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Abstract—Digital fingerprinting protects multimedia content
from illegal redistribution by uniquely marking every copy of
the content distributed to each user. The collusion attack is a
powerful attack where several different fingerprinted copies of
the same content are combined together to attenuate or even
remove the fingerprints. One major category of collusion-resistant
fingerprinting employs an explicit step of coding. Most existing
works on coded fingerprinting mainly focus on the code-level
issues and treat the embedding issues through abstract assump-
tions without examining the overall performance. In this paper,
we jointly consider the coding and embedding issues for coded
fingerprinting systems and examine their performance in terms
of collusion resistance, detection computational complexity, and
distribution efficiency. Our studies show that coded fingerprinting
has efficient detection but rather low collusion resistance. Taking
advantage of joint coding and embedding, we propose a permuted
subsegment embedding technique and a group-based joint coding
and embedding technique to improve the collusion resistance
of coded fingerprinting while maintaining its efficient detection.
Experimental results show that the number of colluders that the
proposed methods can resist is more than three times as many as
that of the conventional coded fingerprinting approaches.

Index Terms—Collusion resistance, error correcting code,
group-based fingerprinting, joint coding and embedding, multi-
media fingerprinting, traitor tracing.

I. INTRODUCTION

T
ECHNOLOGY advancement has made multimedia con-

tent widely available and easy to process. These benefits

also bring ease to unauthorized users who can duplicate and ma-

nipulate multimedia content, and redistribute it to a large audi-

ence. As such, the protection of multimedia content becomes in-

creasingly important. Digital fingerprinting is an emerging tech-

nology to protect multimedia content from unauthorized dis-

semination, where each user’s copy is identified by a unique

ID, known as a fingerprint, embedded in his or her copy and
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the fingerprint can be extracted to help identify culprits when a

suspicious copy is found. A powerful, cost-effective attack from

a group of users is collusion, where several users combine their

copies of the same content to generate a new version. If designed

improperly, the fingerprints can be weakened or removed by a

collusion attack.

A growing number of techniques have been proposed

recently concerning collusion-resistant fingerprinting for multi-

media. Many of them fall in one of two categories, according to

whether an explicit discrete coding step is involved. In the non-

coded category, a typical example is orthogonal fingerprinting,

which assigns each user a spread-spectrum (SS) sequence as a

fingerprint, and the sequence is typically orthogonal to those

for other users [1], [2]. The collusion resistance performance

of orthogonal fingerprinting can be improved by introducing

correlation to the fingerprints for users who are likely to collude

together due to cultural and other relations [3]. Noncoded

fingerprinting is a natural extension from SS embedding [4]

and is easy to implement. A weakness of noncoded schemes

is that the required number of spreading sequences and the

computational complexity of detection would increase linearly

with the number of users.

Building coded fingerprints for generic data (such as exe-

cutable software programs and bitstreams) was investigated by

the coding and cryptography communities. Early works can be

traced back to the 1980s [5], [6]. A concept of marking assump-

tion was introduced by Boneh and Shaw in [7], and a two-level

binary code construction, known as a -secure code, was pro-

posed to resist up to colluders with high probability. This bi-

nary code was later used to modulate a direct SS sequence to

embed fingerprint codes into multimedia signals [8]. By explic-

itly exploiting the multimedia characteristics through selecting

appropriate modulation and embedding schemes, a more com-

pact code was introduced in [9] based on combinatorial design

to identify colluders through the code bits shared by them. Many

recent works on coded fingerprinting [10], [11] extend Boneh

and Shaw’s framework and consider the construction of codes

with traceability, such as the identifiable parent property (IPP)

code and the traceability (TA) code. Among these codes, TA

codes are stronger than other codes in terms of tracing capa-

bility and can be systematically constructed using well-estab-

lished error correcting code (ECC). Thus, TA codes are widely

used in the coded fingerprinting literature. The authors of [12]

and [13] applied the ECC-based TA code to multimedia fin-

gerprinting and extended it to deal with symbol erasures con-

tributed by noise or cropping in the multimedia signal domain.

Another reason why researchers favor ECC for fingerprint code

construction is that some ECCs, such as the algebraic-geometry
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codes, have efficient decoding algorithms. For example, the au-

thors in [14] employed the Guruswami–Sudan soft-decision list

decoding algorithm for the algebraic-geometry code to identify

multiple colluders. In this paper, we focus on the coded finger-

printing constructed by ECC and refer to it as the ECC-based

fingerprinting.

In the existing coded fingerprinting works that originated

from fingerprinting generic data, the special properties and

issues of the multimedia signal have not been sufficiently

explored in the code design. Although some papers [12], [14]

claimed that their schemes are for multimedia, the embedding

issues are handled in a rather abstract level through models

based on the marking assumptions. They typically assume that

colluders can only change fingerprint symbols in which they

have different values, and that the colluders assemble pieces of

their codewords to generate a colluded version. Although the

marking assumptions may work well with generic data, they

alone are not capable of modeling multimedia fingerprinting,

where colluders can manipulate fingerprinted multimedia in

the signal domain to bring code-domain changes beyond the

marking assumptions. In the meantime, as has been shown in

[9], by jointly exploring embedding and coding, we can sub-

stantially limit the effective ways that attackers may exploit; for

example, they cannot manipulate the bits/symbols on the code

level. Thus, it is important to examine the overall performance

across coding and signal domains, taking into account the

coding, embedding, attack, and detection issues.

In this paper, we start with introducing a general framework

for coded multimedia fingerprinting by integrating coding and

embedding issues. Focusing on ECC code construction, we

examine the overall performance of ECC-based multimedia fin-

gerprinting across both coding and embedding layers. As will

be shown in the paper, the ECC-based fingerprinting has more

efficient detection in terms of computational complexity than

noncoded orthogonal fingerprinting, but its colluder traceability

is considerably lower. In order to achieve a better tradeoff

between the collusion resistance and detection computational

complexity, we jointly consider coding and embedding during

fingerprint design. First, we observe a huge gap between the

resistance of coded fingerprinting against different collusion

attacks and, particularly, interleaving collusion is much more ef-

fective than averaging collusion from the attackers’ perspective.

We thus propose a permuted subsegment embedding technique

to enforce interleaving collusion to have a similar effect on the

embedded fingerprints to what averaging collusion brings. The

key idea is to divide each segment of the fingerprint, which

corresponds to one symbol, into several subsegments, and then

to randomly permute these subsegments before embedding. At

the detection stage, inverse permutation is performed on these

subsegments, followed by a correlation detector to identify

traitors. Second, taking advantage of prior knowledge that some

users are more likely to collude together than with others, pos-

sibly due to geographical or cultural reasons [3], we propose a

group-based joint coding and embedding (GRACE) technique.

In GRACE, each fingerprint consists of a user subcode and a

group subcode, and is embedded in the host signal via the SS

technique. The detection is done in two levels, which identifies

guilty groups through correlation and then narrows down to

Fig. 1. Framework of the embedded ECC-based fingerprinting.

specific colluders through minimum distance decoding or

correlation-based soft detection. The comparison between the

proposed fingerprinting schemes and the existing ECC-based

fingerprinting shows that the fingerprinting strategy of joint

coding and embedding substantially improves the collusion

resistance of ECC-based fingerprinting, while preserving its

advantages of compact representation and efficient detection.

The paper is organized as follows. Section II provides a gen-

eral background on ECC-based fingerprinting. Section III ex-

amines the detection efficiency and collusion traceability of the

conventional ECC-based fingerprinting. Based on the results

obtained from Section III, we propose the permuted subseg-

ment embedding technique in Section IV and show its effec-

tiveness through experimental results. We present in Section V

the proposed GRACE technique, along with the design and per-

formance evaluation of multimedia fingerprinting systems in-

tegrating the two proposed techniques. Finally, conclusions are

drawn in Section VI.

II. BACKGROUND ON ECC-BASED FINGERPRINTING

Fingerprint construction and embedding are two important

issues for a multimedia fingerprinting system. We illustrate a

framework of applying coded fingerprinting for multimedia data

in Fig. 1, which consists of a coding layer and an embedding

layer. In fingerprinting applications, the original host signal is

typically available to detectors [15], which is known as non-

blind detection, and the robustness against a single user’s at-

tacks (such as noise addition, compression, and filtering) is a

basic requirement. The SS additive embedding technique or its

variations is a viable choice for the embedding layer, owing to

its excellent robustness under nonblind detection that has been

demonstrated in the literature [4]. A symbol in a fingerprint code

over an alphabet of size can be mapped to a signal suitable

for embedding through various modulation techniques [16]. Or-

thogonal modulation that uses mutually orthogonal signals to

represent symbol values widely separates the different sym-

bols in the signal domain and, thus, gives higher detection ac-

curacy.

The prior works on ECC-based fingerprinting have been de-

signed on top of the marking assumptions [12], [17]. We now

replace the abstraction of marking assumptions with a modula-

tion and embedding layer for a complete system of multimedia

fingerprinting. Thus, the layered structure of the ECC-based fin-

gerprinting system includes an ECC code layer and an SS-based

embedding layer, along with an attack channel where we mainly

focus on collusion attacks. In the following, we shall address
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several important issues of ECC-based fingerprinting over the

three main stages, namely fingerprinting, collusion attacks, and

detection.

A. Fingerprinting

During the fingerprinting process, we first choose an ECC

code over an alphabet with size , and assign a codeword to

each user. The design requirement of this ECC fingerprint code

will be discussed later in this section.

We partition the host signal into nonoverlapped segments,

where each segment is to carry one symbol of the fingerprint

code. The partition can be done spatially into blocks for image,

or temporally into frames for video and audio. Within each seg-

ment, we use mutually orthogonal SS sequences

with identical energy to represent the possible

symbol values, and add one of these sequences into the segment

(with perceptual scaling) according to the symbol value in the

fingerprint code. Each fingerprinted segment can be modeled as

(1)

where is the th segment of a host signal, and is the th

fingerprinted segment for the th user. The function

is used to retrieve the symbol for the th segment from the

th user’s codeword, and is the SS sequence corre-

sponding to the symbol value. The concatenation of all finger-

printed segments forms the ultimate fingerprinted signal.

B. Collusion Attacks

In most existing works concerning fingerprinting, it is as-

sumed that the colluders can only change the fingerprint code

symbols where they see different values within the colluder

group [7], and a colluded version is constructed by assembling

pieces of the colluders’ codewords [12]. We refer to this as

(symbol-based) interleaving collusion. Additional distortion

may be added to the multimedia signal during the collusion,

which we model as additive noise. Since few colluders would

be willing to take higher risk than others, they generally would

make contributions of an approximately equal amount in the

collusion [15].

In addition to interleaving collusion, colluders can manipu-

late fingerprinted multimedia in the signal domain, incurring

a variety of code-domain changes beyond the marking as-

sumptions. A simple, yet effective way is to average the

corresponding signal components or features from multiple

copies [9], bringing changes that are different from interleaving

collusion. The averaging collusion can be modeled as follows:

(2)

where is the colluded signal, is the host signal, is the

noise term, represents the fingerprint sequence for user ,

is the colluder set, and is the number of colluders. Studies

in [18] have shown that a number of nonlinear collusions can

be well approximated by an averaging collusion plus additive

noise. Thus, we will mainly focus on the interleaving and av-

eraging collusions in this paper. For simplicity in analysis, we

assume that the additional noise under both collusions follows

independently identically distributed (i.i.d.) Gaussian distribu-

tion. The effects of many other distortions have been studied in

the watermarking literature, such as quantization/compression

and geometric distortions. And since the original host signal is

often available to detector in fingerprinting applications, we can

use it as a reference and the effects of many distortions can be

approximated well by additive noise.

C. Detection

At the detector side, our goal is to catch one of the colluders

with high probability. We first determine which symbol is

present in each multimedia segment through a correlation

detector commonly used for SS embedding [2], [4]. As a host

signal can be made available to detectors in many fingerprinting

applications, we register the suspicious copy with the host

signal and subtract the host signal from the suspicious copy to

obtain a test signal. Then, for each segment of the test signal, we

employ a maximum correlation detector to identify the symbol;

that is, we correlate it with each of the spreading sequences,

identify the sequence giving the maximum correlation, and

record the corresponding symbol. The detection statistic for the

th segment is defined as

(3)

where and represent the th segment of the colluded

signal and that of original signal, respectively. The extracted

symbol from the th segment is .

With the sequence of symbols extracted from all segments using

this maximum detector, we proceed to the ECC code layer and

apply a decoding algorithm to identify the colluder whose code-

word has the most matched symbols with the extracted symbol

sequence.

Alternatively, we can employ a soft-detection strategy to

keep the correlation results of (3) with each of the possible

sequences at every segment without determining the symbol

value, and then collect the results from all segments together to

arrive at the correlation result for each user as

(4)

where is the code length, and is the total number of users.

Note that this approach has the correlation results equivalent

to1a matched-filter detector that correlates the entire test signal

with each user’s fingerprint sequence by

(5)

Here, for all based on the equal energy

construction. The user whose fingerprint has the highest

correlation value is identified as the colluder (i.e.,

1As we shall see later in Section III-A, computing the partial correlation and
then aggregating together is a more efficient implementation than taking the
N correlation results on the whole signal. In this paper, we shall employ this
efficient implementation for the matched-filter detector in (5) for ECC-based
fingerprinting.
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). Compared with the former

two-step hard-decision scheme, the latter scheme takes advan-

tage of the soft information on the symbol level and provides

a better collusion identification performance. In both hard and

soft detectors, we always make decisions on the colluder identi-

fication and only accuse one user as the colluder. Therefore, the

probability of false positive will be one minus the probability

of detection.

Under the above framework, the noncoded orthogonal finger-

printing can be seen as a special case that the alphabet size

equals the total number of users and the codeword length

equals 1. The detection for orthogonal fingerprinting is done by

first correlating the test signal with each user’s sequence and

then identifying the user with the highest correlation statistic as

the colluder.

D. Considerations on ECC Fingerprint Codes

A common practice in fingerprint code design treats the sym-

bols contributed from other colluders as errors, and makes the

minimum distance between codewords large enough to tolerate

the errors. The minimum distance requirement ensures that the

best match with a colluded codeword (referred to as the descen-

dant) comes from one of the true colluders. The -TA code [17]

is such an example.

Let be a code over an alphabet with length

and codewords. Without loss of generality, we consider the

first users as colluders. The set of colluders is denoted as

, where a codeword represents

the th colluder and consists of a sequence of symbols (i.e.,

). A codeword set that can descend from

this colluder set is denoted as

If for any descendant , there is a

such that

for any innocent user’s codeword , where the

notation is the cardinality, then is called a -traceability

( -TA) code and denoted as with .

Under the conventional marking assumptions, a -TA code

can be constructed using an ECC if its minimum distance

satisfies [17]

(6)

where is the code length and is the colluder number.

As mentioned earlier, most of the existing works [12]–[14]

mainly consider the outer layer of the system (i.e., the ECC code

layer), and deal with the embedding through marking assump-

tions. However, the distortions and attacks mounted by adver-

saries on the fingerprinted multimedia can lead to errors in de-

tecting fingerprint code symbols, which are beyond the marking

assumptions. The existing work on -TA codes has been ex-

tended to tolerate erasures [12]. Recently, we have further ex-

tended the work by considering both erasures and nonerasure

errors [19].

As can be seen from the above discussions, the ECC-based

fingerprint code prefers an ECC with the larger minimum

distance to tolerate more colluders. Among ECC constructions,

Reed–Solomon codes have the minimum distance that achieves

the Singleton bound [20] and is widely used in the existing

coded fingerprinting works [12], [17]. We employ a -ary

Reed–Solomon code with code length to construct a -TA

code. The parameters of the -tuple Reed–Solomon code for

users should satisfy [19]

and (7)

where is an auxiliary parameter indicating the number of

symbol errors the code is designed to tolerate.

In general, the decoding computational complexity of

the -TA code is for a total of codewords. For

Reed–Solomon codes, or more generally algebraic-geometry

codes, there is a more efficient decoding method known as the

list decoding, which can correct more errors than the decoding

radius imposed by the minimum distance. The list decoding

algorithm can reduce the decoding complexity to the order

of polynomial in [21]. However, as we will see in

the following section, when we take the embedding layer

into consideration, the demodulation process to extract the

embedded symbols dominates the accounting of the detection

computational complexity. This also suggests the importance

of the joint consideration of coding and embedding.

III. PERFORMANCE EVALUATION OF ECC-BASED

FINGERPRINTING

Examining the existing literature on ECC-based finger-

printing reveals that few works actually considered the em-

bedding of the designed fingerprints into a host signal and the

extraction of them after the collusion. We have found a very

limited amount of overall performance analysis by considering

the coding and embedding together [8], and little comparison

with noncoded orthogonal fingerprinting. Thus, in this section,

we first analyze the computational complexity of the detection

process and the efficient distribution of ECC-based finger-

printing. We then examine its collusion resistance through

measuring the probability of catching one colluder under dif-

ferent values of the colluder number and compare it with the

performance of noncoded orthogonal fingerprinting.

A. Computational Complexity of Detection

As we have pointed out in the previous section, one of the rea-

sons that researchers in the literature may favor ECC-based fin-

gerprinting over the noncoded orthogonal approach is because

some classes of ECC have more efficient decoding algorithms

than the maximum-likelihood decoding that is commonly used

for orthogonal fingerprinting [22]. By jointly considering the

coding and embedding of ECC-based fingerprinting, we can

obtain a complete picture on the computational complexity for
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colluder identification, which consists of demodulation and de-

coding. We shall show that while the efficient decoding im-

proves the detection efficiency, the improvement is a relatively

small part in the overall computational complexity. The major

improvement on the detection efficiency comes from the de-

modulation process.

For a fingerprinting system with a total of users and a host

signal with totally embeddable components, the detection of

orthogonal fingerprinting is done by correlating the test signal

with each user’s fingerprint sequence. This takes multipli-

cations plus summations, or a total of oper-

ations. We further perform comparisons to find the finger-

printsequencecorrespondingtothehighestcorrelationtoidentify

one of the colluders. Thus the computational complexity of the

whole detection process is .

For ECC-based fingerprinting, since the fingerprint se-

quences for each segment only have different versions (corre-

sponding to symbols), we only need multiplications

plus summations and comparisons

for demodulation, giving a total computational complexity of

. In the decoding step, we can determine the colluder

through comparisons by brute force searching,

which provides an upper bound on the decoding complexity.

Putting the demodulation and decoding steps together, we find

the computational complexity for ECC-based fingerprinting as

. In many practical applications of robust

fingerprinting, to ensure fingerprints be reliably embedded in

multimedia, we generally have . This suggests that the

demodulation part dominates the overall complexity, regardless

of the use of efficient decoding algorithms. Therefore, the

overall computational complexity becomes . Similarly,

the soft detector of (5) with implementation of (4) needs

operations to calculate the partial correlations and

further requires summations and comparisons

to determine the colluder. This leads to the same computational

complexity bound of as the hard detection. Taking a

Reed–Solomon code construction with as an example,

we obtain the bound of detection computational complexity for

ECC-based fingerprinting as .

Comparing the detection computational complexity of ECC-

based fingerprinting and orthogonal fingerprinting, we can see

that the significant improvement on the demodulation process

brings a substantial advantage of ECC-based fingerprinting over

theorthogonalfingerprinting.This is largelyowingto thereduced

alphabet size in ECC-based fingerprinting. Furthermore, we no-

tice thatECC-basedfingerprintingrequiresas fewas orthogonal

sequences of length , while the orthogonal fingerprinting re-

quires mutually orthogonal sequences of length . This sug-

gests that the ECC-based system has an advantage of providing

a more compact way of representing users and consuming fewer

resources in terms of the orthogonal sequences. The compact rep-

resentation of fingerprints allows for a simpler design and imple-

mentation in the embedding and detection stages.

B. Efficient Distribution of Fingerprinted Signals

In some applications, such as video streaming, where a huge

amount of data has to be transmitted to a number of users in real

time, the efficient generation and distribution of fingerprinted

copies for different users is an important issue. ECC-based fin-

gerprinting provides a potential support for the efficient distri-

bution of the fingerprinted signal. This is because for a total of

users, every segment only has versions, each of which has

one of the possible symbols embedded. We can pregenerate

these versions for each segment, which allows us to quickly

construct the fingerprinted copy for any given user by concate-

nating the corresponding segments according to his or her code-

word. To distribute these fingerprinted copies, we can employ

secure multicast protocols such as that by Chu et al. [23]. Since

for each segment we send copies, the bandwidth requirement

on the sender side for distributing copies is , where is

the bandwidth requirement of sending only one copy.

In contrast, for an orthogonal fingerprinting system, all users

have different versions at each segment. There is no structural

advantage we can take in constructing and distributing the fin-

gerprinted signals. The owner needs to generate the whole fin-

gerprinted signal for each user and to unicast one of the

versions of the signals to each user, which generally requires

a bandwidth of .

We compare the communication cost of ECC-based finger-

printing and orthogonal fingerprinting by defining as the ratio

of the bandwidth consumption of ECC-based fingerprinting to

that of orthogonal fingerprinting. From the above discussion,

we have . When the ECC-based fin-

gerprinting is constructed based on a Reed–Solomon code, for

example, with parameters , , has value of 1/32.

This suggests that the communication bandwidth required by

a sender employing ECC-based fingerprinting can be one to

two orders of magnitude lower than that of orthogonal finger-

printing. If the communication cost requirement is more strin-

gent than other parameters, we can further adjust to lower the

cost.

C. Analysis of Collusion Resistance

Consider an ECC-based fingerprinting system employing a

-tuple code with minimum distance over -ary alphabet to

represent users. Under the (symbol wise) interleaving collu-

sion, the colluders exploit the fingerprint pattern and contribute

segment by segment with each segment carrying one symbol.

Averaging collusion does not rely on the fingerprint pattern and

simply takes the average value of each signal component. As a

result, these two collusion attacks have different effects on col-

lusion detection and we shall analyze them separately.

1) Interleaving Collusion: During the interleaving collusion,

colluders contribute their copies segment by segment (or equiv-

alently, symbol by symbol at the code level) with approximately

equal share. Further distortion may be applied on the colluded

signal, which we simplify as additive white Gaussian noise. At

the detector side, we consider the soft detector employing the

matched filter as in (5). With this detector, we skip the symbol

detection as in hard detection, and directly identify the colluder

by correlating the test signal with every fingerprint sequence.

The user whose fingerprint sequence has the highest correla-

tion is declared as colluder. As long as the correlation between

the fingerprint sequences is kept low, the performance of the
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matched-filter decoding approaches that of the maximum-likeli-

hood decoding and provides an upper bound for the ECC-based

fingerprinting.

To facilitate further discussions, here we write down the ex-

pression of the matched-filter detector again in (8). For each

user, we examine a correlation-based statistic as

(8)

which follows a multivariate Gaussian distribution of di-

mensions. Here, is the fingerprint sequence for user , is

the colluded signal, and is the original signal. We define

(9)

where is the colluder set. For simplicity, we approximate

and as independent Gaussian variables. By examining

the distribution of the correlations between each fingerprint se-

quence and the test sequence, we can express the mean and the

variance of and as follows:

(10)

(11)

(12)

where is the variance of the additive noise. Thus, the proba-

bility of detection is

(13)

where is the pdf of and

(14)

2) Averaging Collusion: We employ the matched-filter

detector in (8) to analyze the probability of detection under

averaging collusion. To get an analytical approximation, we

first consider an ideal fingerprinting system whose fingerprint

sequences have a constant pairwise correlation, denoted as .

Without loss of generality, we assume that the first users con-

tribute to collusion by performing averaging operations. The

vector of detection statistics ’s defined in (8) and follows an

-dimensional Gaussian distribution:

(15)

where is an all-1 vector with dimension -by-1, is an

-by- matrix whose diagonal elements are 1’s and offdi-

agonal elements are ’s, is the variance of the noise, is

the mean vector for colluders, and is the mean vector for

innocent users. Given the same colluder number and finger-

print strength , the mean correlation values with colluders

and with innocents are separated more widely for a smaller .

This suggests that in absence of any prior knowledge on col-

lusion pattern, a smaller leads to a larger colluder detection

probability . Therefore, we prefer fingerprint sequences with

a small pairwise correlation in the system design.

The pairwise correlation of ECC-based fingerprinting can be

calculated by examining the code construction. Codes with a

larger minimum distance have a smaller upper bound on the cor-

relation and, thus, are more preferable. This is consistent with

the principle indicated in (6) to employ codes with a large min-

imum distance. Under the code construction with a large min-

imum distance, the largest pairwise correlation between the

fingerprinting sequences, which corresponds to the codewords

with minimum distance, will be close to 0. We use the above

equal pairwise correlation model with to approximate

the performance of ECC-based fingerprinting under averaging

collusion.

Taking Reed–Solomon code-based fingerprinting as an

example, we calculate its pairwise correlation. For an -tuple

-ary Reed–Solomon code with dimension , the total number

of codewords is and the minimum distance is

. We use and to represent the finger-

print sequences for user and user , respectively, and

the orthogonal sequence representing the symbol in user ’s

codeword at position with . The normalized

correlation between and is

(16)

We can choose and such that the correlation is close to 0.

By doing so, the ECC-based fingerprinting and the orthogonal

fingerprinting should have comparable resistance against aver-

aging collusion.

3) Numerical Results: In order to illustrate the collusion

resistance derived from the above analysis, we consider an

example system with the parameters chosen as follows. For

a system holding users, the results in (7) and (16) show

that a larger and a smaller are preferred in order to get

better collusion resistance under interleaving and averaging

collusion. Because can only take integer values, we take
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Fig. 2. Analytical approximation of ECC-based fingerprinting under (a) inter-
leaving collusion, (b) averaging collusion, and orthogonal fingerprinting under
(c) interleaving collusion, and (d) averaging collusion.

to obtain a nontrivial Reed–Solomon code construction. This

also determines since . On the other hand, larger

results in a smaller segment size for a given host signal, which

may lead to a higher error probability in symbol detection.

Typically a segment size of 1000 can provide reliable symbol

detection. With an additional condition that , we choose

to be a number smaller than but close to . In our example,

considering a total of users and a host signal with

embeddable components, we choose

and use a Reed–Solomon code with parameters of and

. According to (6), the code level alone can only assure

resisting up to five users’ interleaving collusion; on the other

hand, the correlation between fingerprint sequences is only

0.03 according to (16), which suggests it should have similar

performance to orthogonal fingerprinting under averaging

collusion.

We show the analytical approximation of for the ECC-

based fingerprinting under interleaving and averaging collusion

with the above settings in Fig. 2(a) and (b), respectively. The wa-

termark-to-noise-ratio (WNR) ranges from 0 to 20 dB, which

includes the scenarios from severe distortion to mild distortion.

The theoretical results for orthogonal fingerprinting from [2] are

shown in Fig. 2(c) and (d) for interleaving collusion and aver-

aging collusion, respectively. Comparing Fig. 2(b) and (d), we

see that under averaging collusion, the orthogonal fingerprinting

and the ECC-based fingerprinting constructed above have sim-

ilar colluder identification performance. They both can resist at

least a few dozen’s colluders’ averaging attack under high WNR

and about half a dozen’s under very low WNR. This is consis-

tent with the above analysis of the collusion resistance against

averaging collusion. Thus, from the colluders’ point of view, the

averaging collusion for an ECC-based fingerprinting system is

not a very effective strategy. However, under interleaving collu-

sion, we observe from Fig. 2(a) and (c) a huge gap on the collu-

sion resistance between the two systems. For orthogonal finger-

printing, the probability of colluder detection under interleaving

Fig. 3. Simulation results of ECC-based fingerprinting under (a) interleaving
collusion, (b) averaging collusion, and orthogonal fingerprinting under (c) in-
terleaving collusion, and (d) averaging collusion.

collusion is the same as that under averaging collusion owing to

the orthogonal spreading; at , the remains

close to 1 when is around a few dozen. On the other hand,

the detection probability of the ECC-based fingerprinting drops

sharply when more than seven colluders come to create an inter-

leaved copy, even when WNR is high. Thus, from a colluders’

point of view, interleaving collusion is an effective strategy to

circumvent the protection.

To validate the analysis, we apply both systems to a host

signal that is modeled as an i.i.d. Gaussian sequence with length

. This simple assumption on the host signal suits

the fingerprinting applications well since the host signal is often

known to the detector, and its effect will be mostly removed by

subtracting it from the colluded signal. As such, the distribu-

tion of the host signal does not have a major effect on the de-

tection performance. The detector in (8) is employed for both

fingerprinting systems. We measure the probability of correctly

catching a colluder for different values of colluder number

. The results of 200 iterations are shown in Fig. 3. Notice that

the analytical approximation of ECC-based fingerprinting under

interleaving collusion [Fig. 2(a)] is higher than the measured

value of for large . This is because the analysis in (10)–(12)

considers the maximum number of matched symbols between

the colluded codeword and an innocent codeword as .

Using such an assumption to estimate becomes less accu-

rate for large . However, the analytical approximation captures

the trend and provides an upper bound for the of ECC-based

fingerprinting under interleaving collusion. All other analytical

results match well with the simulation results. In summary, the

simulation results verify the analytical approximation derived

for interleaving collusion and averaging collusion and validate

the conclusions drawn from the analytical results.

When designing a fingerprinting system, a better tradeoff

between the collusion resistance and other performance mea-

sures, such as detection computational complexity, is desired.

Although orthogonal fingerprinting performs well in collusion
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resistance, its detection computational complexity and distribu-

tion cost are expensive as we have seen in Sections III-A and

III-B. The significant computational and distribution advan-

tages of ECC-based fingerprinting motivate us to find avenues

to improve its collusion resistance, especially to reduce the

performance gap between the ECC-based fingerprinting and

orthogonal fingerprinting while preserving its efficient detec-

tion and distribution. In the following sections, we identify two

directions for improving collusion resistance and propose two

new techniques that jointly consider coding and embedding

of fingerprint, namely, permuted subsegment embedding and

GRACE fingerprinting.

IV. PERMUTED SUBSEGMENT EMBEDDING TECHNIQUE

A. Proposed Embedding Method

The drastic difference in the collusion resistance against aver-

aging and interleaving collusions of ECC-based fingerprinting

inspires us to look for an improved fingerprinting method, for

which the interleaving collusion would have a similar effect to

averaging collusion. Careful examination on the two types of

collusions shows that the difference in the resistance against

them comes from the amount of role given to the embedding

layer to play. The segment-wise interleaving collusion is equiv-

alent to the symbol-wise interleaving collusion on the code level

since each colluded segment comes from just one user. The col-

lusion resilience primarily relies on what is provided by the code

layer and almost bypasses the embedding layer. Because of the

limited alphabet size, the chance for the colluders to interleave

their symbols and create a colluded fingerprint close to the fin-

gerprint of an innocent user is so high that it would require a

large minimum distance in the code design, if to handle this on

the code level alone. This means that either codes representing

a given number of users can resist only a small number of col-

luders, or codes can represent only a small total number of users.

On the other hand, for the averaging collusion, every colluder

contributes his or her share in every segment. Through a correla-

tion detector, the collection of such a contribution over the entire

test signal leads to high expected correlation values when cor-

relating with the fingerprints from the true colluders, and to low

expected correlation values when with the fingerprints from in-

nocent users. In other words, the embedding layer contributes to

defending against the collusion. This suggests that more closely

considering the relation between fingerprint encoding, embed-

ding, and detection is helpful to improve the collusion resistance

against interleaving collusion.

The basic idea of our improved algorithm is to prevent the

colluders from using the whole segment that carries one symbol

as an interleaving unit and to exploit the code-level limitation.

We accomplish this by making each colluded segment contain

multiple colluders’ contribution. Our solution builds upon the

existing code construction and performs two important addi-

tional steps that we collectively refer to as permuted subseg-

ment embedding [24]. As shown in Fig. 4, consider as before a

fingerprint signal generated by concatenating the appropriate se-

quences corresponding to the symbols in a user’s codeword. We

first partition each segment of the fingerprint signal into sub-

segments, giving a total of subsegments. We then randomly

Fig. 4. Illustration of the permutated subsegment embedding for ECC-based
fingerprinting. (a) The conventional ECC-based fingerprinting. (b) The pro-
posed scheme.

Fig. 5. Probability of catching one colluder P versus � for c = 25 and
WNR = 0 dB of the proposed scheme.

permute these subsegments according to a secret key to obtain

the final fingerprint signal to represent the user. In detection, the

extracted fingerprint sequence is first inversely permuted and

then the correlator (8) is applied to identify the colluder.

With subsegment partitioning and permutation, each colluded

segment after interleaving collusion most likely contains sub-

segments from multiple users. To correlation-based detectors

(including both hard and soft detection on the symbol level),

this would have a similar effect to what averaging collusion

brings. Since averaging collusion is far less effective from the

colluders’ point of view, the permuted subsegment embedding

can greatly improve the collusion resistance of ECC-based fin-

gerprinting under interleaving collusion. Even if the colluders

know the actual size of a segment or a subsegment, the permu-

tation unknown to them prevents them from creating a colluded

signal with the equivalent effect of symbol interleaving in the

code domain.

The detection statistic for the improved system under in-

terleaving collusion can be approximated by an -dimension

Gaussian distribution

with

(17)
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Fig. 6. Collusion resistance of the improved ECC-based fingerprinting with permuted subsegment embedding technique under (a) segment-wise and (b) subseg-
ment-wise interleaving collusion; (c) collusion resistance of the conventional ECC-based fingerprinting under interleaving collusion.

where is the same as that in (15) under averaging collusion

with . We can see that the parameter controls

the “approximation” level of the effect of interleaving collusion

to that of averaging collusion. Larger provides a finer granu-

larity in subsegment division and permutation. Thus, each seg-

ment may contain subsegments from more colluders, leading to

better approximation and better collusion resistance. We verify

this relation by building an improved ECC-based fingerprinting

system with different values upon the experiment setup in Sec-

tion III-C. Fig. 5 shows the results when a total of col-

luders perform segment-wise interleaving with WNR dB.

We can see that higher indeed gives higher detection proba-

bility . On the other hand, a larger may incur higher com-

putational complexity in permutation. Thus, a tradeoff should

be made according to the requirements of a specific application.

Notice that for the particular system we examined in Fig. 5, the

improvement on the detection probability saturates when .

Therefore, we choose for this system in later experiments

to obtain a good tradeoff between the permutation computa-

tional complexity and the detection performance improvement.

B. Experimental Results

We evaluate the performance of the improved system with

under various WNRs, and show the results in Fig. 6(a)

for segment-wise interleaving collusion. For comparison, we

show the performance of the conventional ECC-based finger-

printing under segment-wise interleaving collusion in Fig. 6(c).

We can see that the detection probability of the proposed system

is substantially improved over the conventional ECC-based fin-

gerprinting system under the same interleaving collusion. Under

around two dozens users’ collusion, the probability of detec-

tion increases up to four times that of the conventional ECC-

based fingerprinting at high and moderate WNRs. In the mean-

time, the gap between the performance of the proposed system

in Fig. 6(a) and that of the orthogonal fingerprinting in Fig. 3(c)

is very small.

Next, Fig. 6(b) shows the results for interleaving collusion

using subsegment as a unit. We observe from Fig. 6(a) and (b)

that when many users come together to perform interleaving col-

lusion (i.e., for large ), the performance of the proposed system

is a little worse when the interleaving is done using a subseg-

ment as a unit than that when using a segment as a unit. This is

because the probability that one segment contains only one col-

luder’s trace after subsegment interleaving and inverse permu-

tation is a little higher than that after segment interleaving. As

we pointed out earlier, one segment containing more colluders’

information after the collusion leads to a higher performance

in colluder detection. As such, the collusion resistance against

subsegment interleaving is slightly worse than that against seg-

ment interleaving. Overall, the proposed system has similar per-

formance under two types of interleaving collusion and gives a

high detection probability for up to two dozen colluders at mod-

erate-to-high WNR. Since the permuted subsegment embedding

does not affect the performance of the system under averaging

collusion, the under averaging collusion remains unchanged.

We can see that the proposed system based on the joint consid-

eration of the fingerprint coding and embedding has effectively

improved the collusion resistance.

C. Discussions

1) Role of Permutation: Random permutation is a useful

technique that has found quite a few applications in data embed-

ding. It was used in image watermarking to equalize the uneven

embedding capacity [25], and was applied to a simple staircase

construction of binary fingerprint code to prevent framing in-

nocent users [7]. In our proposed work, we employ random per-

mutation to make each segment after interleaving collusion con-

tain multiple colluders’ information, thus mimicking the effect

of averaging collusion, and improving the collusion resistance

against interleaving collusion.

2) Computational Complexity of Fingerprint Detection

and Efficient Distribution: The detection of the improved

ECC-based fingerprinting using permuted subsegment embed-

ding consists of three steps: inverse permutation, demodulation

by correlation, and decoding to certain colluder. The com-

putational complexity of the inverse permutation is .

As we have analyzed in Section III-A, the other two steps

need at most computations. Thus, the improved ECC

fingerprinting has the complexity of . Since

the largest possible value of is the total number of the em-

beddable components , the demodulation step still dominates

the overall complexity. Therefore, the overall computational

complexity remains at .

Notice that in the improved ECC-based fingerprinting, for

each subsegment, there are only different versions. The effi-

cient distribution of the fingerprinted signal discussed earlier for
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TABLE I
PERFORMANCE COMPARISON OF FINGERPRINTING SYSTEMS

ECC-based fingerprinting is still applicable here except that the

multicast becomes subsegment based instead of segment based.

While the bandwidth efficiency (in terms of the cost ratio de-

fined earlier) remains unchanged, the multicast groups have to

be updated when transmitting each subsegment. The more sub-

segments (or larger ) we have, the more frequently we have to

switch the multicast grouping. This overhead should be taken

into account when choosing .

3) Comparison Criteria: The results in Fig. 6 show that

the proposed permuted subsegment embedding provides sig-

nificant collusion resistance improvement for ECC-based fin-

gerprinting with only a small increase of computation and dis-

tribution cost. Moreover, different user-capacity requirements

can be accommodated by preserving the alphabet size and ad-

justing the dimension of the ECC. For Reed–Solomon code,

this can be done by adjusting the parameter . We summarize in

Table I the collusion resistance, detection, and distribution effi-

ciency for three fingerprinting systems, namely, ECC-based fin-

gerprinting (“ECC FP” in short), improved ECC-based finger-

printing with permuted subsegment embedding, and orthogonal

fingerprinting (“Orth FP” in short). Overall, the improved ECC-

based fingerprinting provides a better tradeoff among these three

criteria over the conventional schemes, and offers flexibility to

accommodate different application requirements.

It is worth noting that the comparison that we have seen is

the resistance against averaging collusion and interleaving col-

lusion at the same WNR. Under such settings, we have found

that interleaving collusion is a more effective attack than aver-

aging collusion. We thus focus on improving the system’s resis-

tance against interleaving collusion, and propose the permuted

subsegment embedding technique to bring similar performance

against both types of collusions. Another possible comparison

setting is to keep the same mean square error (MSE) of the col-

luded signal with respect to the original signal for both types of

collusions. Notice that for fingerprint sequences with small cor-

relation, averaging operation brings the colluded signal (before

additive noise and other further distortions) close to the orig-

inal signal. As such, for the same level of overall MSE distor-

tion, averaging collusion allows stronger noise to be added than

interleaving collusion does. In this sense, averaging collusion

may become more effective than interleaving collusion after

permuted subsegment embedding, especially when the number

of colluders is large. The detailed colluder tracing results under

this alternative setting can be obtained by mapping the WNR

in Fig. 6 to the corresponding MSE distortion. One aspect to

be taken into account is the limitation of MSE in reflecting the

true perceptual effect. Averaging collusion plus additive noise

does not necessarily render the same level of imperceptibility

as interleaving collusion, especially when the noise is random

and does not match the multimedia content. We will explore this

problem further in our future work.

V. GRACE: GROUP-BASED JOINT CODING

AND EMBEDDING FINGERPRINTING

Our second improvement technique is rooted from the obser-

vation that a user is often not equally likely to collude with other

users in practice. For example, users in the same geographic area

or having similar social or cultural background may be more

likely to collude. Taking advantage of this prior knowledge,

Wang et al. proposed group-oriented fingerprinting to enhance

the collusion resistance of noncoded orthogonal fingerprinting

[3]. In their work, users are put into groups according to the

group collusion behavior, and each user’s fingerprint consists

of two parts of information identifying each individual user as

well as the group he or she is in. The group information is used

in the detection to narrow down the suspicious user set. Such

prior knowledge of the collusion pattern has not been exploited

in the coded fingerprinting, where new issues arise, such as how

to group users and how to construct and embed the group infor-

mation and user information.

In the meantime, the results in Section III-C suggest that

the performance of the conventional ECC-based fingerprinting

is mainly restricted by the code structure especially for high

WNR where the symbol detection from the embedding layer

has high accuracy. For example, we see from Fig. 3(a) that as

WNR increases from 20 to 0 dB, the detection probability

of the ECC-based fingerprinting only increases 0.1–0.15 com-

pared with the huge increase of 0.7–0.8 in orthogonal finger-

printing. Based on this observation, it is possible to use part of

the fingerprint energy to embed group information to facilitate

the colluder detection, while keeping the symbol detection accu-

racy high enough. We thus propose the GRACE fingerprinting

system [26]. In the GRACE fingerprinting, we construct the fin-

gerprint sequence by superposing the sequences for the group

information and the user codeword. This combined fingerprint

is spread over the host signal during embeddding. As we shall

see, this joint coding and embedding significantly improves the

collusion resistance of the ECC-based fingerprinting.

A. Fingerprint Construction and Embedding

We partition the codewords in ECC based fingerprinting into

groups to capture the collusion pattern, and assign symbols to

each group to represent the group information. We call these

group symbols “group subcode”, and refer to the symbols for

distinguishing individual users as “user subcode”. Thus each

user’s fingerprint consists of two parts, namely, user subcode

and group subcode.
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Algorithm 1: Group construction in GRACE fingerprinting

1) Set the group index , initialize the set of codewords

for group to be empty ;

2) Pick any codeword to be the first element for

group , move it from to group : ,

;

3) Examine every codeword in : If is orthogonal

to all the existing codewords in , move from to

;

4) If , continue to build the next group. Set ,

initialize , and go to step 2.

1) Subcode Construction: To construct the user subcode, we

start with a -TA code based on error correcting code construc-

tion over an alphabet of size as discussed earlier in Section II.

The code length is , and the minimum distance is and, typ-

ically, less than . We then rearrange the codebook into groups

so that within each group, the codewords are orthogonal to each

other (i.e., users within the group have distinct values at each

symbol position). Thus, the code distance within a group equals

the codeword length . We assign one codeword to each user

as his or her user subcode. This process is described in more

detail in Algorithm 1. Other construction of orthogonal sub-

codes is also possible, for example, through a systematic coding

technique known as mutually orthogonal Latin squares (MOLT)

[27].

Next, we construct the group subcodes. To make group in-

formation as separate as possible and, thus, facilitate accurate

identification of guilty groups, we design the group subcodes

to be orthogonal to each other. A simple way to construct the

group subcode is to use one distinct symbol to represent one

group; thus, we need a total of symbols for groups. For each

group, we construct repetition code with length by repeating

the symbol times as the group subcode.

2) Fingerprint Embedding: In the proposed GRACE finger-

printing scheme, we embed both group subcode and user sub-

code by mapping them to spreading sequences and then adding

the superposition of the two corresponding spreading sequences

to the host signal.

The group information of the GRACE fingerprinting is or-

thogonal to the spreading sequence conveying the user subcode,

yet their supports overlap in the signal sample domain [16].

More specifically, we use the sequences

to represent symbol values in the alphabet of user subcode,

where ’s are orthogonal to each other and have identical en-

ergy . The sequences represent

groups. They are orthogonal to each other and to , and have

the same energy as ’s (i.e., ). We then construct

the fingerprint sequence for the th segment of user who be-

longs to group as

(18)

where the function is used to retrieve the symbol for

the th segment from the th user’s subcode, and is used to ad-

just the relative energy between the group subcode and user sub-

code. This fingerprint signal is finally added to the th segment

of the host signal. A larger puts more energy on group informa-

tion and, thus, provides a more accurate detection of group infor-

mation. However, a larger also reduces the detection accuracy

of user subcode and makes it harder to narrow down to the true

colluder. Therefore, there is a tradeoff between group detection

and user detection when choosing . Since in our scheme, we

have segments to collect the energy for group detection, and

usually collusion occurs among a small number of groups, we

can choose a small to satisfy the detection performance re-

quirement on both user information and group information.

We can see that a key design issue in the GRACE finger-

printing is on how to represent and embed the group informa-

tion versus the user information. Our approach is to superpose

the spreading sequences of group subcode and user subcode for

embedding. Alternatively, the group information may be em-

bedded by appending the spreading sequence of group subcode

to that of user subcode. To demonstrate the performance gain

of the GRACE fingerprinting brought by the joint considera-

tion of coding and embedding, we shall present this appending

scheme as well and refer to it as the group ECC fingerprinting by

appending. In this alternative fingerprinting scheme, the equiv-

alent codeword for each user is the concatenation of the user

subcode with length and the group subcode with length ,

where is not necessarily equal to and is used to adjust the

relative energy between the group subcode and the user subcode.

The total codeword length is . To embed this codeword,

the host signal is partitioned into segments. The cor-

responding spreading sequence is added into each segment ac-

cording to the codeword symbols. For a given host signal where

the total number of embeddable signal samples is fixed, the

longer the group subcode is, the smaller the length each segment

is.

B. Fingerprint Detection

At the detector side, the embedded group information can be

used to facilitate the detection by a two-level detection scheme.

First, we examine through a correlation detector the group infor-

mation in the colluded signal to identify the groups from which

the colluders come. We then focus our attention on these iden-

tified suspicious groups and apply matched-filter detection for

ECC-based fingerprinting as discussed in Section II on the user

subcode to narrow down to the true colluders.

More specifically, we extract group information from the col-

luded signal using a nonblind correlation detector. The detec-

tion statistic with respect to group is

(19)

where is the host signal, and is the concatenation of the

spreading sequences representing group ’s information from

each segment. In the above settings, since

we embed in each segment of group . The th group is con-

sidered guilty for the test signal if , where is the

threshold. The union of the detected groups forms a suspicious

group set. To narrow down to the true colluders inside the sus-

picious groups, we employ the soft detector in (5) to correlate
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Fig. 7. Performance comparison of the proposed GRACE fingerprinting, group ECC fingerprinting by appending and the conventional ECC fingerprinting schemes
in terms of probability of detection P versus the colluder number c atWNR = 0 dB. (a) Two-group interleaving collusion. (b) Two-group averaging collusion.
(c) Random-group interleaving collusion. (d) Random-group averaging collusion. (e) Distinct-group interleaving collusion. (f) Distinct-group averaging collusion.

the test signal with each user’s fingerprint sequence and identify

the one with the highest correlation as the colluder.

The detection for the group ECC fingerprinting by appending

is a two-stage process similar to GRACE fingerprinting. We first

extract the group information from the segments corresponding

to group subcode through a nonblind correlation detector. The

decoding to a specific colluder is then conducted on the seg-

ments for user subcode within the extracted suspicious groups.

C. Experimental Results

In this section, we demonstrate the effectiveness of the pro-

posed GRACE fingerprinting through experiments. To build the

user subcode, we employ a Reed–Solomon code with ,

, , , and rearrange it into 32

groups using the algorithm described in Section V-A. Inside

each group, there are 32 codewords mutually orthogonal to each

other. We choose in (18) to generate the fingerprint

signal from the user subcode and the group subcode in GRACE.

For fair comparison, we choose for the group ECC fin-

gerprinting by appending it in order to provide the same rela-

tive energy between user subcode and group subcode as that of

GRACE. We use the repetition code described in Section V-A

as the group subcode, and construct i.i.d. Gaussian signals with

signal samples to emulate the host signal.

Interleaving collusion and averaging collusion are applied

to all three systems, namely the ECC-based fingerprinting, the

GRACE fingerprinting, and the group ECC fingerprinting by ap-

pending. We examine the probability of successfully detecting

one colluder at in the following three

scenarios:

1) Collusion Within a Small Number of Groups: In this case,

our grouping correctly reflects the collusion pattern that all of

the colluders come from a small number of groups. In our sim-

ulation, all colluders are from two out of 32 groups, and they

are randomly distributed between these two groups. The results

of under interleaving collusion and averaging collusion are

shown in Fig. 7(a) and (b), respectively. Under interleaving col-

lusion, we can see that for the same number of colluders, the

’s for the proposed GRACE and the group ECC fingerprinting

by appending are similar, and they have up to 0.7 improvement

over that of the conventional ECC-based fingerprinting. From

another point of view, if we require the of the system to be

no less than a given value, say 0.98, the number of colluders that

the system can resist can be improved from six colluders (for

conventional ECC-based fingerprinting) to 18 colluders (for the

proposed GRACE fingerprinting). Under the averaging collu-

sion, all systems have close to 1 for the examined values,

but we still can see 0.02 improvement on brought by GRACE

fingerprinting over the conventional ECC fingerprinting.

2) Colluders Randomly Distribute Across All Groups: In

this case, the grouping does not capture the collusion pattern.

The colluders randomly distribute across all groups. The results

under interleaving and averaging collusion are shown in Fig.

7(c) and (d), respectively. Under interleaving collusion, the pro-

posed GRACE fingerprinting has up to 0.3 improvement on

over the conventional ECC fingerprinting, while the alternative

technique of group ECC fingerprinting by appending performs
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Fig. 8. Proposed framework of coded multimedia fingerprinting combining GRACE with permuted subsegment embedding.

a little worse than the conventional ECC fingerprinting. Under

averaging collusion, the proposed GRACE fingerprinting has

comparable performance with the ECC-based fingerprinting.

3) Colluders Come From Distinct Groups: In this case, the

grouping knowledge is extremely inaccurate. All of the col-

luders come from distinct groups (i.e., the number of groups

equals the number of colluders ). The results under interleaving

and averaging collusion are shown in Fig. 7(e) and (f), respec-

tively. Under interleaving collusion, the proposed GRACE fin-

gerprinting still has up to 0.2 improvement on over the con-

ventional ECC fingerprinting. The group ECC fingerprinting by

appending performs worse than the conventional ECC finger-

printing with about 0.15 less on . Under averaging collu-

sion, the proposed GRACE fingerprinting has comparable per-

formance with the conventional ECC fingerprinting.

The above results can be explained as follows. When collu-

sion occurs within a small number of groups, the group infor-

mation is well preserved so that the group detection for both

GRACE fingerprinting and the group ECC fingerprinting by ap-

pending has high accuracy. As the user subcodes within a small

number of groups can be well distinguished due to higher min-

imum distance than that of the whole codebook, the colluder de-

tection is more accurate than that of the nongroup case. When

colluders come from multiple groups or even distinct groups and

apply interleaving collusion, the energy of the group subcode

for GRACE fingerprinting is reduced after collusion but does

not completely diminish because of the spreading of group in-

formation over the entire host signal. Therefore, we still have

some improvement in detection, although it is not as much as

the first case.

For group ECC fingerprinting by appending, when the

number of groups gets larger, especially larger than , it

is likely that only part of the colluders contribute the group

subcode after segment-by-segment interleaving collusion. The

detector loses the information of some guilty groups, which

leads to no performance improvement over the ECC-based

fingerprinting. In contrast, the group information from all col-

luders can be retained for the two group-based schemes when

colluders perform averaging operations, leading to the similar

performance by the two schemes. When multiple groups par-

ticipate in the collusion as in the scenarios 2) and 3), the energy

of the group information is reduced by averaging. As such, the

group detection has low accuracy, resulting in the diminishing

performance gain over ECC-based fingerprinting.

The comparison between the GRACE fingerprinting and the

group ECC fingerprinting by appending demonstrates the per-

formance improvement that can be achieved by the joint con-

sideration of coding and embedding. Without the joint consid-

eration, the group ECC fingerprinting by appending is equiv-

alent to the code-level grouping. Separating group information

and user information makes it vulnerable to multiple groups’ in-

terleaving collusion. In contrast, the proposed GRACE finger-

printing leverages the embedding layer to spread the group in-

formation over multiple segments. This helps retain the group

information after collusion attacks and, thus, helps identify the

true colluders. In addition to presented in Fig. 7,

we also examined the cases of low WNRs, and the compara-

tive results are similar to the high WNR case. Overall, the joint

coding and embedding as well as the grouping in the proposed

GRACE system have brought consistent performance improve-

ment over the existing ECC-based fingerprinting under various

scenarios.

D. Combining GRACE With Permuted Subsegment Embedding

Earlier in Section IV, we proposed a new permuted sub-

segment embedding technique for ECC-based fingerprinting,

which improves the collusion resistance while retaining the

efficiency in detection and distribution. We can combine the per-

muted subsegment embedding and the GRACE fingerprinting

to arrive at a complete design of the coded fingerprinting system

as shown in Fig. 8. We envision that the combined design can

provide further improvement on collusion resistance and we

will verify it through experiments.
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Fig. 9. Performance of the proposed GRACE fingerprinting with permuted subsegment embedding technique: probability of detection P versus the colluder
number c and WNR. (a) Two-group interleaving collusion. (b) Two-group averaging collusion. (c) Random-group interleaving collusion. (d) Random-group aver-
aging collusion. (e) Distinct-group interleaving collusion. (f) Distinct-group averaging collusion.

Fig. 10. (a) Original images. (b) Fingerprinted images. (c) Corresponding difference images (amplified by a factor of 10).

In the combined design, the fingerprint sequence of the group

subcode is superposed with that of the user subcode as before.

We then employ the permuted subsegment embedding to embed

the superposed fingerprint sequence to the host signal. A two-

level detector is employed after the inverse permutation at the

detector side, namely, the extraction of the group information

followed by the soft detection of the colluder using (5) within the

extracted groups. We demonstrate the performance of the com-

bined fingerprinting system through simulations on the same

system as we have examined in the previous sections.

As we have expected, the combination of the proposed

two approaches achieves better results than each individual

approach. In the cases with inaccurate grouping information

[Fig. 9(c)–(f)], the permuted subsegment embedding further
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Fig. 11. Experimental results on real images of (a) Lena and (b) Baboon under interleaving collusion.

improves the detection probability of the fingerprinting

system by 0.4–0.5 under interleaving collusion at high WNR.

The combined design can resist up to 25 users’ collusion with

high probability of detection, which is more than three times as

many as that of the conventional ECC fingerprinting. When the

grouping is accurate [Fig. 9(a) and (b)], the grouping strategy

boosts the detection probability to nearly 1 for a wide range

of WNR and .

In order to further demonstrate the effectiveness of the pro-

posed joint-coding-and-embedding techniques, we apply the

combination of the two newly proposed approaches to natural

images and compare its collusion resistance performance with

that of the conventional ECC fingerprinting. We use the trans-

form-domain SS scheme for fingerprint embedding, where the

original image is divided into 8 8 blocks and the fingerprint

signal is added into the block DCT coefficients after perceptual

weighting. The fingerprint basis is generated according to i.i.d.

Gaussian distribution . In this experiment, we perform

nonblind detection where the original host signal is available

and subtracted from a test signal.

We select 512 512 Lena and Baboon as original images

to demonstrate the performance of the proposed fingerprinting

system on images with different natures. We apply two schemes

on both images and examine their performance under collusion

attacks: one is the conventional, nongrouped ECC-based finger-

printing scheme, and the other is our proposed GRACE finger-

printing scheme with permuted subsegment embedding. We em-

ploy the same coding setup as in Section III for these two im-

ages (i.e., Reed–Solomon code of length 30, dimension 2, and

minimum distance 29). The effective segment size is 2189 for

Lena and 4740 for Baboon. The fingerprinted images have an

average PSNR of 41.6 dB for Lena and 33.2 dB for Baboon.

Fig. 10 shows the original and fingerprinted images along with

the corresponding pixel-wise difference between them.

We examine the scenario of interleaving collusion by ran-

domly distributed colluders across all groups with

dB. The results of 100 iterations on the two images are shown

in Fig. 11, where the number of colluders the system can resist

is increased from 6 for conventional ECC fingerprinting to 25

for the proposed combined scheme with a detection probability

as high as 0.98. We also examined the averaging collusion sce-

nario, and the improvements for both cases are consistent with

the earlier results on synthetic signals.

E. Discussions

1) Security of the Group Information: From the results of

the proposed scheme, we can see that the group information

helps narrow down the suspicious users in the colluder detec-

tion. However, if the group information is not embedded prop-

erly, the attackers may figure out the positions of group sub-

code, and try to frame innocent groups and mislead the detec-

tion. Therefore, the embedded group information should have

sufficiently high security. In the following, we shall examine

the security of the group information for GRACE fingerprinting

and compare it with that of the group ECC fingerprinting by ap-

pending.

For the group ECC fingerprinting by appending, all of the

users inside one group have the same group subcode with length

; thus, they have segments in common. On the other hand,

for users coming from different groups, their matches in the user

subcodes are at most , which is usually much smaller than

. When several users compare their copies, they can examine

the number of the matched segments and figure out whether

they belong to one group or not. They may also identify the

positions of the group subcode. With the position information

of the group subcode, one colluder may contribute his or her

share only to the group subcode positions and other colluders

from a different group only contribute to user subcode positions.

We call this the group-framing attack. Under this attack, after

the group detection, the colluder detection will be limited to the

group where only one colluder comes from. Since this colluder

did not contribute to the user subcode, he or she is less likely to

be declared as the colluder. Hence, the probability of accusing

an innocent user as a colluder will be high.

For GRACE fingerprinting, each group has a different group

subcode from the others. Within one group, users have different

user subcodes. As a result of the superposition of these two sub-

codes, the fingerprint sequence for each user is different from

any other user, and the colluders cannot separately identify the

group information by comparing their copies. We further note

that no matter which segment the colluder contributes, he or she

always contributes both the group information and the user in-

formation. The group-framing attack mentioned above cannot

succeed here. Thus, the joint coding and embedding of GRACE

provides both an effective and a secure way to incorporate the

group information.
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2) Computational Complexity of GRACE Fingerprinting:

Compared with the ECC-based fingerprinting, the extra de-

tection computation of the GRACE fingerprinting comes

from the detection of guilty groups, which needs

computations for a total of groups. Incorporating the com-

putational complexity of the ECC-based fingerprinting derived

in Section III-A, the overall computational complexity for

the GRACE fingerprinting is . The group

number is usually much smaller than the total number of

users and, in our example, equals . Therefore, the overall

computational complexity remains at , the same order

as the ECC-based fingerprinting.

It is worth mentioning that since, in most cases, the colluder

detection is applied within a small amount of groups, the suspi-

cious user set to be examined will be much smaller than that in

nongrouped ECC-based fingerprinting. This further speeds up

the colluder detection process.

3) Multilevel GRACE Fingerprinting: The idea of the pro-

posed GRACE fingerprinting is to use the group information to

quickly narrow down the suspicious colluders to a small group

of users. Within each group, the minimum distance between the

users’ codewords is larger than that of the whole user set so that

the users’ codewords are more separated and easier to detect.

Following this idea, we can extend our GRACE fingerprinting to

general multilevel GRACE fingerprinting to capture more com-

plicated collusion patterns.

For example, we partition a codebook with minimum distance

into groups. Inside each group, the minimum distance is

larger than . Then, we repeat this partition for each group

until the minimum distance equals the code length or the

structure of the group can capture the collusion pattern. When

combining the group information with the user information, we

can adopt a similar strategy used in the tree-based scheme in [3]

to assign each level an orthogonal sequence and embed them

by proper scaling. At the detector side, the group information at

each level is used to narrow down the suspicious colluders to a

smaller group, and the colluder can be detected inside the ex-

tracted groups as before.

VI. CONCLUSION

Starting from a cross-layer framework for multimedia finger-

printing, this paper jointly considers the fingerprint encoding,

embedding, and detection of ECC-based multimedia finger-

printing. Through examining its performance and comparing

it with orthogonal fingerprinting, we have found that the

ECC-based fingerprinting has much higher detection efficiency

than orthogonal fingerprinting but poorer collusion resistance.

In order to improve the collusion resistance of the ECC-based

fingerprinting while preserving its efficient detection, we pro-

pose two joint-coding-and-embedding techniques, namely, the

permuted subsegment embedding technique and the GRACE

technique. Our results show the significant performance gain

of each approach on the collusion resistance over the con-

ventional ECC-based fingerprinting. We then combine these

two new schemes to further improve the collusion resistance

and obtain a complete joint-coding-and-embedding design for

coded fingerprinting. Our combined design can resist more than

three times colluders’ collusion as many as that of the conven-

tional ECC-based fingerprinting and retains the low detection

computational complexity. It offers a much improved tradeoff

between the collusion resistance and detection efficiency than

the conventional ECC-based fingerprinting and orthogonal

fingerprinting.
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