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Abstract— We present a model for the joint design of con-
gestion control and media access contral (MAC) for ad hoc
wireless networks. Using contention graph and contentioh ma-
trix, we formulate rescurce allocation in the network as a
ntility maximizetion problem with consiraints that arise from
condention for chonnel access. We present two algorithms that
are not only distributed spatially, but more interestingly, they
decompose vertically into iwo protocol layers where TCP and
MAC jointly selve the system problem. The first is a primal
algorithm where the MAC laver at the links generates congestion
(contentivn) prices based on local sgpregate sanrce rutes, and
TCP sources adjust their rates based on the aggrepate prices In
their paths. The second is a dual subgradient algorithm where
the MAC sub-algorithm is implemented through scheduling link-
layer Hows according to the congestion prices of the links. Global
convergence praperties of these algorithms are proved. This is a
preliminary siep towards a systematic approech to jointly design
TCP congestion contrvl algerithms and MAC algorithms. not
only 1o improve performuance, but more impurtantly, to make
their interaction more transparent.

Index Terms— Cougestion contral, Media access control, Con-
¥ex optimization, Cross-layer design, Dual decomposition, Sub-
gradient method, Ad hoc wireless netwurk,

I, INTRODUCTION

We consider the problem of congestion control over a
mullihop wireless ad hoc network. This hus been an active
research arca over the past few years (see. e.g., [15], (51 {91,
[301, [12]. 1371, [38]. |6]} with many fascinating and complex
isgues, involving, ¢.g., mobility, channcl estimation, power
contrel, MAC, routing, ete. Unlike most of previous work
however we facus on the intcraction of congestion control at
the transport layer and channel contention at the MAC layer,
and jgmore all other issucs. Our goal is to present a systematic
approach to joinlly design TCP congestion control algorithms
and MAC algorithins, not unly lo improve performance. bul
more importantly, to make their interaction more transparent.

This is motivaied by two ebservations. First, wircless ¢han-
nel is a shared medium and imterlerence-limited. Link is
oy 4 logical concept and links are corrclated due te the
interference with each other. Under the MAC strategies such as
tume-division multiple access and random access, these links
contend Tor exclusive access 1o the physical channel, Unlike
in the wireline network where Aows compete for ransmission
resources only when they share the same link, here, nerwork
layer flows thal do not even share a wireless link in their
paths can compete. Thus, in ad hoc wireless networks the con-
1ention relations berween link-layer Hows provide fundamental
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consmaints for resource allocatien. Second, TCP congestion
contred algorithms can be inferpreted as distribued primal-
dual algorithms over the Tnternet 10 maximize agaregate uiility,
and a user’s utility function is {often implicitly) defined by ils
TCP ajgorithm, see e.g. [18], [22], [21). This series of work
implicily assumes a wircline network where link capacitics
are fixed and shared by flows that traverse conunon links. A
natural formulation for the joint design of congestion and me-
dia aceess control is then the ulility maximization framework
with new constraints that arise from channel contention.

After a brief description of the interacden between TCP
congestion control and MAC in Secuon 11 and a brief review
of related work in Section Y[, we cxplain in Seclion IV
contention graph and introduce contention matrix w0 maodel
TCSOUTCE comsiraints in wireless networks, and state our utility
maximizalion problem with MAC constrainls. Tn Scction ¥,
we follow [18] and derive a primal algorithm to solve a
relaxation of the problem, and prove its global convergence.
The algorithm ig not only distributed spadally. more interest-
ingly, it decomyposes verlically Into twe protocol lavers where
the MAC Tuyer at the links generates congestion (contention)
prices hased on local aggregate source rates, and TCP sources
adjust their rates based on the aggregate prices in their paths.
Whereas congestion prices are gencrated by AQM (active
quene management) algorithms in roulers in wireline networks
(e.g. [23]), here they are generated by the MAC laver. We dis-
cuss how to design contention resolution protocols to generate
the necessary prices.

In Section VI, we apply duality theory to derive anolher
decomposition of the sysiem problem inte congestion con-
trol subproblem and MAC subproblem. The key idea is to
introduce the “cficetive capacity” of a link, which iy the
maximum average dala rate a link can achieve without vialat-
ing schedulability constraint. The Lagrangian of the resulting
problem scparates inte two maximization subproblems, one
over source rates, 1o be solved by TCP, and the otier over
effective capacity, o be solved by MAC, 'The inroduction of
the effcetive capacity makes the primal prablem not strictly
concave. and hence the dual [unction non-differentiable. A
subgradicnt algorithm that generalizes the algorithm of [22]
is derived to solve the dual problem, and proved to approach
arbitrarily ¢lose to an optimal point starting from any inital
condition. This algorithm motivaies 2 joint design scheme
where Link-layer Nows are schieduled according 1o congestion
prices of the links. We illustrate with numerical examples of
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such # design.
Finally, we conclude in Section VII with limitalions of this
paper amd possible extensions,

IT. MOTIVATION

TCP was originally designed for wireline networks, where
the links are assumed to be reliable and with fixed capacities.
This may not he true for wireless nelworks, where the links
are “elastic” due to the fact that the wireless channel is vnreli-
able (e.z., fading and node mobility) and interference-limired,
We need (o exploit the interacdon butween trausport and
MAC/phvsical layers, in order to improve lhe perlormance.

This paper docs not consider the node mobtlity or channcl
fading, bul [ocuses on the broadeast and inter{erence-limited
nature of wireless channel. In this context, a fundamental prob-
lem is to provide an cfficient bandwidth sharing mechanism
among the competing link-layer Rows. Many cxisting wircless
MAC protacols, such as distributed coordination [unction
(DCF) specified in ILEE 802.11 standard|17], are traffic-
1ndependent and do not consider the actual requirements of the
Nows campeting (or the channel. These MAC prowoenls sufler
froamn the unfairness problem, cavsed by the location depen-
dency of the contentions, and exacerbated by the contemtion
resolution mechanisms such gs the binary exponential backoff
algorithm adopled in DCE. When they interact with TCP, TCP
will further penalize (hese {lows with more contention, Fhis
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Fig. 1. Example of ad hoe wircless network

will result in significant TCP unfairness in ad hoc wireless
networks [13], (28], [35), [36], 137]. To illuswrate this, consider
the example in Fig.1, and assume therc are four network-laycr
flows A - B.C — D, E —= I and G — H, The flow
' — D experiences more contention and will build up queue
faster than the cther three flows. TCP will further penalize it
by reducing the congestion window mere aggressively, and the
resulting throughput of flow € — D will be much less than
that of other flows.

In addition to the location dependency of contenticus,
correlation ameng links i3 also the key to understund the
interaction hetween mansport and MAC Tayers. In wircline
networks, link bandwidth is well-defiped and links are disjoint
resources. But in wircless networks, as we mentioned above,
links are correlated due 10 (he imerference with cach other,
and nerwork-laver fows, which do not transverse a common
link, may siill compere with each other. Thus, congestion is
located at some spatial contention region [37]. Consider again
the example in Fig.l, and assume therc are twe network-layer
flows A — F and G — H. Link-layer [lows 2, 3, 4 and 6 cou-
tend with each other, and congestion is located in the spatial
conteniion region denoted by the reetangle. So. unlike wircline
nciworks where link capacinies provide constraims for resource
allocatioq, in ad hoc wireless networks the contention relations

between link-layer flows provide fundamental constraints for
resource allocation.

In this paper we will model the contention relations be-
tween link-layer flows as a flow contention graph (see, e.2.,
[25]. [111}. This construction caplures the locution-dependent
contention among link-laver Aows. Based on the contention
graph, we will vwse a coutention matrix 0 mathematically
formulate the contention constraints imposed by the MAC
layer. We (hen model the resource allocation for ad hoc
wireless networks as a concave utility maximization problem
wilh MAC layer constraints, with which wc can explicitly
exploil the inleraction between vansport and MAC layers, and
systernatically carry out joint design of congestion and media
access control.

[1I. RELATED WORK

The work in [1¥], [22], [21], [23] provides a wility-based
optimization framework for internet congestion control, The
same frgmework has been applied to study the congestion
condrol over ad hoe wireless nelworks (see, ¢.2., [6], [38]). In
[38], the authurs study congestion control in ad hoc wireless
network with primary interference, and formulate rawe alloca-
tivn 4s a utility maximization problem with time constraint. It
assurmes that the MAC proweal is given, and does oot consider
the problem of how the link-layer flows share the congeston
price generated by the constraint, In our work, we will consider
ihe networks with bolh primary and secondary intcrference,
and jointly design congestion control and MAC.

Many schemes have been proposed for fair bandwidth
sharing at link layer (see, e.g., [25], 1337, [24], [16], [297,
[11]). Some of these schemes try to achieve weighted fairness,
bul they usually assume the weights arc given and do not
address the issue of how to choose those weights. In our
work, these weights or their equivalent are related to the
actual flow regquirements or the congestion prices of the links,
which guarantees some kind of network layer {airness, In [29],
the authors propose a maximin fair scheduling which assigns
congestion-dependent weights 1o the flows with primary in-
terference and schedules the flows viz maximum weighicd
matching. In (23], (11], the aathors use the flow contention
graph to charactérize the contention among link-laver Hows,
and propose utility-based optimization 10 achieve MAC layer
fairncss. We will modify a mulliple aceess scheme proposed
in [25] to implement AQM for congestion control. Alse, some
of our discussions on the flow feasibility is recaptured from
[11] for completeness,

[ [37], the zuthors propose a neighborhood RED scheme to
improve TCP fairness in ad hoc wireless networks. Basicaily,
this scheme assigns more share of congestion price to the flows
wilht Iess contenfion to alleviate TCP unfaimess. We try to
address the unfairness problem that arise in the MAC laver by
using traffic-dependent MAC scheme.

Cross-layer design in communicarion notworks, cspectally
in wircless petworks, have attracted grear aention recently
(see. c.p. [26] for an gverview). Chur work bhelongs to the
category of cross-layer design via dual deccompeosition in
oplimization {ramework, Other work that can be put into this
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category includes TCPAP interaction in (311, joint routing and
resource alloealion in [34] and joint TCP and power control
in [61. The work on joinl congestion control and MAC design
is the first step in our auempt to provide a umified framework
for sysrematically carrying out crass-tayer design through dual
decomposition. We will cxtend the framework to include other
layers in the future.

V. SYSTEM MoDEL

Consider an ad hoc wireless network with a set V' of vertices
{nodes) and a set L of logical links. We assume a static
wpoloay and each link [ has a fixed finite capacity ¢ packets
per second when active, i.e., we implicitly assume a power
control algorithen that maintains a constant data rate in the face
of fading and other channel imperfections. Wireless chanmel
is a shared medium and interference-limited. In this paper,
we assume logical links contend for channel access and the
successful link transmits at ratc «f for the duration it halds
the channel. We will fecus on the intcraction of MAC and
TCP, and characterize the contention relations using contention
graph and comention matrix. ‘1he joint MAC and TCP design
is then formulated as a utility maximizavon problem with the
consiraints that arise from MAC laver contention.

A. Fiow Contention Graph und Contention Mutrix

Wireless nodes are assumed to be able 10 communicate with
4l most one other node aL any given time. This follows from
the fact that a node cannot transmit or receive simultaneously.
Links mutnally interfere with each other whenever either the
sender or the recciver of one is within the inlerforence range of
the sender or receiver of the other. Under these assumptions,
we can construct a flow contention graph that captures the
comention relations between the links of the network (see,
e.2., [25], [11]). In the contention graph, each vertex represents
an active link, and an edge between two vertives denotes the
contention hetween the corresponding links: two links interfere
with each other and cannot be active at the same time. An
accurate How contention graph could be constructed based on
the protoce]l model or physical SIR model, and also depends on
the the basic multiple access strategy used. In practice, when
we construct the flow contenlicn graph, we can assume two
links conlend with cach other if they are within each other's
carrier sensing range.

Given a contention graph, we can identify all its maximal
cliques!. Maximal cliques are local constructions and capture
the local comtention rlations of the Nows, Flows within the
same maximal clique cannol tranamil simultanecusly, but flows
in different cliques may ransmit sirnultaneoustv. For example,
Fig. 2 shows he flow comention graph that corresponds to
the ad hoc wireless network of Fig. 1 with 06 active link-
layer flows, Flows 1, 2 and 3, which are in the same cligue,
cannol transmit simullaneously, neidher can fows 2. 3,4 and 6
. Bul Rows 1 and 6 can be activated simultanecusly, since they
belong to different cligues, Thus. each maximal cligue in the
contention graph represents i “chamnel resource”™ with Aows

LA maxiraal clique of a graph is a maximal complets subgraph of the graph.
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Fig. 2. Flow conlention graph and nuxinsal cliques: Rows (1. 2, 3} and flows
(3, 4. 3) arc vwo maximal cliques of size 3, Rows (2. 2. 4, 6) i3 2 maximal
clique of size 4

1n the clique contending for exclusive access to the resonrce
[25]. The flows within the same clique share (he “capaciry™
of the cligue. A flow mav belong to several cliques, and can
successfully transmit if and only if it is the only active flow
in all cligues to which it belongs,

We now consider the problem of determining if a set of
link fows are [easible, i.e., whether a schedule can be found
to achieve this set of flows (see, c.p., [14], [20]). This will be
the consiraint imposed by the MAC tayer, Assume that we are
given a L-dimensional vector y where i is the desired flow on
link ¢, in packets per second. We refer to ¥ as the link-laver
flow vecror. On average, given link flow yr, the fraction of
time required (o send this amount of Auw is /<. We refer to
yi/ ¢ as the normalized flow rate of Hok i. Since flows within
the same clique cannot transmit simultaneously, we obtain a
nceessary scheduling constrainn:

22
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where the summation is over those links that belong to the
same cligue. We can represent the scheduling constraints in
a compact form by iotroducing contention matrix. Suppose
the flow comention graph can be decomposed into a set NV
of maximal clignes indexed by 7. Bach cligue » contains a
set L, C L of links. The sets L, define a NV x L contention
mawix £

£ . /e ifl e L,
nt = 0 otherwise
Thus, the above scheduling constraims can be written as
Iy <=1 (1

where 1 denotes a N-dimensional vector with each compouenl
being 1.

\\
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Fig. 3. Ring zraph of size 5: by cquation {1) the maximal normalized sum
rate js %. hist the actual maximal sum rate iz 2.

Since the above description is a fluid-level deseription. Le.,
we average lhe scheduling variables over time, constraint (1)
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is only a necessary condition for the feasibility of the flow
vector y. To illustrate this, consider the example in Fig.3,
where the coniention graph is a ring of sizc 5. According
to the constraint (1), each flow should attain a normalized
rate of 1/2 if the max-min fairness allocation criterion is
useil, However, scheduling the links according to (he max-min
fairness criterion allocates only a rate of 2/5 (o each link, since
at anylime al most two links can transmit simultaneously,

Given a flow vector y, it is not an easv job 1w verify its
feastbility, since this is equivalent to finding a schedule that
achicves . 1t can he shown thal a feasible flow veclor must
be a convex combination of the charactenstic vectors of all
independent sets of the flow contention graph®, and that the
set of achicvable flow vectors Is a elosed, convex and compact
set (see [1]. also cited in [11]). In addition, constraint (1} is
also a sufficient condition for the feasibility of the flow vector
i and only il (he contention graph is a perfect graph® (sec
[1}. also cited in [11]). According to the strong perfect graph
theorem [8], [7]. a graph is perfect if and only if it has no
induced subgraph that is isomorphic to an odd hole®, or its
complement. 1herefore if there exist odd holes in a contenlion
graph, the sum of the normalized flow raws of any clique that
includes edges of an odd hole should be reduced.

In peneral, it is hard to tell whether a graph is perfect
or ool. Such classification may require the global topology
information of the graph (e.g., an odd hele can span the whole
graph). Since the algorithms for ad hoc nerworks are desired
to be distributed and depend at most on local message passing.
we need Lo rade off the accuracy (and even some performance
optimality) for the simplicity of the design. Hence, we will not
verity whether a graph is perfect or not, but reduce the sum
of the normalized rates of a clique o ensure flow [easibility.
Determining exactly by how muych we should reduce the sum
rate is difficull and also depends on the basic fairness eritcrion
we choose. In this paper, we will not further discuss (his issue,
but assume & maximal clique sum rate veetor €. The value of
¢ will depend on local topology of the contention graph. Thus,
the constraint imposed by the MAC laver can be written as

Fy < z {2}

We will see later that we do noi need to know ihe value
of e, stnce in the joint design in section ¥V we will refax
the constraint (2}, and in the joint design in Scetion VT this
constraint can be replaced with the constraint (1) with some
addiuonal constraint on the value that v can take.

Note that the contention graph and contention matrix Is a
rather general constmction. It includes wireline networks as a
special case where the contention matrix # is a Lx L identily
matrix, since there is 1o interference among the links, It can be
used to characterize the interference relativns among wircless
and wired links in hybrid wireline-wireless nalworks. Tt can

*An independent set of a graph is a subset of the vertices such that no rwo
varlices in fhe subsel are adjucent.

*A praph is perfect if for every inducid subgraph its chromutic number is
aygual to the clique numbcr of the graph |8].

*A hole is a graph induced by a chordless cycie of length at least 4. A hole
is odd if il comtains an wid number of vettices [7].

alsa be modified to characterize (he contention relations in the
frequency-division or other strategies for channel access.

B. Problenr Fornmilgtion

Assume the network is shared by a sei 5 of sources indexed
by = Liach source s uses a set L* C L of links. The sets L°
define an L xS routing matrix

1 ifi e L
Ryp = { 0 otherwise

We will fix the rowing matrix R and focus on congestion
contrel. Each source ¢ attains a uility () when it ransruits
at rate x; packets per second. We assume I/, is continuousty
diffcrentiable, increasing, strictly con¢ave, and unbounded as
£y — 0. Qur objective is to choopse source raies x so as o
[18], [22], [21]:

e ZUS{I&J (3)
aF
suhject 10 FRx < = (4)

The constraint (4) follows from (2} with ¥ = [z, A unique
maxXimizeT exists, since the obhjective function is strictly con-
cave and feasible set is convex and comypact.

We can see¢ the system problem (3)-(4) from two comple-
ment perspectives. On one hand, it is a utilitv-based congestion
control prablem with the MAC laver constraints. As such,
the congestion prices are not decided by the link capacity,
but determined by the contention region. In other words, the
MAC layer imposes the ultimale conslraints to the achievable
rates. (On the other hand, it is a media access coutrol problem,
which is to allocale physical bandwidth to each link. with
(he objective of maximizing aggregate end user utilides, As
such, the resulting MAC protocol is traffic-dependent and will
allocate more bandwidlh 10 the links with more conlentian Lo
alleviaie flow congestion.

Solving the system problem (3)-(4) directly requires ¢oor-
dinalion among possibly all sources and is impractical in real
network, According to the theory of convex optimization, dis-
tributed algorithms ¢can be derived by considering its relaxation
and dual problem. In the next {wo sections, we will solve
these two problems and give them different interpretations in
the context of joint design of congestion control and media
access control,

V. JTOINT TIESTON T GRENERATING CONGESTION PRICE
DIRECTLY FROM THE MAC LAYER
In this section, a primal algorithm is derived by solving
the relaxation of the system probiem (33-(4), firsi propoesed in
[18]. Based on the algorithin, we propose a traffic-dependent
scheme for media access control and generate congestion price
dircetly from the MAC layer.

A, Primal Algorithm and Its Convergence
Instead of solving the svstem problem (3)-(4), let us con-
sider its relaxation:

wax  V(z)

Ty >0

(3)
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with
ERES
Via) = ZUx(ws) - Zf Aplwjdy {0}

where z(x) = %, FaRie3, is normalized sum rate of cligue
# for given seurce rales x, and A, () is the penally funclion,
which can be interpreted as the price for sending traffic at
normalized rale =z, on cliyue n. We further assume AL () is
a non-negative, non-decreasing, conlipuous tunction, and not
identically zero.

TABLE [
SUMMARY OF MAIN NOTATION

Tarm Definirian

o capacity of -ink I when active
fal effeczive capacity of link {
Y aggregate flow on link

Ta gourcs rate of source #

Zn | normzlized sum race of cligque n
An price of clique n

Fo ( congestion orice of link [
i routing matrix

F J contention matrix

A, steprnize

[1 feasikle rate regicn

Lemma I: Under the above assumplion, the function V{z)
defined in (6) is strictly concave. Thus, the problem (5) admits
@ unigue solution in the interior of the foasible set,

Proaf: Lot

f@m=3 [

Since A,{-) iz non-lecreasing, for any 2, % 2 0

) ] O e

ENE )]
Z An (2n (7))

n
» ZF,J Rig(ay — &3)
s

= Z(m.s — ;) (i;: (Z)

&

ENNE

Anlo)dy

flz) - 1(2)

v

Thus, according 1o the first-order condition of convexity for
differentiable functions {4}, f{z) is & convex function and
—f{x) is a concave function, Since Us(-} is strictly concave,
V{x) s the sum of a siriclly concave [unction and a concave
function. Thus, V{z) is strictly concave, Note that V(x) —
—co as £, — D orus 2, — oo for any s £ 5. So, the problem
{3} admits a unigue solulion thal is in the interior of the convex

set & > 0. [ |
The optimal source rates satisfy
av
— =0, 588
e, > 88

which gives

Ul(2) = 3 Anlzal@) FuBis =0, s€ 8
1l

Define ¢, = 3, Auls)Faf.. Applying the gradient
method te (3){(6), we obiain the following congestion control
algorithm

ds = i (U (0,(5)) — qe(1)), €8 0]

where x, 18 a positive. Note that the primal algorithm (7) is
connpletely distribuled.

Here. the aggregate normalized price 4,(f) is a feedback
signal source s observes. As discussed in [18]. A,.{z,) can be
interpreted a8 @ congestton (contenion) price that measures the
depree of contention in clique n when (he tota]l normalized
flow through the cligue is z,. Hence, ¢,(t} measures the
degree of contention in all the cligues that conains any link
in source s's path (a larger ¢.(¢) indicales & grealer degree
of contention), The congestion control mechanism for each
source is to adjust its rate x,(¢) according to the neiwork
conlention it pereeives. In the nexe subsection, we will design
a2 MAC protacol to generate these ‘contention prices’ in a
distributed manner.

The following theorem, following [18], shows that the
primal algorithm {7} is globally stable, i.e.. the unique soluton
1o problem (3) is a stable point, to which all trajectories
CUIIVCI’gC.

Theorem 2 Staning [rom any initial rates =(0) > ¢, the
congestion control alporithm (7) will couverge (o the unique
solution of the problem (5),

Proof:  From lemma 1, V(z) is a sirictly concave
function, and problen: (5) admits a unique soluticn . Furlher
. e .

V=3 gte = Z» (G1(za) = qa)" 20
Note that V > 0 tor z # 2* and s equal zero for z = 2*,
Thus, V(x{t)} is strictly increasing with ¢, unless x(t) = =*.
Morc precisely. choose V(#*] — V{x) as a Lyapunov function
for system (7). By Lyapunov’s theorem [1Y], the trajectories
of (7) converge 1o x*, starting from any initial condition 2(0).

[ ]

Note that algorithm (7) solves the system problem (3)-(4)
only approximarely, By choosing appropriare price funcuoens
An(-). the optimal solution can be guaraniced o satisfy (he
constraint (4), and even solve the system problem (3)-(4)
exactly [32], In practice, the price functions A, {-] derermine
the efficiency of the congestion contlral scheme, as we will
further discuss in the next subsection.

B. Generating Congestion Price from the MAC Laver

Unlike the price function in wircline nelworks which is a
function of aggregate flow rate of the link [18], [22], [21],
the price function A, (-) is required to be a function of the
nornalized sum rate z,, of cliqgue n. This is consistent with
the facr that, in wireless networks, link is only a logical
concept and the contention region is the “resource™ that flows
sharc and contend for access. Howcever, the clique is only a
virtnal entity and no centralized controller exists to moniior
its congestion status, how can we implemenl the congestion
pricc? We need to design an active queue management scheme
where each logical link generates or shares a portion of
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the congestion price such (hat their summation is equal to
Ayl %y ) for cligue n. Observe that a similar problem appears in
scheduling flows over ad hoc wireless networks, and that each
logicul link will gee the right portion of the congestion price
awcomatically it Uie links are graonted chanuel access according
to the flow requirements. We propose a multiple access scheme
and generate congestion price directly from it

Tn multiple access protocols, contention resolution is usually
achieved through two mechanisms: persistcnce and backoff
[25]. In the persistence mechanism. cach conending node
or link-layer flow maintains a persistence probability and
contends for the channel with this probability. In the backetf
mechanism, each contending rode or link-layer flow main-
tains a hackoff window and waits for a random amount of
time hounded by the backoff window before a transmission.
When multiple simultanecus transinissions cause caollisions,
the persisience probability or hackoff window is adjusted
appropriately so that collisions are reduced. Thus, the per-
sistence probability and backoff window arc functions of
the estimaled contention, and different contention resolution
algorithms differ in terms of how they adjust these parameters
in response 1o collisions and successful transmissions.

In our problem, the normalized sum rae =z, =
S Faltsz, is the patural measure of the contention in
clique = Thus, the design of muldple access s o adjust
[rersistence probability orfand backotf window according to
#y. The intuition behind this is the same with that bchind
congestion control algorithm (7}, which suggests that we can
joimly design congestion control and media access conlrol,
and generate coungestion price directly from the MAC layer,
Note that the normalized flow rate >, Fry Brs @, 1% the [raction
of time that is required to transmit the amount of flow y; —
3", Ruz.,, and the normalized sum rate of a clique must uot
exceed 1 (see constraint (1)), It bas a patural interpretation as
a probability. Thus, in our proposed scheme, we approximate
the normalized How rate g/} as a persistence probability with
which the How [ contends for the channel. Furthermore, since
each flow / contends for the channel with the probability v/},
the flows should contend for the channgl in the same way
after they decide to contend, consistent with the fact that the
congestion price is a function of the normalized sum rate, This
implies that all flows should have the same backoff window,

To be more specific, define py = min{4, 1}, and let
denote the backeff window. The joint design of congestion
conuol and media access control works as follows: cach link-
layer flow 3 will comend for the channel with probability 24
when it senses the channel is idie. 1f it decides to contend
for the channel, it randomly chooses a waiting time B; from
the interval [0, w] uniformly. After the wailing time, the flow
senses the channel and acquires the channel if it is idle.
If cither the chanmel is busy or there iy collision, the fow
will drop or mark the packet as the congestion signal, Upon
receiving the congestion signal, the source will adjust its rate
gecording 1o algorithm (7). We can see that the handwidih
is allocated in proportional to the normalized flow rate of
each link. Thus, we obtain a traffic-dependent multiple access
scheme.

Mote that links needn’t know explicitly flow contention

graph and the cliques they belong to. But, in order tc be
consistent with the derivation and convergence analysis of the
primal algorithm, the congestion price A, of clique n must
be a function of the normalized sum rate z,,. Unfortunately,
the proposed MAC scheme is very difficult 1o analyze. For the
simple casc with no backoff, i.c., w = [, under lhc assumption
of Poisson arrival process, the above scheme does generate
approximately the right price function

Ao =1—e™" —z,e”™

This price is just the prohability when there are two or more
packets, and can be readily derived following similar analysis
cartied out for Aloha [2). For the gencral case with backoff,
we have not yel obtained an explictt price function.

We can also implement active queue management through
designing other kinds of trafiic-dependent mulliple access
schemges. Ta practice, different designs will give different price
functions, which in turn will determine the performance of the
cengestion control schemes.

VI. JoINT DESIGN TE: SCIHEDPUNLING LINK-T.AYER FLOWS
ACCORDING 1O CONGESTION PRICE
In this section, a dual algorithm is derived by solving
the dual problem of the svstem probicm (33-(4)1221, [23].
The solution o the dual problem motivates a scheme for
media access control in which link-laver flows are scheduled
according 10 congestion prices.

A Dual Algarithm and Nis Convergence

The system problem (3)~(4) does not nvolve explicitly the
varigbles for links, We now inroduce an auxiliary variable
¢. which 1s a L-dimensional vector with each component ¢
interpreted as effective or averape capacity of Link £, Consider
the following problem:

o 6
tin g%l?’c‘:t{zi.l g Us () (8
subject to Re < ¢ & Fe < ¢ ©)

The first comsiraint says that the aggregale source rate at agy
link ¢ does not exceed the effective link capacity. 'The second
constraint says that the effective link capacities satisfv the
MAC laver constraint. 1t is easy to show that this probiem
is equivalent to the system problem (3)-(4).

Consider the dual problem

min D{p) (1
>0

P
with parnal dual function

Dip)= max

dg=0ep =)

D Us(zs) =p* (R =) (11)

subject to Fe < ¢ {12)

where we relax only the constrainis Bz € ¢ by inwoducing
Lagrange multiplier p. The maximization problem in (11) can
be decomposed into the following two subproblems

Dilp) = max 3 Us(ay) —p' Rz (13)
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and

Do(p) = rgalgjcpﬁ‘c subjectte Fec < ¢ (14
The first subproblem is just TCP [22], {23], and the second
one is the scheduling which is to maximize the weighted sum
of cffcctive link capacitics with the congcestion prices as the
weights. Thus, by dual decomposition, the flow optimization
problem decomposes into separate “local” optimization prob-
letns of transport and link layers, respeetively, and these two
layers interact through the congestion prices.

Note that the objective function E,, Ue(x,) is not strictly
concave with respect to variable (2, ¢), hence the dual function
D{p) might not be differemtiable. Indeed. the problem (13)
admits a unique maximizer

wa{p) = U;_l (Z pgR;S)
t

and [ (p) is dilTercniiable, bt problem (14) may have
multiple maxima and £, (p) 1s a piecewise linear function and
not differentable. Thus, D{p) is not differentiable at every
point p [3], and we cannol use the usual gradicnt methods,
which are developed for differentiable problers, to solve the
dual problem. Ilere we will solve the dual problem using
subgradient method,
Suppose ¢(p) is a maximizer of the problem (14), i.e.,

(15}

elp) € argmax pfe subject 10 Fe< = (16)
c=i
then
4(p) = clp) — Rz(p] (17

is a subgradient® of dual function D(p) at point p. To see this,
consider any two points p and 7, by definition

I ax

D) =  max D Uslzs) -5 (R - ¢)
subject to ;’ e < ¢
hence
D) =

Y Uslas(p)) — 37 (Ralp) - <(p))

D(p) + (8" — p")elp) ~ Ra(p))

Thus, by the subgradient method [3], we obtain the [ollow-
ing algorithm for price adjustment for link !

pelt+ 1) = [pile) + (> Rusze(p(@)) — arlp@))1t (18)

where +; is & positive scalar stepsize, and ‘47 denotes the
prajection onto the st R of non-negative rcal oumbers.
(15}, (16) and (L&) arc the congestion contral alporithm. The
algorithm has a nice interpretation in terms of law of supply
and demand and their regulation trough price. Eq.(18) says
that, if the demand Y, Hy s (p(t)) for bandwidth at link !
exceeds the supply ¢, the price p will rise, which will in
turn decrease the demand (see og. (15)) and increases supply

5Given a comven function f 1 R™ — R, u vaclor £ &£ R™ iz a subgradient
of fatapoint i € R® if f(v) > )+ (v — ¥ d, v€ R™

(sce eq. (16)). Also, note that equations (15) and (18) arc
completely disuibuted. We will study Lhe distributed solution
to problem (14} in the next subsection.

Subgradient may not be a direction of descent at point p, but
makes an angle less than 90 dearees with all descent directions
at p, The new itcration may not improve (he dual cost for
all values of the stepsize. There exists many resulis on the
convergence of the subgradient method (271, [3]. For constamt
stepsize, the algorithm is puaranteed (o converge w within
a range of the optimal value®, For diminishing stepsize. the
algorithm is guaranteed w converge to the optimal valve. For
our purposes, we would fike an asynchronous imptementation
of the subgradient algorithm, and thus & constan! siepsize is
desired. Note that the dual cost will usually not monalonically
approach the optimal vatue, but wander around it under the
subgradicnt algorithm. The vsual criterion for stability and
convergence is not applicable. Here we define convergence
in g statistical sense.

Definition 3: Let p* denote an optimal value of the dual
variable. The algorithm (15), (16} and (18) with con-
stanl slepsize is said to converge Stafisticallv to p*, if for
any given & > (O there exists a stepsize v such that
limsup, .o § 3o5mq Dip(7)) — Dip*) <6,

The following thecrem guarantees the statistical conver-
gence of the subgradient method. Clearly, an optimal value
B exists.

Theorem 4. Let p* be an optmal price. Let v denote the
constant stepsize. If the norm of the subgradients is bounded,
i.c., there exisis (7 such that |[g(Z){l. < G for all ¢, then the
algorithm (15}, {16) and (18) converges statistically (o within
&% /2 of the optimal value.

Preof: By equation (18), we have

et + 1) — p*| |2
p(z) — vgp{EN]' —2*!13

< lp(t) — valp(t)) — 2711

= |lp(i} — P’ |z — 2yu(ee))" (1} — p*)
FY* g (p(t))I13

< ipte) — 213 — 2v(D{p(t) — Dip*))

42 lglple )13

where the last inequality follows {from the definition of sub-
gradient. Applying the inequalities recursively, we obtain

o+ 1) -2 < [lp(1)—2"|I§ — 2% (Dlp(r))

DN =" llgle(r)il

=l
Since ||p(t + 1) — p*||3 = 0, we have

t

27 ) (D)) - D(p*))

Tl

€The gradient algorithm wilh constanl stepsize comverges to the oplimal
value, providad the stepsirz is 2mall encugh.
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L
1)~ 215 + 473 lig(p(=))MI3
r=1

£ (1) —ptll3 + 20

1A

From this inequalily we obtain

L

i1} — 12 e ta2er?
Dip(7)) - Dip") < |lp(1) — p*||3 +¥*C
1

- 2ty

= | =

Thus

0]

t
- J- - | £k - FY
L sup = E P{pir)y = Dip*) < =

L=

{19}

(B8]

=1

i.e., the algorithm converges statistically to within vG2/2 of
the optimal value. |

The assumption of bounded norm for subgradient gi{p; is
reasonable, since ¢ s finite and we can also enforce an upper
bound to z. We see that, by cheosing appropriate value of
the siepsize, the algorittin can approach the opiimal value
arhitrarity close withie a finite number of sieps.

The system described by equations (13). (16} and (18) is
a hybrid system. Although Theorem 4 guarantces that ifs
dynamics is bounded in an average sense, it is unstable in
the strict sense, It may have complex behaviors such as limit
cveles, ie., it may go through an ergodic scquence. The reason
for this instability is (har the dual function is nondifferentiable
or nonsmooth. One way to avoid instability is to add some
regularization lerms, such as sirictly convex/concave terms,
to make the dual function differentiuble. For example, in our
problemn we can add a concave ulity Vi{e) to each link
{. The resulting system is sizble bui may mo maximize the
end user utilities. So, there exists a radeoff between stability
and end user utility maximization (sce also [311). However,
in our problem the osciflatory behavior in the “stcady state”
comesponds to the scheduling process.,

B. Scheduling Link-fayer Flows accerding te Congestion
Price

Scheduling is to decide which links and when to fransmil,
which 18 equivalent (0 choosing an independent set of How
coutention graph o be aciive at each time slot. However,
solving problem (14) cannot guarantee that we obiain a raw
vector corresponding to an independent set,

Recall that the reason why constraint (1) mav not he a
suflicient condition is that it is a fluid level description.
However, when the flow vector ¢ is such that cach component
y takes value at 0 or ¢ while satistying constraint (1), it is
also feasible. Such a flow vector corresponds o an independent
set of How contention graph. Thus. we propose to replace
the constraint in the problem (14) with fe < 1, and solve
the following scheduling problem with an additional discrele
constraing

T
3 : 20
my @
subject 1o Fe < 1

g—0orel, teL

Having done Lhat, we need to clarity with respect Lo which
sysicmn problem the above algorithm converges. 1o see this,
we first represent an independent sef i as a L-dimensional ratc
veetor 7 with

4
¥y = 0

The feasible rate region I at the link-layer is then defined to
he the convex hull of these rale vector [1]

M= {r:r= Za,—r’*,ai >0, Z e, =1}

It is easy to verify thai solving problem (20) is equivalent to
solving the tollowing problesn

ifl e i
otherwise

max ple
gt

subject to cell

‘Thus, the wholc joint ¢congestion control and scheduling algo-
rithmi is to sobve the following system problem

POUNEN

Rz < c&cell

miX
;20

subject to

Note that the original problem (8)-(9) is a refaxation to the
above prablem.

We now come to selve the problem 20V, If the contention
graph is perfect, all the exweme points of constraint Fe < 1
are independent sers, In this situation, we car just solve the
problem (20) by neglecting the discrete constraint, which has
the same optimal spiution as the original discrete problem,
This is similar to what happens in network flow oprimization
problems [3). When the coulention graph is not perfeet, not
all the extreme points of Fe < 1 are independent scts. In
this situation, we will first solve the relaxed problem without
diserete constraini, and then rourd up the solution to the
nearest independent set, since the objective function p”c is
continuous with respect w ¢

Although the computational complexity of linear program-
ming is polynomial, the known algorithms for general linear
programming are not suitzble for large scale optimization
problems such as those in networks. Instead, an cfficient,
distributed algorithm with only local information is required
for these svstems, In our problem, we assume that each link
only knows its own weight and the constraints it is involved
in, We will again use dual decormposition and subgradient
method 1o obtain a distributed algorithm to solve problem
(20}. Note that by solving the dual problem we obtain the
optimal dual variable, but the oprimal primal variable is not
immediately uvailable and need o be recoversd with care.
One simple way to obtain {easible primal sohution is w add a
small regularization term to the primal function, Here, we add
a small guadratic term to the objective function, and maximize

ple— 8¢

where # iz a small positive number. As § approaches zcra,
the solution obtained approaches an exacl solution to the
original problem. This approach is closely related Lo penalty
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and augmemted Lagrangian methods for solving the dual of a
convex program [3].
Consider the dual problem

e

(21}
with
L{A) = max pTC Y. 7:¢ .J\T[FC - 1)

ezl

The gradient algorithm to the dual problem (21) is

Km = A h:ﬂ) / (26)} (22)

B 5 &
‘}\ﬂ.(t +1 J = J| )'11:1:) -+ ;6 Z an.ﬂci(i} - 1) { (23}
L B

alt) =

where @ is a positive stepsize. The convergence analysis of
such aloorithms is well-known [3]. Let 2 denote the maximal
size of cligues, and N the larzest number of cliques that
contain the same link. The range of the slepsize with which
the algorithm converges can be defined as in [22]:

4o

After obtaining a value of ¢, link ¢ rounds it up to < or 0,
whichever is closer, This does not guarantec that the resuliing
¢ is aptimal or even an independent set all the time, bul we
can use the notion of e-subgradient’ to analyze the effect of
crror [3).

Theorem 3: Suppose at each iteration ¢ a ¢ -subgradient is
used. Assume that & < e for all £ or im; ¢¢ — ¢, then under
the samg assumptions as in Theorem 4 the algorithm (13},
(16) and (18) converges stalistically v within ~(G?/2 + ¢ of
the uplimal value.

Progf: We skip the detatls, since it is the same as the
proof of Theorem 4 gxcepr that we use c-subgradient here, D

To derive a distribuled algorithin for scheduling, we have
assumed Lhat each link knows its awn constraings. In order (o
achieve this, each link will collect its local flow information®,
constructs its local contention graph and decomposes it into
a set of maximal cliques, Since the cligue ix only a virtual
entity. the price adjustment algorithm (23) for a cligue will
te camried owt by the links within the cligue. To be able w
catculate new price for a cligue, cach link nceds o cxchangye
new flow rale information, which is calculated by links using
algorithm (22), with all its coniending flows within one hop.
This can be done by pericdically broadcasting the flow rate
informarion.

In order for this joint design 10 work, we require (hat
scheduling be carried out at a much faster time scale than
congestion conural, Within & (ime inlerval v, the MAC layer
should be able to decide which Haks to transmil and then finish
the ransmissions, The time scale matching problem is ditficult

0<f-

"Given a coavex function f : K™ — Rand ¢ > O, a vectard € R™ isae-
subgradient of f at a pointu € R™ if f{) > Fflu)—e+H{z—u}'d, v € R™,

KThis can be achieved by passively listening to other links broadcasting
flow informalion or actively sending inguinng message to other lisks w ask
Icr flow infermation.
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Lo solve for cross-layer design in general. The key to solving
this issue is 10 be able Lo design fasl, cfficient algorithms. For
example, 1n our joint design we can carry out scheduling by
heuristically identifying the set of concurrently active links
that ¢y wchicve the maximization in (14) approximately (sce,
e.g. 0.

. A Numerical Example

To illuswate the characteristics of the joint congestion
control and scheduling algorithm (15), (16) and (18), and
their implications for the algorithm’s implementation in ad
hoc wireless networks, we consider a simple example with
the petwork in Tig. l. We assume that all the links have
the same capacity when active. We further assume c? = 1,
f & L, and that all nelwork layer flows = have the same utililty
Ulis) = loglis ).

e
(g )
@l- ——;—(@:l-—- —- \(Q —_— -[@,—-- —-—CE‘: w@
.
9 ——
liig. 4.  Ad hoc wireless network with threz network layer Rows.

Supposc there are three network layer flows G — 1,
A — Band D — F in the neiwork as shown in Fig. 4,
with the rates denoted by =, =2 and zz. We simulate the
algoritvm (13), {16) and (1R) with dilfercut choices of stepsize
~. The left panei of Fig. 5 shows the evolutien of dual function
with the swepsize v = 0.1, We can see that the dual function
approaches the optimal very fast, but not monvionically, Tt will
vscillate around the optimal, Az we have discussed before,
this oscillating behavior mathematically results from the non-
differentiability of the dual function and physically can be
interpreted as corresponding to the scheduling process. The
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Fig. 5. The evolution of dual function and source rates with stepsize v — 7.1,

"The omtimal flow rates are (1/3,1/,1/2),

right panel of Fig, 5 shows the evolulion of source rate of each



How. Similarly, the flow rates approach the primal oplimal very
fast, but not monatonically. We alse nole thart the perlormance
of the algorithm is much better than the bound -y/2 specified
in Theorem 4. Thus, we can say that, il a proweol is design
bascd on this algorithm, it will likely converge fast,

The choice of the stepsize - is important. It characterizes
the “optimality” of the algorithm, as shown in ‘Theorem 4.
Fig. & shows the cvolotons of the dual function and source
rates with the same jnitial stale but different stepsize v = 0.5,
Compared with the case with stepsize v — 0.1, it almost has
the same convergence speed, but with a higger oscillation.
Note that, ncar lbe primal optimal, the flow rates oscillates
bhetween he feasible set and non-feasible set of the constraiat
{4). The bigger oscillation means that the network will be
underloaded und overleaded more often. Thus it will has
poorer performance such as lower throughput. So, a smaller
stepsize leads to a bewer performance.
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Fig. 6. Th¢ evolution of dual function and source raics with stepsize v = C.5.
The aptimal flow rates are {1/3,1/2,1/2).

However, the slepsize 4 also specifics an upper bhound
for the length of time slot used in the scheduling. As we
mentioned before, within time interval v the MAC layer
should dceide which links to (ransmil and (hen finish e
Lranstnissions. 5o, the swpsize canuot be wo small. Thus, (here
exists a {radeoff between congestion control, which prefers a
smaller swepsize, and the scheduling, which prefers a larger
stepsize. In practice, the stepsize should take value of order
of from ms W tens of ms.

In all the simulations, we use distributed algorithm (22)-(23)
ta solve the scheduling in (16). o evaluate the performange of
our schedpling algerithm, we also use a lingar programming
software 10 solve the scheduling. We do not find any dislin-
guishabie difference between the simulations using the linear
programming software and the algorithm (22)-(23).

Qur simulations are based on ideal implementation of he
algorithm (15). (16) and {18). In its practical implementation
in ad hoc wireless networks, we need Lo take into consideration
such issucs as the signaling overhead, the propapaten delay,
and the time used (o make scheduling decision, cte. To design
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a practical protocol based on this algorithm will be one of our
future work,

VII. CONCLUSION

We have presented a model for the joint design of con-
gestion control and media access contral for ad hoc wire-
less neiworks, where the resulting algorithms are to solve
a utility maximization problemn with coustraints that arise
from coutention for the wireless chanuel. We have derived
iwo algoriduns that are not only disuibuted spatially, but
more interestingly, they decompose vertically into two protocol
layers where TCP and MAC jointly solve the system problem.
The first is a primal ulgorithm which maotivates a joint design
where the mualtiple access scheme is traffic dependent and the
congestion prices are peneraed directly from the MAC laver,
The second is a subgradiem algorithm Cor the duat problem and
it motivates a joint design where link-layer Hows are scheduled
according to the congestion prices of the links,

This paper is a preliminary step towards a systemalic
approach to jointly design TCP congestion control algorithms
and MAC algorithuns, not only w improve performance, bul
more importantly, to make their interaction more (ransparent,
Much work remains. First it would be interesting to derive
a formal MAC protocel in cur joint design I, prove that it
generates correct prices, and analyze its dynamic properties.
Sccond, for our joint design I, we will need a faster and mare
efficicnt algorithm to solve the scheduling problem if it is to
be applied to broadband wirgless environment. Third. in cross-
layer design through dual decempostlion, we often encounier
ohjective funcrions that arc not strictly concave or feasible
sets that are not convex. This results in non-differentiable dual
function. While subgradient mcthod is applicable (o derive a
distributed solution, the resulting alaorithm is often not stable
in the usual sense. FThis instabikity that arises from cross-layer
interactions need to be understood in order W control cross-
layer inteructions and (o characterize the performance of the
design.
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