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Abstract This chapter presents an optimization framework to manage green data-

centers using multi-level energy reduction techniques in a joint approach. A green 
datacenter exploits renewable energy sources and active Uninterruptible Power Sup-

ply (UPS) units to reduce the energy intake from the grid while improving its Qual-

ity of Service (QoS). At server level, the state-of-the-art correlation-aware Virtual 
Machines (VMs) consolidation technique allows to maximize server’s energy effi-

ciency. At system level, heterogeneous Energy Storage Systems (ESS) replace stan-

dard UPSs while a dedicated optimization strategy aims at maximizing the lifetime 
of the battery banks and to reduce the energy bill, considering the load of the servers. 
Results demonstrate, under different number of VMs in the system, up to 11.6% en-

ergy savings, 10.4% improvement of QoS compared to existing correlation-aware 
VM allocation schemes for datacenters and up to 96% electricity bill savings.

35.1 Introduction

Ever increasing demands for computing and growing number of clusters and servers 
in datacenters have ramped up the power consumption costs as an undesirable ef-

fect [21]. On the other hand, traditional fossil fuel concerns, carbon emissions and 
global warming impose the introduction of more sustainable energy sources and 
behavioural change of people [41], since 10% of the global consumption of elec-

trical energy has been estimated to be consumed by Information Technology (IT) 
infrastructures [14].
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To optimize the operation of a datacenter, it is crucial to minimize both IT and

cooling energy consumptions. Server consolidation [26] is one of the widely used

techniques to reduce the energy overheads, which minimizes the number of active

servers by packing workloads or Virtual Machines (VMs) into the minimal number

of active servers exploiting a virtualized environment. Large virtualized datacenters

use renewable energy to reduce their dependence on costly and brown energy from

the grid [33].

In the recent years, all the big energy consumers in the IT market (Amazon,

Google, Rackspace, etc.) have already introduced renewable energy sources in their

supply chain, locating their infrastructures in suitable geographical locations around

the world. The penetration of renewable and green energy sources is almost none

for company owned datacenters, IT infrastructures located in the same corporate

building where the business is run, mostly in urban environments.

Solar energy is the most effective renewable source employed in green datacen-

ters since Photovoltaic (PV) modules can be easily located close by the datacenter

and the converted energy can be immediately used without distribution. Moreover

it is the most suitable for small to medium datacenters (up to few hundreds kWs

of IT power) located in urban environments where wind turbines and water storage

infrastructures may not be built, given the space required for such infrastructures.

Renewable energy sources are not constant over the time, their intensity depends

on weather, geographical position of the plant and seasons, moreover a maximum

in the energy intake rarely corresponds with a maximum in the demand. However,

estimating their short-term trend (one day ahead) with small error (Mean Average

Percentage Error (MAPE) close to 10%) is possible, as it has been demonstrated

in [11]. Similar results can be expected when dealing with electricity demand pre-

diction at building scale (few tens of kWs) [32]. To tackle the imbalance between

energy intake and demand, a widespread monitoring system of the produced and

consumed power over time is necessary, as well as efficient forecasting algorithms

of datacenters load consumption are required to optimize the usage of Energy Stor-

age Systems (ESS) that collects the surplus of green energy for future needs.

Variability and fast-changing characteristics of applications, for instance scale-

out applications [17] (e.g. web search, MapReduce, etc.), affect the energy con-

sumption of servers due to the dependency on external factors, e.g., number of

clients/queries in the system. To this end, the impact of servers’ energy consump-

tion on the usage of green energy becomes more substantial and management of

consumed energy will play a major role in lifetime and operation of ESS. Conse-

quently, without consideration of minimizing datacenter energy consumption, many

existing approaches to management of green energy and batteries are sub optimal.

In this chapter, we introduce and propose a multi-level and multi-objective frame-

work for the optimization of green virtualized datacenters, to jointly minimize the

energy consumption and the carbon footprint, exploiting renewable energy sources,

state-of-the-art VMs allocation schemes and Hybrid Electric Systems (HES). With

HES, we refer to electrical ESS where different battery technologies are employed

together, allowing to compensate for the inherent drawbacks of each technology.

We incorporated dynamic VM allocation into servers’ powers by novel HES, and
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optimization methods to maximize the battery banks lifetime are used. The frame-

work consists of two modules running concurrently, the Datacenter Energy Con-

troller which minimizes the energy consumption of datacenter without any signif-

icant Quality-of-Service (QoS) degradation and shares the real energy consump-

tion data with the Green Energy Controller; and the Green Energy Controller that

manages renewable sources and HES, providing feedback to the Datacenter Energy

Controller.

The Datacenter Energy Controller is based on a state-of-the-art correlation-aware

VM allocation scheme [22] due to a high correlation within a cluster of applications

in virtualized datacenters. Regarding load correlation, the authors demonstrate that,

having detailed information about the applications characteristics, as opposed to

using stationary load values for the VMs (e.g. peak or average values), gives the

opportunity to further reduce the energy consumption of a datacenter. On the other

side, the QoS degradation occurs when the aggregated utilization among colocated

VMs is beyond the CPU capacity of a server. It means that there will be some work-

loads which cannot be executed at the right time. Therefore, datacenter providers

take into account the Service-Level Agreements requirements to satisfy the cus-

tomers. The Green Energy Controller, based on [31], is a two-phase controller that

takes into account the cost policies of the grid energy and exploits forecasts of both

the datacenter’s load and of the incoming energy from renewables. The framework

uses PV modules as green energy source and two battery technologies (lead-acid

and lithium-ion) for the HES that are used with different priorities and roles.

In current datacenters, not enough efforts have been dedicated to implement

adaptive energy reduction techniques and real-time resource scheduling to manage

efficiently IT equipment and renewable energy sources. The novelty of our work

consists in the introduction of a HES architecture to replace standard Uninterrupt-

ible Power Supply (UPS) systems, which allows an active management and the full

exploitation of the energy buffers for the locally-generated renewable energy. We

also designed a dedicated control loop which connects the VMs allocation scheme

to the HES manager and optimizes the resources in real-time. At the same time, the

modular structure allows to use both general purpose models and high-end ones for

performance evaluation, model verification and feasibility analysis.

35.2 Related Work

Renewable energy sources integration in the electricity grid and in particular green

datacenters are currently a hot-topic. Different research ideas have been presented

in the last few years that address the problem of exploiting local energy generation

to mitigate grid energy demand of datacenters [18] and in general of any human

activity [12]. At the same time, HES have been addressed in several works available

in the literature. The fundamental idea behind HES management is to use batteries

as energy buffers to store the amount of green energy that cannot be used directly by

the connected loads. Different management approaches have been proposed to au-
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tomatically control the energy flows from renewables to loads and storage units [16]

and also hybrid solutions for battery banks have been demonstrated [40]. This is

particularly of interest nowadays because of the large availability of second-life bat-

teries from electric vehicles that can have up to 75% remaining capacity available

for storage applications [25, 37]. Despite the market availability of hybrid storage

systems is still far, the literature review demonstrates that these technologies worth

the efforts for being implemented. In this work, we followed the approach proposed

in [31] to shape the active-UPS (or HES) system presented in the following. The au-

thors in [31] propose a two-phase control scheme that exploits intrinsic advantages

of different battery technologies mitigating, at the same time, their drawbacks.

A number of research works present methods for server consolidation based on

per-VM workload characteristics, i.e., the peak, off-peak, and average utilization

of workload [26, 35]; which aim is to reduce heat dissipation of hot spot zones

and improve overall power utilization in datacenters [9, 20]. In [34] authors pro-

pose abstract models to balance computing power in a datacenter by minimizing

peak inlet temperatures. A holistic approach that manages IT, power and cooling

equipment by dynamically migrating servers’ workloads and adjusting cooling is

presented in [13]. Experimental results for a virtual datacenter demonstrate a reduc-

tion by 35% in power consumption and 15% in cooling. Authors in [27] present a

control-oriented model that considers cyber and physical dynamics in datacenters to

study the potential impact of coordinating the IT and cooling controls. To achieve

further power savings while maintaining the QoS level, joint relationships among

VMs, like load correlations, have been exploited in recent works [36, 24, 19]. For

instance, in [24], Meng et al. proposed a VM sizing technique that pairs two un-

correlated VMs into a super-VM by predicting the workloads. However, once the

super-VMs are formed, this solution does not consider dynamic changes of the

VMs’ load, which limits further energy savings. Therefore, these approaches do

not work well with non-stationary and fast-changing VM behaviors in particular for

scale-out applications. In [22], a power-efficient solution is proposed based on the

First-Fit-Decreasing heuristic to separate load correlated VMs especially targeting

the characteristics of the scale-out applications. They also exploit server’s Dynamic

Voltage and Frequency Scaling (DVFS) techniques to achieve further energy sav-

ings. Note that, these schemes do not take into account the renewable energy sources

and datacenter system model in modern green datacenters.

There is no evidence in the literature of the joint application of HES optimization

and correlation-aware techniques to the optimization of datacenter energy consump-

tion, and the potential savings (both from environmental and money perspectives)

are clearly worth the effort for further investigation.

35.3 The System Modeling Framework

We introduce a novel green datacenter system model where datacenter equipment,

PV modules, smart grid, and UPS are connected as shown in Figure 35.1. The IT
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Figure 35.1: The complete system modeling framework.

equipment and cooling system inside this datacenter are the major contributors to

power consumption than the other facilities. These components are combined using

Power Distribution Units (PDUs) that eventually connect to the Charge Transfer

Interconnect (CTI) bus that serve the whole facility [15]. In this framework the UPS

is designed as a HES to provide both supply in case of grid outages and a buffer for

green energy.

The system models two battery banks, a PV module and the bidirectional CTI

bus, managed by a dedicated controller, not shown, as presented in [38]. Each unit

is connected to the CTI by means of a bidirectional DC-DC converter for level

shifting and charge routing, while the PV’s one is unidirectional. Grid and PDUs

are modeled in terms of power source and load, connected with the CTI by means

of AC-DC and DC-AC converters, respectively.

We defined two constraints to the simulated system: (i) the exceeding renew-

able energy cannot be injected into the main grid (if it cannot be stored), and (ii) a

peak/off-peak price scenario from a regulated electricity market for the energy taken

from the grid (we considered the Zurich’s tariff 7.5/14.9 CHFcent/kWh [1]).
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Thus, renewable energy and batteries should completely sustain the load of the

datacenter or, at least, provide supply during outages and periods with the highest

price. These choices are justified by the fact that selling energy back to the grid,

namely providing net-metering ancillary service to the Distribution System Oper-

ators (DSOs), follows rules that are country-specific and strongly depend on the

interface between datacenter and energy network; moreover, datacenters are usually

big energy consumers and it is unlikely to have enough excess green energy to jus-

tify the effort (economically and technologically) of improving the electric system

to handle this task. The peak/off-peak price scenario in a regulated energy market

instead, can be easily implemented also in a free energy market scenario where the

energy price is continuously evolving; in this case, our assumption can be seen as

a threshold on the freely variable price: while the free market price is below the

threshold it is more convenient to buy from the grid, and the opposite when the

price rises.

We developed a discrete-time framework (cf. see Chapter 6 for more details on

different design space exploration options) that simulates the target green datacen-

ter, with hourly time-steps. The Green Energy Controller manages the PV modules,

the heterogeneous batteries and the CTI, the HES considered in this framework,

and has been implemented using Matlab. The Datacenter Energy Controller, imple-

mented in C++, manages the datacenter and VMs allocation scheme. Both compo-

nents communicate using sockets for interprocess communication, while the time-

step length of one hour guarantees that the time for VMs relocation (several GBs)

does not overtake the actual execution time.

35.3.1 Energy Management Models

According to Figure 35.1, the power management problem is solved at the CTI

bus level which is a DC path. Conversely, the system comprises both AC and DC

sources/loads thus, for the former ones, it is required to consider the power factor

component in the conversion. For example, considering the power intake from the

grid, if we measure the total apparent power that enters the rectifier, for example

on the grid side PGrid [VA] = VRMS · IRMS, this can be converted into active power

(the useful power available on the DC side) according to the PGrid [W ] = PGrid [VA] ·
cos(φ) where φ is the angle between Voltage and Current waveforms and cos(φ) is

called power factor. In addition, the converter’s efficiency ηX (.) must be added to

any transformation, since it depends on the actual power flowing with respect to the

nominal one.

PCT I
Datacenter(t) = PCT I

Grid(t)+PCT I
PV (t)+

nEES

∑
n=1

α ·PCT I
EES,n(t) (35.1)

PCT I
Grid(t) = PGrid(t) · cos(φ) ·ηACDC (ρ(t)) (35.2)
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PCT I
PV (t) = PPV (t) ·ηDCDC (ρ(t)) (35.3)

PCT I
EES,n(t) = PEES,n(t) ·ηDCDC (ρ(t)) (35.4)

PCT I
Datacenter(t) ·ηDCAC (ρ(t)) = PDatacenter(t) (35.5)

ρ(t) =
Pout

Pnom

·100 (35.6)

Equation (35.1) represents the power balance of the system, it states that the sum

of the input from the grid, PV and battery arrays must be equal to the datacenter

requirements, additionally the α is a directional parameter which can be -/+1 de-

pending on the charging/discharging status (source or load of the system) and nEES

is the number of separated battery banks that compose the HES. Equation (35.2)

to Equation (35.5) describe the AC-to-DC and DC-to-DC conversion functions used

for each system component, where the conversion efficiency term ηX (.) depends on

ρ(t), the ratio of power requested by the system with respect to the nominal power

delivered by the converter, which is expressed in percentage as defined by Equa-

tion (35.6).

In order to reduce the computational complexity and generalize the system’s

models we considered fixed power factor equal to one, fixed CTI voltage level and

energy converters have been modeled considering a fixed 90% efficiency since de-

tailed efficiency curves for high power equipment are not publicly provided by man-

ufacturers [2] but still are claimed to work in the range of 80-95% (with loads down

to ρ(t) =20%).

35.3.2 Electrical Energy Storage System

The HES can exploit two heterogeneous battery banks managed in hierarchical fash-

ion: a lead-acid array (the battery bank n. 1) and a lithium-ion array (the battery

bank n. 2). The battery model is based on the Peukert’s law [29]. The goal is to

model HES, that combine the advantages of the different battery technologies (lead-

acid and lithium-ion). The module, as all the modules in the framework, has been

conceived as a plug-and-play component; therefore, it can be easily replaced and

adapted.

Equation (35.7) defines the State of Health (SoH) of the battery as a ratio between

currently available charge capacity (Cre f ) and the nominal one. Equation (35.8) de-

fines the charge capacity as a linear combination of the previous charge and a term

that depends on the charge which is drained, where Cnom is the nominal charge de-

clared by manufacturer while Zb, linear aging coefficient, is a parameter depending

on the battery technology [30]. The following two equations (Equation (35.9) and
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Equation (35.10)) allow to determine the State of Charge (SoC) and the equivalent

battery current (Ieq), function of the current flowing from batteries (I), with respect

to the nominal battery parameters: Ire f the reference discharge current (provided by

the manufacturer and used to compute the reference charge), the Peukert’s coeffi-

cient kb and the charge actually used by the system, computed as current Ieq times

time slot (tslot ) length in seconds. The SoH of the battery decreases only during dis-

charge, so it is calculated only during discharge, whereas the SoC is updated during

both charge and discharge cycles. More details about the model and its utilization

can be found in [29, 30].

SoH(t +1) =
Cre f (t +1)

Cnom

(35.7)

Cre f (t +1) =Cre f (t)−Cnom ·Zb · (SoC(t)−SoC(t +1)) (35.8)

SoC(t +1) =
Cre f (t) ·SoC(t)− (Ieq(t) · tslot)

Cre f (t)
(35.9)

Ieq(t) =

(

|I(t)|

Ire f

)(kb−1)

· I(t) (35.10)

We tuned the parameters of the general purpose model (maximum and reference

charge/discharge currents) according to commercial devices, a VARTA Professional

Dual Power (230 Ah @ 12 V) [3] as lead-acid, and a StarkPower ’UltraEnergy’

(100 Ah @ 12 V) [4] as the lithium-ion.

We preferred to double the size of the battery bank n. 1, with respect the lithium-

ion one, because lead-acid technology is cheaper, easier to recycle and has a wider

working temperature range. However, lead-acid batteries suffer from a limited num-

ber of sustainable cycles (i.e. lifetime). The lithium-ion technology instead offers at

least one order of magnitude higher number of cycles, but it is also more expensive.

To maximize the lifetime of the storage (in particular of the lead-acid bank), we

put some constraints on the allowed Depth-of-Discharge (DoD) for both banks. To

force both banks to work in the optimal range of SoC, we set the minimum SoC to

65% for the bank n. 1 and 70% for the bank n. 2. The remaining capacity is however

available in the event of outage, thus providing standard UPS support.

Moreover, in the simulations we considered two configurations, the HES-1 where

we have 48 kWh as lead-acid capacity (16.8 kWh available) and 24 kWh as lithium-

ion capacity (7.2 kWh available); and the HES-2 with 96 kWh (33.6 kWh) and

48KWh capacity (14.4 kWh) respectively.
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35.3.3 Photovoltaic Module

The PV module provides green energy accordingly to the intensity of the solar irra-

diance impinging on it, which in turn depends on the weather mostly. In this frame-

work, we implemented it as a linearly varying voltage source, with integrated MPPT

controller [31] and tuned accordingly to real device’s characteristics [5]. Sun irradi-

ance [6] and temperature profiles [7] for the year 2005 in Zurich have been used for

tests.

PPV =

[

PPV,STC ·

(

GT

1000

)

· (1− γ · (Tj −25))

]

·NPV,S ·NPV,P (35.11)

Tj = Tamb +

(

GT

800

)

·NOCT −20 (35.12)

Equation (35.11) presents the linear model of the PV array, the parameters were

evaluated in Nominal Operating Cell Temperature (NOCT) and Standard Test Con-

ditions (STC) which are the nominal output power (PPV,STC = 2.65W ) in this case,

the cell temperature (Tj), irradiance level (GT = 1000W/m2 @ 25◦C) and the tem-

perature coefficient (γ = 0.0043%/◦C), while NPV,S and NPV,P are the number of

series and parallel cells in the module. The cell temperature is then obtained using

Equation (35.12), where Tamb is the environmental temperature, GT = 800W/m2 @

20◦C and NOCT = 45.5◦C.

We tuned the PV module size considering two different cases of peak power

production (hence the number of cells and panels) that are 10 kWp for the HES-1

simulating scenario and 30 kWp for the HES-2.

35.4 Simulation Framework Description

The overall diagram of our simulating framework, that jointly manages the Green

Energy and Datacenter Energy Controllers, is shown in Figure 35.2. At the begin-

ning of the simulation time horizon (off-line phase), the Green Energy Controller

computes the expected energy budget for the datacenter, processing historical dat-

acenter power profiles as well as the sun irradiance forecasts. This task is executed

only once and provides a preliminary energy budget for the whole simulation hori-

zon.

The on-line phase starts when the off-line phase of the Green Energy Controller

sends the available energy budget to the Datacenter Energy Controller for the first

time slot. Next, it waits until the VMs allocation to be completed according to the

prediction of upcoming loads of VMs, then, receives back the real energy demand of

the datacenter computed based on the real workload. Therefore, the Green Energy

Controller compensates the differences between: (i) expected and available green
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Figure 35.2: The simulating framework that jointly manages the Green Energy and

Datacenter Energy Controllers. Off-line phase, as a starting point of simulation,

is executed once at the beginning of the simulation time to compute expected en-

ergy budget for datacenter. In On-line phase, at each time slot, Datacenter Energy

Controller first receives forecasted workload and energy budget from Green Energy

Controller to allocate VMs to servers, then, sends back the real energy demand to

Green Energy Controller.

energy, and (ii) real energy consumption and energy budget for the datacenter, using

the lithium-ion battery as additional energy reserve or the grid if both banks in the

HES have been drained. To this end, if the actual energy consumed by datacenter is

higher than the expected, the Green Energy Controller compensates the datacenter

energy requirements. At the end of each time slot the Green Controller provides an

updated budget to the Datacenter Energy Controller for the VMs allocation of the

next time slot.

On the other side, the Datacenter Energy Controller tries to find the best alloca-

tion for VMs on the servers at each time slot using the VMs specification from the

previous time slot as incoming workload and the energy budget provided by Green

Energy Controller. The goal is to allocate VMs to the minimal number of servers

that yields in optimized total energy consumption of datacenter, as it will be ex-

plained in the following. After the allocation was completed, the Datacenter Energy

Controller communicates the actual energy demand for the current time slot to the

Green Energy Controller. Both of the controllers are invoked periodically, at every

time slot, i.e., tslot . The overall process of the framework and two controllers’ com-

munication has been shown in Figure 35.3. In the following sections, we describe

these two controllers in detail.
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t
slot 

1. Workload Forecast 

2. VM Allocation 

3. Simulation of Real Workload 

Execution During a Time Slot 
ith Time Slot 

Off-line Phase 

On-line Phase 

1. Forecast Acquisition 

2. Dynamic Programming (DP) 

1st Time Slot 

Datacenter Energy 

Controller 

Green Energy 

Controller 

Providing Energy Budget For All Time Slots 

Based on Irradiance and Load Forecast Profiles  

Energy budget optimization 

Energy budget optimization 

Figure 35.3: Overall process of the proposed framework - joint Datacenter and

Green Energy Controllers.

35.4.1 Datacenter Energy Controller

In this section, we have considered the state-of-the-art correlation-aware VM allo-

cation scheme as a datacenter power management solution [22]. Correlation refers

to the VMs’ utilizations when the peaks of two VMs occur at the same time during

a certain time interval. Therefore, for using the servers resources efficiently dur-

ing a time slot, highly correlated VMs should be placed apart, in different servers.

Thereby, based on the VMs utilization patterns, the aggregated utilization of colo-

cated VMs nearly reaches their server’s capacity during a time slot. This favors

consolidation and leads to power savings by lowering the number of active servers.

In this context, due to the distributed operations of multiple VMs in a cluster, a

high correlation within a cluster of VMs is observed, called intra-cluster correlation,

rather than the correlation among different clusters targeted in other correlation-

aware schemes [36, 19]. The correlation-aware VM allocation method has been

proposed, in [22], while sharing cores among colocated VMs based on defining

a cost function depending on QoS requirement to efficiently quantify the correla-

tion between the VMs across a certain time horizon. Finally, a way to scale the

Voltage/Frequency (V/f) level is provided to achieve more power savings without

any QoS degradation. In this algorithm, the VMs are allocated such that the correla-

tion among the allocated VMs in the server is minimized, while the server does not



12 Ali Pahlevan, Maurizio Rossi, Pablo G. Del Valle, Davide Brunelli, and David Atienza

exceed its total CPU capability, as well as the number of the active servers is min-

imized while satisfying performance requirements. Once all the VMs are allocated

into servers, an optimal V/f level for each server is determined. This correlation-

aware VM allocation algorithm is periodically invoked at every tslot .

35.4.2 Green Energy Controller

The Green Energy Controller is a two-phase scheduler - off-line and on-line phases

- that manages the CTI bus and provides guidelines to the Datacenter Energy

Controller, by recursively solving the set of equations presented in Section 35.3.

Moreover, see Chapter 10 for more details about combined design- and run-time-

exploration and -adaptation approaches for computing systems.

The off-line phase’s goal is to find the best resource allocation strategy to min-

imize the energy intake from the grid (i) and to maximize the lifetime of the lead-

acid battery bank (ii) by minimizing the number of charge-discharge cycles and

using as much as possible uninterrupted cycles. This is based on Dynamic Pro-

gramming (DP) that is a strategy to solve complex problems by splitting them into

lower complexity ones, solving and storing each solution, thus when a previously

solved problem occurs the system looks up the previous solution saving compu-

tational time. It takes as input the expected workload of the datacenter, the price

profile of the energy from the grid, and the irradiance forecasts for the whole time

horizon [39, 31]; in this phase, the scheduler manages the battery bank n. 1 only.

The algorithm ranks all the possible system states (charge to discharge, charge to

charge, discharge to charge and discharge to discharge) for each time slot in the

simulation horizon, that fulfills the above constraints. For each state transition it

assigns a weight based on the battery usage, the higher the weight the lower the

ranking. At the end, it provides an optimal energy budget for each time slot and the

best utilization strategy for the lead-acid bank for the whole time horizon. Only the

budget for the first time slot is then sent to the Datacenter Energy Controller and

this message triggers the on-line phase. All the other energy budgets computed are

kept in memory for the on-line phase to use them when the off-line concludes.

The on-line phase, for each time slot, optimizes the initial energy budget, com-

puted by the off-line phase, trying to compensate the difference between expected

workload and irradiance forecast with respect to the real data measured by the sys-

tem. In the on-line phase the scheduler manages also the battery bank n. 2 mainly to

compensate error in the forecasts and to maximize the lifetime of the lead-acid bank.

This is a constrained multivariate optimization problem that has been solved numer-

ically using the Matlab’s fmincon [8] solver. For each time slot, the Green Scheduler

must find the optimal currents balance in the CTI to minimize the energy taken from

the grid (optimization goal), to fulfill the off-line lead-acid battery scheduling and

to supply the load. For each component of the system (grid, PV, batteries and load)

we set constrained boundaries for the currents and the input power from the grid,

linear constraints for the CTI based on the Kirchhoff currents law and non-linear



35 Joint Computing and Electric Systems Optimization for Green Datacenters 13

constraints to compute the effect of energy converters and batteries’ SoC. Problem’s

constraints (current flow direction for batteries and use of the grid) change in ac-

cordance with the system state, in this way it is possible, for example, to force the

lithium-ion battery to be discharged when the lead-acid battery is recharged and the

green energy is unavailable or lower than the load. At the end of the time slot, the

actual energy balance is updated to the datacenter and this triggers also a new cycle

of the simulator with the following tslot .

35.5 Experimental Results

We validated the effectiveness and applicability of the proposed framework to larger

scale problems using two weeks simulation horizon, workload traces obtained from

a real datacenter setup and real irradiance and temperature profiles. We arranged

the simulations in two separate sets, firstly we evaluated the best VMs allocation

algorithm in terms of energy and QoS; secondly we placed this best scheme into the

Datacenter Energy Controller and we executed the joint optimization framework.

35.5.1 Setup

We modeled a green urban datacenter consisting of medium sized facilities with

two components: computing power consumption (IT equipment) (i) and Computer

Room Air Conditioning (CRAC) power consumption as the cooling unit (ii). We

evaluated the effectiveness of the proposed solution with a virtual testbed consisting

of 250 servers where the servers are homogeneous. We targeted an Intel Xeon E5410

server configuration which consists of 8 cores and two frequency levels (2.0GHz and

2.3GHz), and used the power model proposed in [28].

To simulate the datacenter workload and energy demand we sampled the CPU

utilization of a real datacenter setup every 5 min. for one day, then we duplicated

the samples up to 14 days. Such assumption has been proved by real-trace studies,

since the real datacenter’s workload shows significant variability and a daily pat-

tern during one week [23]. Finally, to generate different samples for each day, we

synthesized fine-grained samples per 5 sec. with a lognormal random number gen-

erator [10], whose mean is the same as the collected value for the corresponding

5-minute sample rate.

We computed the irradiance forecasts implementing the algorithm presented

in [11], an example of the two resulting sequences is depicted in Figure 35.4. At

the same time, we used hourly averaged energy consumption profile from the real

datacenter as forecast, which results in a smoothed profile compared to the original

one.
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Figure 35.4: Solar power profile, forecasted vs. real.

35.5.2 Results

As previously introduced, we split the performance evaluation in two separate sets

of experiments. To select the best VMs allocation scheme for power management

to use with the Datacenter Energy Controller we compared the following three ap-

proaches:

• Best-Fit-Decreasing (BFD): a conventional best-fit-decreasing heuristic approach.

In detail, after sorting VMs in decreasing order of their utilization, the algorithm

allocates each VM to a server that provides the closest resource requirements

with respect to this VM utilization (i.e., the server with the smallest remaining

capacity is sufficient to contain the VM).

• Peak Clustering-based Placement (PCP) [36]: a correlation-aware VM alloca-

tion which clusters VMs using its Envelope-based correlation classification. The

authors presented a static clustering-based VM allocation method by defining

VMs’ utilization in a time series as a binary sequence where the value becomes

’1’ when utilization is higher than a threshold value, otherwise, ’0’. This algo-

rithm first clusters VMs such that the envelops of VMs’ utilization included in

different clusters do not overlap. Then, it allocates VMs to servers in order to

colocate VMs in different clusters.

• Correlation-aware VM Placement (CVMP) [22] the correlation-aware VM allo-

cation considered as the state-of-the-art approach and explained in Section 35.4.1.

Figure 35.5 compares the total energy consumption of the three approaches un-

der different number of VMs (obtained by duplicating the trace for 250 VMs) in

the system for a horizon of 14 days when we set the V/f level at the time of VM

placement tslot . The CVMP algorithm provides up to 11.6% and 7.3% energy sav-

ings compared to BFD and PCP respectively due to using the lower frequency levels

more frequently. It is noteworthy that PCP provides almost similar results with BFD

because, due to high and fast-changing correlations among VMs in our utilization



35 Joint Computing and Electric Systems Optimization for Green Datacenters 15

Figure 35.5: Total energy consumption of datacenter under different number of VMs

for a horizon of 14 days.

traces, PCP classifies VMs into only 1 cluster during most of the time periods. When

the number of clusters is 1, PCP behaves exactly the same as BFD. Note that the

semi-linear trend of the energy consumption depends on the analogous behavior of

the workload among different days, in a typical datacenter.

Table 35.1 shows the maximum violation defined as maximum per-period ratio

of the number of over-utilized time instances (i.e., when the aggregated utilization

among colocated VMs is beyond the CPU capacity of a corresponding server) to

tslot , during the two weeks under different number of VMs in the system. A graph-

ical representation of these data is provided in Figure 35.6. As a result, the CVMP

scheme provides a drastic reduction of the violations, up to 10.4% and 9.6% com-

pared to BFD and PCP respectively. In CVMP method, VMs are allocated based

Table 35.1: Maximum violations (%) of ratio of over-utilized time instances to tslot ,

during the entire periods, i.e., 336 hours (14 days) under different number of VMs

scenario.

Approach
Number of VMs

250 500 750 1000

BFD 2.1 4.9 9.6 18.4

PCP 1.1 2.8 3.4 17.6

CVMP 0.85 2 3.1 8
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Figure 35.6: Trend of maximum violations (%) under different number of VMs for

a horizon of 14 days.

on their peak utilizations, which were predicted from their history. Despite the

provision based on the peak utilization, we observed quality degradation over the

three approaches due to the mis-predictions of the peak utilization, especially dur-

ing abrupt workload changes under increasing the number of VMs in the system.

However, the CVMP method can statistically reduce the probability of the violation

by colocating uncorrelated VMs. Thus, the probability of joint under-predictions

among the colocated VMs is drastically decreased. Using the CVMP algorithm,

we performed the complete framework simulation (VM allocation, green energy

scheduling and communication between the two controllers) with tslot = 1 hour,

with predictions of upcoming workloads of datacenter using a last-value predictor.

Table 35.2 summarizes the results in terms of cost savings depending on the

number of VMs, the HES-size and the season. The cost savings are computed as

the difference between electricity cost to sustain the datacenter workload with or

without the renewable energy sources. As expected with larger battery capacities

(HES-2 configuration) we get higher savings. We compared also with the cost sav-

ing of using the PV panels without any storage (between brackets) to demonstrate

the advantage of the proposed approach. Although in winter scenario the low irradi-

ance and the cold weather strongly impact the renewable energy generation, causing

the batteries to rarely reach the full charge, they still provide advantages in terms of

savings. During summer instead the batteries are fully exploited resulting in higher

savings with respect to the previous scenario. According to the model, during sum-

mer, when the HES system’s usage is more intensive, we experienced a maximum

SoH decreasing of 0.07% (ratio between nominal and remaining capacity), which

means a lifetime longer than 15 years to reach the 70% of nominal capacity (lead-

acid battery near the end of life). Finally, Figure 35.7 shows a two-days view (48

time slots) of the framework evolution with 500 VMs, summer irradiance and HES-

2 configuration. We can observe the role of the energy buffer that allows to use

green energy when there is no input from the PV panels (Figure 35.7-top) and the

resulting money saving (Figure 35.7-bottom). In the specific time horizon depicted



35 Joint Computing and Electric Systems Optimization for Green Datacenters 17

Table 35.2: Overall framework results in terms of economic benefit of renewable-

enabled datacenter with respect to a grid connected one. Two HES configurations

are evaluated, HES-1 with 48 kWh as lead-acid and 24 kWh as lithium-ion capacity;

HES-2 with 96 kWh and 48 kWh capacity respectively.

Configuration Winter Savings (PV only) Summer Savings (PV only)

250 VMs

HES-1 29.30% (25.54%) 76.46% (57.86%)

HES-2 62.22% (38.72%) 96.13% (66.45%)

500 VMs

HES-1 14.30% (13.16%) 55.92% (48.00%)

HES-2 38.43% (31.30%) 85.28% (61.59%)

750 VMs

HES-1 9.53% (8.76%) 43.49% (40.16%)

HES-2 27.69% (24.86%) 73.39% (57.35%)

1000 VMs

HES-1 7.05% (6.57%) 33.34% (32.51%)

HES-2 20.64% (19.16%) 65.28% (53.96%)

(Figure 35.7-middle), we experienced a low level of irradiance compared to other

days in the overall horizon (cfr. Figure 35.4), it results in a lower amount of energy

available to recharge the batteries, in particular the battery bank n. 1 which has a

bigger capacity and a smaller recharge current with respect to the lithium-ion one.

Similar considerations can be made for the other 3 cases that are not reported for

the sake of summary.

35.6 Conclusion

In this chapter, we have presented a novel dynamic and multi-objective framework

to manage the energy consumption of datacenter, battery banks lifetime and energy

bill cost. The Datacenter Energy Controller minimizes the total energy consump-

tion using the state-of-the-art correlation-aware VM allocation scheme for the given

VMs specifications and energy budget provided by the Green Energy Controller

while improving QoS requirements. In the Green Energy Controller, we use a real-

time optimization technique to maximize the lifetime of battery banks and to reduce

the energy bill by managing the PV source, in price-varying scenarios, and consid-

ering the energy consumed by the datacenter. Finally, we validated the effectiveness

and applicability of our proposed system with the utilization traces obtained from a

real datacenter setups. Our experimental results show that the proposed framework
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Figure 35.7: Two days framework evolution with 500 VMs, HES-2 (96 kWh lead-

acid and 48 kWh lithium-ion capacity) configuration and summer irradiance (48

time slots). Power profile of the datacenter components (top); percentage SoC of

the battery bank n. 1 (SoC1) and n. 2 (SoC2) (middle); cost per time slot (bottom).

provides up to 11.6% energy savings and up to 10.4% improvement of QoS level

compared to existing conventional solutions under different number of VMs in the

system, and up to 96% money saving in the electricity bill.

Acknowledgements This work has been partially supported by the EC FP7 GreenDataNet STREP

project (Agreement No. 609000), and the YINS RTD project (no. 20NA21_150939), funded by

Nano-Tera.ch with Swiss Confederation Financing and scientifically evaluated by SNSF.



35 Joint Computing and Electric Systems Optimization for Green Datacenters 19

References

1. [online] http://www.strompreis.elcom.admin.ch/PriceDetail.aspx?

placeNumber=261&OpID=565&-Period=2014&CatID=12

2. [online] http://www.schaeferpower.de/cms/en/produkte.html
3. [online] http://www.varta-automotive.com/en-gb/products/

industrial/industrial-professional-dual-purpose

4. [online] http://www.starkpower.com/spnews/energystoragebatt
5. [online] http://www.enfsolar.com/pv/cell-datasheet/429
6. [online] http://www.soda-is.com/eng/services/services_radiation_

free_eng.php

7. [online] http://www.tutiempo.net/en/Climate
8. [online] http://www.mathworks.com/help/optim/ug/fmincon.html
9. Bash, C., Forman, G.: Cool job allocation: Measuring the power savings of placing jobs at

cooling-efficient locations in the data center. In: 2007 USENIX Annual Technical Confer-

ence on Proceedings of the USENIX Annual Technical Conference, ATC’07, pp. 29:1–29:6.

USENIX Association, Berkeley, CA, USA (2007)
10. Benson, T., et al.: Understanding data center traffic characteristics. ACM SIGCOMM Com-

puter Communication Review 40(1), 92–99 (2010)
11. Bergonzini, C., et al.: Comparison of energy intake prediction algorithms for systems powered

by photovoltaic harvesters. Microelectronics Journal 41(11), 766 – 777 (2010)
12. Carpinelli, G., Celli, G., Mocci, S., Mottola, F., Pilo, F., Proto, D.: Optimal integration of

distributed energy storage devices in smart grids. IEEE Transactions on Smart Grid 4(2),

985–995 (2013)
13. Chen, Y., Gmach, D., Hyser, C., Wang, Z., Bash, C., Hoover, C., Singhal, S.: Integrated man-

agement of application performance, power and cooling in data centers. In: Network Opera-

tions and Management Symposium (NOMS), 2010 IEEE, pp. 615–622 (2010)
14. Clark, J.: It now 10 percent of world’s electricity consumption, report finds (2013). [online]

http://www.theregister.co.uk/2013/08/16/it_electricity_use_

worse_than_you_thought/

15. Deng, N., et al.: Concentrating renewable energy in grid-tied datacenters. In: Sustainable

Systems and Technology (ISSST), 2011 IEEE International Symposium on, pp. 1–6. IEEE

(2011)
16. Farhangi, H.: The path of the smart grid. Power and Energy Magazine, IEEE 8(1), 18–28

(2010)
17. Ferdman, M., et al.: Clearing the clouds: a study of emerging scale-out workloads on modern

hardware. ACM SIGARCH Computer Architecture News 40(1), 37–48 (2012)
18. Goiri, I., Katsak, W., Le, K., Nguyen, T.D., Bianchini, R.: Designing and managing datacenters

powered by renewable energy. IEEE Micro (3), 8–16 (2014)
19. Halder, K., et al.: Risk aware provisioning and resource aggregation based consolidation of

virtual machines. In: Cloud Computing (CLOUD), 2012 IEEE 5th International Conference

on, pp. 598–605
20. J. Leverich M. Monchiero, V.T.P.R., Kozyrakis, C.: Power management of datacenter work-

loads using per-core power gating. Computer Architecture Letter 8(2), 48–51 (2009)
21. Katz, R.H.: Tech titans building boom (2009)
22. Kim, J., et al.: Correlation-aware virtual machine allocation for energy-efficient datacenters.

In: Design, Automation & Test in Europe (DATE) Conference, pp. 1345–1350 (2013)
23. Liu, Z., Chen, Y., Bash, C., Wierman, A., Gmach, D., Wang, Z., Marwah, M., Hyser, C.:

Renewable and cooling aware workload management for sustainable data centers. In: Pro-

ceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference

on Measurement and Modeling of Computer Systems, SIGMETRICS ’12, pp. 175–186. ACM

(2012)
24. Meng, X., et al.: Efficient resource provisioning in compute clouds via vm multiplexing. In:

Proceedings of the 7th international conference on Autonomic computing, pp. 11–20. ACM

(2010)

http://www.strompreis.elcom.admin.ch/PriceDetail.aspx?placeNumber=261&OpID=565&-Period=2014&CatID=12
http://www.strompreis.elcom.admin.ch/PriceDetail.aspx?placeNumber=261&OpID=565&-Period=2014&CatID=12
http://www.schaeferpower.de/cms/en/produkte.html
http://www.varta-automotive.com/en-gb/products/industrial/industrial-professional-dual-purpose
http://www.varta-automotive.com/en-gb/products/industrial/industrial-professional-dual-purpose
http://www.starkpower.com/spnews/energystoragebatt
http://www.enfsolar.com/pv/cell-datasheet/429
http://www.soda-is.com/eng/services/services_radiation_free_eng.php
http://www.soda-is.com/eng/services/services_radiation_free_eng.php
http://www.tutiempo.net/en/Climate
http://www.mathworks.com/help/optim/ug/fmincon.html
http://www.theregister.co.uk/2013/08/16/it_electricity_use_worse_than_you_thought/
http://www.theregister.co.uk/2013/08/16/it_electricity_use_worse_than_you_thought/


20 Ali Pahlevan, Maurizio Rossi, Pablo G. Del Valle, Davide Brunelli, and David Atienza

25. Mukherjee, N., Strickland, D.: Control of cascaded dc-dc converter-based hybrid battery en-

ergy storage systems - part i: Stability issue. IEEE Transactions on Industrial Electronics

63(4), 2340–2349 (2016)

26. Pakbaznia, E., et al.: Minimizing data center cooling and server power costs. In: Proceedings

of the 14th ACM/IEEE international symposium on Low power electronics and design, pp.

145–150. ACM (2009)

27. Parolini, L., Sinopoli, B., Krogh, B., Wang, Z.: A cyber-physical systems approach to data

center modeling and control for energy efficiency. Proceedings of the IEEE 100(1), 254–268

(2012)

28. Pedram, M., et al.: Power and performance modeling in a virtualized server system. In: Parallel

Processing Workshops (ICPPW), 2010 39th International Conference on, pp. 520–526

29. Riffonneau, Y., et al.: System modelling and energy management for grid connected pv sys-

tems with storage. In: 23rd European Photovoltaic Solar Energy Conference and Exhibition,

pp. 3447–3451 (2008)

30. Riffonneau, Y., Bacha, S., Barruel, F., Ploix, S.: Optimal power flow management for grid

connected pv systems with batteries. Sustainable Energy, IEEE Transactions on 2(3), 309–

320 (2011)

31. Rossi, M., et al.: Real-time optimization of the battery banks lifetime in hybrid residential

electrical systems. In: Design, Automation & Test in Europe (DATE) Conference, pp. 139–

145 (2014)

32. Rossi, M., Brunelli, D.: Electricity demand forecasting of single residential units. In: Environ-

mental Energy and Structural Monitoring Systems (EESMS), 2013 IEEE Workshop on, pp.

1–6. IEEE (2013)

33. Stewart, C., et al.: Some joules are more precious than others: Managing renewable energy

in the datacenter. In: Proceedings of the Workshop on Power Aware Computing and Systems

(2009)

34. Tang, Q., Gupta, S., Varsamopoulos, G.: Energy-efficient thermal-aware task scheduling for

homogeneous high-performance computing data centers: A cyber-physical approach. Parallel

and Distributed Systems, IEEE Transactions on 19(11), 1458–1472 (2008)

35. Verma, A., et al.: pmapper: power and migration cost aware application placement in virtual-

ized systems. In: Middleware 2008, pp. 243–264. Springer

36. Verma, A., et al.: Server workload analysis for power minimization using consolidation. In:

Proceedings of the 2009 conference on USENIX Annual technical conference, pp. 28–28.

USENIX Association

37. Wang, L.Y., Wang, C., Yin, G., Lin, F., Polis, M.P., Zhang, C., Jiang, J.: Balanced control

strategies for interconnected heterogeneous battery systems. IEEE Transactions on Sustain-

able Energy 7(1), 189–199 (2016)

38. Wang, Y., et al.: Charge migration efficiency optimization in hybrid electrical energy storage

(hees) systems. In: Low Power Electronics and Design (ISLPED) 2011 International Sympo-

sium on, pp. 103–108 (2011)

39. Wang, Y., et al.: Optimal control of a grid-connected hybrid electrical energy storage system

for homes. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013,

pp. 881–886. IEEE (2013)

40. Wang, Y., Lin, X., Kim, Y., Xie, Q., Pedram, M., Chang, N.: Single-source, single-destination

charge migration in hybrid electrical energy storage systems. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems 22(12), 2752–2765 (2014)

41. Zhang, Y., et al.: Greenware: Greening cloud-scale data centers to maximize the use of renew-

able energy. In: Middleware 2011, pp. 143–164. Springer


	Joint Computing and Electric Systems Optimization for Green Datacenters
	Ali Pahlevan, Maurizio Rossi, Pablo G. Del Valle, Davide Brunelli, and David Atienza
	Introduction
	Related Work
	The System Modeling Framework
	Energy Management Models
	Electrical Energy Storage System
	Photovoltaic Module

	Simulation Framework Description
	Datacenter Energy Controller
	Green Energy Controller

	Experimental Results
	Setup
	Results

	Conclusion
	References


