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Abstmct-We present a model for the joint design of con- 

gestion control and media access control (MAC) for ad hoc 
wireless networks. Using contention graph and contention ma- 
trix, we formulate resource allocation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin the network as a 
utility maximization problem with constraints that arise from 
contention for channel access. We present two algorithms that 
are not only distributed spatially, but more interestingly, they 
decompose vertically into two protocol layers where TCP and 
MAC jointly solve the system problem. The first is a primal 
algorithm where the MAC layer at the links generates congestion 
(contention) prices based on local aggregate source rates, and 
TCP sources adjust their rates based on the aggregate prices in 
their paths. The second is a dual subgradient algorithm where 
the MAC suh-algorithm is implemented through scheduling link- 
layer flows according to the congestion prices of the links. GlobaI 
convergence properties of these algorithms are proved. This is n 
preliminary step towards a systematic approach to jointly design 
TCP congestion control algorithms and MAC algorithms, not 
only to improve performance, but more importantly, to make 
their interaction more transparent. 

Index Term- Congestion control, Media access control, Con- 
vex optimization, Cmss-lager design, Dual decomposition, Sub- 
gradient method, Ad hoc wireless network. 

I .  INTRODUCTION 

We consider the problem of congestion control over a 

multihop wireless ad hoc network. This has been an active 

research area over the past few years (see. e.g., 1151, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ] .  191, 
[301, [121, [371, [38]. [6]) with many fascinating and complex 
issues. involving, e.g., mobility, channel estimation, power 

control, MAC, routing, etc. Unlike most of previous work 

however we focus on the interaction of congestion control at 

the transport layer and channel contention at the MAC layer, 

and ignore all other issues. Our goal is to present a systematic 

approach to jointly design TCP cangestion control algorithms 
and MAC algorithms, not only to improve performance. but 

more importantly, to make their interaction more transparent. 
This is motivated by two observations. First, wireless chan- 

nel is a shared medium and interference-limited. Link is 
only a loeical concept and links are correlated due to the 

interference with each other. Under the MAC strategies such as 

time-division multiple access and random access, these links 
contend for exclusive access to the physical channel. Unlike 

in the wireline network where Aows compete for transmission 

resources only when they share the same link, here, network 
layer flows that do not even share a wireless link in their 

paths can compete. Thus, in ad hoc wireless networks the con- 
tention relations between link-layer flows provide fundamental 

constraints for resource allocation. Second, TCP congestion 

control algorithms can be interpreted as distributed primal- 
dual algorithms over the Internet to maximize aggregate utility, 

and a user’s utility function is (often implicitly) defined by its 

TCP algorithm, see e.g. [18], [22], [21]. This series of work 

implicitly assumes a wireline network where link capacities 

are fixed and shared by flows that traverse common links. A 
natural formulation for the joint design of congestion and me- 

dia access control is then the utility maximization framework 

with new constraints that arise from channel contention. 
After a brief description of the interaction between TCP 

congestion control and MAC in Section IT and a brief review 

of related work in Section IU, we explain in Section IV 
contention graph and introduce contention matrix to model 

resource constraints in wireless networks, and state our utility 

maximization problem with MAC constraints. In Section V, 
we follow 1181 and derive a primal algorithm to solve a 
relaxation of the problem, and prove its global convergence. 

The algorithm is not only distributed spatially, more interest- 

ingly. it decomposes vertically into two protocol layers where 
the MAC layer at the links generates congestion (contention) 
prices based on local aggregate source rates, and TCP sources 

adjust their rates based on the aggregate prices in  their paths. 

Whereas congestion prices are generated by AQM (active 

queue management) algorithms in routers in wireline networks 

(e.g. I23]), here they are generated by the MAC layer. We dis- 
cuss how to design contention resolution protocols to generate 

the necessary prices. 

In Section VI, we apply duality theory to derive another 
decomposition of the system problem into congestion con- 
trol subproblem and MAC subproblem. The key idea is to 

inwoduce the “effective capacity” of a link, which is the 
maximum average data rate a link can achieve without violat- 

ing schedulability constraint. The Lagrangian of the resulting 
problem separates into two maximization subproblems, one 
over source rates, to be solved by TCP, and the other over 
effective capacity, to be solved by MAC. The introduction of 
the effective capacity makes the primal problem not strictly 

concave. and hence the dual function nondifferentiable. A 
subgradient algorithm that generalizes the algorithm of [22] 
is derived to solve the dual problem, and proved to approach 

arbitrarily close to an optimal point starting from any initial 
condition. This algorithm motivates a joint design scheme 

where link-layer flows are scheduled according to congestion 
prices of the links. We illustrate with numerical examples of 
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such a design. 

paper and possible extensions. 

Finally, we conclude in Section VI1 with limitations of this 

11. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMOTIVATION 
TCP was originally designed for wireline networks, where 

the links are assumed to be reliable and with fixed capacities. 

This may not be true for wireless networks, where the links 

are “elastic” due to the fact that the wireless channel is unreli- 
able (e.g., fading and node mobility) and interference-limited. 

We need to exploit the interaction between transport and 
MAClphysical layers, in order to improve the performance. 

This paper does not consider the node mobility or channel 

fading, but focuses on the broadcast and interference-limited 

nature of wireless channel. In this context, a fundamental prob- 
lem is to provide an efficient bandwidth sharing mechanism 

among the competing link-layer Bows. Many existing wireless 

MAC protocols, such as distributed coordination function 

(DCF) specified in IEEE 802.11 standardLl71, are traffic- 
independent and do not consider the actual requirements of the 

flows competing for the channel. These MAC protocols suffer 

from the unfairness problem, caused by the location depen- 

dency of the contentions, and exacerbated by the contention 
resolution mechanisms such as the binary exponential backoff 

algorithm adopted in DCF. When they interact with TCP, TCP 
will further penalize these flows with more contention. This 

wilI result in significant TCP unfairness in ad hoc wireless 
networks [13], 1281. [35J, [36]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1371. To illustrate this, consider 
the example in Fig.1, and assume there are four network-layer 

flows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA -+ B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, E + F and G -+ H. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe flow 
C + D experiences more contention and will buiId up queue 

faster than the other three flows. TCP will further penalize it 

by reducing the congestion window more aggressively, and the 

resulting throughput of flow C -+ D will be much less than 

that of other flows. 
In addition to the location dependency of contentions, 

correlation among links is also the key to understand the 

interaction between transport and MAC layers. In wireline 
networks, link bandwidth is well-defined and links are disjoint 

resources. But in wireless networks, as we mentioned above, 
links are correlated due to the interference with each other, 
and network-layer flows, which do not transverse a common 

link, may still compete with each other. Thus, congestion is 
located at some spatial contention region [37]. Consider again 
the example in Fig.1. and assume there are two network-layer 

flows A - F and G -+ H .  Link-layer flows 2, 3 , 4  and 6 con- 
tend with each other, and congestion is located in the spatial 
contention region denoted by the rectangle. So, unlike wireline 
networks where link capacities provide constraints for resource 
allocation, in ad hoc wireless networks the contention relations 

between link-layer flows provide fundamental constraints for 

resource allocation. 

In this paper we will model the contention relations be- 
tween link-layer flows as a flow contention graph (see, e.g., 
[25] ,  [ 111). This construction captures the location-dependent 

contention among link-layer flows. Based on the contention 
graph, wc will use a contention matrix to mathematically 

formulate the contention constraints imposed by the MAC 
layer. We then model the resource allocation for ad hoc 

wireless networks as a concave utility maximization problem 
with MAC layer constraints, with which we can explicitly 

expIoit the interaction between transport and MAC layers, and 

systematically carry out joint design of congestion and media 

access control. 

111. RELATED WORK 

The work in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[IX], [ZZj, [21], [23] provides a utility-based 

optimization framework for internet congestion control. The 
same framework has been applied to study the congestion 

control over ad hoc wireless networks (see, e.g., [6 ] ,  [381). In 

[38], the authors study congestion control in ad hoc wireless 
network with primary interference, and formulate rate alloca- 

tion as a utiIity maximization problem with time constraint. It 

assumes that the MAC protocol is given, and does not consider 

the problem of how the link-layer flows share the congestion 

price generated by the constraint. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn our work, we will consider 
the networks with both primary and secondary interference, 

and jointly design congestion control and MAC. 
Many schemes have been proposed for fair bandwidth 

sharing at link layer (see, e.g., [251, [331, 1241, I161, [291, 
[ 111). Some of these schemes try to achieve weighted fairness, 
but they usually assume the weights are given and do not 
address the issue of how to choose those weights. In our 

work, these weights or their equivalent are related to the 
actual flow requirements or thc congestion prices of the links, 

which guarantees some kind of network layer fairness. In [29], 
the authors propose a maximin fair scheduling which assigns 

congestion-dependent weights to the flows with primary in- 

terference and schedules the flows via maximum weighted 

matching. In [25], [l 11, the authors use the flow contention 

graph to characterize the contention among link-layer flows, 

and propose utility-based optimization to achieve MAC layer 

fairness. We will modify a multiple access scheme proposed 
in [25] to implement AQM for congestion control. Also, some 

of our discussions on the flow feasibility is recaptured from 

[ 11 I for completeness. 

In [37], the authors propose a neighborhood RED scheme to 
improve TCP fairness in ad hoc wireless networks. Basically, 
this scheme assigns more share of congestion price to the flows 

with less contention to alleviate TCP unfairness. We try to 

address the unfairness problem that arise in the MAC layer by 
using rraffic-dependent MAC scheme. 

Cross-layer design in communication networks, especially 
in wireless networks, have attracted great attention recently 

(see, e.g.. [26] for an overview). Our work belongs LO the 
category of cross-layer design via dual decomposition in 
optimization framework. Other work that can be put into this 
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category includes TCPlIP interaction in [31], joint routing and 

resource allocation in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[341 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand joint TCP and power control 

in 161. The work on joint congestion control and MAC design 

is the first step in our attempt to provide a unified framework 
for systematically carrying aut cross-layer design through dual 
decomposition. We will extend the framework to include other 
layers in the future. 

IV. SYSTEM MODEL 

Consider an ad hoc wireless network with a set V of vertices 

(nodes) and a set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL of logical links. We assume a static 
topology and each link zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 has a fixed finite capacity c: packets 

per second when active, i.e., we implicitly assume a power 

control algorithm that maintains a constant data rate in the face 
of fading and other channel imperfections. Wireless channel 

is a shared medium and interference-limited. In this paper, 
we assume logical links contend for channel access and the 
successful link transmits at rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcy for the duration it holds 

the channel. We will focus on the interaction of MAC and 
TCP, and characterize the contention relations using contention 

graph and contention matrix. The joint MAC and TCP design 

is then formulated as a utility maximization problem with the 

constraints that arise from MAC layer contention. 

A. Flon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACanterifion Graph and Contention Matrix 

Wireless nodes are assumed to be able to communicate with 
at most one other node at any given time. This follows from 
the fact that a node cannot transmit or receive simultaneously. 

L i n k  mutually interfere with each other whenever either the 

sender or the receiver of one is within the interference range of 
the sender or receiver of the other. Under these assumptions, 

we can construct a flaw contention graph that captures the 
contention relations between the links of the network (see, 
e.g., 1251, f l  11). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn the contention graph, each vertex represents 
an active link, and an edge between two vertices denotes the 

contention between the corresponding links: two links interfere 

with each other and cannot be active at the same time. An 
accurate flow contention graph could be constructed based on 

the protocol model or physical SIR model, and also depends on 
the the’basic multiple access strategy used. In practice, when 

we construct the flow contention graph, we can assume two 
links contend with each other if they are within each other’s 

carrier sensing range. 
Given a contention graph, we can identify all its maximal 

cliques’. Maximal cliques are local constructions and capture 

the local contention relations of the flows. Flows within the 
same maximal clique cannot transmit simultaneously, but flows 
in different cliques may transmit simultaneously. For example, 

Fig. 2 shows the flow contention graph h a t  corresponds to 

the ad hoc wireless network of Fig. 1 with 6 active link- 
layer flows, Flows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 2 and 3, which are in the same clique, 

cannot transmit simultaneously, neither can flows 2. 3.4 and 6 
. But flows 1 and 6 can be activated simultaneously, since they 
belong to different cliques. Thus, each maximal clique in the 
contention graph represents a “channel resource” with flows 

\-/ I \-/ 

Fig. 2.  Flow contention graph and maximal cliques: Rows (.l. 2, 3) and flows 
(3. 4. 5 )  are two maximal cliques of size 3. flows (2. 3. 4, 6)  is a maximal 
clique of size 4. 

in the clique contending for exclusive access to the resource 
[25]. The flows within the same clique share the “capacity” 

of the clique. A flow may belong to several cliques, and can 
successfully transmit if and only if it is the only active flow 
in all cliques to which it belongs. 

We now consider the problem of determining if a set of 

link flows are feasible, i.e.. whether a schedule can be found 
to achieve this set of flows (see, e.g., [14], [20]). This will be 

the constraint imposed by the MAC layer. Assume that we are 

given a L-dimensional vector y where yi is the desired flow on 
link 1, in packets per second. We refer to y as the link-layer 

flow vector. On average, given link Aow gl, the fraction of 

time required to send this amount of flow is yl/cf. We refer to 
yl/cF as the normalized flow rate of link 1. Since flows within 

the same clique cannot transmit simultaneously, we obtain a 

necessary scheduling constraint: 

1 
1 

where the summation is over those links that belong to the 

same clique. We can represent the scheduling constraints in 
a compact form by introducing contention matrix. Suppose 
the flow contention graph can be decomposed into a set N 
of maximal cliques indexed by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. Each clique n contains a 
set L,  c L of links. The sets L ,  define a N x L contention 
matrix F 

0 otherwise Fd = 

n u s ,  the above scheduling constraints can be written as 

Fy 5 1 (1) 

where 1 denotes a N-dimensional vector with each component 

being 1. 

Fig. 3. 
rate is 4 .  but the actual maximal sum rate is 2. 

Ring graph of size 5: by equation (1) the maximal normalized sum 

Since the above description is a fluid-level description. i.e., 
we average the scheduling variables over time, constraint (1) ‘ A  maximal clique of a graph i s  a maximal complete suhgraph of the graph 
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is only a necessary condition for the feasibility of the flow 
vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy. To illustrate this, consider the example in Fig.3, 

where the contention graph is a ring of size 5. According 
to the constraint (l)? each flow should attain a normalized 

rate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 / 1  if the max-min fairness allocation criterion is 
used. However, scheduling the links according to the max-min 

fairness criterion alIocates only a rate of 2/5 to each link, since 

at anytime at most two links can transmit simultaneously. 

Given a flow vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, it is not an easy job to verify its 
feasibility, since this is equivalent to finding a schedule that 

achieves y. It can be shown that a feirsible flow vector must 

be a convex combination of the characteristic vectors of all 

independent sets of the flow contention graph’, and that the 
set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof achievable flow vectors is a closed, convex and compact 

set (see [l], also cited in [ll]). In addition, constraint ( 1 )  is 

also a sufficient condition for the feasibility of the flow vector 

if and only if the contention graph is a perfect graph3 (see 
[l], also cited in Il l]) .  According to the strong perfect graph 

theorem [XI, [7], a graph is perfect if and only if it  has no 

induced subgraph that is isomorphic to an odd hole‘, or its 

complement. Therefore if there exist odd holes in  a contention 
graph, the sum of the normalized flow rates of any clique that 

includes edges of an odd hole should be reduced. 

In general, it is hard to tell whether a graph is perfect 

or not. Such classification may require the global topology 
information of the graph (e.g., an odd hole can span the whole 

graph). Since the algorithms for ad hoc networks are desired 

to be distributed and depend at most on local message passing, 

we need to trade off the accuracy (and even some performance 

optimality) for the simplicity of the design. Hence, we will not 
verify whether a graph is perfect or not, but reduce the sum 
of the normalized rates of a clique to ensure flow feasibility. 
Determining exactly by how much we should reduce the sum 

rate is difficult and also depends on the basic fairness criterion 
we choose. In this paper, we will not further discuss this issue, 
but assume a maximal clique sum rate vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE .  The value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E will depend on local topology of the contention graph. Thus, 

the constraint imposed by the MAC layer can be written as 

We will see later that we do not need to know the value 
of E. since in  the joint design in section V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe will relax 

the constraint (21, and in the joint design in Section VI this 

constraint can be repiaced with the constraint ( I )  with some 
additional constraint on the value that ?J can take, 

Note that the contention graph and contention matrix is a 
rather general construction. It includes wireline networks as a 
special case where the contention matrix F is a L x L identity 
matrix, since there is no interference among the links. It can be 

used to characterize the interference relations among wireless 
and wired links in  hybrid wireline-wireless networks. It can 

’An independent set of a graph is a subset of the vertices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsuch that no two 

3A graph is perfect if for every induced subgraph its chromatic number is 

4A hole i s  a graph induced by a chordless cycle of length at least 4. A hole 

venices in the subset are adjacent. 

equal to the clique number of t he  graph [8]. 

is odd if 11 contam an odd number of venices [7]. 

also be modified to characterize the contention relations in the 

frequency-division or other strategies for channel access. 

B. Probleiri Foritidation 

Assume the network is shared by a set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS of sources indexed 

by s. Each source s uses a set L’ c L of links. The sets 1,” 
detine an L x S routing matrix 

We will fix the routing matrix R and focus on congestion 

control. Each source s attains a utility U s ( z s )  when i t  transmits 

at rate xs packets per second. We assume U, is continuously 

differentiable. increasing. strictly concave, and unbounded as 
ss - 0. Our objective is to choose source rates TC so as to 

[IS], [221, 1211: 

subject to FRa 5 E (4) 

The constraint (4) follows from (2) with y = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARx. A unique 

maxirmzer exists. since the objective function is strictly con- 
cave and feasible set is convex and compact. 

We can see the system problem (3144) from two comple- 

ment perspectives. On one hand, it is a utility-based congestion 
control problem with the MAC layer constraints. As such, 

the congestion prices are not decided by the link capacity. 

but determined by the contention region. In other words, the 

MAC layer imposes the ultimate constraints to the achievable 

rates. On the other hand, i t  is a media access control problem, 
which is to allocate physical bandwidth to each link. with 
the objective of maximizing aggregate end user utilities. As 
such. the resulting MAC protocol is traffic-dependent and will 
allocate more bandwidth to the links with more contention to 

alleviate flow congestion. 
Solving the system problem (3144) directly requires coor- 

dination among possibly all sources and is impractical in real 

network. According to the theory of convex optimization, dis- 
tributed algorithms can be derived by considering its relaxation 

and dual problem. In the next two sections, we will solve 

these two problems and give them different interpretations in 

the context of joint design of congestion control and media 

access control. 

v. JOlNT DESIGN 1: GENERATING CONGESTION PRICE 
DIRECTLY FROM THE MAC LAYER 

In this section, a primal algorithm is derived by solving 

the relaxation of the system problem (3)44), first proposed in 
[18]. Based on the algorithm, we propose a trafficdependent 
scheme for media access control and generate congestion price 
directly from the MAC layer. 

A. Primal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlgorithm and Its Convergence 

sider its relaxation: 
Instead of solving the system problem (3)-(4)7 let us con- 
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with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ u  

where z,(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ClS Frit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARlszs is normalized sum rate of clique zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
71 for given source rates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, and A n ( . )  is the penalty function, 

which can be interpreted as the price for sending traffic at 
normalized rate z, on clique zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. We further assume X,(~) is 

a non-negative, non-decreasing. continuous function, and not 
identically zero. 

TABLE I 
S U M M A R Y  OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMAIN NOTATION 

Definition 
capacity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof link 1 when active 

effective capacity of link I 
aggregate flow on link 1 
source rate of source s 

normalized sum rate of clique zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 
price of clique R 

congestion price of link E 
routing matrix 

contention matrix 
stepsize 

feasible rate region 

Leiirina 1: Under the above assumption, the function V i z )  
defined in (6) is strictly concave. Thus, the problem (5) admits 
a unique solution in the interior of the feasible set. 

Proof: Let 

Since A,(,) is nondecreasing, for any z, Z 2 0 

n 

1s 

Thus, according to the first-order condition of convexity for 

differentiable functions [41, f(x) is a convex function and 
-f(x) is a concave function. Since Us(-) is strictly concave, 

Vis)  is the sum of a strictly concave function and a concave 

function. Thus, V ( z )  is strictly concave. Note that V(z) 1 

--CO as zs 4 0 or as 5, 4 CO for any s E S. So, the problem 
(5) admits a unique solution that is in the interior of the convex 

set 2 2 0. 
The optimal source rates satisfy ’ 

which gives 

Define qs = Cnl Xn(zn)FnlRls. Applying the gradient 

method to (5 )46 ) ,  we obtain the following congestion control 

algorithm 

(7) 

where K ,  is a positive. Note that the primal algorithm (7) is 
completely distributed. 

Here, the aggregate normalized price q s ( t )  is a feedback 
signal source s observes. As discussed in [ 181. Xn(z,) can he 

interpreted as a congestion (contention) price that measures the 

degree of contention in clique n when the total normalized 
flow through the clique is 2,. Hence, qS( t )  measures the 

degree of contention in  all the cliques that contains any link 

in source s’s path (a larger qs ( t )  indicates a greater degree 

of contention). The congestion control mechanism for each 
source is to adjust its rate x,(t) according to the network 

contention it perceives. In the next subsection. we will design 

a MAC protocol to generate these ‘contention prices’ in a 
distributed manner. 

The following theorem, following [18], shows that the 
primal algorithm (7) is globally stable, i.e.. the unique solution 

to problem (5 )  is a stable point, to which all trajectories 
converge. 

Theorem 2: Starting from any iniiial rates z(0) 2 0. the 

congestion control algorithm (7) will converge to the unique 
solution of the problem (5).  

Proof: From lemma 1, V ( x )  is a strictly concave 

function. and problem (5) admits a unique solution x*. Further 

Note that V > 0 for z # Z* and is equal zero for 3: = ic’. 

Thus, V(z(t)) is strictly increasing with t ,  unless z(t) = x* ,  
More precisely, choose V(z* )  - V(Z) as a Lyapunov function 
€or system (7). By Lyapunov’s theorem 1191, the trajectories 

of (7) converge to z*, starting from any initial condition ~ ( 0 ) .  

Note that algorithm (7) solves the system problem (3)-(4) 
only approximately. By choosing appropriate price functions 

An(.), the optimal solution can be guaranteed to satisfy the 
constraint (4). and even solve the system problem (3)-(4) 
exactly 1321. In practice. the price functions A,(.) determine 

the efficiency of the congestion control scheme, as we will 
further discuss in the next subsection. 

E. Generating Congestion Price frarn the MAC Layer 
Unlike the price function in wireline networks which is a 

function of aggregate flow rate of the link [181, 1221, [21], 
the price function An(.)  is required to be a function of the 

normalized sum rate zn of clique n.. This is consistent with 
the fact that, in wireless networks, link is only a logical 

concept and the contention region is the “resource” that Rows 
share and contend for access. However, the clique is only a 
virtual entity and no centralized controller exists to monitor 

its congestion status, how can we implement the congestion 

price? We need to design an active queue management scheme 
where each logical link generates or shares a portion of 
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the congestion price such that their summation is equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
,An(zT2) for clique n. Observe that a simiIar problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAappears in 

scheduling Hows over ad hoc wireless networks. and that each 
logical link will pet the right portion of the congestion price 

automatically if the links are granted channel access according 
to the flow requirements. We propose a multiple access scheme 

and generate congestion price directly from it .  

In multiple access protocols, contention resolution is usually 

achieved through two mechanisms: persistence and backoff 

[25]. In the persistence mechanism, each contending node 
or link-layer flow mainlains a persistence probability and 

contends for the channel with this probability. In the backoff 

mechanism, each contending node or link-layer flow main- 

tains a backoff window and waits for a random amount of 

time bounded by the backoff window before a transmission. 

When multiple simultaneous transmissions cause collisions, 
the persistence probability or backoff window is adjusted 

appropriately so that collisions are reduced. Thus, the per- 

sistence probability and backoff window are functions of 
the estimated contention, and different contention resolution 

algorithms differ in terms of how they adjust these parameters 

in response to collisions and successful transmissions. 
In our problem, the normalized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsum rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzn = 

ClsFnlRlsxCs is the natural measure of the contention in 

clique zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. Thus, the design of multiple access is to adjust 

persistence probability odand backoff window according to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z , ~ .  The intuition behind this is the same with that behind 

congestion control algorithm (7), which suggests that we can 

jointly design congestion control and media access control, 
and generate congestion price directly from the MAC layer. 
Note that the normalized flow rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, F,,lRrsxs is the fraction 
of time that is required to transmit the amount of flow yl = 
E, Rl,z,, and the normalized sum rate of a clique must not 

exceed 1 (see constraint (1)). It has a natural interpretation as 
a probability. Thus, in our proposed scheme, we approximate 
the normalized flow rate yl/ca as a persistence probability with 

which the flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 contends for the channel. Furthermore, since 

each flow I contends for the channel with the probability yl/cp, 

the Bows should contend for the channel in the same way 
after they decide to contend. consistent with the fact that the 

congestion price is a function of the normalized sum rate. This 

implies h a t  all flows should have the same backoff window. 
To be more specific, define pt = min{$, l}, and let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 

denote the backoff window. The joint design of congestion 

control and media access control works as follows: each link- 
layer flow yl will contend for the channel with probability pl 
when it senses the channel is idle. If it decides to contend 
for the channel, it randomly chooses a waiting time Bl from 
the interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Opn]  uniformly. After the waiting time, the flow 

senses the channel and acquires the channel if it is idle. 
If either the channel is busy or there is collision, the flow 

will drop or mark the packet as the congestion signal. Upon 

receiving the congestion signal, the source will adjust its rate 
according to algorithm (7). We can see that the bandwidth 
is allocated in proportional to the normalized flow rate of 
each link. Thus, we obtain a traffic-dependent multiple access 
scheme. 

Note that links needn’t know explicitly flow contention 

graph and the cliques they belong to. But, in  order to be 
consistent with the derivation and convergence analysis of the 
primal algorithm, the congestion price A, of clique R must 
be a function of the normalized sum rate 3,. Unfortunately, 

the proposed MAC scheme is very difficult to analyze. For the 
simple case with no backoff, i.e., w = 0. under the assumption 

of Poisson arrival process, the above scheme does generate 

approximately the right price function 

This price is just the probability when there are two or more 

packets, and can be readily derived following similar analysis 

carried out for Aloha [2]. For the general case with backoff, 
we have not yet obtained an explicit price function. 

We can also implement active queue management through 

designing other kinds of traffic-dependent multiple access 

schemes. In practice, different designs will give different price 
functions, which in turn will determine the performance of the 

congestion control schemes. 

VI. JOINT DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11: SCHEDULING LINK-LAYER FLOWS 
ACCORDING TO CONGESTION PRICE 

In this section. a dual algorithm is derived by solving 

the dual problem of the system problem (3)-(4)[221, [231. 

The solution to the dual problem motivates a scheme for 

media access control in  which link-layer flows are scheduled 

according to congestion prices. 

A. Dual Algorithm and Its Convergence 

The system problem (3)-(4) does not involve explicitly the 

variables for links, We now introduce an auxiliary variable 
c. which is a L-dimensional vector with each component cl 
interpreted as effective or average capacity of link 1. Consider 

the following problem: 

subject to Rx 2 c & Fc 5 E (91 

The first constraint says that the aggregate source rate at any 

link 1 does not exceed the effective link capacity. The second 

constraint says that the effective Iink capacities satisfy the 
MAC layer constraint. It is easy to show that this problem 

is equivalent to the system problem (3)-(4). 
Consider the dual problem 

min R ( p )  
P M  

with partial dual function 

subject to Fc 5 E (12) 

where we relax only the constraints Rx 1. c by introducing 
Lagrange multiplier p. The maximization problem in 

be decomposed into the following two subproblems 

(1 1 )  can 

(13) 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& ( p )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= niaxpTc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC l O  subject to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFC 5 E (14) 

The first subproblem is just TCP [221. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1231, and the second 
one is the scheduling which is to maximize the weighted sum 
of effective link capacities with the congestion prices as the 

weights. Thus. by dual decomposition, the flow optimization 
problem decomposes into separate "local" optimization prob- 

lems of transport and link layers, respectively, and these two 
layers interact through the congestion prices. 

Note that the objective function E, U3(zs) is not strictly 

concave with respect to variable (s, c), hence the dual function 

D(p)  might not be differentiable. Indeed. the problem (13) 
admits a unique maximizer 

and D l ( p )  is differentiable. but problem (14) may have 
multiple maxima and DZ ( p )  is a piecewise linear function and 
not differentiable. Thus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD ( p )  is not differentiable at every 
point p [3]. and we cannot use the usual gradient methods, 
which are developed for differentiable problems, to solve the 

dual problem. Here we wilt solve the dual problem using 

subgradient method. 
Suppose c(p)  is a maximizer of the problem (14), i.e., 

c ( p )  E argmax pTc subject to Fc 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (16) 
c 2 0  

then 

d P )  = .(PI - W P )  (17) 

is a subgradient5 of dual function D ( p )  at point p .  To see this, 
consider any two points p and F, by definition 

subject to Fe 5 E 

hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S 

= D(P) + (FT  - P%(P> - R4Plj 

Thus, by the subgradient method [3], we obtain the follow- 

p l ( t  + 1) [pl(t) + y t ( C  & s ~ 3 ( d t ) )  - cl(p(t)))lf (18) 

where Y~ is a positive scalar stepsize, and '+' denotes the 
projection onto the set W of non-negative real numbers. 
(15), (16) and (18) are the congestion control algorithm. The 
algorithm has a nice interpretation in terms of law of supply 

and demand and their regulation through price. Eq.(lX) says 
that, if the demand R l s x S ( p ( t ) )  for bandwidth at link zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
exceeds the supply q ,  the price pl will rise, which will in 

turn decrease the demand (see eq. (1 5)) and increases supply 

ing algorithm for price adjustment for link 1 

5 

$Given a convex function f : Rn H R, a vector d E R" is a subgradient 
o f f  ai a point U E if f ( w )  2 f(u) + (U - uUTd, v E R ~ .  

(see eq. (16)). Also. note that equations (15) and (18) are 

completely distributed. We will study the distributed solution 

to problem (14) in the next subsection. 
Subgradient may not be a direction of descent at point p. but 

makes an angle less than 90 degrees with all descent directions 

at p .  The new iteration may not improve the dual cost far 
all values of the stepsize. There exists many results on the 

convergence of the subgradient method [271, [3]. For constant 
stepsize? the algorithm is guaranteed to converge to within 

a range of the optimal value6. For diminishing stepsize. the 

algorithm is guaranteed to converge to the optimal value. For 
our purposes. we would like an asynchronous implementation 

of the subgradient algorithm, and thus a constant stepsize is 
desired. Note that the dual cost will usually not monoionically 

approach the optimal value, but wander around i t  under the 

subgradient algorithm. The usual criterion for stability and 

convergence is not applicable. Here we define convergence 

in a statistical sense. 

Definition 3: Let p* denote an optimal value of the dual 

variable. The algorithm (15), (16) and (18) with con- 
stant stepsize is said to converge sfatisticall! to p * ,  if for 

any given S > 0 there exists a stepsize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy such that 

linisup,,, +E:=, D ( P ( T ) )  - D(P*) 5 6. 
The following theorem guarantees the statistical conver- 

gence of the subgradient method. Clearly, an optimal value 

p* exists. 

Theorem 4: Let p* be an optimal price. Let y denote the 

constant stepsize. If the norm of the subgradients is bounded, 

i.e., there exists G such that 11g(t)/12 I G for all t. then the 
algorithm (15), (16) and (18) converges statisticallv to within 

yU2/2 of the optimal value. 

Proof: By equation (18), we have 

I lP( t f1)  -P*II; 

II[P(t) - rs(pit))l+ - P * G  

IIP(t) - Yg(P(l)) - P'IG 

I Idt) - P* 11; - %?(Pl t ) )T(?J( t )  - P* 1 
+Y2 I Is(P(t)llI; 

lldt) -P*IE - P7(m4t)) - D(P*))  

+Y2 I lS(P(t)) 11; 

= 

I 
= 

5 

where the last inequality follows from the definition of sub- 
gradient. Applying the inequalities recursively, we obtain 

t 

r = 1  

t 

r=1 

6The gradient algorithm with constant stepsize converges to the optimal 
value, providzd the stepsize is small enough. 
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From this inequality we obtain 

Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(19) 

i.e., the algorithm converges statistically to within zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7@/2 of 

The assumption of bounded norm for subgradient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ( p )  is 

reasonable, since c is finite and we can also enforce an upper 

bound to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. We see that, by choosing appropriate value of 
the stepsize, the algorithm can approach the optimal value 

arbitrarily close within a finite number of steps. 
The system described by equations (1.5). (16) and (18) is 

a hybrid system. Although Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 guarantees that its 

dynamics is bounded in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan average sense, it is unstable in 

the strict sense. It may have complex behaviors such as limit 

cycles, i.e., it may go through an ergodic sequence. The reason 

for b i s  instability is that the dual function is nondifferentiable 

or nonsmooth. One way to avoid instability is to add some 

regularization terms, such as strictly convexlconcave terms, 

to make the dual function differentiable. For example, in our 
problem we can add a concave utility &(cl) to each link zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe resulting system i s  stable but may not maximize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe 
end user utilities. So, there exists a tradeoff between stability 
and end user utility maximization (see also [3I]). However, 

in our problem the oscillatory behavior in the “steady state” 

corresponds to the scheduling process. 

the optimal value. 1 

B. Scheduling Link-layer Flows according lo Congestion 
Price 

Scheduling is to decide which links and when to transmit, 

which is equivalent to choosing an independent set of flow 
contention graph to be active at each time slot. However, 

solving problem (14) cannot guarantee that we obtain a rate 

vector corresponding to an independent set. 

Recall that the reason why constraint (1) may not be a 
sufficient condition is that it is a fluid level description. 

However, when the flow vector y is such that each component 

yl takes value at 0 or cp while satisfying constraint (l), it is 

also feasible. Such a flow vector corresponds to an independent 

set of flow contention graph. Thus. we propose to replace 
the constraint in the problem (14) with Fc 5 1, and solve 

the following scheduling problem with an additional discrete 

constraint 

niax pTc 

subject to F c  5 1 
E> 0 

ct = o or cy! 1 E L 

Having done that. we need to clarify with respect to which 

system problem the above algorithm converges. To see this, 
we first represent an independent set i as a L-dimensional rate 

vector r2 with 

r : = {  $ i f 1  E i 
otherwise 

The feasible rate region n at  the link-layer is then defined to 

be the convex hull of these rate vector [ I ]  

i t 

It is easy to verify that solving problem (20) is equivalent to 

solving the following problem 

max pTc 

subject to c E II 

Thus, the whole joint congestion control and scheduling algo- 
rithm is to sohe the following system problem 

c>o 

K l a x  U&*) 
X S 2 0  

S 

subject to Rx 5 c & c f  ll 

Note that the original problem (8)-(9) is a relaxation to the 

above problem. 

We now come to solve the problem (20). If the contention 

graph is perfect, all the extreme points of constraint Fc 5 1 
are independent sets. In this situation, we can just solve the 
problem (20) by neglecting the discrete constraint, which has 

the same optimal solution as the original discrete problem. 

This is similar to what happens in network flow optimization 

problems t33. When the contention graph is not perfect, not 
all the extreme points of F c  5 1 are independent sets. In 
this situation, we will first solve the relaxed problem without 

discrete consuaint. and then round up the solution to the 

nearest independent set, since the objecrive function pTc is 
continuous with respect to e. 

Although the computational complexity of linear program- 

ming is polynomial, the known algorithms for general linear 

programming are not suitable for large scale optimization 

problems such as those in networks. Instead, an efficient, 

distributed algorithm with only local information is required 

for these systems. In our problem, we assume that each link 

only knows its own weight and the constraints it is involved 

in, We will again use dual decomposition and subgradient 

method to  obtain a distributed algorithm to solve problem 

(20). Note that by solving the dual problem we obtain the 

optimal dual variable, but the optimal primal variable is not 
immediately available and need to be recovered with care. 
One simpIe way to obtain feasible primal solution is to add a 
small regularization term to the primal function. Here, we add 

a small quadratic term to the objective function, and maximize 
pTc- 6c T c 

where S is a small positive number. As 5 approaches zero, 
the solution obtained approaches an exact solution to the 

original problem. This approach is closely related to penalty 
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and augmented Lagrangian methods for solving the dual of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
convex program 131. 

Consider the dual problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 3 ,  

0 2  

0 1  

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L ( X )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= max zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApTc - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS C ~ C  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ~ ( F C  - 1) 

c>o 

The gradient algorithm to the dual problem (21) is 

! 
-\ 

---.- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 
( 

where @ is a positive stepsize. The convergence analysis of 

such algorithms is well-known [ 3 ] .  Let 0 denote the maximal 

size of cliques, and Ar the largest number of cliques that 

contain the same link. The range of the stepsize with which 
the algorithm converges can be defined as in [22 ] :  

After obtaining a value of q ,  link 1 rounds it up to cr or 0, 
whichever is closer. This does not guarantee that the resulting 
c is optimal or even an independent set all the time, but we 
can use the notion of E-subgradient' to analyze the effect of 
error I31. 

Theorem 5: Suppose at each iteration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt a tt-subgradient is 
used. Assume that tt 5 E for all t or limt Ef --.i E , then under 

the same assumptions as in Theorem 4 the algorithm (15): 
( 1 6 )  and ( IS )  converges statistically to within yG2/2 + E of  
the optimal value. 

Proufi We skip the details, since it is the same as the 
proof of Theorem 4 except that we use E-subgradient here. 0 

To derive a distributed algorithm for scheduling, we have 
assumed that each link knows its own constraints, In order to 

achieve this, each link will collect its local flow information8, 

constructs its local contention graph and decomposes it into 

a set of maximal cliques. Since the clique is only a virtual 

entity, the price adjustment algorithm (23) for a clique will 
be carried out by the links within the clique. To be able to 

calculate new price for a clique, each link needs to exchange 
new flow rate information, which is calculated by links using 
algorithm (22) ,  with all its contending flows within one hop. 

This can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe done by periodically broadcasting the flow rate 

in f ormad on. 
In order €or this joint design to work, we require that 

scheduling be carried out at a much faster time scale than 

congestion control. Within a time interval y, the MAC layer 

should be able to decide which links to transmit and then finish 

the transmissions. The time scale matching problem is difficult 

7Given a convex function f : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR" c 72 and E 2 0, a vector d E Rn is a E -  

subgadiant of f a t  a point U € Rn if f ( v )  2 f ( u )  - ~ - t ( v - u ) ~ d ,  E R". 
%is can be achieved by passively listening to other links broadcasting 

flow information or activeIy sending inquiring message to other links to ask 
for flow information. 

to solve for cross-layer design in general. The key to solving 

this issue is to be able to design fast, efficient algorithms. For 
example, in  our joint design we can carry out scheduling by 

heuristically identifying the set of concurrently active links 

that can achieve the maximization in (14) approximately (see, 

e.g.. [lo]). 

C. A Nirmerical Example 

To illustrate the characteristics of the joint congestion 

control and scheduling algorithm (15). (16) and (18). and 

their implications for the algorithm's implementation in ad 

hoc wireless networks, we consider a simple example with 

the network in Fig. 1. We assume that all the links have 
the same capacity when active. We further assume cy = 1, 

1 E L. and that all network layer flows s have the same utility 

U819i.S) = log(%). 

Fig. 4. Ad hoc wireless network with three network layer flaws. 

Suppose there are three network layer flows G i N. 
A -+ B and D -+ P in the network as shown in Fig. 4, 
with the rates denoted by xl: 22 and z3. We simulate the 
algorithm (15). (16) and (18) with different choices of stepsize 

y. The left panel of Fig. 5 shows the evolution of dual function 

with the stepsize y = 0.1. We can see that the dual function 

approaches the optimal very fast, but not monotonically. It will 

oscillate around the optimal. As we have discussed before, 
this oscillating behavior mathematically results from the non- 
differentiability of the dual function and physically can be 
interpreted as corresponding to the scheduling process. The 

. . .  

0 10 2Q 30 40 50 
NormaiizedTims 

4 51- 

Fig. 5. The evolution of dual function and sowce rates with stepsize y = 0.1. 
The optimal flow rates are (1/3+1/9.1/3). 

right panel of Fig. 5 shows the evolution of source rate of each 
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flow. Similarly, the flow rates approach the primal optimal very 

fast, hut not monotonically. We also note that the performance 
of the algorithm is much better than the bound y/2 specified 

in Theorem 4. Thus. we can say that, if a protocol is design 

based on this algorithm, it will likely converge fast. 

The choice of the stepsize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*j  is important. It characterizes 

the “optimality” of the algorithm, as shown in Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 
Fig. 6 shows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe evolutions of the dual function and source 

rates with the same initial state but different stepsize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.5. 
Compared with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe case with stepsize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 = 0.1, it almost has 

the same convergence speed, but with a bigger oscillation. 

Note that. near the primal optimal, the flow rates oscilIates 
between the feasible set and non-feasible zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAset of the constraint 

(4). The bigger oscilhtion means that the network will be 

underloaded and overloaded more often. Thus i t  will has 
poorer performance such as lower throughput. So, a smaller 

stepsize leads to a better performance. 

Fig. 6. The evolution of dual function and source rates with stepsize y = 0.5. 
The optimal Bow rates are (1/3,1/9,1/3). 

However, the stepsize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 also specifies an upper bound 
for the length of time slot used in the scheduling. As we 
mentioned before, within time interval y the MAC layer 

should decide which links to transmit and then finish the 
transmissions. So, the stepsize cannot be too small. Thus, there 

exists a tradeoff between congestion control, which prefers a 
smaller stepsize, and the scheduling, which prefers a larger 
stepsize. In practice, the stepsize should take value of order 

of from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAms to tens of ms. 
In all the simulations, we use distributed algorithm (22)-(23)  

to solve the scheduling in (16). To evaluate the performance of 
our scheduling algorithm. we also use a linear programming 

software to solve the scheduling. We do not find any distin- 

guishable difference between the simulations using the linear 
programming software and the algorithm (22)-(23). 

Our simulations are based on ideal implementation of the 
algorithm ( I S ) ,  (16) and (18). In its practical implemcntation 

in ad hoc wireless networks. we need to take into consideration 
such issues as the signaling overhead, the propagation delay, 

and the time used to make scheduling decision, etc. To design 

a practical protocol based on this algorithm will be one of our 
future work. 

VII. CONCLUSION 
We have presented a model for the joint design of con- 

gestion control and media access control for ad hoc wire- 
less networks, where the resulting algorithms are to solve 
a utility maximization problem with constraints that arise 

from contention for the wireIess channel. We have derived 

two algorithms that are not only distributed spatially, but 

more interestingly, they decompose vertically into two protocol 

layers where TCP and MAC jointly solve the system problem. 
The first is a primal algorithm which motivates a joint design 

where the multiple access scheme is traffic dependent and the 
congestion prices are generated directly from the MAC layer. 

The second is a subgradient algorithm for the dual problem and 

it  motivates a joint design where link-layer flows are scheduled 

according to the congestion prices of the links. 
This paper is a preliminary step towads a systematic 

approach to jointly design TCP congestion control algorithms 
and MAC algorithms, not only to improve performance, but 

more importantly, to make their interaction more transparent. 

Much work remains. First it would be interesting to derive 

a formal MAC protocol in our joint design I, prove that it 

generates correct prices, and analyze its dynamic properties. 
Second, for our joint design 11, we will need a faster and more 

efficient algorithm to solve the scheduling problem if it is to 
be applied to broadband wireless environment. Third. in cross- 

layer design through dual decomposition, we often encounter 
objective functions that are not strictly concave or feasible 
sets that are not convex. This results in non-differentiable dual 
function. While subgradient method is applicable to derive a 

distributed solution, the resulting algorithm is often not stable 
in the usual sense. This instability that arises from cross-layer 

interactions need to be understood in order to control cross- 
layer interactions and to characterize the performance of the 
design. 
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