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JOINT CONTINUITY
OF DIVISION OF SMOOTH FUNCTIONS. I:

UNIFORM LOJASIEWICZ ESTIMATES
BY

MARK ALAN MOSTOW AND STEVEN SHNIDER1

Abstract. In this paper we study the question of the existence of a continuous
inverse to the multiplication mapping (/, g) -» (fg, g) defined on pairs of C°°
functions on a manifold M. Obviously, restrictions must be imposed on the domain
of such an inverse. This leads us to the study of a modified problem: Find an
appropriate domain for the inverse of (/, G) -» (/(/> ° G), G), where G is a C°°
mapping of the manifold M into an analytic manifold N and p is a fixed analytic
function on N. We prove a theorem adequate for application to the study of
inverting the mapping (A, X) -» (A, AX), where X is a vector valued C°° function
and A is a square matrix valued C"5 function on M whose determinant may vanish
on a nowhere dense set.

1. Introduction. In this paper we shall consider triples of smooth functions
(f,g,h) satisfying/= g • h, and study the continuity of the quotient h = f/g as a
function/for fixed g and as a function of the pair (/, g).

Let Af be a smooth (C00), finite-dimensional, second countable, Hausdorff mani-
fold. For p = 0,1,..., oo, let Ep = EP(M) be the Frechet space of C real-valued
functions on M, with the Frechet C topology of uniform convergence of derivatives
of order < p (< p if p = oo) on compact sets [Trel, p. 94]. Let E = Ex.

Definition 1. If, for some fixed g ez E, the multiplication map mg: E 3 h -* gh
ez E is one-to-one and its inverse map

m-gu. gE 3 / = gh -> h = f/g ez E

is continuous, we say that division by g is continuous in the numerator.
Observe that mg is one-to-one if and only if

g g Ead = (def){ g G E\g~x(0) ez Mis nowhere dense}.

Definition 2. Let m he the multiplication map

m-EX End3 (h, g) -> (gh, g)ezEX EnA:

If its inverse map rn'1: image m -* E X End is continuous at a point (/0 = gQh0, g0)
G image m, we say that division is jointly continuous at (/0, g0).
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574 M. A. MOSTOW AND STEVEN SHNIDER

A simple example shows that the two types of continuity are quite different. Let
M = R with coordinate x, and let t be a real parameter. For each fixed value of t,
including 0, division by t2 + x2 is continuous (by [Horm] or by direct calculation).
But division is not jointly continuous at (0, x2), since if it were, the quotient
t/(t2 + x2) would approach 0/x2 = 0 in E as t -» 0, contradicting the fact that at
x = 0, t/t2 -> oo * Oast -» 0.

The preceding example t/(t7 + x2) shows that joint continuity can only be
proven for a restricted class of denominators, which is not large enough to include
the cases of interest to us. However, if we require the denominator g to be of the
form p °G where G is a C°° mapping of the manifold M into an analytic manifold N
and p is a fixed analytic function on N, and require the quotient h = f/p ° G to
depend continuously on the pair (/, G), then we can prove a result which does cover
the examples that led us to this problem.

We were led to the study of joint continuity by a particular case of the linear
equation AX — B, where X and B are smooth vector valued functions on Rm and A
is a smooth n X n matrix valued function on Rm. Generically, A is invertible on an
open dense set U and on that set we can solve X as A~lB. Since A is assumed
continuous, its values on all of Rm are determined by its values on U. But the
following question arises: Can the uniform norms on X and its derivatives be
estimated on all of Rm from the uniform norms of A, B and their derivatives? In
other words does the solution depend continuously in the Frechet topology of
function spaces on the data A, R?

This problem could arise in many contexts. We came across it in what is called the
field copy problem in gauge theory on R4. In differential geometric terms, the
problem is to determine a generic set of connections on a principal bundle over R4
which depend uniquely and continuously on their curvatures. One approach is to use
the Bianchi identity cifi = [fi, co] where fi = du + ^[co, co] is the curvature of the
connection co. We can solve for co in terms of fi if the map ad2: tj —> [fi, tj], as a map
from Lie algebra valued one-forms to Lie algebra valued three-forms, is invertible.
For a principal bundle with semisimple structure group over a four-
dimensional base space one can find a generic set of connections for which ada is
invertible on an open dense subset of the base space. Thus we are in the situation of
the linear equation AX = B. Moreover, by Kramer's rule, when det A # 0, solving
for A involves multiplication by the transpose of the matrix of cofactors of A and
division by det A. Thus continuity of A as a function of A and B would follow from
joint continuity in (/, G) of division with denominators of the form/? ° G.

In §2 we review some facts about continuity in the numerator such as equivalence
to the closedness of an ideal in the ring of smooth functions and divisibility of
distributions. The basic results here are due to Schwarz, Whitney, Hormander,
Lojasiewicz, Malgrange and Tougeron. On the other hand we have not found any
explicit discussion of joint continuity of division.

In §3 we formulate and prove a modified joint continuity theorem along the lines
of the previous remarks. The proof involves a particular choice of Whitney stratifica-
tion of the zero set of p and an adaptation of Hormander's proof [Horm] to the case
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of a varying denominator. We show that the constants appearing in his estimates
vary continuously with G if the denominator is of the form p ° G with G transverse to
the chosen Whitney stratification of the zero set of p. Most careful attention must be
paid to the Lojasiewicz inequality estimating a function by the distance to its zero
set. Our proof depends in part on a theorem of independent interest about the
behavior of this inequality under pull back which the first author has proven, which
will appear in part II of this paper [Mos].

2. Continuity in the numerator of division by a fixed function. The following
proposition summarizes some known facts about division [Whi, Mai], distributions
[Schw], and Frechet spaces [Trel, Tre2].

Proposition 1. For any smooth function g: M -* R with g_1(0) nowhere dense, the
following eight conditions on g are equivalent.

(fl) (Separate continuity of divison by g.) (mg)~l: gE —> E is continuous.
(2) (Closed ideals.) gE is a closed ideal in E.
(3) (Division of distributions.) The transpose m'g: E' -» E' (E' = continuous dual of

E) is onto. That is, every distribution T ez E' can be written in the form gS for some
(nonunique) S ez E'.

(4) (Whitney's criterion.) Given f ez E, if for each point x ez M and each integer
k > 0 there exists a function F ez gE (depending on x, k) whose k-jet jkF(x) at x
equals jkf(x), then f ez gE.

(Y) to (4"): Same as (1) to (4), but with E replaced by D [Schw, p. 65], the LF space
[Tre2, Chapter 13] of smooth functions on M of compact support.

Remark. These equivalences, and in particular the equivalence with Whitney's
criterion, show that the continuity of division by g is a purely local question.

Proposition 2. Assume the same hypotheses as in Proposition 1. Then the division
operator m'g is continuous relative to the Whitney C°° topology on E and its subspace
gE if and only if for each nonnegative integer p there exists an integer k = k(p) (of
necessity > p) for which the set map m~g: gE —* E is continuous with respect to the
Frechet Ck(p) topology on gE and the Frechet Cp topology on E.

Corollary. If division by g is continuous with respect to the Whitney C°° topology,
then it is with respect to the Frechet C°° topology.

Remarks. Proposition 2 is not hard to prove using the description of the Whitney
C°° topology given in [Hirs, p. 35]. The converse of the Corollary is false. For
example, if division by g is Frechet-continuous but g has zeros of arbitrarily high
finite order, then division by g is not Whitney-continuous. The reason is that the
numbers k(p) in Proposition 2 can be shown to satisfy k(0) > r if g and its
derivatives of order < r vanish at some point. On the other hand, if g_1(0) is
compact, then one can show that Frechet continuity of division by g implies
Whitney continuity.

Hormander [Horm] proved continuity in the numerator of division by a fixed
polynomial. Independently Lojasiewicz [Loj] showed that division by a fixed real-
analytic function is continuous in the numerator. Tougeron [Tou, p. 160, Corollary
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576 M. A. MOSTOW AND STEVEN SHNIDER

1.9] extended this to the following result. Let M be a C°° manifold, P a real-analytic
manifold, and p: P -» R a fixed real-analytic function. Then division by p ° G is
continuous in the numerator for "general" G: M -» R, that is, for each C°° map G
whose oo-jet/°°G avoids a certain "algebraic variety of infinite codimension" in the
oo -jet bundle J°°(M, P).

Since the division problem is local, we see that division by Morse functions (which
near their zero set are linear or quadratic functions of smooth local coordinates) is
continuous in the numerator. This shows that the set T of functions g for which
division by g is continuous contains an open dense set in the Whitney Cx topology
[GG]. On the other hand, if dim M > 2, then T is not open in either topology. This
is clear locally from the family of functions gc(x) = x\ + • • • + x2_x +
c exp(-l/x2), since the polynomial g0 is in T but gc is not in T for positive c [Mai, p.
89]. The example can be made global. Finally, we note that division by a smooth
complex-valued function g is continuous relative to the Frechet or Whitney C00
topology if and only if division by the real valued function |g|2 is continuous in the
same topology.

3. Joint continuity of division. Our main result is the following.

Theorem. Let p: P -» R be a fixed analytic function on a real-analytic manifold P.
Let E(M) (respectively E(M, P)) denote the Frechet space of C°° functions from a
smooth manifold M toR (resp. from M to P), with the Frechet C°° topology. Let Mp be
the operator

Mp: E(M) X E(M, P) B (h,G) -> (f,G) e E(M) X E(M, P),

where f(x) = h(x)p(G(x)). There exists a Whitney stratification of p~x(0) for which
the vanishing order of p is constant on each stratum. Let W be the set of all
G ez E(M, P) which are transversal to every stratum. (W is open and dense in the
Whitney C1 topology.) Then M \E(M) X W is one-to-one, and its inverse operator
(defined on M (E(M) X W) and mapping (/, G) to f/(p ° G)) is continuous (in the
Frechet C00 topology).

Before proceeding with the proof we make some remarks and state two corollaries.
To prove the theorem it suffices to find inequalities of the form

(1) Mr.K<C\]f\kr
(K, K' compact, Ac K', f=h- (p°G), \\h\\rJ(= supremum of ||/7i(x)|| over
x ez K, using some norm on the fibers of Jr(M)) in which C is independent of G
locally in E(M, P). Hormander [Horm], in his proof that division by a polynomial is
continuous, obtained bounds of this type for division of / by a fixed polynomial g
(i.e. / = gh, h = f/g). The transversality hypothesis on G guarantees that the zero set

def
of g = p°G varies "continuously" as G varies in E(M, P). Also, one can show
[Mos] that as x varies over a compact set in M, the distances dist(x, g~l(0)) and
dist(G(x), p'l(0)) (using Riemannian metrics) are bounded by constant multiples of
each other, and that these constants can be chosen to work for all maps G whose
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1-jets are close enough to the 1-jet of a given map G0 on a neighborhood of the
compact set. Using these facts, one can adapt Hormander's proof and prove that his
constants can also be chosen to work for all G close enough to G0 in E(M, P).

Corollary 1. For any smooth manifold M, the division map (f = gh, g) <-* h = f/g
is jointly continuous (in the Frechet C°° topology) at all pairs (/= gh, g) ez image m
cz E X Endfor which the differential of g vanishes nowhere on g'l(0).

Proof. Take for p the polynomial x on R. One can also give a direct proof as
follows. By the Implicit Function Theorem we can find local coordinate systems
using g as the first coordinate. Write

f(g,x2,...,xn)= f1 (d/dt)(f(tg,x2,...,x„))dt

fl '
= g     {dxf)(tg,x2,...,xn)dt.

Jo

From this, we get uniform bounds for h = f/g locally in terms of bounds on dxf,
and for the r-jetjrh of h in terms of bounds on jr + 1f, for each r, relative to the
(g, x2,... ,x„) coordinate system. When we change to a coordinate system indepen-
dent of g, we get uniform bounds on compact sets for jrh in terms of similar bounds
onyr+1/and7'r+1g, locally in £ X End. This implies the result.

Corollary 2. Let Sfbe the space of smooth (C00) R"-valued functions on M, s/the
space of smooth (n X n) matrix-valued functions on a smooth m-manifold M, and

s#q= {A ez j<^|det A + 0 on a dense set in M}.

Endow them with the Frechet C00 topology. Then the map

M:s?q x9Czs (A, X) -» (A, AX) ezs?0 x3C

is one-to-one, and the inverse map M"1: image M -* j&0 X 9£is continuous at all pairs
(A, AX) for which A is transversal to a Whitney stratification of det_1(0) c R"2,
provided that the vanishing order of det is constant on each stratum.

Proof. At each x cz M, (det A)X = (Cof'A)(AX) (Cramer's Rule), where CofJ, is
the transpose of the matrix of cofactors of A. Now apply Theorem 2, taking h = ith
entry of CofA(AX), G = A, andp = det A.

Proof of the Theorem. Hormander [Horm] has proven that division by a
polynomial is continuous in the numerator. In his proof he points out that one could
replace the polynomial by any function satisfying two conditions. The first condi-
tion, numbered 4.2, states that the order of vanishing of p(x) is bounded on all of
R". The second condition, numbered 4.10, is a "Lojasiewicz inequality" of the
following type: For arbitrary/, k, there exist constants c, s, u such that

(2) E \DiP(xy)\2>c(i+\\x\\ysd(x,Nk+xy
\q\-jk

for x G Nk = the set of points where p vanishes to order k. Lojasiewicz [Loj]
independently and at about the same time proved that such estimates are true for an
arbitrary analytic function if we restrict to compact sets. With this restriction, the
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Schwarz space multiplier becomes irrelevant. For any function satisfying his condi-
tions 4.2 and 4.10, Hormander proves that for all m, r there exist a constant C and
integers m', r' such that

(3) sup (1 +11x11)" I  |Z)^(x)|2< Csup (1 +IIXII)"1'  £   \D»(p(x)h(x))\2.
veR" |a|<r ieB" \b\sir'

Since we are interested only in continuity with respect to seminorms defined with
respect to compact sets in R", we can restrict x to a closed ball B in R" and drop the
Schwarz multiplicative factors (1 + ||x||)m, (1 + ||x||)m'. Hormander's proof shows
that if p is a smooth function defined on B whose order of vanishing is bounded on
B (condition 4.2) and satisfies estimates (condition 4.10)

(4) L   \D"(p(x)j)\2>cd(x,Nk+x)u
\g\-jk

for x ez Nk, then for any r there exist a constant C and an integer r' > r such that

(5) sup     £ \D"h(x)\2   < C'sup     ZZ   \Dh(p(x)h(x))\2
xeB[\a\sir J ■'Sfl[|/,|4r'

provided the suprema exist.
To prove joint continuity it is sufficient to show first that (4) with fixed c, u holds

uniformly for all p ° G in place of p when G is restricted to a suitable open set in the
function space of mappings from the open ball A into B and is further required to be
transverse to a particular stratification of p_1(0) and second that the constant C" and
integer r' in (5) can be chosen uniformly for all such/j ° G.

Assuming we have demonstrated the first fact, to demonstrate the second we
follow the proof given in the book by Treves [Tre]. It is an inverse induction on
propositions Pk and P'k with P0' directly implying (5). Conditions Pk and P'k are
trivially satisfied for k greater than the maximal order of vanishing of p(x). We
claim that within the class of functions satisfying (4) with fixed exponent u and
constant c, the constant C' and integer r' can be chosen uniformly for all p' close to
p. The claim is a consequence of the nature of the induction steps

(a)Pk + P'k + i~P'k,
(b)Pk + x=*Pk.
Induction (a) depends on three types of estimates: (1) estimates on the derivatives

of the Whitney extension of a function / from the set Nk +, in terms of its derivatives
on Nk + X, (2) estimates on the sup norm of certain universal polynomials in p and its
derivatives arising from application of the Leibnitz formula, and (3) estimates on the
remainder in the Taylor formula. Induction (b) depends on sup norm estimates on
universal polynomials in p and its derivatives (the operators labelled Lk(x, F)),
estimates on the remainder in Taylor's formula and finally the Lojasiewicz inequality
(4). Thus when we restrict to those functions satisfying (4) with the same exponent
and constant, all the other estimates introduce constants which can be bounded
uniformly for all p' near p, or do not depend on p at all.
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To establish the claim we must show that (4) is satisfied by p ° G for appropriately
restricted G. Let Nk be the set of points where p °G vanishes together with all its
derivatives up to order k. We will show that transversality of G to a certain
stratification ofp'l(0) guarantees that G~l(Nk) = Nk for all k, thus proving that the
order of vanishing of p ° G at x equals the order of vanishing of p at G(x). Then we
prove that (4) is true for p ° G with the same exponent u unchanged and the constant
chosen uniformly for all G near G0. Recall the definition of Nk. Let N = Nx be the
set of points wherep(x) = 0. Nk is the set of points wherep vanishes to order k; that
is, the total jth derivative, djp(x), which considered as a>fold symmetric tensor on
R" vanishes, for ally < k. Let dJp(x)[v] stand for the evaluation of dJp(x) on the
k-tuple(v, v,...,v). Then

x ez Nk    iff djp(x)[v] = 0 for ally < k and v ez R",

iff -z—^-—5—(x) = 0 for all (ix ■■■ i),j a tuple of integers
oXjdx,   • • • ox,

; from 1 to n andj an integer
from 0 to k — 1.

For x ez Nk — Nk + X the vectors v such that dkp(x)[v] = 0 axe called nongeneric
directions.

Lemma 1. Suppose x ez Nk — Nk + X and there exists a submanifold S ofR" through x
contained in Nk. Let V be a vector subspace of R" contained in the cone of nongeneric
directions. Then V + TXS # R".

Proof. We claim that dkp(x)[v] = 0 for any v ez V + TXS; thus V + TXS * Rn
since by assumption x G Nk + X. The claim is clearly true for v ez TXS ox v ez F so let
v = vx + ux with 0 + vx ez V\ TXS and 0 =£ ux ez TXS. Find a coordinate system
near x such that 3/3x, = w, and 3/3x„ = vx at x, and the submanifold S is defined
byx^ + 1 = x(k+2 = x„ = 0.Then

d"p(x)[ux + vx] = dkp(x) — + —

= f Ik) *kP(x)      dkp(x)
,r0W/a*{a**-'      3x*

because dk~'p/dxk~' vanishes identically along S cz Nk for any / > 0, so any 3/3x,
derivative of such a term vanishes and dkp(x)/dxk = dkp(x)[vx] = 0 since vx is
nongeneric.

Lemma 2. Let p: Rm -» R be a real analytic function. Then there exists a Whitney
stratification ofp~l(0)for which the vanishing order of p is constant on each stratum.

Proof. The case p = 0 is trivial so assume p is not identically zero and for each
positive integer k let A^ be defined as above. On each compact set # the nested
sequence

Kr\Nx^KC\N2Z)Kr\Nkz> ■■■
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must end in the empty set after finitely many steps, since otherwise we could find a
limit point x ez K in which p vanishes to infinite order, implying p = 0. Further-
more, each set Nk is an analytic set. A standard result about stratifications (see [Ver])
implies the existence of a Whitney stratification for which each Nk is a union of
strata. Thus Nk - Nk+X is a union of strata and the vanishing order of p at every
point of each stratum in this union is k.

Lemma 3. Let 6^= {Sa} be a stratification of the zero set ofp such that the vanishing
order is constant on each stratum. Let G: U ez R" -> Rm be transverse to each stratum
in £f(transverse to £f). Then G~1(Nk) = Nk = {x ez U\p °G vanishes to order k at
x}.

Proof. It is always true that G'l(Nk) c Nk. Suppose there exists x ez Nk such that
G(x) & Nk. Then p vanishes to order / < k at G(x). Since p ° G vanishes to order k
at x, the subspace dGx (TXR") consists entirely of nongeneric directions. By transver-
sality, dGx(TxR") + TC(x)Sa = rC(x)Rm if Sa is the stratum containing G(x). This
contradicts Lemma 1.

There are two equivalent norms on the space of /c-fold symmetric tensors on R":

||F||= sup{ |F[o]||||o|| = l,o G R"}
and

/ \1/2

llflli- E \F(eh-..eJ\     .
\ 1 < <j < • ■ ■ < j* < n /

Recall the notation F[v] = F(v,...,v). The inequality (4) uses the norm || ||, but
the proof is simplified by using ||    || so we write (4) as

(4') \\dkp(y)\\>Cxd(y,Nk+x)u   fox yezNknKx.
We want to prove

(6) \\dk(p°G)(x)\\> C2d(x,Nk + x)u   foxxez Nkn K2,
where Kx is a compact set in Rm and K2 is a compact set in R" such that
G(K2) ez Kx and the constant C2 can be chosen uniformly for all G close to an
initial G0 and transverse to SP.

Substituting^ = G(x) in (4') gives

\\dkp(G(x))\\>Cxd(G(x),Nk+xy.
We estimate the right side from below using the theorem on behavior under pullback
of the distance to a Whitney stratification which is proven in part II of this paper:

(•) d(G(x), Nk+X) > C3d{x, G-l(Nk + x)) = C,d(x, Nk+X).
Therefore

\\dkp(G(x))\\> Qd(x, Nk+i)u.
The desired inequality for p ° G will follow once we have shown

(7) \\dk(poG)(x)\\>C5\\dkp(G(x))\\.
That the constant C3 can be chosen uniformly in G is proven in Part II, and the
uniformity in G of C5 follows from the proof of (7) given below.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



JOINT CONTINUITY OF DIVISION OF SMOOTH FUNCTIONS 581

Before proving (7) we note that if F is a /c-fold symmetric tensor on R" and W is a
subspace of R" such that F(vx,...,vk_x,w) = 0 for all w ez W and o,,... ,vk_x ez R",

def
then F[v] = F[tt(v)] = F ° tr[v] where tr is the orthogonal projection of R" on W   .

If G(x) is in the stratum Saez Nk, then dkp(G(x)) vanishes on a /c-tuple which
includes a direction tangent to Sa. Thus dkp(G(xy) = dkp(G(x))° irG,x), where
7rCU) is the orthogonal projection of TG(X)R" on (TCXx)Sa)x , and

\\dk(p°G)(x)\\=\\dkp(G(x))°dG(x)\\

= \\dkp(G(x))o„GModG(x)\\.

By the transversality assumption, Vctx) ° dG(x) is a surjection of rvR" onto
(TgujSJ"1- Let ^a=G_1(5a) be the pull-back stratification of N = G_1(A)
[GWPL, p. 14]. If we restrict the linear transformation wG,xX ° dG(x) to (^R^-1, it
gives an isomorphism onto (7,C(Jt)Sa)J-. Thus for v ez (TxRa)x

hciX)dG(x)[v]\\ > \x\v\

and therefore if we pick w0 cz (7,C(;v.)Sa)"L, |w0| = 1, such that ||ciAr/»(G(x))|| =
\dkp(G(x))[w0]\, then there is a o0 g (T^R^1^ such that wC(x)ciG(x)[o0] = w0 and
1 = |w0|> AJd0|. Then

|K(/7oG)(x)||=|ciV(G(x))o%(,)c/G(x)||

>|rfV(G(^))%(^G(x)[o0/|o0|]|

>\dkp(G(x))[Wo)\/\v0\k>\\dkp(G(x))\\\kx.

We want a uniform lower bound on X^ as x varies over a compact set but is not
necessarily restricted to one stratum. The existence of such a bound follows from the
next lemma.

Lemma 4. Let G: X -> Y be a smooth mapping. Let £f= {Sa} be a stratification of
N cz Y and assume G is transverse to if. Let {Ra = G~1(Sa)} be the pull-back
stratification ofG^N. Let Wv = (7;.S0)J- and Vx = (^.RJ-1 and let trv: TyY -> Wr be
orthogonal projection. Then

inf   W(x)dG(x)[v]\ =\(x)
\v\ = l

(vevx)

is lower semicontinuous on G^N.

Proof. Pick x g G_1(N). If there exists a neighborhood of x in G~l(N) which is
contained in one stratum then X(x) is continuous at x by standard results for
transversal maps of manifolds. Let x G R, n R2 and assume the conclusion is not
true. There exists a sequence of points x„ ez R2 converging to x with lim A(x„) <
\(x). For each x„ there exists a vn g Tx R2 such that \vn\ = 1 and A(x„) =
\^C(x„)dG(xn)[vn]\. Assume the sequence is chosen such that the tangent spaces
Tx R2 converge to a subspace T0 cz TXX in the Grassmann g-plane bundle over A
(q = dimR2) and such that the v„ converge to v in the sphere bundle. Then
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Tq d TXRX by Whitney condition (a) and v ez V0 = T0± c TxRf = Vx. In fact we can
write limtrG{x)dG(xn) as tr0° iTGix)dG(x)° j0, where w0: IFJ, -» H/ is orthogonal
projection on W0 and W0 = (Tq1)-1 for Tq1 = limrG(Jc)S2 andy0: F0 -» ^ is inclu-
sion. The kernel of 7r0 is WY n Tq1. By transversality at x we know that rrG{x)dG(x):
Vx -* Wv is an isomorphism. By continuity dG(x) maps T0 into Tq1. Furthermore
7rC(x) maps 7^ into itself since it is orthogonal projection along TYSX c To1. Thus
7rC(;c)eiG(x)(r0 n Vx) ez T0l n Wy. But

dim 7^0^ = dim R2 - dim Rj = codim Rj - codim R2

= codim 5, - codim S2 = dim 52 - dim S,

= dim Tq1 n H/,.

Thus ■7TC(x)dG(x): T0 n K, -» Tq1 n H7,, is an isomorphism. Let w be the orthogonal
projection along W0 of wC(;c)ciG(x)[[;] in T0l n H7. Then 77,07rC(;t)cc'G(x)[';] =
wC(x)ciG(x)[i;] — vv. As we saw above w can be written trCix)dG(x)[u] for u ez T0 n
Kx. Then

and

limA(xJ =\n0irG<X)dG(x)[v]\ =\irC(x)dG(x)[v - u]\

> X(x)|o - u| > A(x)(|o|   +\u\)      > X(x)|o|,

contradicting the assumption that lim A(x„) < X(x). From the lower semicontinuity
of A(x) we conclude that A(x) has a positive lower bound on K n Nk for any
compact set K. Therefore \\dk(p ° G)(x)|| > c||ci^(G(x))|| for x g K n AA. To-
gether with the estimate * established in part II this proves the Theorem.
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