTX 2080ti Python

The average overlap and success rate of baselines and state-of-the-art trackers are evaluated on the GOT-10K (Huang et al., 2018) dataset. Top-2
results are highlighted in italic and bold respectively

line SiamRPN++ (Li et al., 2019) by 6.4% in AO , 6.7% in
SR0.5 and 11.6% in SR0.75. Compared with the second-best
tracker ATOM (Danelljan et al., 2019), SiamCAR improves
the scores by 2.5%, 4.9% and 3.9% respectively for AO ,
SR0.5 and SR0.75.

In Table 1, we also show the tracking running time in
frame-per-second (FPS).The reported speeds ofSiamRPN++
andSiamCAR is evaluated on amachinewith oneRTX2080ti
and others are provided by the GOT-10K official results. As
that shown here, our SiamCAR ismuch faster thanmost eval-
uated trackers at a real-time speed of 52.20 FPS. Compared
with SiamRPN++, SiamCAR improves the tracking speed
by 2.37 FPS.

Figure 5 shows some qualitative comparison results with
three popular trackers SiamRPN++ (Li et al., 2019), SPM
(Wang et al., 2019), ECO (Danelljan et al., 2017) and
the proposed algorithm on some challenging sequences
from the GOT-10K dataset. The anchor-free tracker ECO
can work in dull background (GOT-10K_Test_140) but the
performance is still much worse than the anchor-based
trackers SiamRPN++ (Li et al., 2019) and SPM (Wang
et al., 2019). It quickly drifts to the background when the
background is cluttered and similar distractors appears (GOT-
10K_Test_91, GOT-10K_Test_92 and GOT-10K_Test_81).
The anchor-based methods SiamRPN++ (Li et al., 2019)
and SPM (Wang et al., 2019) fail to track the whole object
when the object suffer from large shape deformation and

pose variation (GOT-10K_Test_81). SPM (Wang et al., 2019)
may also easy to drift to the background with similar
appearance (GOT-10K_Test_86). With per-pixel classifica-
tion and regression, the proposed bounding box prediction
subnetwork can decode sufficient category information and
spatial details against the shape and appearance changes
caused by background clutters, fast motion and rotations
(GOT-10K_Test_91, GOT-10K_Test_60, GOT-10K_Test_86,
GOT-10K_Test_81 and GOT-10K_Test_140). Since the size
and aspect ratio are regressed by themodel instead of prefixed
anchors, the proposed framework can greatly alleviate drastic
spatial scale changes caused by large shape deformation and
rotation, performing well on locating the whole object with a
much accurate enclosing bounding box (GOT-10K_Test_81,
GOT-10K_Test_86 and GOT-10K_Test_140 ).

4.3 Results on LaSOT

LaSOT (Fan et al., 2019) is a recently released benchmark
for single object tracking. The dataset contains more than
3.52 million manually annotated frames and 1400 videos.
It contains 70 classes, and each class includes 20 tracking
sequences. Such a large-scale dataset brings a great chal-
lenge to tracking algorithms. The official website of LaSOT
provides 35 algorithms as baselines. Normalized precision
plots, precision plots and success plots in one-pass evalua-
tion (OPE) are considered as the evaluation metrics.
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Fig. 5 Examples of tracking results. We show some visual tracking
results of three popular trackers SiamRPN++ (Li et al., 2019), SPM
(Wang et al., 2019), ECO (Danelljan et al., 2017) and the proposed
algorithm on six challenging sequences from GOT-10K (from top
to bottom: GOT-10K_Test_60, GOT-10K_Test_86, GOT-10K_Test_91,

GOT-10K_Test_92, GOT-10K_Test_81, and GOT-10K_Test_140). Our
SiamCAR can accurately predict the bounding boxes evenwhen objects
suffer from rotations, backgroundclutters, large scale variation and large
pose variation, while SiamRPN++ and SPM give much rougher results
and ECO drifts to the background

Fig. 6 Normalized precision plots, precision plots of OPE and success plots of OPE on the LaSOT (Fan et al., 2019) dataset. Our SiamCAR
significantly outperforms baselines and the state-of-the-art methods

We compare our SiamCAR with state-of-the art track-
ers and baselines including SiamRPN++ (Li et al., 2019),
ATOM (Danelljan et al., 2019), CLNet (Dong et al., 2020),
DSiam (Guo et al., 2017) and other baselines. As shown in
Fig. 6, our SiamCAR achieves the best performance. Com-

pared with SiamRPN++, our SiamCAR improves the scores
by 4.1%, 3.3% and 2.0% respectively for normalized preci-
sion plots, precision plots of OPE and success plots of OPE.
Compared with ATOM (Danelljan et al., 2019), our Siam-
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Table 2 Comparisons on the
TrackingNet (Muller et al.,
2018) dataset

Method Success Norm Precision Precision

SiamFC (Bertinetto et al., 2016) 55.9 65.2 51.8

CFNet (Valmadre et al., 2017) 57.8 65.4 53.3

ECO (Danelljan et al., 2017) 55.4 61.8 49.2

MDNet (Nam and Han, 2016) 60.6 70.5 56.5

DaSiamRPN (Zhu et al., 2018) 63.8 73.3 59.1

ATOM (Danelljan et al., 2019) 70.3 77.1 64.8

GlobalTrack (Lianghua Huang, 2020) 70.4 75.4 65.6

ROAM++ (Yang et al., 2020) 67.0 75.4 62.3

D3S (Lukezic et al., 2020) 72.8 76.8 66.4

SiamRPN++ (Li et al., 2019) 73.3 80.0 69.4

SiamCAR (Ours) 74.01 80.44 68.41

The success rate, precision and normalized precision of baselines and state-of-the-art trackers are evaluated
on the TrackingNet (Muller et al., 2018) dataset. Top-2 results are highlighted in italic and bold respectively

Fig. 7 Precision plots of OPE and success plots of OPE on the UAV123 (Muller et al., 2016) dataset. Our SiamCAR performs the best on both
evaluation metrics

CAR improves by over 3.4%, 1.9% and 0.1% respectively
for the three metrics.

The competitive results on such a large dataset demon-
strate that our proposed network has a good generalization
for visual object.

4.4 Results on TrackingNet

TrackingNet (Muller et al., 2018) is a large-scale dataset
and benchmark for object tracking in the wild. It provides
over 30,000 video sequences for training and 511 video
sequences for testing. The evaluation metrics include suc-
cess rate, precision and normalized precision. We compare
our SiamCAR with ten state-of-the-art approaches and base-
lines including D3S (Lukezic et al., 2020), ROAM++ (Yang
et al., 2020), SiamRPN++ (Li et al., 2019), GlobalTrack
(Lianghua Huang, 2020), ATOM (Danelljan et al., 2019) and

other baselines.As shown inTable 2, ourSiamCARsurpasses
state-of-the art trackers like D3S, GlobalTrack and ATOM in
all threemetrics.ComparedwithSiamRPN++ (Success score
of 73.3%, Precision score of 69.4% and NOrmalized Preci-
sion score of 80%), our SiamCAR achieves a comparable
result (Success score of 74.01%, Precision score of 68.41%
and Normalized Precision score of 80.44%) with a much
simpler network.

4.5 Results on OTB100

OTB-100 (Wu et al., 2015) contains 100 sequences with
substantial variations that collected and annotated from the
commonly used tracking sequence. The test sequences are
manually tagged with 11 attributes to represent the challeng-
ing aspects, including illumination variation, scale variation,
occlusion, deformation, motion blur, fast motion, in-plane
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Fig. 8 Success plots of OPE on the OTB-100 (Wu et al., 2015) dataset
with challenging attributes including background clutters, deformation,
fast motion, illumination variation, in-plane rotation, low resolution,

motion blur, occlusion, out-of-plane, out-of-view and scale variation.
Our SiamCAR achieves the best results against the impacts of all these
attributes

rotation, out-of-plane rotation, out-of-view, background clut-
ters and low resolution. We compare our network with state-
of-the-art approaches and baselines including SiamRPN++
(Li et al., 2019), SiamRPN (Li et al., 2018), ATOM (Danell-

jan et al., 2019) and ECO (Danelljan et al., 2017). In Fig. 8
we show an evaluation on success plots of OPE for 11 anno-
tated attributes and the overall attributes. It should be noticed
that the results here reported by SiamRPN++ (Li et al., 2019)
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Table 3 Comparisons on the VOT2020 (Matej et al., 2021) dataset

VOT-ST2020 VOT-RT2020
EAO A R EAO A R

IVT (Ross et al., 2008) 0.092 0.345 0.244 0.089 0.349 0.229

KCF (Henriques et al., 2014) 0.154 0.407 0.432 0.154 0.406 0.434

SiamFC (Bertinetto et al., 2016) 0.179 0.418 0.502 0.172 0.422 0.479

CSR-DCF (Lukežič et al., 2018) 0.193 0.406 0.582 0.193 0.405 0.565

SiamRPN++ (Li et al., 2019) 0.244 0.443 0.672 0.244 0.443 0.673

ATOM (Danelljan et al., 2019) 0.271 0.462 0.734 0.237 0.440 0.687

SiamCAR 0.273 0.449 0.732 0.272 0.449 0.732

The Expected Average Overlap (EAO), Accuracy (A) and Robustness (R) of baselines and state-of-the-art trackers are evaluated on the VOT2020
(Matej et al., 2021) dataset. Top-2 results are highlighted in italic and bold, respectively

are tracked by a specific trained model for the OTB dataset,
while our results are reported by a general trained model. As
shown in Fig. 8, the proposed SiamCAR ranks first in terms
of the overall attributes. Especially, our SiamCAR signifi-
cantly improves the tracking accuracy against the impacts of
low resolution, fast motion, motion blur and scale variation,
which benefits from the accurate decoded target information
by our classification-regression subnetwork. Compared with
state-of-the-art RPN trackers (Li et al., 2019; Zhu et al., 2018;
Li et al., 2018), our SiamCAR obtains competitive results
with a much simpler network, and it does not require tuning
parameters heuristically.

4.6 Results on UAV123

UAV123 (Muller et al., 2016) dataset contains 123 video
sequences and more than 110K frames. All sequences are
fully annotated with upright bounding boxes. Objects in the
dataset see fast motion, large scale and illumination varia-
tions and occlusions, which make tracking using this dataset
challenging.

We compare our SiamCAR with state-of-the-art app-
roaches and baselines including CLNet (Dong et al., 2020),
SiamRPN++ (Li et al., 2019), SiamRPN (Li et al., 2018),
SiamFC (Bertinetto et al., 2016) and ECO (Danelljan et al.,
2017) on this dataset. The success plot and precision plot of
OPE are used to evaluate the overall performance here. As
shown in Fig. 7, our SiamCAR outperforms all other track-
ers on both metrics. Compared with SiamRPN++ (Li et al.,
2019), our SiamCAR improves the scores by 3.5% and 3.0%
respectively for precision plots of OPE and success plots of
OPE.

4.7 Results onVOT2020

VOT2020 (Matej et al., 2021) dataset contains 60 public
sequences with different challenging factors. The evaluation
on VOT2020 has two settings: the VOT short-term tracking
challenge VOT-ST2020 under appearance variation, occlu-

sion and clutter, as well as the VOT short-term real-time
challenge VOT-RT2020 under time constraints. Following
the evaluation protocol of VOT2020, the Expected Average
Overlap (EAO) is taken as the main ranking metric, and eval-
uation in terms of Accuracy (A) and Robustness (R) are also
reported.

WecompareourSiamCARwith state-of-the-art approaches
and baselines including ATOM (Danelljan et al., 2019),
SiamRPN++ (Li et al., 2019), SiamFC (Bertinetto et al.,
2016) and CSR-DCF (Lukežič et al., 2018) on this dataset.
As shown in Table 3, our SiamCAR achieves leading perfor-
mance on the dataset. Compared with SiamRPN++ (Li et al.,
2019), our SiamCAR improves the scores by at least 2.8%,
0.6% and 5.9% respectively for EAO, Accuracy and Robust-
ness. Compared with the online model updating tracker
ATOM (Danelljan et al., 2019), our tracker with simpler
structure and off-line tracking strategy improves the score of
the main ranking metric EAO by 0.2% on the VOT-ST2020
challenge and3.5%on theVOT-RT2020 challenge. The com-
parisons indicate that the proposed tracker can achieve much
stable performance with real-time request.

4.8 Failure Cases

In Fig. 9, we show the tracking failure instances in extreme
cases. For the upper−le f t and lower−right frames, when
similar distractors with the same category and appearance
occur along with fast motions, background clutters and com-
plete occlusions, the proposed method can not successfully
discriminate the target person or face due to the high simi-
larity with other people. For the upper − right frame, when
long-term occlusions occur, our framework cannot perform
well since the lack of information for target center location.
For the lower−le f t frame, the ground truth is the upper part
of the body, while our framework tracks the whole body. The
reason is that the appearance of the lower body is similar to
the upper body, and our framework tends to detect the person
as a whole.
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Fig. 9 Failure examples in extreme cases with high similar distractors,
severe occlusions and motion blur

Since the method is a simple one-shot learning frame-
work, the performance can be boosted via new modules like
attention mechanism or model updating in the future.

5 Ablation Study

In order to validate the impact of different tracking strategy
and backbones, some ablation experiments are conducted on
popular benchmarks.

5.1 Coarse-to-Fine Tracking Strategy

In this paper, we formulate a coarse-to-fine tracking strategy
instead of the top-k average strategy in our previous work
(Guo et al., 2020) to compute the final target bounding box.
To analysis the impact, we conduct the comparison between
the two tracking strategies and the coarse detection on the
OTB-100 (Wu et al., 2015), UAV123 (Muller et al., 2016),
LaSOT (Fan et al., 2019) and GOT-10K (Huang et al., 2018)
datasets.

As shown in Table 4, compared with the coarse detection,
both the top-k average strategy and the coarse-to-fine strategy
achieve performance improvement on all benchmarks. This is
because the queried location q computed by Eq. 9 for coarse
detection may be visibly deviated from the target center due
to the influence of the scale change penalty pi j and cosine
window. Because of the particularity of SOT task that the
target is given only in the first frame, small deviation errors
are easy to accumulate, leading to the failure tracking of
subsequent frames.

Comparedwith the top-k average strategy, SiamCARwith
the new tracking strategy improves the scores in terms of
all the indicators. The success on OTB-100 is improved by

4.0% from 0.660 to 0.700, and the precision is increased by
2.4% from 0.890 to 0.914. Indicators on other datasets are
also improved by at least 0.9% to 2.6%, which demonstrate
that the coarse-to-fine strategy further boost the tracking
performance. The reason is that directly using the largest
score output by the center-ness branch to determine the tar-
get center may yield certain deviation error, since there is
a resolution ratio difference between the response map and
the search region. By upsampling the center-ness map and
the regression map, we can achieve the target center and its
bounding box through aBicubic Interpolationmethod,which
can reduce the deviation caused by resolution change.

5.2 SiamCAR Framework versus the Backbones

In order to verify the effectiveness of the proposed frame-
work with different backbone architectures, we conduct the
tracking experiments on the OTB100 and UAV123 datasets
by using Alexnet, mobileNet, ResNet-18 and ResNet-50 as
backbones. These backbone architectures are different in
depth of layers and lead to great variations in computational
efficiency. Table 5 shows the tracking performance with the
success, precision and frame-per-second (FPS) asmetrics. To
demonstrate the contribution of our classification-regression
subnetwork, comparisons with the most representative base-
lines are also shown for the shallow network AlexNet, the
deeper network ResNet-18 and the deepest network ResNet-
50.

With AlexNet, the proposed framework outperforms
SiamRPN (Li et al., 2018) by 2.0% in success and 1.6%
in precision, as well as 3.4% in success and 1.1% in preci-
sion relatively on the OTB100 and UAV123 datasets. With
ResNet-50, the proposed framework outperforms
SiamRPN++ (Li et al., 2019) by 0.8% in success and 0.5% in
precision, as well as 3.0% in success and 3.5% in precision
relatively on the two datasets. A speed of 170 FPS can be
achieved with Alexnet. By replacing AlexNet with ResNet-
50, the precision increase by around5.3%and5.9%relatively
on the two datasets while the tracking speed decreases to 52
FPS, which is still in real-time speed. Obviously, the pro-
posed framework can benefit from deeper networks. Notably,
SiamCAR with ResNet-18 can achieve a tracking speed of
1.96 times faster than that of SiamRPN++ (Li et al., 2019)
with ResNet-50 while producing a better performance on the
UAV123 dataset. Compared with the online tracker ATOM
(Danelljan et al., 2019), SiamCARwith ResNet-18 surpasses
it by 1.0% in success and 1.2% in precision on the OTB100
dataset. Though SiamCAR with ResNet-18 obtains lower
performance than ATOM on the UAV123 dataset, it achieves
a tracking speed of 3.4 times faster. The reason is that much
longer video sequences can obviously benefit online model
updating tracker, but the simpler architecture of our proposed
tracker can greatly improve the tracking efficiency. Accord-
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Table 4 Comparisons with different tracking strategies

Datasets Indicators SiamCAR-ctf SiamCAR-ave SiamCAR-coarse
(Guo et al., 2020)

OTB-100 (Wu et al., 2015) Sucess 0.700 0.660 0.652

Precision 0.914 0.890 0.854

UAV123 (Muller et al., 2016) Sucess 0.640 0.620 0.614

Precision 0.839 0.817 0.806

LaSOT (Fan et al., 2019) Sucess 0.516 0.507 0.494

Norm precision 0.610 0.600 0.589

Precision 0.524 0.510 0.508

GOT-10K (Huang et al., 2018) AO 0.581 0.569 0.558

SR0.5 0.683 0.670 0.657

SR0.75 0.441 0.415 0.423

Experiments are conducted with different official measurements relative to popular benchmarks. SiamCAR-coarse: the proposed framework with
only coarse detection operation; SiamCAR-ctf: the proposed framework with coarse-to-fine strategy; SiamCAR-ave (Guo et al., 2020) :the proposed
framework with top-k average strategy

Table 5 Comparisons on the OTB100 (Wu et al., 2015) and UAV123 (Muller et al., 2016) dataset with different backbones

Backbone Method OTB100 UAV123 FPS
Success Precision Success Precision

AlexNet SiamFC 0.582 0.771 0.485 0.648 86

SiamRPN 0.637 0.851 0.557 0.771 160

SiamCAR 0.657 0.867 0.591 0.782 170

MobileNet SiamCAR 0.676 0.882 0.608 0.802 77

ResNet-18 ATOM 0.663 0.872 0.643 0.856 30

SiamCAR 0.673 0.884 0.621 0.821 102

ResNet-50 SiamRPN++ 0.696 0.915 0.610 0.806 50

SiamCAR 0.704 0.920 0.640 0.841 52

The success, precision and frame-per-second on the OTB100 (Wu et al., 2015) and UAV123 (Muller et al., 2016) dataset with different backbones
are shown in the table. The most representative baselines are listed for respective backbones to validate the contribution of the proposed framework
vs. the backbones

ingly, different backbones can be selected to fit the proposed
framework to different real tasks, with a trade-off between
the tracking accuracy and efficiency.

6 Conclusions

In this paper, we have reformulated the tracking task as two
subproblems of classification and regression, thus presented
a Siamese classification and regression framework, namely
SiamCAR. The proposed framework enables the end-to-end

training of a deep Siamese network for visual tracking. We
also show that tracking tasks can be resolved in a per-pixel
prediction manner using the proposed neat fully convolu-
tion framework. The framework is very simple in terms of its
architecture, but achieves new state-of-the-art results without
bells andwhistles onGOT-10K and other challenging bench-
marks. It also achieves the best performance on large-scale
dataset like LaSOT, which verifies the generalization ability
of the proposed framework. Since our SiamCAR is simple
and neat, several modifications could be easily performed
next to achieve further improvement.
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