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Terrestrial gross primary productivity (GPP) varies greatly over time and

space. A better understanding of this variability is necessary for more

accurate predictions of the future climate–carbon cycle feedback. Recent

studies have suggested that variability in GPP is driven by a broad range

of biotic and abiotic factors operating mainly through changes in veg-

etation phenology and physiological processes. However, it is still un-

clear how plant phenology and physiology can be integrated to explain

the spatiotemporal variability of terrestrial GPP. Based on analyses of

eddy–covariance and satellite-derived data, we decomposed annual ter-

restrial GPP into the length of the CO2 uptake period (CUP) and the sea-

sonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and

GPPmax explained >90% of the temporal GPP variability in most areas

of NorthAmerica during 2000–2010 and the spatial GPP variation among

globally distributed eddy flux tower sites. It also explained GPP response

to the European heatwave in 2003 (r2 = 0.90) and GPP recovery after

a fire disturbance in South Dakota (r2 = 0.88). Additional analysis of the

eddy–covariance flux data shows that the interbiome variation in annual

GPP is better explained by that in GPPmax than CUP. These findings in-

dicate that terrestrial GPP is jointly controlled by ecosystem-level plant

phenology and photosynthetic capacity, and greater understanding of

GPPmax and CUP responses to environmental and biological variations

will, thus, improve predictions of GPP over time and space.

ecosystem carbon uptake | growing season length | photosynthetic

capacity | spatiotemporal variability | climate extreme

Large variability exists among estimates of terrestrial carbon
sequestration, resulting in substantial uncertainty in modeled

dynamics of atmospheric CO2 concentration and predicted future

climate change (1). The variability in carbon sequestration is par-
tially caused by variation in terrestrial gross primary productivity
(GPP) (2), which is the cumulative rate over time of gross plant
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CO2 fixation at ecosystem level, fuels all life on land. However, its

spatiotemporal variability is poorly understood, because GPP is de-
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photosynthesis at the ecosystem level. Plant photosynthesis has been
successfully modeled at the biochemical level (3, 4). When leaf-level
biochemical models of photosynthesis are scaled up to estimate
annual GPP over a region and the globe, however, great uncertainty
arises from both vegetation properties, such as biome-dependent
leaf parameters (5, 6), and environmental factors, such as climate
variability (7–9) and episodic disturbances (10–12). As a conse-
quence, estimated present day global GPP varies from 105 to 177
Pg C y−1 in the fifth phase of the Coupled Model Intercomparison
Project (13). Additionally, spatiotemporal patterns of GPP (2, 14),
their responses to extreme climate events (12) and disturbances
(10), and the underlying mechanisms are still not well-understood.
Previous studies have indicated that vegetation properties and
environmental factors shape annual GPP of an ecosystem directly
or indirectly through affecting plant physiological activities (15)
and/or phenology (16–21). Thus, integrating plant physiological
and phenological properties may provide a unified approach to
explain the variability of GPP over time and space and in response
to disturbance.
In this study, we show that annual GPP in grams Cmeter−2 year−1,

the rate at which terrestrial ecosystems take up CO2 from the at-
mosphere in a given year, can be quantitatively decomposed into

GPP= α ·CUP ·GPPmax; [1]

where the carbon dioxide uptake period (CUP; number of days per
year) is a phenological indicator of the duration of ecosystem CO2

assimilation within a given year. GPPmax (grams C meter−2 day−1) is

the maximal daily rate of gross photosynthesis during the CUP
and represents a property of plant canopy physiology. The ratio
between annual GPP and the product of CUP and GPPmax is
represented by α. We estimated α, CUP, and GPPmax for 213
globally distributed terrestrial sites with daily GPP from the
global network of micrometeorological tower sites (FLUXNET;
La Thuile Database) (22) (SI Appendix, section S1.1.1 and
Table S1) and all 0.1° × 0.1° land grid cells in North America
during 2000–2010 with an 8-d GPP product from the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) onboard
the National Aeronautics and Space Administration Terra satel-
lite (23) (Materials and Methods). Here, we show how CUP and
GPPmax jointly control the spatiotemporal variability of GPP and
its response to and recovery from disturbances in different
terrestrial ecosystems.

Results and Discussion

Using regression analysis, we first evaluated to what extent the
product of CUP and GPPmax (CUP × GPPmax) explained the var-
iability of satellite-derived GPP over broad temporal and spatial
scales. CUP × GPPmax explained 94.9% of the interannual vari-
ability of the averaged MODIS GPP across North America from
2000 to 2010, with the minimum annual GPP (678 g C m−2 y−1) in
2000 and the maximum (748 g C m−2 y−1) in 2010 (Fig. 1A). The
joint control of CUP and GPPmax on the interannual variability of
GPP was robust in most MODIS grid cells across North America
but weak in tropical and Mediterranean climates, such as the

Fig. 1. Joint control of the temporal variability of satellite-derived annual GPP and the spatial variability of FLUXNET annual GPP by CUP and GPPmax. (A) The

temporal variability of GPP in North America from 2000 to 2010 can be better understood by splitting annual GPP into GPPmax and CUP. The flat color interpolated

surface reflects a good relationship between annual GPP and GPPmax × CUP (R2 = 0.95, P < 0.001). Vertical lines were added to improve readability. (B) Con-

tribution of GPPmax × CUP to GPP temporal variability over 2000–2010. The contribution in each grid cell was derived from the R2 in the linear regression analysis

between GPP and GPPmax × CUP. C and D show relationships between GPP and GPPmax × CUP across FLUXNET sites in forest and nonforest biomes, respectively.

Each data point in C and D represents one flux site with average data over different years. CROP, cropland; DBF, deciduous broadleaf forest; EBF, evergreen

broadleaf forest; ENF, evergreen needleleaf forest; GRA, grassland; MF, mixed forest; SAV, savanna; SHRUB, shrubland; WET, wetland.
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Caribbean region and California (Fig. 1B). Spatially, across all
FLUXNET sites, although there was no relationship between
CUP and GPPmax (SI Appendix, Fig. S1), CUP ×GPPmax explained
>95% of the spatial variation of annual observed GPP in all biomes
(all P < 0.001) (Fig. 1 C and D).
The product of CUP and GPPmax also explains the impact of

a climate extreme on ecosystem CO2 uptake. Linear regression
analysis showed that the GPP reduction caused by the European
heatwave in 2003 (12) across FLUXNET sites was well-explained
by CUP × GPPmax (R

2
= 0.90, P < 0.001) (Fig. 2A, Inset). How-

ever, CUP and GPPmax played different roles in heatwave-induced
GPP reduction among sites. For example, the reduction in annual
GPP mainly resulted from a decrease of GPPmax (−37%) for
a beech forest in Sarrebourg, France but a shortening of CUP
(−11%) for a spruce site in Tharandt, Germany (Fig. 2A).
We also analyzed the dynamics of satellite-derived annual

GPP, CUP, and GPPmax during recovery from a wildfire that
occurred on August 24, 2000 in the Black Hills National Forest
in South Dakota (24) (SI Appendix, Fig. S2). Although GPPmax

and CUP followed contrasting postfire trajectories, the recovery
trajectory of annual GPP was well-captured by the product of
CUP and GPPmax (R

2
= 0.88, P < 0.001) (Fig. 2B). Immediately

after the fire, GPP was sharply reduced by 27% in 2001
(624 g C m−2 y−1) and 26% in 2002 (636 g C m−2 y−1) relative to
GPP before the disturbance in 2000 (858 g C m−2 y−1). There-
after, annual GPP gradually recovered to 816 g C m−2 y−1 in 2010
(Fig. 2B). The dynamics of GPPmax after the fire paralleled those
of annual GPP, with 40% and 36% reduction in 2001 and 2002,
respectively, and then gradual recovery to 89% of prefire levels
in 2010. In contrast, the CUP was extended by 30 to 60 days from
2000 (219 d) and then gradually shortened and returned to
predisturbance values (Fig. 2B). The rapid extension of the CUP
may have resulted from the return of grass in spring after fire
disturbance (25).

Not only did the product of CUP and GPPmax capture the
variability in annual GPP over space and time and after dis-
turbances, but the ratio α between annual GPP and CUP ×

GPPmax also converged across a broad range of vegetation types
and environmental conditions (Fig. 3). The most frequent value
of α was 0.62, with 90% of α-values falling within a range from
0.61 to 0.76 (Fig. 3A) based on an analysis of 213 FLUXNET
sites. Those sites with α > 0.76 were mainly located in tropical
and subtropical climate zones (Fig. 3A and SI Appendix, Fig. S3).
The analysis of the MODIS product showed a similar convergence
of α over North America (Fig. 3B), with the most frequent value of
0.62 and a 90% range from 0.61 to 0.83. To explore the spatial
distribution of α, we mapped the mean annual GPP, CUP, GPPmax,
and α over 2000–2010. Although annual GPP, CUP, and GPPmax

showed great spatial variability (SI Appendix, Fig. S4), α was rela-
tively constant around 0.62 in most areas at a latitude of 37° N
northward and gradually approached 1.0 toward the tropical regions
of North America (Fig. 3C). Across North America, the temporal
linear correlation between CUP ×GPPmax and annual GPP was the
highest in regions with α around 0.62 and gradually reduced with
the ratio α approaching 1.0 (Fig. 3D).
High α-values were mainly distributed in tropical evergreen

forest and regions with multiple growing seasons, where GPPmax

and CUP exert weak controls over GPP variability (Fig. 3A, Inset).
Values of α were high in tropical evergreen ecosystems, because
GPP seasonality and amplitude were minimal, with plants assim-
ilating CO2 all year round. For example, daily GPP varied mini-
mally across seasons in a tropical rain forest in Brazil (SI Appendix,
Fig. S1.3.1), with α ranging between 0.77 and 0.80 from 2001 to
2003. The nontropical regions with high α-values usually have two
or more peaks of daily GPP within a single year. For example, the
Le Bray site in France, which is comprised of a maritime pine
forest, had two separate GPP peaks in late May and September of
2005 (SI Appendix, Fig. S5). This phenomenon may also occur in
Mediterranean regions with hot and dry summers (26) or double/
triple cropping systems, where two or more crops are grown within
a single year, such as winter wheat during winter and maize during
summer in the North China Plain (27). Seasonally water-limited
regions where two growing season peaks are present are widely
distributed in the southern part of North America, leading to an
abrupt increase in α at latitudes lower than about 30° N (Fig. 3C).
The decomposition of annual GPP into GPPmax and CUP

allowed us to investigate the relative importance of GPPmax and
CUP individually in regulating annual GPP variability among/
within biomes (Fig. 4A). The linear correlation analysis across eight
noncrop biomes showed that the biome-level GPP variability was
significantly correlated to the variations in both GPPmax (r

2
= 0.79,

P = 0.003) (Fig. 4B) and CUP (r2 = 0.64, P = 0.017) (Fig. 4C). The
partial correlation analysis across noncrop biomes revealed a larger
contribution of GPPmax (partial r

2
= 0.78, P = 0.004) than CUP

(partial r2 = 0.21, P < 0.001) to GPP variability. A more important
role of GPPmax than CUP in explaining the spatial variability of
FLUXNET GPP was found within most biome types, including
grassland (partial r2 = 0.70, P = 0.005), shrubland (partial r2 = 0.52,
P = 0.005), savanna (partial r2 = 0.89, P = 0.001), wetland (partial
r2 = 0.91, P < 0.001), and all forest types (partial r2 = 0.79–0.87, all
P < 0.01) (SI Appendix, Fig. S6 and Table S2). A recent analysis has
found that temperature and precipitation changes impact the net
primary productivity of woody plant ecosystems mainly through
their effects on growing season length, standing biomass, and stand
age (28). Thus, standing biomass and stand age might be very im-
portant determinants of GPPmax in forest ecosystems.
The joint control of GPPmax and CUP on GPP variability

indicates that environmental changes influence annual GPP by
simultaneously affecting vegetation phenology and photosyn-
thetic capacity. For example, climate warming leads to greater
ecosystem CO2 uptake by extending CUP in most cold regions
(7, 17, 29) but could reduce ecosystem CO2 uptake when

Fig. 2. Applications of the convergence of α (the ratio between annual GPP

and GPPmax × CUP) to explain GPP response to and recovery from disturbances.

(A) Determination of the annual GPP reduction during the European heatwave

in 2003 (12) by GPPmax and CUP. The dashed hyperbolic curves represent constant

values (shown near the curves) of GPPmax × CUP (kilograms C meter−2 year−1),

and the darker background blue color means a larger GPPmax × CUP. Inset shows

the dependences of the relative changes in annual GPP (ΔGPP; percentage) in

2003 from those in 2002 on the relative changes in GPPmax × CUP [Δ(GPPmax ×

CUP); percentage; black circles). The ten sites are: BE-Vie (Vielsalm, Belgium),

DE-Hai (Hainich, Germany), DE-Tha (Tharandt, Germany), Fi-Hyy (Hyytiala, Finland),

FR-Hes (Hesse Forest- Sarrebourg, France), FR-Pue (Puechabon, France), IT-Cpz

(Castelporziano, Italy), IT-Ro1 and IT-Ro2 (Roccarespampani, Italy), IT-Sro (San

Rossore, Italy). Detailed information about each FLUXNET site can be found in SI

Appendix, Fig. S9 and Table S1. (B) Contrasting dynamics of GPPmax and CUP

after an extensive wildfire in the Black Hills National Forest in South Dakota. The

data were extracted from a burned 0.1° × 0.1° grid cell (43.85° N, 103.95° W)

(original data are plotted in SI Appendix, Fig. S2). The ratio α was close to 0.62

during the 11-y span (SI Appendix, Fig. S10).
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the GPPmax is suppressed by the reduced snow melt water in
spring (30, 31). Similarly, a recent analysis showed that warming-
induced earlier springs reduced summer peak productivity dur-
ing 1982–2008 in the North American boreal forests (32), which
may have contributed to the declining trend of vegetation pro-
ductivity associated with the climatic warming at northern high
latitudes in the past few decades (33).
Given that simulated global GPP and its sensitivity to environ-

mental factors vary substantially among current terrestrial bio-
sphere models (13, 34), the findings in this study suggest that such
uncertainty could largely stem from the different representations of
vegetation phenology and photosynthetic capacity in the models.
For example, although numerous vegetation phenology models
have been developed for different biomes over the past few decades
(35, 36), some existing terrestrial biosphere models poorly represent
vegetation phenology in North America (8). Moreover, in those
models, vegetation photosynthetic capacity may be unrealistically
limited by the fixed parameterization of maximum rate of carbox-
ylation (37), with observations indicating substantial temporal and
spatial variations in maximum carboxylation (38, 39). Broadly col-
lected vegetation phenology data derived from observations (40,
41), remote sensing (42, 43), and digital repeat photography (44,
45) as well as additional mechanistic understanding of canopy
photosynthetic capacity (39, 46–48) could be useful to diagnose or
benchmark model performances of simulating GPP (49).
Because the GPPmax and CUP estimates were derived from

existing data, our approach cannot be used for GPP prediction

unless GPPmax and CUP can be inferred from other indicators.
We first examined whether GPPmax derived from MODIS GPP
data was comparable with that measured by the flux towers in
North America. We found that, although the two datasets had
different spatial and temporal scales, the GPPmax estimates from
MODIS data were close to those from FLUXNET data at most
sites with low GPPmax (SI Appendix, Fig. S7). The FLUXNET
data had much higher GPPmax than MODIS data, mainly in the
cropland sites with high GPPmax (SI Appendix, Fig. S7). In ad-
dition to FLUXNET data, the maximum monthly sun-induced
chlorophyll fluorescence data could be useful to estimate GPPmax

globally (50). We also examined whether the MODIS-derived CUP
can be inferred from other types of satellite-derived datasets, such as
the daily record of freeze/thaw status across North America (SI
Appendix, section 1.8). We found that the MODIS-derived CUP is
strongly correlated with the photosynthetically active period esti-
mated from the freeze/thaw status data at most latitudes (SI Ap-
pendix, Fig. S8). The freeze/thaw status data can only provide
information where the soil actually freezes in winter, partially leading
to the disagreement between the two datasets in tropical regions (SI
Appendix, Fig. S8). Thus, Eq. 1 could be useful for estimating and
predicting annual GPP if both CUP and GPPmax can be inferred
from biotic and abiotic drivers measured at a global scale, the topic
of a substantial body of ongoing research (15, 51).
In summary, we found a simple proximate cause to explain

variation in annual GPP (i.e., Eq. 1) over space and time, in re-
sponse to a climate extreme, and during recovery after disturbance.

Fig. 3. The relationship between annual GPP and the product of CUP and GPPmax (i.e., α) from FLUXNET and satellite-derived data. The relationship between

annual GPP and CUP × GPPmax is shown across (A) all FLUXNET site-years and (B) all 0.1° × 0.1° land grids in North America. C shows spatial distributions of

satellite-derived α, and D shows the relationship between α and the explanation of GPPmax × CUP on temporal variability of annual GPP (R2) (Fig. 1B) in North

America. A, Inset and B, Inset show the relative frequency distribution of estimated α from all FLUXNET site-years and MODIS GPP data, respectively. The

white bars are data from tropical and subtropical climate (including Mediterranean) zones and site-years with multiple GPP peaks, whereas the black bars are

data from the rest of the site-years. C, Inset shows the latitudinal pattern of α with a 0.1° interval. CROP, cropland; DBF, deciduous broadleaf forest; EBF,

evergreen broadleaf forest; GRA, grassland; NF, needleleaf forest; MF, mixed forest; SAV, savanna; SHRUB, shrubland; WET, wetland.
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The representation of interannual and spatial variations in GPP
by the product of CUP and GPPmax was strong in those ecosys-
tems with α-values close to 0.62 but weaker toward the tropics or
in seasonally water-limited regions, where α-values approached
1.0. The strong correlation of annual GPP with the product of
CUP and GPPmax in several different ecosystem types may be
useful in detecting shifts in vegetation state and for monitoring
short- and long-term response of GPP to extreme climate con-
ditions and disturbances. Given that GPPmax better explains GPP
variability than CUP, future studies need to emphasize the reg-
ulatory mechanisms for the dynamics of ecosystem photosynthetic
capacity in terrestrial ecosystems.

Materials and Methods

GPP estimates (positive GPP means CO2 uptake) from 213 FLUXNET sites from

the La Thuile Database (www.fluxdata.org/default.aspx) (SI Appendix, Table

S1) and the MODIS aboard National Aeronautics and Space Administration

Terra satellites (MOD17A2 GPP) (23) were used in the analyses (SI Appendix,

section S1.1). For FLUXNET sites, only those site-years with >300 daily esti-

mates were chosen from the database. Because the MODIS GPP product was

well-evaluated in North America (52), we only performed our analysis on

MODIS GPP in this region from 2000 to 2010.

The determinations of CUP and GPPmax were from the method introduced

by Gu et al. (53, 54) (SI Appendix, section S1.2). The CUP, GPPmax, and the

ratio between annual GPP and CUP × GPPmax (i.e., α) were estimated for each

selected FLUXNET site and each 0.1° × 0.1° land grid cell of the MODIS

product by the following steps (SI Appendix, section S1.3). (i) We judged if

the site-year or grid cell is evergreen or not by counting the number of days

with larger daily GPP than a given value (a site or land grid cell was defined

as evergreen if there were more than 360 d with daily GPP > 1 g C m−2 d−1

within 1 y). (ii) The number of seasons in the nonevergreen site-years or land

grid cells was determined by a model function (SI Appendix, section S1.3 and

Eq. S6) suggested by the TIMESAT software (55). For those site-years and grid

cells with one season, we fitted a five-parameter Weibull function to the

data from that year. For those site-years or land grid cells with more than

one season, we fitted the Weibull function to each season.

The nonlinear data fitting was performed with the function nls in R (www.

r-project.org/) (SI Appendix, section S1.4). The robustness of the method was

carefully validated by various approaches, including an evaluation with the data

from all long-term FLUXNET sites (SI Appendix, section S1.5), a parameter

sensitivity analysis of the Weibull function (SI Appendix, section S1.6), and a

random resampling test of the Weibull function (SI Appendix, section S1.7).

Linear regression analysis was used to examine the contribution of CUP ×

GPPmax to the temporal and spatial variations of annual GPP. The global daily

record of landscape freeze/thaw data from January 1, 2000 to December 31,

2010 was analyzed for an additional indicator of CUP (SI Appendix, section S1.8).

To further identify the relative contribution of GPPmax and CUP to GPP

variability, we first linearized Eq. 1 by replacing all variables with their

logarithms (base 10) as

logðGPPÞ= logðαÞ+ logðCUPÞ+ logðGPPmaxÞ: [2]

Then, we applied the partial correlation analysis to examine the relative

contributions of CUP and GPPmax to FLUXNET GPP variability among and

within biomes.
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Fig. 4. (A) Dynamic of daily GPP in different biomes based on the FLUXNET dataset. The curves are obtained by averaging daily GPP over all site-years of each

biome type, with the shaded areas representing SEs on GPP. B and C show dependence of annual FLUXNET GPP variability on GPPmax and CUP, respectively,

among biomes. Note that cropland was excluded in the correlation analyses. Note that there were, in total, 12 EBF sites in this analysis, and 7 of them were

distributed in the temperate zone according to the MODIS IGBP (International Geosphere-Biosphere Programme) land cover classification (glcf.umd.edu/data/lc/)

(SI Appendix, Table S1). CROP, cropland; DBF, deciduous broadleaf forest; EBF, evergreen broadleaf forest; ENF, evergreen needleleaf forest; GRA, grassland; MF,

mixed forest; SAV, savanna; SHRUB, shrubland; WET, wetland.
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