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ABSTRACT By leveraging the 5G enabled V2X networks, the vehicles connected by cellular base-stations

can support a wide variety of computation-intensive services. In order to solve the arisen challenges in end-

to-end low-latency transmission and backhaul resources, mobile edge computing (MEC) is now regarded

as a promising paradigm for 5G-V2X communications. Considering the importance of both reliability

and delay in vehicle communication, this article innovatively envisions a joint computation and URLLC

resource allocation strategy for collaborative MEC assisted cellular-V2X networks and formulate a jointly

power consumption optimization problem while guaranteeing the network stability. To solve this NP hard

problem, we decouple it into two sub-problems: URLLC resource allocation for multi-cells to multi-vehicles

and computation resource decisions among local vehicle, serving MEC server and collaborative MEC

server. Secondly, non-cooperative game and bipartite graph are introduced to reduce the inter-cell inter-

ference and decide the channel allocation, which aims to maximize the throughput with a guarantee of

reliability in URLLC V2X communication. Then, an online Lyapunov optimization method is proposed to

solve computation resource allocation to get a trade-off between the average weighted power consumption

and delay where CPU frequency are calculated using Gauss-Seidel method. Finally, the simulation results

demonstrate that our proposed strategy can get better trade-off performance among power consumption,

overflow probability and execution delay than the one based on centralized MEC assisted V2X.

INDEX TERMS Cellular V2X networks, URLLC radio resource management, collaborative mobile edge

computing, power optimization, latency and reliability.

I. INTRODUCTION

As the increasing amount of connected autonomous vehi-

cles, a wide variety of computation-intensive, latency sen-

sitive and power-hungry applications are emerging, such as

autonomous driving, image or video-aided real-time navi-

gation, real-time traffic monitoring, etc. These applications

need a significantly large amount of energy consumption,

radio and computation resources, which brings great chal-

lenges to the operator with limited computation ability. As a

result, cloud-based vehicular networks have been proposed

as a solution to address this problem. Compared with local

vehicular processing, remote servers have abundant storage
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space and resources for computation. However, the latency

caused by the long distance between the remote cloud servers

and the vehicles cannot be ignored and it may easily result

in a considerable communication error probability. Vehicular

cloud requires a scalable and reliable mobile communica-

tion network. LTE and Dedicated Short Range Communica-

tion (DSRC) have been trying to fit for such role, yet neither

could be capable of meeting all requirements on account of

their inherent architectural limitations.

In order to satisfy the severe latency requirements of

these vehicular application scenarios, mobile edge comput-

ing (MEC) assisted V2X networks are now regarded as a

promising paradigm to improve vehicular services through

offloading computation-intensive tasks between edge servers

and local vehicular terminals. The V2X communication in the
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future should provide ultra-high reliability and low latency

support for critical and broadband applications. The fifth gen-

eration (5G) mobile communication system will introduce

ultra-reliable and low-latency communication (URLLC) to

overcome these shortages, which can be fully employed as the

data transmissionmethod for computation offloading inMEC

assisted V2X networks. Because the MEC servers operate

at the edge of radio access networks, the rapid interactive

computation offloading is available for vehicles in proximity.

However, this solution suffers from the limitation of resource

and radio access coverage. The computing offloading perfor-

mance highly depends on the wireless transmission of data

offloading from local vehicles to the MEC servers. Thus,

effective task scheduling and resource allocation schemes are

needed to improve system performance.

Obviously, the computing offloading performance is

affected by the quality of wireless transmission. Therefore,

it is important to properly allocate radio resources of wire-

less network to the multiple vehicles in the system. With

the development of broadband services, in order to improve

the utilization efficiency of radio resources, the channels

in the multi-cells system are always reused, which may

cause co-channel interference. The existence of the interfer-

ence will result in the transmission rate attenuation of each

vehicle, thereby affecting the data transmission reliability.

In addition, the randomness of moving direction and vari-

able speeds make it very complicated and challenging for

dynamic resource scheduling. Therefore, the optimal alloca-

tion of radio resources including spectrum and power for each

cell plays an important role in the multi-cell cellular-V2X

networks.

A. RELATED WORK

Recently, there are a large number of studies on MEC-based

vehicular networks and exploring the advantages of collab-

orative mobile edge computing networks [1]. The heteroge-

neous requirement on the mobility of vehicles are considered

in [2] for vehicular network based on MEC framework and

this work mainly focus on the MEC server selection and

tasks transmission process. In [3], the author investigates

the vehicular network with mobile edge servers deployed at

the roadside units and using Lagrangian relaxation, in which

the latency and workload requirements are well explored.

In order to minimize the overall system costs of the vehicular

network, [4] propose a mobility-aware mobile edge system

and then solve the computational resource optimization and

select the optimal offloading time. To satisfy users’ experi-

ence in vehicularmobile edge computing, an adaptive compu-

tational resource allocation method is investigated in [5]. [6]

is presented to jointly consider the cost at vehicle terminals

and MEC servers under the system stability constraint using

Lagrangian dual decomposition and relaxation.

Nevertheless, mobile edge computing can help improve

the performance of vehicular, the MEC servers still have

limited computational resources. Thus, some works pro-

posed a cloud and edge collaborative system. In order to

adopt the large computational resources in the central cloud

server, [7] propose a game-theoretic collaboration task

offloading algorithm. Reference [8] provides a partial com-

putation offloading scheme for minimizing the delay and

allocating optimal computational resources. In [9], it mainly

focuses on maximizing the system utility by the optimal

resource allocation and tasks offloading strategy. Reference

[10] focus the multi-server scenario, but the scheme proposed

only schedules one mobile edge server to the user.

Although many studies investigate MEC based vehicular

network and collaboration between MEC servers and cloud.

Very few articles study the collaboration between MEC

servers. In 5G D-RAN, the base stations have the ability to

communicate with each other. That is to say, theMEC servers

installed at the base stations can transmit data with each other.

This collaboration scheme can well explore the characteristic

of collaborative MEC assisted cellular-V2X networks, and

improve the processing ability and reliability required by the

V2X network. But in previous researches, this collaborative

MEC scheme has been ignored. Besides, the mobility of vehi-

cles, the inter-interference between multi-vehicles, the low

latency and ultra-high reliability of the system have not been

presented simultaneously with mobile edge computing either.

Therefore, in this article, we study the joint computation

offloading and URLLC resource allocation strategy for col-

laborative MEC assisted cellular-V2X networks.

B. CONTRIBUTIONS

In this paper, we jointly optimize the URLLC radio and com-

putational resources in collaborative MEC assisted cellular-

V2X networks to minimize the overall power consumption

for data offloading. The main contributions of this paper are

presented as below:

1) A novel MEC task offloading model for 5G-V2X net-

works is proposed. To the best of our knowledge, it is the

first time that collaboration between distributed MEC servers

and URLLC transmission for task offloading are jointly con-

sidered in cellular V2X networks. We formulate the task

offloading problem to minimize the power consumption of

collaborative MEC servers and vehicles, which considers the

constraint of the task buffer stability for hard delay in V2X.

This model can cover the V2X performance requirement on

the reliability, power consumption and latency.

2) In order to avoid co-channel interference among

multi-cells and control the transmission power consumption

for a reliable URLLC transmission, bipartite graph optimal

matching algorithm is introduced solve the resource multi-

plex matching problem. We design a non-cooperative game

power control algorithm to get the optimal edge weight of

the bipartite graph. Both the utility and cost are considered in

the pricing scheme so that the cellular vehicle communication

system reaches a Nash equilibrium to pursue the maximized

overall rate under the reliability guaranteeing.

3) An online computational resource allocation algorithm

is proposed by using Lyapunov optimization method.We find

the optimal average weighted power consumption and
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execution delay trade-off under tasks buffers stability con-

strained by the hard delay in V2X. Under each determinis-

tic process, the optimal solution to computational resources

is decided, which can reasonably distribute the tasks into

local vehicle, serving MEC server and collaborative MEC

server. The simulation results demonstrate that the pro-

posed algorithm can achieve efficient power consumption

and execution delay. redFurthermore, the scheme based on

distributed MEC collaboration is more reliable in overflow

probability than the centralizedMEC scheme in cellular V2X

network.

The rest of the paper is organized as follows. The system

model is presented in Section II. Then the problem is for-

mulated as a problem for minimization of weighted energy

consumption sum in Section III. The optimal algorithm is

developed in Section IV. Next, we discuss and analyze the

performance of the algorithm based on the simulation results

in Section V. We finally draw a conclusion in Section VI.

II. SYSTEM MODEL

Fig.1 depicts a collaborative MEC assisted cellular-V2X net-

works, which consists of a distributed radio access network

and mobile edge servers and multiple vehicles. From this

graph, we can obtain the architecture of the coexistence MEC

servers. There are N adjacent cells with a base station (BS)

located at the center, respectively, and an MEC server oper-

ates in each BS. An edge node can be regarded as the com-

bination of base stations and MEC servers and each node

has the ability to transmit data with other nodes. In each

cell, K vehicles are assumed to move independently inside.

Different from the unidirectional road and RSU distribution

model in above papers, the speed and direction of the vehicles

in this paper are both random in their corresponding cell.

FIGURE 1. Collaborative MEC assisted cellular-V2X networks (2 MEC
servers).

The overall computing tasks are supposed to be processed

at both the mobile edge node and local vehicles. It is assumed

that the wireless communication for data offloading from the

vehicle terminals to the base station is through 5G URLLC

links. And the tasks of vehicle moving in the n th cell can

only be offloaded to the corresponding MEC server which is

located in the base station Bn.

Due to the mini-slot scheme of URLLC, the moving

distance of vehicles changes little in one mini-slot. Thus,

we define a larger scheduling granularity as ‘‘time slot’’,

which contains T mini-slots. At the beginning of each time

slot, the vehicles’ location in the cell changes, consequently

the radio resource management scheme has to change.

Respectively, at the beginning of each mini-slot, the offload-

ing scheme is decided. The SISO-OFDMA scheme is adopted

to avoid serious intra-cell interference. Thereby, the radio

resources in each cell are distributed into several sub-

channels or resource blocks (RBs) which are orthogonal

in the time domain. But the vehicle terminals scheduled

by the same sub-channel in different cells will result in

inter-cell interference (i.e. co-channel interference) to each

other, which will cause the transmission rate attenuation and

affects the offloading efficiency.

A. VEHICLE AND MEC SERVER EXECUTION MODEL

During the task execution process, the vehicles can process

the task in its local CPU or offloaded to be processed in

MEC server. The task processing speed all depends on the

speed of CPU frequency, which is strictly correlated with

the type of vehicles and CPU. The computation ability can

be calculated in off-line measurement. The k th vehicles in

n th cell’s CPU frequency is denoted as fn,k (t) and it is not

larger than fn,k,max . The CPU cycles needed in processing one

bit of tasks is denoted as Ln,k . The computing ability in each

time slot is defined as Dl,n,k (t), which is the bits of tasks that

can be executed by local CPU and it is positively related to

frequency. Thereby, the equation of local computation ability

can be expressed as,

Dl,n,k (t) = τ fn,k (t)L
−1
n,k (1)

Similarly, the MEC computation ability is defined as

Ds,n,k (t) = τ fC,n,k (t)L
−1
C,n,k . As is known to us, CPU needs

the energy to maintain basic operation. CPU processing

energy consumption will fluctuate when the logic gates flip

and the consumption is positively related to the square of

circuit voltage and frequency of CPU. In fact, the power

dissipation at the output pins of a core is directly proportional

to its frequency and is governed by the equation

P =
1

2
CV 2f (2)

where C is capacitance, V is voltage, and f is the effective

bus frequency [11]. Under low voltage constraint, the energy

consumption equation of local vehicles can be eliminated to

pl,n,k (t) = kmob,n,k f
3
n,k (t), and pser,n,k (t) = kser,n,k f

3
C,n,k (t)

because in this circumstance, the CPU frequency has linear

correlativity with circuit voltage. In the equation, the effective

switched capacitance is denoted as kmob,n,k and kser,n,k , and

it is related to the architecture of chip.

B. URLLC TRANSMISSION FOR TASK OFFLOADING

For the n th cell, the uplink received SINR (i.e. signal-to-

interference and noise-ratio) of the vehicle which is scheduled
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by the m th sub-channel at the time slot t can be denoted as:

γmn,k (t) =
Gmn,k (t) · Pmn,k (t)

σ 2 +
N
∑

l=1,l 6=n
Gml,k · Pml,k (t)

(3)

where the Gmn,k (t) is the channel gain, Pmn,k (t) is the uplink

transmit power of this vehicle, σ 2 = N0 × B is the noise

power and the N0 denotes the noise unilateral power spectral

density.
N
∑

l=1,l 6=n
Gm
l,k ′ · Pm

l,k ′ (t) denotes the interference from

the vehicle in the adjacent cell.

According to the accurate estimation of the achievable rate

with the finite packet length [12]–[15], at the t time slot,

the maximum uplink transmission rate of the vehicle sched-

uled by the m th sub-channel can be expressed as follows

(units:bits/s),

Rmn,k (t) = B ·

{

log2
[

1 + γmn,k (t)
]

−

√

Vk

n0
f −1
Q

(

εdk

)

}

(4)

where B represents the bandwidth of a sub-channel and

Vk = 1 − 1
[

1+γmn,k (t)
]2 denotes the channel dispersion [12],

which measures the stochastic variation of channels relative

to deterministic channels with the same capacity. The upper

bound of Vk is 1, especially in the high SINR-scenario of

URLLC. n0 is the length of data packet. f
−1
Q (x) is the inverse

function of Q function and Q(x) =
∫ +∞
x

1√
2π
e

(

− 1
2 t

2
)

dt · εdk
denotes the decoding error rate and it is assumed to have

a small threshold for simplicity. In this paper, we decide

to improve the URLLC transmission performance under the

fixed requirement of decoding error rate (i.e. reliability).

In time slot t , the sum of rate at the vehicle k and the cell

n in the sub-channel m can be presented as below:

sum− R
m
n,k (t) =

M
∑

m=1

amn,k (t) · Rmn,k (t) (5)

where amn,k = 1 means the sub-channel m in the cell n is

allocated to the vehicle k at this time slot, otherwise it is

allocated to other vehicle. Thus, the total system capacity is

the uplink transmission rate sum of all vehicle terminals:

T (t) =
N
∑

n=1

K
∑

k=1

sum−R
m
n,k (t) =

N
∑

n=1

K
∑

k=1

M
∑

m=1

amn,k (t)R
m
n,k (t)

(6)

C. TASK QUEUING MODEL

1) VEHICLES

Suppose that the tasks received by vehicles are running

in fine-grained parallelism. At the initial moment of the

t th time slot, An,k (t) bits of tasks arrive at the k th vehicles

in the n th cell, which will be processed since next time

slot. An,k (t) at distinct time slots are distributed within the

range of An,k (t) with E
[

An,k (t)
]

= λn,k [16]. In every

time slot, the tasks to be processed by local CPU is

defined as Dl,n,k (t), the tasks to be offloaded to MEC

servers is denoted as Rmn,k (t) and the remaining tasks that

have arrived but not yet been processed and offloaded will

wait in the queue backlogs of vehicles with finite capac-

ity. The queue length of task buffer at the t th time slot

can be expressed as N rows K columns array Q(t) =
[[Q1,1(t), . . . ,Q1,K (t)], . . . , [QN ,1(t), . . . , QN ,K (t)]]. Qn,k
(t + 1) can be derived from Qn,k (t) as below,

Qn,k (t + 1) = max(Qn,k (t) − D∑,n,k (t), 0) + An,k (t) (7)

in (7),D∑,n,k (t) equals to the sum ofDl,n,k (t) and R
m
n,k (t). red

It stands for the number of tasks executed by local vehicles

and offloaded to mobile edge servers at k th vehicle and the

n th cell in the t th time slot.

2) MEC SERVER

Similar to local vehicles, the tasks offloaded to the server

but have not been executed will be stored in the task

buffer of edge nodes and the task buffer is also assumed

to have a finite capacity. Suppose each cell has one MEC

server and the queue backlogs of task buffer can be

expressed as vector C(t) = [C1,1(t), . . . ,C1,K (t), . . . ,

CN ,1(t), . . . ,CN ,K (t)]. Accordingly, the expression of

Cn,k (t+1) for a non-collaborativeMEC system is established

as below,

C
incop
n,k (t + 1) = max(Cn,k (t) − Ds,n,k (t), 0)

+min(max(Cn,k (t) − Dl,n,k (t), 0),R
m
n,k (t))

(8)

(8) indicates that tasks that have not been handled by edge

server from previous time slot will be stored in the task

buffer of edge node Besides, tasks that are not processed at

local CPU should be offloaded to the edge server, and the

amount should be less than the maximum transmit capacity.

If the number of tasks exceeds transmit capacity constraint,

the excess amount will be ignored apparently, as the amount

is determined by channel capacity and queue length simulta-

neously.

When the MEC-based 5G URLLC vehicular network is

collaborative, the queue length can be expressed as,

C
cop
n,k (t+1)

=max(Cn,k (t) − Ds,n,k (t), 0)

+min(max(Cn,k (t)−Dl,n,k (t), 0),Rmn,k (t))+Gn,k (t) (9)

where Gj(t) is data transmitted from collaborative MEC

servers.

III. PROBLEM FORMULATION AND DECOMPOSITION

In this section, we will jointly discuss the weighted mean of

energy consumption and the average queue backlogs of the

whole system. Furthermore, the average energy consumption

optimization problemwill be established under all constraints

that are already provided. Finally, we formulate this NP hard
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problem to minimize the power consumption of collaborative

MEC servers and vehicles, which considers the constraint of

the task buffer stability for hard delay in V2X introduced as

the NP hard problem to be solved in this paper.

A. PERFORMANCE METRIC

When transmitting stochastic traffic flows over wireless

networks, there exists an inherent tradeoff between aver-

age transmit power and corresponding queuing-delay bound.

In [17], authors investigate such a tradeoff and show how

average power increases as delay-bound requirement for

wireless network traffics becomes stringent. Under certain

QoS conditions, what we need to do is reducing the corre-

sponding power consumption. Thus, the weighted mean of

energy consumption is one of the most concerned issues in

this paper, which mainly consists of the energy consumption

of CPU processing and task transmission power. In addition,

the energy required tomaintain the basic operation of vehicles

and MEC servers is irrelevant to the offloading process and

it is ignored for simplicity. Therefore, the weighted mean of

energy consumption in the offloading and processing process

is given by,

P̄∑ , lim
T→+∞

1

T

T−1
∑

t=0

E
[

∑

n∈N

∑

k∈K
(Ploc,n,k + PMEC,n,k

+ ωN+K+1µp
tx
n,k (t))

]

(10)

where PMEC,n,k = ωK+N+1pser,n,k (t) and Ploc,n,k =
ωn,k (ptx,n,k (t)+pl,n,k (t)). It is also the performance metric of

the system model. ωn,k and ωN+K+1 are parameters used to

balance the energy consumption between different nodes and

µ indicates the weight of distribution. All these three nota-

tions are assumed to be constant. For example, assuming that

the energy consumption of MEC has a greater impact on the

whole offloading process. Thereby we can set the weight of

MEC energy consumption larger during the stimulation stage,

so as to achieve the goal of balancing energy consumption.

The average of T is to adjust the sum of energy consumption

to a function related to t and to build the foundation for the

subsequent calculation process.

Based on Little’s Law [18], the weighted mean processing

delay of tasks is positively related to the length of tasks wait-

ing in the task buffers both at the server and local vehicles.

In [16], as a measurement of processing delay, the total queue

length of task buffers at both server and local vehicles is

expressed as below,

q̄∑,n , lim
T→+∞

1

T

T−1
∑

t=0

E
[

∑

k∈K
(Qn,k (t) + µC

cop
n,k (t)

+ (1 − µ)C
incop
n,k (t))

]

(11)

However, relying merely on the average queue length fails

to take the extreme value of queue length into account. There-

fore, for the better assessment of the system performance,

a hard delay is proposed and it is regarded as proportional

to the maximum value of queue length [19], [20].

delayn,k (t) =
qmax

Rmn,k (t)
(12)

where qmax is the maximum value of queue length that

appears during the whole transmission process. delayn,k (t) is

the hard latency at each time slot. In the simulation process,

there is a threshold assigned to the data traffic and thus the

worst delay can be acquired now.

B. AVERAGE ENERGY CONSUMPTION OPTIMIZATION

At each time slot, a series of variable denoted as X(t) ,

[f (t), ptx(t), fc(t)] will be calculated during every iteration.

Then the average energy consumption optimization problem

will be established as below,

P1 : min
X (t)

P̄∑

0 ≤ µ ≤ 1 (13)

0 ≤ fn,k (t) ≤ fn,k,max , n ∈ N , k ∈ K (14)

0 ≤ fC,n(t) ≤ fCn,max , n ∈ N (15)

0 ≤ ptxn,k (t) ≤ ptx.maxn,k (t) (16)

lim
T→+∞

E[|Qn,k (t)|]
T

= 0,

lim
T→+∞

E[|Un(t)|]
T

= 0, (17)

(13) stands for the distribution weight constraint. (14) is the

constraint for local CPU frequency. (15) is the constraint for

MECCPU frequency. (16) is the constraint to transmit power.

(17) limits the task buffers to be mean rate stable so that all

arrived offloading tasks will be handled during finite time

slots.

In a word, the energy consumption and processing

delay for collaborative MEC assisted cellular-V2X networks

should be jointly considered and they can be solved by

a decomposed algorithm. All the constraints on CPU fre-

quency, transmit power and the stability of task buffer

will be satisfied when minimizing the average energy

consumption.

IV. JOINT OPTIMIZATION ALGORITHM DESIGN

Since the energy consumption optimization problem above

is NP-hard in general. The target problem is supposed to be

decomposed into subproblems and then iteratively and sep-

arately solve them until convergence. For example, in [21],

a decomposition technique can be used to solve this problem

efficiently. We decompose the power consumption minimiza-

tion problem into two subproblems: URLLC resource allo-

cation for multi-cells to multi-vehicles and task offloading

decisions among local vehicle, serving MEC server and col-

laborativeMEC server. Then, the two subproblems are solved

separately and the power consumption optimization problem

are solved iteratively. A common framework for the original

problem is summarized as Fig. 2.
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FIGURE 2. Proposed framework for solving the power consumption
problem.

A. RESOURCE MANAGEMENT FOR THE MAXIMIZATION

OF OVERALL URLLC TRANSMISSION RATE FOR

COMPUTING OFFLOADING

Firstly, the transmission energy consumption, ptxn,k (t) needs

to be determined, which is directly related to the resource

scheduling and power control scheme. Then the computation

energy consumption at the local and the MEC server will

be optimized. For improvement of the efficiency in data

offloading to theMEC server, the throughput with a guarantee

of reliability in URLLC V2X communication need to be

maximized. Therefore, the sub-problem is to maximize the

overall uplink throughput, which is presented as below:

argmax
Pmn,k (t)∈(0,Pmax]

T (t)

= argmax
Pmn,k (t)∈(0,Pmax]

N
∑

n=1

K
∑

k=1

amn,k (t) · Rmn,k (t),

∀m ∈ {1, 2, · · · ,M}
C1 : 0 < Pmn,k (t) ≤ Pmax

C2 : Rmn,k (t) ≥ 0

C3 :
K
∑

k=1

amn,k (t) = 1

C4 : 10−7 ≤ ǫdk ≤ 10−5 (18)

where C1 describes the range of uplink transmit power. C2 is

the rate constraint, which means that the achievable transmis-

sion rate is non-negative. C3 guarantees that one sub-channel

in each cell can only be scheduled to a vehicle terminal inside

the cell during one time slot. C4 is the constraint of the

decoding error rate. The sub-channel in the OFDM system

is orthogonal in the frequency domain. Thus, the resource

allocation of each sub-channel can be considered as an inde-

pendent process. The problem of overall system throughput

maximization can be summarized to a multi-resource-block

throughput maximization problem, which is shown in (18).

The vehicles assigned to the same sub-channel m in each

cell cause co-channel interference to each other and they

are all selfish. Higher uplink transmits power is expected to

improve the achievable transmission rate as much as possible.

However, a higher transmit power will make other terminals

suffer a higher interference. Nevertheless, the transmission

rate of other vehicles will be reduced, which results in a

contradiction in power control. Thus, all the variables need

to be jointly considered.

Due to the mobility of vehicles, the resource manage-

ment including channel allocation and uplink power control

becomes much more complicated. In order to address the

problem above, all possible combinations of sub-channel

assignments in different cells need to be traversed to deter-

mine the optimal one, which is computationally complex

and difficult. For simplicity, in this paper, we proposed a

joint uplink resource management scheme in order to lower

the inter-cell interference as much as possible and make an

optimal strategic decision about the channel multiplexing

matching at the same time. At each scheduling time slot,

the position of the vehicle is assumed to be fixed. The channel

multiplexing matching set and power set that maximize the

total system throughput (i.e. the sum of transmission rate)

will be selected. In this paper, the two-cell channel multiplex

matching problem is considered as a bipartite graph optimal

matching problem. Each vehicle in the system is considered

as a vertex in the bipartite graph, as shown in Fig 3. In this

scenario, the two vertices connected by an edge represent the

two vehicles which multiplex the same sub-channel resource

(or the resource block). The weight of this edge is the overall

throughput of this shared sub-channel, which is maximized

through the non-cooperative power control game algorithm

below. Therefore, the system overall throughput maximiza-

tion problem is transformed into an optimal matching prob-

lem that maximizes the edge weight sum of the bipartite

graph.

FIGURE 3. Resource allocation based on bipartite graph with K vehicles
and K MEC cells.

At each time slot, we obtain the weight of each edge.

For each pair of vehicles in two separate cells, the real-time

position and channel gain are clear to each other and the

non-cooperative power control game can be carried out to

lower the inter-cell interference. When the game converges

to the final equilibrium point, the overall throughput of this

sub-channel can be calculated as the weight of this edge.

1) NON-COOPERATIVE POWER CONTROL GAME

ALGORITHM BASED ON PRICING SCHEME

For the problem (18), the system throughput is maximized

through the maximization of each subchannel’s throughput.
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However, for each sub-channel, the throughput maximiza-

tion is a high-order derivative problem involving N power

variables, which is computationally complex and does not

necessarily have a solution set.

For simplicity, the non-cooperative game is introduced and

the power control problem of each sub-channel is considered

as an independent non-cooperative game process. All the

vehicle terminals assigned to the same sub-channel are the

participants of the game. Since each participant in this game

is selfish and their strategy is always choosing the maximum

of power to achieve their own interest maximization, which

will result in non-negligible interference and the rate decay.

To avoid vicious selfish competition and control the power

assumption, the pricing scheme is introduced [22]. In the

choice of power strategy, the vehicles need to consider both

their own utility and the corresponding cost due to interfer-

ence caused by themselves.

The non-cooperative game of the mth sub-channel in

this paper is denotes Gm(t) = [N ,Pm(t),Um(t)], where

N = {u1m, u2m} represents the sub-channel matching set.

Pm(t) = {Pml,k (t),P
m
2,k (t)} is the power strategy set, and

Um(t) denotes the net utility function set of vehicles. The

power strategy value space can be described as Pmn,k (t) =
[(Pmn,k (t))min,Pmax], where (P

m
n,k (t))min is the minimal power

to guarantee that the transmit rate is non-negative and Pmax
is the budget of uplink transmit power. The strategy space is

a closed bounded convex set.

The net utility of vehicle terminals is the achievable rate

minus the pricing function (19). The pricing factor cmn,k (t)

denotes the cost to pay per unit power. Therefore, all the

game participants n, k aim atmaximizing their own net utility.

And the optimal power response of each game participant can

be denoted as arg max
Pmn,k (t)

Um
n,k (t), where Ŵ denotes the channel

constant.

Um
n,k (t) = B ·

{

log2

[

1 +
γmn,k (t)

Ŵ

]

−

√

Vk

n0
f −1
Q

(

εdk

)

}

− cmn,k (t) · Pmn,k (t) (19)

Theorem 1: A unique Nash equilibrium exists in theGm(t)

for the sub-channel m at time slot t .

Proof: The Theorem 1 is proved if the following two

assumptions are guaranteed. (i) The power strategy space

[(Pmn,k (t))min,Pmax] is a non-empty, bounded and closed con-

vex set. (ii) The net utility function Um
n,k (t) is continuous and

quasi-concave in Pmn,k (t).

According to (19), it is obvious that the second derivative

is negative so that the (i) and (ii) are proved. When the first

derivative is assigned to zero, we can obtain the optimal

power response (20).

Pmn,k (t) =
B

cmn,k (t) ln 2
−

Ŵ

(

σ 2 +
∑N

l=1,l 6=n G
m
l,k · Pml,k (t)

)

Gmn,k (t)

(20)

It is easy to prove that the monotonicity of the net utility

function. Thus, the maximal is obtained at the point where

the first derivative is zero. Based on the limitations of power

strategy, the lower bound of cn,k (t) is denoted as (21) and the

upper bound is denoted as (22).

cminn,k (t) =
B









Pmax +
Ŵ

(

σ 2+
N
∑

l=1,l 6=n
Gm
l,k′ ·P

m
l,k′ (t)

)

Gmn,k (t)









ln 2

(21)

cmaxn,k (t) =
BGmn,k (t)

2c0 · Ŵ

(

σ 2 +
N
∑

l=1,l 6=n
Gm
l,k ′ · Pm

l,k ′ (t)

)

ln 2

(22)

Therefore, at each time slot t , the range of pricing factor for

each vehicle’s matching between two cells can be calculated

by the intersection of its upper limit and the union of its lower

limit is calculated. And the optimal pricing factor needs to

be decided for each matching in order to obtain the maximal

throughput sum, whichwill be set as the weight later. The best

power response of the k th vehicle in cell n is showed as (23).

Then each game participant will carry out the optimal power

response according to other participants’ power strategy till

the overall power set converges to an equilibrium point.

Pmn,k (t)
∗

=















































































(Pmn,k (t))
min

Ŵ · (2c0−1) ·

(

σ 2+
N
∑

l=1,l 6=n
Gm
l,k ′ ·Pml,k ′ (t)

)

Gmn,k (t)
,

Pmn,k (t) ≤
(

Pmn,k (t)
)min

)

B
cmn,k (t) ln 2

−
Ŵ

(

σ 2 +
N
∑

l=1,l 6=n
Gm
l,k ′ · Pm

l,k ′ (t)

)

Gmn,k (t)
,

(

Pmn,k (t)
)min

< Pmn,k (t) <

(

Pmn,k (t)
)max

Pmax , pnmax ≥ Pmax

(23)

To prove the uniqueness, we have guaranteed that the

best power response is a standard function which has the

following three properties. (i) Positivity. (ii) Monotonicity.

(iii) Scalability. According to [22], the Nash Equilibrium

point is unique for the Gm(t)

2) BIPARTITE GRAPH OPTIMAL MATCHING ALGORITHM FOR

MULTI-CELL CHANNEL RESOURCE MULTIPLEXING

For the two-cell scenario, the multiplex matching scheme

of the wireless channel is critical to the wireless system’s

transmission efficiency. In this paper, we consider adopting

the Kuhn-Munkres (KM) algorithm to obtain the optimal

channel reusing scheme efficiently and rapidly. It is assumed

that each sub-channel can only be scheduled to one vehicle
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Algorithm 1 The Non-Cooperative Game Power Control

Algorithm

Input :Gmn,k (t),K ,Tend ,B,Pmax ,N0, c0,T ,S, cmin, cmax;
Output: RSmax ,P

1
t ,P

2
t ,R

1
t ,R

2
t ;

for t = 1; t ≤ Tend ; t + + do

for k1 = 1; k1 ≤ K ; k1 + + do

for k2 = 1; k2 ≤ K ; k2 + + do

for s = 1; s ≤ S; s+ + do
(1) Calculate the price factor price =
cmin(k1, k2, t) + s ∗ (cmax(k1, k2, t))/S;
(2) Update the power strategies

iteratively according to the optimal

power response (23) for k1 and k2 until

it converges to a fixed point;

(3) Calculate the transmit power and rate

according to (4) and (23);
end

Determine the optimal pricing factor and set

the corresponding throughput RSmax as the

weight of this edge;
end

end

end

at each time slot to avoid intra-cell interference. And each

vehicle terminal cannot occupy more than one sub-channel at

the same time. In this paper, the sub-channels are considered

to be identical so that it is not necessary to consider all

the combinations of all sub-channels and vehicles. It is the

vehicle matching set between two cells that really matters.

The quantity of the sub-channels is assumed to be equal to the

number of vehicles so that the problem is a perfect matching

problem for the bipartite graph.

The bipartite graph is built and the vehicles in two cells

are regarded as two groups of vertexes of the bipartite graph,

respectively. The number of vehicles in each cell is equal

to K . The steps of the bipartite graph optimal matching

algorithm can be concluded as Algorithm 2.

The time complexity is O(n3). Now the radio resource

management scheme is finished so the optimal sub-channels

matching set and uplink transmit power set are obtained. The

actual transmission rate for uplink data offloading can be

calculated. The steps can be concluded in the pseudo-code

as below.

B. ONLINE COMPUTATIONAL RESOURCE

MANAGEMENT ALGORITHM

In this section, an online Lyapunove optimization method

is proposed to solve computation task offloading to get a

trade-off between the average weighted power consumption

and delay. With this method and drift-plus-penalty, the time

average of a stochastic problem can be minimized under a

series of constraints. At every time slot, the optimal solution

will be decided by the Lyapunov optimization framework.

Algorithm 2 Bipartite Graph Optimal Matching

Algorithm

Input : V ,E,A,B,Wi,j(t),Tend ;
Output: Pfinal,RSfinal,match(t)

for t = 1; t ≤ Tend ; t + + do
(1) Set weight matrix r according toWi,j(t);

(2) Assign the initial vertex labels:

L1,i(t) = max(Wi,j(t)) and L2,j(t) = 0;
(3) Find a complete match with the Hungarian

algorithm, if it fails go to (4);

(4) Improve the labeling by slack array:

slack(y) = min{l(x) + l(y) − w(x, y)|x ∈ S}.
Calculate the labeling changing value:

1 = min{slack(y)|y ∈ B\T }. Then improve the

labeling of vertex r :

if r ∈ S then
l ′(r) = l(r) − △;

else if r ∈ T then
l ′(r) = l(r) + △;

else if r /∈ S and r /∈ T then
l ′(r) = l(r)

end

(5) Repeat the step 3 and 4 till the complete match of

equality subgraph is found.
end

In a word, the algorithm and calculation process are able to

achieve asymptotic optimality.

From definition of Lyapunov, we defined the quadratic

Lyapunov functions as formula (24)

L(2(t)) =
1

2

∑

n∈N

∑

k∈K

(

(1 − µ)(C
incop
n,k (t))2

+ µ(C
cop
n,k (t))

2 + Q2
n,k (t)

)

(24)

where 2(t) , [Q(t),C(t)]. This function is defined to

measure the total queue length in the system. By defining

the Lyapunov drift as the change in the quadratic Lyapunov

function from one slot to the next, a drift function can be

written as,

1L(2(t)) = L(2(t + 1)) − L(2(t)) (25)

For stabilizing a queuing network while also minimizing

the delay in network penalty function, the drift-plus-penalty

method is used. Using this methodology, the current queue

state is observed and the optimization actions are taken to

minimize the upper limit of drift plus penalty function in the

formula.

1V (2(t)) = 1L(2(t)) + V × P∑(t) (26)

where P∑(t) is the penalty function and V is a non-negative

weight which is chosen to adjust to optimal point, with a

trade-off in the queue length of task buffer. Based on the
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equation, we can figure out the upper bound of (27).

1V (2(t))

, C − E
[

∑

n∈N

∑

k∈K
Qn,k (t)(D

∑

,n,k (t) − An,k (t))|2(t)
]

−E
[

∑

n∈N

∑

k∈K
(1 − µ)C

incop
n,k (t)(Ds,n,k (t) − Rmn,k (t))|2(t)

]

−E
[

∑

n∈N

∑

k∈K
C
cop
n,k (t)(Ds,n,k (t)−R

m
n,k (t)−Gn,k (t))|2(t)

]

+V × E[P∑(t)|2(t)] (27)

Algorithm 3 A Lyapunov Optimization-Based Online

Resource Allocation Algorithm

Input : 2(t),An,k (t), n = 1, 2, · · · ,N , k =
1, 2, · · · ,K ;

Output: f (t), fser (t)

while t ≤ T do

for n = 1; n ≤ N ; n+ + do

for k = 1;m ≤ K ; k + + do
Determine f (t), fser(t) by solving,

P2: min
X(t)

∑

n∈N

∑

k∈K

(

Qn,k (t)D
∑

,n,k (t) − (1 −

µ)C
incop
n,k (t)(Ds,n,k (t) − Rmn,k (t)) −

µC
cop
n,k (t)(Ds,n,k (t) − Rmn,k (t) − Gn,k (t))

)

+
V · P∑(t)

where P∑(t) ,
∑

n∈N

∑

k∈K

(

ωn,k (ptx,n,k (t) +

pl,n,k (t)) + ωK+N+1(pser,n,k (t) + µptxn,k (t))
)

Qn,k (t), C
incop
n,k (t) and C

cop
n,k (t) are updated

according to (6) and (7)
end

end

t = t + 1;

end

Algorithm 3 is designed to make decisions greedily at

every time slot so that the upper bound will also beminimized

on each time slot t . It is obvious that when the tasks waiting in

the task buffer are minimized then the total energy consump-

tion will be minimized at the same time. The object function

of the algorithm is at the right-hand side of the Lyapunov

function. The optimal solution to the deterministic problem

will be discussed in the next section.

With vehicles’ CPU frequency and the mobile edge

servers’ CPU frequency to be determined, the original prob-

lem is decomposed into two sub problems. The irrelevant

variables in (27) can be regarded as constant.

1) OPTIMAL CPU FREQUENCY OF VEHICLES

As variables irrelevant to these problems is regarded as con-

stant, the original equation is eliminated to (28), and the

optimal solution to the original problem is transferred to the

optimal solution to the following equation.

min
f (t)

∑

i∈N

(

− Qn,k (t)τ fn,k (t)L
−1
n,k+V×ωn,kkmob,n,k f

3
n,k (t)

)

,

s.t. 0 ≤ fn,k (t) ≤ fmax , i ∈ N (28)

The first-order derivative is increasing and the second-

order derivative is greater than zero, thus the problem is

convex under linear constraints. Furthermore, this variable

fn,k (t) is decoupled from other variables. According to the

theory of extremum, the extreme value is achieved at the

stationary point or the boundary points, which is calculated

as (29).

fn,k (t) =

{

min
(

fn,k,max ,

√

Qn,k (t)τ

3kmob,n,kωn,kVLn,k

)

, ωn,k > 0

0, ωn,k = 0

(29)

According to the equation above, it is obviously that f ∗
n,k (t)

is negatively correlated with V ,Ln,k , ωn,k . At this point, with

the larger number of ωn,k and V, the weight of total energy

consumption becomes larger, thus the CPU frequency need

to decrease. These variables are not required to be decided

by the system operation. While for the task buffers of local

CPU, it is a variable that correlated with other deterministic

variables and it is influenced according to the relationship in

the formula.

2) OPTIMAL CPU FREQUENCY AT THE MEC SERVER

After decoupling irrelevant variables, the optimal solution to

CPU frequency at MEC server can be solved by the following

equation.

min
fc(t),Ds(t)

∑

n∈N
−Cn,k (t)Ds,n(t) + V × ωN+1kser,nf

3
C,n(t)

s.t. 0 ≤ fC,n(t) ≤ fC,n,max , n ∈ N (30)

Similar to the optimal solution of local CPU frequency,

optimal frequency at the MEC server is also a convex prob-

lem. Follow the same steps, we can derive the optimal solu-

tion (31) to the sub question. We define ((1 − µ)C
incop
n,k (t) +

µC
cop
n,k (t))τ as Cn,k .

fC,n,k (t)

=

{

min
(

f maxC,n,k ,

√

Cn,k

3kser,n,kωN+K+1VLC,n,k

)

, ωN+K+1 > 0

0, ωN+K+1 = 0

(31)

In summary, the optimal solution demonstrates that the

deterministic result is irrelevant with task arrived rate, thus

it is appropriate for the complicated environment. According

to the previous discussion, the optimal local and MEC server

frequency can be obtained under a low complexity algorithm.

V. SIMULATION RESULT

In simulation, to evaluate the performance of our pro-

posed resource management strategy based on collaborative
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TABLE 1. Parameter settings.

MEC assisted cellular-V2X (CBSOA), we regard centralized

MEC vehicular network without collaboration betweenMEC

servers (NCNOA) as the compared method. For convenience,

parameter settings are summarized in Table 1. We assume

that N MEC servers and M vehicles are randomly located

in the coverage of each base station installed with MEC

servers. Besides, the speed of each cars equals to 72km/h.

The length of time slot τ = 1ms, the system bandwidth

ω = 10MHz, N0 = −174dBm/Hz. fn,k,max = 1GHzand

fC,n,k,max = 2.5GHz are the maximum CPU frequency for

local vehicles and MEC servers. kmob,n,k and kser,n,k are

the effective switched capacitance and they equals to 10−27.

Ln,k and LC,n,k are the CPU cycles needed to process 1 bit

of tasks and they equals to 737.5 cycles/bit. The maximum

transmission power is 23dBm and the sub-carrier spacing

is 30KHz.

FIGURE 4. The effect of the control parameter on the weighted mean
power consumption in different scheme.

Then in the following discussion, we will talk about the

performance of these two strategies and key parameters.

We first validate the theoretical result for the impact of the

control parameter. The relationship between weighted mean

of energy consumption and average queue length with control

parameter are revealed in Fig. 4 and Fig. 5. We can easily see

that the weighted mean of energy consumption is negatively

correlated with the control parameter and the weighted mean

of sum queue length is positively correlated with the con-

trol parameter. It verifies that there is a trade-off between

weighted mean of energy consumption and average process-

ing delay. For the balance of the system, a larger control

parameter can be used in an energy consumption sensitive

situation and a smaller control parameter can be used in a

delay-sensitive situation. Regarding a system that uses the

maximum transmit power to offload the task, our proposed

optimized system has a lower weighted mean energy con-

sumption and average queue length. In a word, some compu-

tational resources provided by MEC servers is wasted when

using the maximum transmit power and can be re-allocated

to other vehicles.

FIGURE 5. The effect of the control parameter on the average queue
length in different scheme.

Fig. 4 and Fig. 5 also tells that whenω increases, the energy

consumption and the queue length increases either. Under

this circumstance, the frequencies of the CPU cores are

redundant than needed and more computational resources are

provided. These redundant resources can be re-allocated to

other vehicles.

FIGURE 6. The overflow probability of NCNOA and CBSOA with different
error rate.

Fig. 6 shows the overflow probability for two schemes.

By varying the decoding error rate of the transmission,
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we can see that the reliability will increase with the error

rate. From equation (4) we can observe that a larger decod-

ing error rate will have a corresponding smaller transmis-

sion rate. A smaller transmission rate means that less task

will be offloaded to mobile edge servers and therefore it

will result in a smaller stable queue length. And then the

task buffers will have less probability of overflow. In a

word, a smaller overflow probability means higher reliability.

Besides, the overflow probability between different schemes

is evaluated. It demonstrates that the overflow probability of

the collaborative MEC system is no larger than 3%, while the

non-collaborative system’s overflow probability is no larger

than 6%. Thus, Fig. 6 shows that a collaborative MEC vehic-

ular network with the proposed algorithm is more reliable

than the non-collaborative MEC vehicular network without

the proposed algorithm. As a collaborative MEC system has

better processing capability, thus the task buffers have less

overflow probability.

FIGURE 7. Total queue length v.s time for collaborative MEC networks
with different collaborative impact factor.

Fig. 7 illustrates the amount of queue length as time goes

and the impact of collaboration impact factor on queue length.

As is shown in Fig 7, if it enters the collaborative mode,

a collaborative impact factor will be always larger than 0 and

the average queue length will always be greater than the

non-collaborative system. This is because in the collaborative

MEC system will receive data transmission from other base

stations. The higher the collaboration impact factor becomes,

the higher the processing capability is provided. In other

words, the queue length will decrease with the increase in the

collaborative impact factor. When µ equals to 0.4, the sys-

tem’s processing capability cannot satisfy the requirement.

Therefore, the average queue length continues to increase as

time goes, which demonstrates that the system performance

cannot converge to a stable state under the system’s time-

constraint.

From Fig. 8 we can see the relationship between weighted

mean of energy consumption and the average processing

delay. The average processing delay increases while the

FIGURE 8. Weighted mean of energy consumption vs. Average processing
delay.

FIGURE 9. Relationship network size and average weighted total queue
length.

weighted mean of energy consumption decreases. Further-

more, it shows that a proper control parameter V can be

chosen properly to balance the energy consumption and

processing delay. Besides, given specific processing delay,

the weighted mean of energy consumption increases with the

weight. It also confirms that the energy consumption can be

adjusted by weight factors. Furthermore, there is a power

delay trade-off in this system, which is consistent with our

assumption.

In real circumstance, there will be a different number of

vehicles in each cell. Thus, we discuss the system stability for

different network size. Fig. 9 discuss the impact of network

size on the convergence time using the proposed scheme.

By tracking the average total queue length of vehicles with

different numbers of vehicles, the task arrival rate is kept

unchanged simultaneously. The task buffer’s convergence

time and stability are presented in Fig. 9. It presents that the

queue length will increase at the beginning, but it will be

stabilized finally. A larger A(tasks arrived rate) will result in

larger convergence time, while the queue length is still able to

be stabilized after several time slots for larger network size.
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Therefore, the system is applicable to a reasonable number of

vehicles for mobile edge computing.

VI. CONCLUSION

This paper innovatively envisions a joint computation

resource allocation and URLLC resource allocation strat-

egy for collaborative MEC assisted cellular-V2X networks,

where the tasks can be exchanged feasibly between MEC

base stations. A non-cooperative game and bipartite graph

are introduced to reduce the inter-cell interference and decide

the channel allocation, which maximize the throughput in

URLLC V2X communication. Then an online Lyapunov

optimization method is proposed to solve computation

resource allocation to get a trade-off between the average

weighted power consumption and delay. The results demon-

strated that our scheme greatly reduces the energy consump-

tion and processing delay of the system and there exists a

power-delay tradeoff in the system. Nevertheless, our pro-

posed can get better overflow probability, which means that

it is more reliable than centralized MEC assisted V2X. The

road environment in this paper is based on the random distri-

bution of vehicles. However, in the real world, it is obviously

impossible for vehicles to be completely distributed randomly

on the road. The actual road scene is relatively complex.

For example, cars on a one-way street drive in the same

direction, while cars on a two-way lane drive in opposite

direction. There are also intersections and more complex

vehicle environments. Therefore, it is necessary to further

study the complex road scenes in reality.
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