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JOINT CONTINUITY OF SEPARATELY CONTINUOUS

FUNCTIONS

JENS PETER REUS CHRISTENSEN1

Abstract. It is shown that a separately continuous function f: X X Y -» Z from

the product of a certain type of Hausdorff space X and a compact Hausdorff space

Y into a metrizable space Z is jointly continuous on a set of the type A X Y, where

A is a dense Gs set in X. The class of Hausdorff spaces X in question is defined by

a gametheoretic condition. The result improves (and simplifies the proof oO a

recent result of Namioka. Many "deep" theorems in functional analysis and

automatic continuity theory are easy corollaries.

0. Introduction. Let/: X X y^Zbea separately continuous function on the

product of the Hausdorff spaces X, Y into the Hausdorff space Z.

Under suitable conditions on the spaces involved / will be jointly continuous on

a "fat" subset of X X Y.

The present paper is inspired by a most remarkable result of this type due to

Namioka (see [6]). In his paper Z is metrizable, Y is compact and X is regular and

strongly countably complete (see below). Many theorems in automatic continuity

theory and functional analysis are immediate or easy corollaries of 'Namioka's

theorem'.

Under the above conditions there exists a dense Gs subset A of X such that / is

jointly continuous on A X Y.

We shall give a hopefully technically easier proof of this theorem for a much

larger class of spaces X which is closed under arbitrary products and defined by a

gametheoretic condition.

1. Preliminaries. Let J be a Hausdorff space. Let us consider the following

"game" on X by the players a and ß. The player ß starts by choosing an open

nonempty subset Ux of X. Then the player a chooses an open subset Vx of Ux and

a point x, G Vx (his "move" is the pair (Vx, xx) with x, G Vx). Then ß chooses an

open subset U2 of Vx (he may choose as he wishes but is expected to try to escape

x,). Next a chooses an open subset V2 of U2 and x2 G V2 . . . (all the sets are

required to be nonempty).

We shall fix the rule that a wins if any subsequence x of the sequence x„

accumulates to at least one point of the set / = H "_ i Vn = H "_ x U„. Note that we

permit other accumulation points outside / and that the point of / to which a

subsequence accumulates may depend effectively on that subsequence.
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456 J. P. R. CHRISTENSEN

Of course this game is closely related to the games considered by Choquet in [2].

We shall consider only strategies for a depending on the previous move by ß. A

strategy for a is therefore a mapping s: T -> T* of the set of nonempty open sets

°V into the set T* of pairs (U, x) with x G U G T such that for s(U) -

(sx(U), s2(U)) we have sx(U) Ç U for all U G T. We shall say that í is a winning

strategy if a is sure to win irrespective of the behaviour of ß provided a moves

according to s.

We shall call X a a-well a-favorable space if a winning strategy exists for a.

We shall call X a T-well a-favorable space if a winning strategy exists in the

closely related game, where a wins if (by definition of the rules) any subnet x^

(d G D) of the sequence xn accumulates to at least one point in / (defined as

above).

As explanation for the above conventions we should perhaps inform the reader

that the class of a-well a-favorable spaces is ideally suited for our proof below of

the "Namioka" theorem. It does, however, not seem that this class is closed under

topological products, but it is easy to show that the more restricted class of T-well

a-favorable spaces is closed under arbitrary topological products.

It should be obvious that both classes of spaces defined above are a-favorable in

the sense of Choquet (see [2]). There does not seem to be any direct relation to the

class of strongly a-favorable spaces considered by Choquet.

As in Choquet we see that a a-well a-favorable space is a Baire space (nonempty

open sets are second category). Also complete metric spaces and locally compact

Hausdorff spaces are T-well a-favorable (the proof is almost identical with the

proof of the corresponding results in Choquet [2]).

We note that the class of T-well a-favorable spaces is closed under arbitrary

products. Since the proof is very similar to the proof of the corresponding fact for

a-favorable spaces (see Choquet [2]) we shall only sketch the argument.

Let X¡ (i G /) be a family of T-well a-favorable spaces. In X = W¡X¡ (/' G /) we

choose arbitrarily a fixed point x = (x,) (i G /). A winning strategy for a is defined

as follows:

For a nonempty open set U Ç X we find a cylindrical set

(all but finitely many of the factors U¡ equals X¡) contained in U. If Ü¡ = X¡ we put

h(U¡) = (X¡, x,) and if U¡ ¥= X¡ we put h(U¡) = s¡(U¡) where s¡ is a whining strategy

in Xf. Now the first coordinate of s( U) is the product of the first coordinates of the

h(Ü¡)'s and similarly for the second coordinate. That s is winning is proved as in

Choquet [2]. We need at this point the assumption of T-well a-favorable space. We

just take a universal subnet of the sequence of points in X and apply the

assumption coordinatewise. This would not work for sequences!

We shall now discuss the class of spaces considered by Namioka (see [6]) and we

shall see that the class of a-well a-favorable spaces does indeed contain the

"strongly" countably complete regular Hausdorff spaces "considered" by

Namioka.
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A Hausdorff space X is called "strongly countably complete and regular" if it is

regular in the usual sense and there exists a sequence &„ of open coverings of X (it

will be convenient, as we shall do, to let ¿En = {X}) with the property that for any

sequence of nonempty closed sets

F0 D Fx D F2 D . . .

with F„ ç U„ G <£„ for each «, we have (XL^ ^ 0-

Suppose we make the stronger assumption that for any net xd G F^ with

nd —> oo, we have that the net xd (d G D) has an accumulation point. We then get a

more restricted class of spaces which we call "strongly T-complete and regular". It

is not difficult to show that for completely regular spaces the last concept coincides

with the so-called Cech-complete spaces.

Suppose now that AT is a "strongly countably complete and regular" Hausdorff

space. We shall prove that X is a-well a-favorable. Therefore our theorem below

does contain Namioka's theorem and is of course true also for an arbitrary product

of T-well a-favorable spaces. We define the strategy s for the player a as follows. If

A is a subset of X let n(A) = sup{&: for each « < k, 3 £/„ G ân with A Q U„}.

Let U be an open nonempty set in X. We let the first coordinate of s( U) be any

open nonempty subset V of U with V Q U and n(V) > n(U) + 1. We can choose

any point in V as second coordinate of s( U). It is indeed easy to show that s is a

winning strategy for the a-game.

2. Proof of the main theorem.

Theorem 1. Let f: X X T—» Z be a separately continuous function on the product

of the o-well a-favorable space X and the compact Hausdorff space Y taking values in

the metric space (Z, d). Then there exists a dense Gs subset A of X such that f is

jointly continuous at any point of A X Y.

Proof. The proof proceeds in a few steps.

Step 1. Reduction to the case where Z equals the interval [-1, 1] with its usual

metric.

Let us consider the compact Hausdorff space

K= [k:Z^[-\, 1]K^6Z: \k(zx) - k(z2)\ < d(zx, z2)}.

Of course K is compact in the topology of pointwise convergence. On X X ( Y X

K) we define the function g by g(x, (y, k)) = k(f(x, y)).

If /: X X Y —> Z fulfills the conditions of the theorem it is easily seen that g is

separately continuous on the product of X and the compact Hausdorff space

Y x K. Also it is seen that the conclusion for g in the theorem would yield the

same for /. In order to convince the reader about this point let zs (8 G A) be a net

in Z such that the limit equation lims k(zs) = k(z¿) holds for all k G K. If we put

k(z) = d(z, z0) A 1 it becomes obvious that zs -> z0. From this our assertion

follows easily.
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Step 2. Proof of the main lemma:

Main lemma. Let f„ G C(Y) be any uniformly bounded sequence of continuous real

valued functions on the compact Hausdorff space Y. Suppose that any subsequence f

has at least one continuous function as an accumulation point in the topology of

pointwise convergence for functions on Y. Then if « is a continuous function which is

an accumulation point of fn in the pointwise topology, we can choose a subsequence f

of ' f which tends pointwise to h and hence converges weakly to h.

Proof. On Y we define the equivalence relation

yx~y2**Vnfn(yx) = f„(y2).

The set Y of equivalence classes is a compact metric space in an obvious way

and each/,, as well as each continuous accumulation point of /„, can be naturally

identified with a continuous function on Y (which we denote by/„). Also « induces

a continuous function on Y denoted by «. Letj^ E fbea sequence which is dense

in Y. We choose a subsequence / such that f„(yk) —* h(yk) for each k. Let us

convince ourselves that already f tends to « pointwise on Y. Suppose this were not

true for^Q G Y. We could then choose a subsequence/, of f such that the limit of

fn (^o) *s different from h(y0). The subsequence /„ has a continuous accumulation

point «, which induces a continuous function «, on Y. But the functions « and hx

coincide on a dense subset of Y; hence they are equal. Consequently, n, = h,

which contradicts h(y0) ^ lim/„ (y0) = ^(.Vo)-

It is not difficult to show that fn is weakly conditionally compact under the

conditions of the lemma. We shall not need this but only the fact that if fn —» «

pointwise then fn —> h weakly (use the boundedness, the Lebesgue theorem on

dominated convergence and Riesz representation theorem). Consequently suitable

convex combinations of the/„'s tend uniformly to h.

Step 3. Suppose now that /is separately continuous on the product X X Y of the

a-well a-favorable space X and the compact Hausdorff space Y and takes values in

[-1, 1]. We consider the associated mapping

F:X->C(Y)

defined by F(x)(y) = f(x,y).

Let the local oscillation of F at x G X be defined by

aF(x) = inffsupdlFix,) - F(x2)\Uxx, x2 G U G %(x)}}

where the infinum is taken over all neighborhoods of x. Since aF is obviously upper

semicontinuous we see that A = (x G X\af{x) = 0} is a Gs set. It is easy to see

that A is exactly the set of x G X such that x X Y consists entirely of joint

continuity points off.

The space X is Baire. Therefore, if A is not dense in A', then there exists k > 0

such that {x: aF(x) < k} is not dense, i.e., aF > k > 0 on a nonempty open set U.

Replacing U, which is a-well a-favorable, with X, we have reduced the proof to the

derivation of a contradiction from the assumption that otp(x) > k > 0 for all

x G X.
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Let us start the topological "game" between the players a and ß. Naturally a

chooses to move according to some winning strategy s. The player ß chooses the

following strategy:

In the first move ß chooses his set Ux to be the whole space X. Assume that the

moves Ux, s(Ux) = (Vx, xx), . . ., U„_x, s(U„_x) = (Vn_x, xn_x) have been made

with « > 2. In the move number n for ß, the compact set

Hn = convex,), F(X2),..., F(x„_,)})

is considered. Let us show that

Cn = [x <E X\8(F(x), Hn) < k/3}

has empty interior in X (of course this set is closed). To see this we remark that

H„ = {f G C(Y)\8(f, H„) < k/3}

(the symbol 5 above is used for the metric on the function space C(Y) induced by

the sup norm) may be covered with finitely many closed balls with center in Hn

and radius (5/12)A: (a trivial compactness argument). The inverse images (by F) of

those balls would give a finite covering of C„ with closed sets. If the interior of C„

was nonempty then at least one of those closed sets would have an interior point.

But then the local oscillation aF would be at most (10/12) A: at such a point. This

contradiction shows that C„ has empty interior. Thus ß may choose his set to be

disjoint from Cn and we shall assume that he does so.

Let us choose xœ G n T-1 Vn = H "_ i Un such that x„ (the set of points chosen

by a using his winning strategy s) accumulates to xx. The sequence F(x„) G C(Y)

fulfills the conditions of the lemma and we may choose a subsequence F(x )

tending weakly to F(xx). But then suitable convex combinations of the F(x )'s

tend uniformly to F(xœ). But the distance of F(xo0) to any convex combination of

the F(x„)'s is at least k/3. This contradiction finishes the proof of Theorem 1.

3. Remarks on analogous results. While it seems likely that the conditions on X

can be relaxed (but probably not to only requiring A to be a Baire space) the

compactness assumption on Y is very essential in the proof. If we use a different

proof, however, we might prove a result for noncompact Y. Naturally the compact-

ness condition must be replaced by some other strong condition; it seems, for

example, unlikely that Theorem 1 holds for arbitrary complete metric spaces X and

Y. For a Hausdorff Baire space X and a Hausdorff space Y with some countability

condition (weaker than second countability) R. E. Feiock has proved a result

analogous to Theorem 1 (see [4]). The reader should consult also the paper by

Calbrix and Troallic (see [1]).

We shall give an example due to J. Hoffmann-Jorgensen (oral communication)

which shows that the main theorem is false even for compact range space provided

this range space is "large". It seems quite probable that the condition on Z to be

metrizable cannot be relaxed very much, unless we put some "smallness" condition

on Z.

J. Hoffmann-Jergenseri's example. We let X = Y = [-1, 1] and Z be the space of

mappings from [-1, l]2 into [-1, 1] equipped with the pointwise topology. Thus
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F(x,y) is a function of (a, b) G [-1, l]2 given by

F(x,y)(a, b) = 2(x - a)(y - b)/ ((x - of + ( y - bf);

if this quotient is undefined we put it equal to zero. It is an easy exercise to verify

that F is separately continuous but not jointly continuous in any point.

4. Applications. We must confess that we know of no applications to automatic

continuity theory where continuity is derived from purely algebraic properties of

the mappings involved (and all topological assumptions placed on the spaces

involved). There are several applications of the form that some continuity and

some algebraic condition imply a strong form of continuity. As an example of such

a theorem it is relatively easy to show (given Theorem 1 above) that if we have a

locally compact topology on some group G such that right and left translations are

continuous, then the group is a locally compact group under the topology in

question. This is due to Ellis (see [3]).

Such applications and also applications to show the existence of "many" denia-

ble points for weakly compact subsets of not necessarily separable Fréchet spaces

are discussed in detail in Namioka's paper (see [6]). We shall as an example show

how the theorem can be used to prove very easily a deep result due to Glicksberg

(see [5]).

Theorem 2. Let G be a locally compact abelian group and let S C G be compact in

the coarsest topology induced on G by the dual group T (the Bohr topology). Then S is

compact in G.

Proof. Let H be a compact neighborhood in T. Let A Q H be a dense Gs set

such that (-,.) is jointly continuous in S X A (restricted to S X H). Some point

« G A is an interior point of H and for a suitable neighborhood V of h contained

in H we we have \(s, v) — (s, h)\ < \ for all v G V and s G S. But this shows that

S is contained in a compact set and therefore is compact since S is trivially closed.

This finishes the proof of Theorem 2.
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Added in Proof (March 1981). The attention of the author has been drawn (by

F. Topsoe and J. Hoffmann-Jorgensen) to the surprising fact that for metrizable

spaces the concept of a-favorable in the Choquet sense implies T-well a-favorable.

To see this one simply chooses a winning strategy in the original Choquet sense,

which has the property that for any consistent game, the diameter of the sets tends

to zero. It is easy to see that for any choice of the points in the sets, we get a

winning strategy for the T-game. As the real line with the Sorgenfrey topology

shows this implication is not true for arbitrary (even completely regular) topologi-

cal spaces.
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