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Abstract We address the problem of recovering a common

set of covariates that are relevant simultaneously to several

classification problems. By penalizing the sum of ℓ2 norms

of the blocks of coefficients associated with each covariate

across different classification problems, similar sparsity pat-

terns in all models are encouraged. To take computational

advantage of the sparsity of solutions at high regularization

levels, we propose a blockwise path-following scheme that

approximately traces the regularization path. As the regu-

larization coefficient decreases, the algorithm maintains and

updates concurrently a growing set of covariates that are si-

multaneously active for all problems. We also show how

to use random projections to extend this approach to the

problem of joint subspace selection, where multiple pre-

dictors are found in a common low-dimensional subspace.

We present theoretical results showing that this random pro-

jection approach converges to the solution yielded by trace-

norm regularization. Finally, we present a variety of exper-

imental results exploring joint covariate selection and joint

subspace selection, comparing the path-following approach
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to competing algorithms in terms of prediction accuracy and

running time.
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1 Introduction

The problem of covariate selection for regression and clas-

sification has been the focus of a substantial literature. As

with many model selection problems, the problem is ren-

dered difficult by the disparity between the large number

of models to be considered and the comparatively small

amount of data available to evaluate these models. One ap-

proach to the problem focuses on procedures that search

within the exponentially-large set of all subsets of com-

ponents of the covariate vector, using various heuristics

such as forward or backward selection to limit the search

(Draper and Smith 1998). Another approach treats the prob-

lem as a parameter estimation problem in which the shrink-

age induced by a constraint on the ℓ1 norm of the para-

meter vector yields estimates in which certain components

are equal to zero (Tibshirani 1996; Fu and Knight 2000;

Donoho 2004). A virtue of the former approach is that it

focuses on the qualitative decision as to whether a covariate

is relevant to the problem at hand, a decision which is con-

ceptually distinct from parameter estimation. A virtue of the

latter approach is its computational tractability.

In this paper, we focus on a problem setting in which

these virtues appear to be better aligned than they are in gen-

eral regression and classification problems. In particular, we

focus on situations involving multiple, related data sets in

which the same set of covariates are present in each data set

mailto:gobo@stat.berkeley.edu
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mailto:jordan@stat.berkeley.edu


232 Stat Comput (2010) 20: 231–252

but where the responses differ. In this multi-response setting

it is natural to associate a notion of “relevance” to a covari-

ate that is conceptually distinct from the numerical value of

a parameter. For example, a particular covariate may appear

with a positive coefficient in predicting one response vari-

able and with a negative coefficient in predicting a different

response. We would clearly want to judge such a covariate

as being “relevant” to the overall class of prediction prob-

lems without making a commitment to a specific value of a

parameter. In general we wish to “borrow strength” across

multiple estimation problems in order to support a decision

that a covariate is to be selected.

Our focus in this paper is the classification or discrim-

ination problem. Consider, for example, the following pat-

tern recognition problem that we consider later in Sect. 6.

We assume that we are given a data set consisting of pixel-

level or stroke-level representations of handwritten charac-

ters and we wish to classify a given character into one of

a fixed set of classes. In this optical character recognition

(OCR) problem, there are several thousand covariates, most

of which are irrelevant to the classification decision of char-

acter identity. To support the choice of relevant covariates

in this high-dimensional problem, we consider an extended

version of the problem in which we assume that multiple

data sets are available, one for each individual in a set of

writers. We expect that even though the styles of individual

writers may vary, there should be a common subset of im-

age features (pixels, strokes) that form a shared set of useful

covariates across writers.

As another example of our general setting, also discussed

in Sect. 6, consider a DNA microarray analysis problem

in which the covariates are levels of gene expression and

the responses are phenotypes or cellular processes (Khan et

al. 2001). Given the high-dimensional nature of microarray

data sets, covariate selection is often essential both for sci-

entific understanding and for effective prediction. Our pro-

posal is to approach the covariate selection problem by con-

sidering multiple related phenotypes—e.g., related sets of

cancers—and seeking to find covariates that are useful in

predicting these multiple response variables.

Our approach to the simultaneous covariate selection

problem is an adaptation of ℓ1 shrinkage methods such as

LASSO. Briefly, for each data set {(xk
i , yk

i ) : i = 1, . . . ,Nk},
where k ∈ {1, . . . ,K} indexes data sets, we fit a model in-

volving a parameter vector wk ∈ R
p . View these vectors as

rows of a K × p matrix W , and consider the j th column

vector, wj , of W . This vector consists of the set of parame-

ters associated to the j th covariate across all classification

problems. We now define a regularization term that is an ℓ1

sum of the ℓ2 norms of the covariate-specific parameter vec-

tors wj . Each of these ℓ2 norms can be viewed as assessing

the overall relevance of a particular covariate. The ℓ1 sum

then enforces a selection among covariates based on these

norms.

This approach is a particular case of a general method-

ology in which block norms are used to define groupings

of variables in regression and classification problems (Bach

et al. 2004; Yuan and Lin 2006; Park and Hastie 2006;

Meier et al. 2008; Kim et al. 2006; Zhao et al. 2008). How-

ever, the focus in this literature differs from ours in that it

is concerned with grouping variables within a single regres-

sion or classification problem. For example, in a polynomial

regression we may wish to group the linear, quadratic and

cubic terms corresponding to a specific covariate and select

these terms jointly. Similarly, in an ANOVA model we may

wish to group the indicator variables corresponding to a spe-

cific factor. The block-norm approach to these problems is

based on defining block norms involving hybrids of ℓ1, ℓ2

and ℓ∞ norms as regularization terms.

Argyriou et al. (2008) have independently proposed the

use of a block ℓ1/ℓ2 norm for covariate selection in the

multiple-response setting. Moreover, they consider a more

general framework in which the variables that are selected

are linear combinations of the original covariates. We re-

fer to this problem as joint subspace selection. Joint covari-

ate selection is a special case in which the subspaces are

restricted to be axis-parallel. Argyriou et al. show that the

general subspace selection problem can be formulated as an

optimization problem involving the trace norm.

Our contribution relative to Argyriou et al. is as fol-

lows. First, we note that the trace norm is difficult to op-

timize computationally (it yields a non-differentiable func-

tional that is generally evaluated by the computation of a

singular value decomposition at each step of a nonlinear op-

timization procedure Srebro et al. 2005b), and we thus fo-

cus on the special case of covariate selection, where it is

not necessary to use the trace norm. For the case of covari-

ate selection we show that it is possible to develop a simple

homotopy-based approach that evaluates an entire regular-

ization path efficiently (cf. Efron et al. 2004; Osborne et al.

2000). We present a theoretical result establishing the con-

vergence of this homotopy-based method. Moreover, for the

general case of joint subspace selection we show how ran-

dom projections can be used to reduce the problem to co-

variate selection. Applying our homotopy method for joint

covariate selection to the random projections, we obtain a

computationally-efficient procedure for joint subspace se-

lection. We also present a theoretical result showing that this

approach approximates the solution obtained from the trace

norm. Finally, we present several experiments on large-scale

datasets that compare and contrast various methods for joint

covariate selection and joint subspace selection.

The general problem of jointly estimating models from

multiple, related data sets is often referred to as “transfer

learning” or “multi-task learning” in the machine learning

literature (Maurer 2006; Ben-David and Schuller-Borbely

2008; Argyriou et al. 2008; Jebara 2004; Evgeniou and Pon-

til 2004; Torralba et al. 2004; Ando and Zhang 2005). We
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adopt the following terminology from this literature: a task

is defined to be a pairing of a set of covariate vectors and a

specific component of a multiple response vector. We wish

to find covariates and subspaces that are useful across mul-

tiple tasks.

The paper is organized as follows. In Sect. 2, we intro-

duce the ℓ1/ℓ2 regularization scheme and the correspond-

ing optimization problem. In Sect. 3 we discuss homotopy-

based methods, and in Sect. 4 we propose a general scheme

for following a piecewise smooth, nonlinear regularization

path. We extend our algorithm to subspace selection in

Sect. 5 and prove convergence to trace-norm regularization.

In Sect. 6 we present an empirical evaluation of our joint

feature selection algorithm, comparing to several competing

block-norm optimizers. We also present an empirical evalu-

ation and comparison of our extension to subspace selection.

We conclude with a discussion in Sect. 7.

2 Joint regularization

We assume a group of K classification problems or “tasks”

and a set of data samples {(xk
i , yk

i ) ∈ X × Y , i = 1, . . . ,Nk ,

k = 1, . . . ,K} where the superscript k indexes tasks and the

subscript i indexes the i.i.d. observations for each task. We

assume that the common covariate space X is R
p and the

outcome space Y is {0,1}.
Let wk ∈ R

p parameterize a linear discriminant function

for task k, and let J k(wk · xk, yk) be a loss function on ex-

ample (xk, yk) for task k. Typical smooth loss functions for

linear classification models include logistic and exponential

loss. A standard approach to obtaining sparse estimates of

the parameters wk is to solve an ℓ1-regularized empirical

risk minimization problem:

min
wk

Nk∑

i=1

J k(wk · xk
i , yk

i ) + λ‖wk‖1,

where λ is a regularization coefficient. Solving an indepen-

dent ℓ1-regularized objective for each of these problems is

equivalent to solving the global problem obtained by sum-

ming the objectives:

min
W

K∑

k=1

Nk∑

i=1

J k(wk · xk
i , yk

i ) + λ

K∑

k=1

‖wk‖1, (1)

where W = (wk
j )k,j is the matrix whose rows are the vec-

tors wk and whose columns are the vectors wj of the coeffi-

cients associated with covariate j across classification tasks.

Note that we have assumed that the regularization coefficient

λ is the same across tasks. We refer to the regularization

scheme in (1) as an ℓ1/ℓ1-regularization. Solving this opti-

mization problem would lead to individual sparsity patterns

for each wk .

We focus instead on a regularization scheme that selects

covariates jointly across tasks. We achieve this by encour-

aging several wj to be zero. We thus propose to solve the

problem

min
W

K∑

k=1

Nk∑

i=1

J k(wk · xk
i , yk

i ) + λ

p∑

j=1

‖wj‖2, (2)

in which we penalize the ℓ1 norm of the vector of ℓ2 norms

of the covariate-specific coefficient vectors. Note that this

ℓ1/ℓ2-regularization scheme reduces to ℓ1-regularization if

the group is reduced to one task, and can thus be seen an

extension of ℓ1-regularization where instead of summing the

absolute values of coefficients associated with covariates we

sum the Euclidean norms of coefficient blocks.

The ℓ2 norm is used here as a measure of magnitude

and one could also generalize to ℓ1/ℓp norms by consid-

ering ℓp norms for 1 ≤ p ≤ ∞. The choice of p should

depend on how much covariate sharing we wish to impose

among classification problems, from none (p = 1) to full

sharing (p = ∞). Indeed, increasing p corresponds to al-

lowing better “group discounts” for sharing the same covari-

ate, from p = 1, where the cost grows linearly with the num-

ber of classification problems that use a covariate, to p = ∞,

where only the most demanding classification matters.

The shape of the unit “ball” of the ℓ1/ℓ2 norm is dif-

ficult to visualize. It clearly has corners that, in a manner

analogous to the ℓ1 norm, tend to produce sparse solutions.

As shown in Fig. 1, one way to appreciate the effect of the

ℓ1/ℓ2 norm is to consider a problem with two covariates and

Fig. 1 (Color online) (Left) Norm ball induced on the coefficients

(w2
1,w2

2) for task 2 as covariate coefficients for task 1 vary: thin

red contour for (w1
1,w1

2) = (0,1) and thick green contour for

(w1
1,w1

2) = (0.5,0.5)
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two tasks and to observe the ball of the norm induced on w2

when w1 varies under the constraint that ‖w1‖1 = 1 in an

ℓ1/ℓ2 ball of size 2 (which is the largest value of the ℓ1/ℓ2

norm if ‖w1‖1= ‖w2‖1 = 1). If a covariate j has a non-zero

coefficient in w1 then the induced norm on w2 is smooth

around w2
j = 0. Otherwise, it has sharp corners, which en-

courages w2
j to be set to zero.

3 A path-following algorithm for joint covariate

selection

In this section we present an algorithm for solving the ℓ1/ℓ2-

regularized optimization problem presented in (2). One ap-

proach to solving such regularization problems is to re-

peatedly solve them on a grid of values of the regulariza-

tion coefficient λ, if possible using “warm starts” to ini-

tialize the procedure for a given value of λ using the so-

lution for a nearby value of λ. An alternative framework

which can be more efficient computationally and can pro-

vide insight into the space of solutions is to attempt to fol-

low the “regularization path” (the set of solutions for all

values of λ). There are problems—including ℓ1-regularized

least-squares regression and the ℓ1- and ℓ2-regularized sup-

port vector machines—for which this path is piecewise lin-

ear and for which it is possible to follow the path exactly

(Efron et al. 2004; Rosset and Zhu 2007). More gener-

ally, we can avail ourselves of path-following algorithms.

Classical path-following algorithms involve traditional path-

following a combination of prediction steps (along the tan-

gent to the path) and correction steps (which correct for

errors due to the first-order approximation of the predic-

tion steps). These algorithms generally require the compu-

tation of the Hessian of the combined objective and thus

are onerous computationally. However, in the case of ℓ1

regularization it has been shown that the solution path can

be approximated by computationally efficient variations of

boosting and stagewise forward selection (Hastie et al. 2001;

Zhao and Yu 2007).

Note that the amount of sparsity is controlled by the reg-

ularization coefficient λ. As λ ranges from 0 to ∞, the spar-

sity of solutions typically progresses through several levels

(although this is not guaranteed in general). The approach

that we present here exploits the high degree of sparsity for

large values of λ.

Our approach is inspired by the stagewise Lasso algo-

rithm of Zhao and Yu (2007). In their algorithm, the opti-

mization is performed on a grid with step size ǫ and essen-

tially reduces to a discrete problem that can be viewed as

a simplex problem, where “forward” and “backward” steps

are alternated. Our approach extends this methodology to

the setting of blockwise norms by essentially combining

stagewise Lasso with a classical correction step. We take

advantage of sparsity so that this step can be implemented

cheaply.

4 Active set and parameter updates

We begin our description of the path-following algorithm

with a simple lemma that uses a subgradient calculation

(equivalently, the Karush-Kuhn-Tucker (KKT) conditions)

to show how the sparsity of the solution can lead to an effi-

cient construction of the path. Let us denote the joint loss by

J (W) =
∑K

k=1

∑Nk

i=1 J k(wk · xk
i , yk

i ).

Lemma 1 If J is everywhere differentiable, then any solu-

tion W ∗ of the optimization problem in (2) is characterized

by the following conditions

either w∗
j = 0, ‖∇wj

J (W ∗)‖2 ≤ λ

or w∗
j ∝ −∇wj

J (W ∗), ‖∇wj
J (W ∗)‖2 = λ,

where ∇wj
J (W) are partial gradients in each of the sub-

spaces corresponding to covariate-specific parameter vec-

tors.

Proof At an optimum, a subgradient of the objective func-

tion equals zero. This implies—given that the ℓ1/ℓ2-regu-

larization term is separable for the column vectors wj of

W—that for all j , ∇wj
J (W ∗)+λz∗

j = 0 for z∗
j ∈ ∂wj

‖wj‖2,

where the latter denotes the subgradient of the Euclidean

norm. Moreover, the subgradient of the Euclidean norm sat-

isfies

⎧
⎨
⎩

∂wj
‖wj‖2 = wj

‖wj ‖ if wj 	= 0,

∂wj
‖wj‖2 = {z ∈ R

K | ‖z‖2 ≤ 1} otherwise,
(3)

which proves the lemma. The subgradient equations can also

be obtained by conic duality, in which case they result di-

rectly from the KKT conditions. �

In particular, only the “active” covariates—those for

which the norm of the gradient vector is not strictly less

than λ—participate in the solution. For these active co-

variates, λ
‖w∗

j ‖w∗
j = −∇wj

J (W ∗). (Note that if λ ≥ λ0 =
maxj ‖∇wj

J (0)‖2 then the zero vector is a solution to our

problem.)

These conditions suggest an algorithm which gradually

decreases the regularization coefficient from λ0 and popu-

lates an active set with inactive covariates as they start to vi-

olate subgradient conditions. In particular, we consider ap-

proximate subgradient conditions of the form:

either wj = 0, ‖∇wj
J (W)‖ < λ + ξ0

(4)

or

∥∥∥∥∇wj
J (W) + (λ − ξ)

wj

‖wj‖

∥∥∥∥ ≤ ξ,

where ξ and ξ0 are slack parameters. These conditions are

obtained by relaxing the constraints that there must exist a
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Algorithm 1 Approximate block-Lasso path

Given ǫ and ξ ,

while λt > λmin do

Set j∗ = argmaxj‖∇wj
J (W t )‖

Update w
(t+1)
j∗ = w

(t)
j∗ − ǫut with ut =

∇wj∗ J

‖∇wj∗ J‖

λt+1 = min
(
λt ,

J (W t )−J (W t+1)
ǫ

)

Add j∗ to the active set

Enforce (4) for covariates in the active set with ξ0 = ξ .

end while

subgradient equal to zero, and asking instead that

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

For j s.t. wj = 0,

‖∇wj
J (W) + λzj‖ ≤ ξ0 for some zj ∈ ∂wj

‖wj‖2,

For j s.t. wj 	= 0,

‖∇wj
J (W) + (λ − ξ)zj‖ ≤ ξ for some zj ∈ ∂wj

‖wj‖2.

The latter constraint ensures that, for any active covariate j ,

we have ‖∇wj
J (W)‖ ≤ λ and that the partial subgradient of

the objective with respect to wj is of norm at most 2ξ . Note

that, on the other hand, if ξ0 > 0, the previous inequality

does not hold a priori for inactive covariates, so that a solu-

tion to (4) does not necessarily have the exact same active

set as one satisfying conditions (3).

To obtain a path of solutions that satisfy these approxi-

mate subgradient conditions, consider Algorithm 1.

Algorithm 1 enforces explicitly the subgradient condi-

tion (4), with ξ0 = ξ , on its active set. If J is twice con-

tinuously differentiable, and if the largest eigenvalue of

its Hessian is bounded above by μmax, Algorithm 1 actu-

ally also enforces (4) implicitly for the other variables with

ξ0 = 1
2
ǫμmax. This crucial property is proved in Appendix A

together with the next proposition, which shows that Algo-

rithm 1 approximates the regularization path for the ℓ1/ℓ2

norm:

Proposition 1 Let λt denote the value of the regulariza-

tion parameter at the t th iteration, with initial value λ0 ≥
‖∇wj∗ J (0)‖. Assuming J to be twice differentiable and

strictly convex, for all η there exists ǫ > 0 and ξ > 0 such

that iterates W t of Algorithm 1 obey J (W t )−J (W(λt )) ≤ η

for every time step t such that λt+1 < λt , where W(λt ) is the

unique solution to (2). Moreover, the algorithm terminates

(provided the active set is not pruned) in a finite number of

iterations to a regularization coefficient no greater than any

prespecified λmin > 0.

It is also worth noting that it is possible to set ξ0 = 0

and develop a stricter version of the algorithm that identifies

the correct active set for each λ. We present this variant in

Appendix B.

Since our algorithm does not appeal to global second-

order information, it is quite scalable compared to stan-

dard homotopy algorithms such as LARS. This is particu-

larly useful in the multi-task setting where problems can be

relatively large, and where algorithms such as LARS be-

come slow. Our algorithm samples the path regularly, on

a scale that is determined automatically by the algorithm

through the update rule for λt , and allows for several new

covariates to enter the active set simultaneously. (Empiri-

cally we find that this scale is logarithmic.) The algorithm is

obviously less efficient than LARS-type algorithms in long

pieces of the path that are smooth, but we indicate in the

following section how variants of the algorithm could ad-

dress this. Finally, our algorithm applies to contexts in which

LARS-type algorithms do not apply directly, and where the

use of classical homotopy methods are precluded by non-

differentiability.

In the following two subsections we further describe Al-

gorithm 1, providing further details on the prediction step

(the choice of ut ) and the correction step (the enforcement

of (4) for covariates in the active set).

4.1 Prediction steps

The choice ut = ∇wj∗ J/‖∇wj∗ J‖ that we have specified

for the prediction step is one possible option. It is also

possible to take a global gradient descent step or more

generally a step along a gradient-related descent direction

(a direction such that lim inft −ut .
∇J (W t )

‖∇J (W t )‖ > δ > 0) with

an update rule for the regularization coefficient of the form:

λt+1 = min(λt ,
J (W t )−J (W t+1)

‖W t−W t+1‖ℓ1/ℓ2

). Indeed, the proof of Ap-

pendix A could easily be generalized to the case of steps of

ℓ1/ℓ2 norm ǫ taken along a general descent direction. Note

that only the iterates that conclude with a decrease of the

regularization coefficient are guaranteed to be close to the

path.

For simplicity, we have presented the algorithm as using

a fixed step size ǫ, but in practice we recommend using an

adaptive step size determined by a line search limited to the

segment (0, ǫ]. This allows us to explore the end of the path

where the regularization coefficient becomes exponentially

small. Lemma 3 in Appendix A considers this case.

If we understand the “active set” as the set of covariates

with non-zero coefficients it is possible for a covariate to

enter and later exit the set, which, a priori, would require

pruning. The analysis of pruning is delicate and we do not

consider it here. In practice, the case of parameters returning

to zero appears to be rare—in our experiments typically at

most two components return to zero per path. Thus, imple-

menting a pruning step would not yield a significant speed-

up of the algorithm.
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4.2 Correction steps

We now turn to the correction step, in which the sub-

gradient conditions in (4) are enforced on the active set.

Note that these subgradient conditions are obtained directly

from the optimization problem in (2), and thus any pro-

cedure that can be used to solve the latter optimization

problem can be adapted for the correction step of our al-

gorithm. In particular, we have chosen to implement this

step via a block-wise quasi-Newton algorithm developed by

Tseng and Yun (2008). This algorithm, which is applicable

to general optimization problems with a separable conic-

regularizer, has been used by Meier et al. (2008) to solve

logistic regression with a block-norm regularization. Those

authors show that Tseng and Yun’s algorithm compares fa-

vorably with a number of alternatives, including projected

gradient and path-following algorithms (Kim et al. 2006;

Park and Hastie 2006). The algorithm is particularly appro-

priate for our correction step, because it maintains sparse

solutions.

It is also possible to use Tseng and Yun’s algorithm di-

rectly to solve the optimization problem in (2), solving the

problem on a grid of values of the regularization coefficient.

In Sect. 6, we compare this approach to our path-following

approach (in which Tseng and Yun’s algorithm is used in the

inner loop as a correction step).

In the experimental section we also compare to an al-

gorithm introduced by Argyriou et al. (2008). These au-

thors introduce a quadratic regularizer parameterized by a

diagonal positive semidefinite matrix 	 with bounded trace,

and show that the ℓ1/ℓ2 norm is recovered by minimiz-

ing over 	. They thus propose an alternating minimization

scheme, where 	 and the parameters w(t) are optimized in

turn. A weakness of this approach is that although the solu-

tion is sparse in both 	 and w(t), all the feasible solutions

that are considered by the algorithm are non-sparse. This

makes the algorithm undesirable as an implementation of

our correction step. We do, however, evaluate the algorithm

empirically as an alternative to our approach and to the di-

rect usage of the Tseng and Yun algorithm.

5 Subspace selection

Covariate selection is a specific instance of the broader prob-

lem of dimensionality reduction of the covariate space. In

this section, we consider an extension of our approach to the

problem of selecting general subspaces (i.e., linear combina-

tions of covariates). In particular, we consider situations in

which a subspace that is useful across multiple tasks is not

aligned with the original covariate coordinate system, such

that the models are sparse in a rotated coordinate system.

The general problem of subspace selection in the con-

text of a regression or classification problem is referred to as

sufficient dimension reduction. There has been a large liter-

ature on sufficient dimension reduction (e.g., Chiaromonte

and Cook 2002; Fukumizu et al. 2008; Li 1991), but the fo-

cus has been on univariate response variables. The extension

to multiple response variables has been considered by Ando

and Zhang (2005) and Argyriou et al. (2008). In this section

we review these ideas and then present our proposal.

Ando and Zhang (2005) treat the multiple response prob-

lem by introducing a low-dimensional subspace of dimen-

sion h common to the response variables, defining the pa-

rameter vector wk for the kth response as wk = Uha
k + vk ,

where the columns of the matrix Uh form a basis of the com-

mon subspace and where vk lies outside of the common sub-

space. They propose to regularize only the components vk .

This leads to the optimization problem:

min
vk,ak,Uh

K∑

k=1

{
Nk∑

i=1

J k(wk · xk
i , yk

i ) + λ‖vk‖2

}

s.t. wk = Uha
k + vk,

ak ∈ R
h, vk ∈ R

p,

Uh ∈ R
p×h, U⊤

h Uh = Ih.

They present an alternating optimization scheme that simul-

taneously estimates the parameter vectors wk and the ma-

trix Uh. The basis of the common space is shown to be

the best approximation of rank h of the matrix of parame-

ters W = [w1, . . . ,wK ] and it can be obtained by a singular

value decomposition of the latter.

Argyriou et al. (2008) consider a formulation in which

the dimension h is not fixed a priori: a common basis U

for subspaces of increasing sizes is considered and in this

basis the matrix A of parameter coefficients is penalized by

the ℓ1/ℓ2 norm. The optimization problem they consider is

thus:

min
ak,U

K∑

k=1

Nk∑

i=1

J k(wk · xk
i , yk

i ) + λ‖A‖2
ℓ1/ℓ2

s.t. wk = Uak,

ak ∈ R
p, A = [a1, . . . , aK ],

U ∈ R
p×p, U⊤U = Ip.

The authors show that this regularization scheme is equiv-

alent to a regularization of the trace norm of the matrix

of parameter vectors, where the trace norm is defined by

‖W‖tr = tr(
√

W⊤W). They showed that this regularization

problem can be solved by an alternating minimization algo-

rithm that involves iterating singular value decompositions.

More generally, when the dimension h is not known a

priori, if the data interacts with parameters of the model lin-

early, as is the case for the two methods presented above,
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then, by duality, the selection of a joint subspace of low di-

mension is equivalent to choosing a low-rank parameter ma-

trix. Rank constraints are non-convex, and thus various con-

vex relaxations have been proposed to select matrices with

low rank (Fazel et al. 2001, 2003). In particular, the trace

norm, used by Argyriou et al. (2008), has been the focus of a

recent theoretical literature Srebro et al. (2005a); Srebro and

Shraibman (2005); Bach (2008); Recht et al. (2008). These

authors have shown that trace-norm regularization retrieves

a matrix with the optimal rank under appropriate technical

conditions.

In this section we present a seemingly very different ap-

proach to the subspace selection problem in which we use

random projections to reduce the problem to the covariate

selection problem. We then solve the induced covariate se-

lection problem using ℓ1/ℓ2-regularization. As it turns out,

this approach is actually an indirect method for trace-norm

regularization in disguise. Indeed, as we show in this sec-

tion, as the number of random projections increases, the so-

lution to the random projections problem converges to a so-

lution to the trace-norm regularization problem Argyriou et

al. (2008).

An appealing aspect of this approach is that it avoids the

direct optimization of the trace norm; this is desirable be-

cause it is difficult to optimize the trace norm directly.

We now describe the random projections method. Let 


be a random p×d projection matrix whose columns are uni-

formly drawn from the unit sphere S p−1 in R
p . Transform

all of the covariate vectors via z = 
⊤x, where x ∈ R
p and

z ∈ R
d . In this new representation of the data, use ℓ1/ℓ2 reg-

ularization to perform joint covariate selection. The covari-

ates selected in R
d correspond to a common relevant sub-

set of directions in the original space. Intuitively, we would

expect for this procedure to find projections that are useful

across tasks, thus uncovering a common subspace linking

the tasks.

The main advantage of our approximation is that it does

not require singular value decomposition steps, which are at

the core of the algorithms of Ando and Zhang (2005) and

Argyriou et al. (2008). This makes the method potentially

more scalable in spite of the fact that many random projec-

tions might be needed to obtain a good approximation.

We now present a theoretical result linking the random

projection approach to trace-norm regularization. In partic-

ular, we show that sequences of solutions of the covariate

selection problem based on random projections converge

to a solution of the trace-norm regularization problem. Let

J (W) =
∑K

k=1

∑Nk

i=1 J k(wk · xk
i , yk

i ) and note that we have

J (
W) =
∑K

k=1

∑Nk

i=1 J k(wk · 
⊤xk
i , yk

i ).

Proposition 2 Let 
d ∈ R
p×d be a random projection ma-

trix whose columns are uniformly drawn from the unit sphere

S p−1 in R
p and let W ∈ R

p×K and W̃d ∈ R
d×K be parame-

ter matrices. Consider the following two optimization prob-

lems:

min
W

J (W) + λ‖W‖2
tr (5)

min
W̃d

J (
dW̃d) + λ‖W̃d‖2
ℓ1/ℓ2

. (6)

If J is convex, continuous and lower bounded, then as the

number of random projections d increases, the solutions

W ∗
d = 
dW̃ ∗

d obtained from (6) form a sequence whose

accumulation points are optimal solutions for (5) almost

surely.

The proof of this proposition is presented in Appendix C.

This result provides a clean link between the covariate selec-

tion approach based on random projections and trace-norm

regularization. Given the existence of computationally-

efficient algorithms for solving the covariate selection prob-

lem, we have reason to hope that this reduction will yield

useful algorithms for solving the subspace selection prob-

lem. Of course, a weakness of the result is that it does not

characterize the number of random projections needed to

approximate the trace norm or to achieve comparable pre-

diction performance. We thus turn to empirical evaluations

to study the method further; see Sect. 6.5. Intuitively, one

should use more random projections than the dimension of

the space to generate sufficiently many directions so that any

fixed direction is approximately in the span of a small num-

ber of random projections. Empirically we find that using 5

to 10 times p projections seems to work well.

5.1 Kernelized subspace selection

In this section we outline the form taken by our joint

subspace selection algorithm when the ambient space is a

(possibly infinite-dimensional) Reproducing Kernel Hilbert

Space (RKHS). Our presentation will be brief, focusing on

the essential theoretical concepts underlying the construc-

tion.

First, we note that a representer theorem has been estab-

lished for spectral regularizers—a family which includes the

trace norm—by Abernethy et al. (2008). When applied to

the problem in (5), Theorem 3 of Abernethy et al. (2008)

states that the columns wk∗ of the optimal solution W ∗ be-

long to the span of the datapoints pooled from all tasks,

which is a finite-dimensional space. Second, note that ran-

dom directions in that space can be obtained by forming

random linear combinations of the datapoints and renor-

malizing these combinations. Indeed, the sampling of stan-

dard Gaussian combinations of the datapoints corresponds

to sampling points in the RKHS according to a Gaussian

whose covariance is the empirical covariance matrix of the
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datapoints in the RKHS. If we denote by g the kernel func-

tion, then the projection of a datapoint xk
i on the direction

of a random point uj is just g(xk
i , uj )/

√
g(uj , uj ). The rep-

resentation of the data ( g(xk
i , uj )/

√
g(uj , uj ))(k,i),j by its

projections on a set of random directions is therefore ob-

tained by appropriately renormalizing random combinations

of the columns of kernel matrix computed on all data points.

We then apply Algorithm 1 on the transformed data. Finally,

if needed, the kernel coefficients in the representer theorem

can be obtained by an inversion of the matrix of random

combinations.

A possible drawback of this construction is that for a

large number of datapoints the dimensionality of the space

may become very large and a large number of random direc-

tions may be needed to approximate directions in that space.

6 Experiments and applications

In this section we present experiments which aim to eval-

uate methods for solving the joint covariate selection and

joint subspace selection problems. We first investigate sim-

ulated data sets in which the generative mechanism satisfies

the assumptions underlying our model and analysis. We then

turn to experiments with real data, focusing on optical hand-

written character recognition. We also consider the case of

multi-class classification. Finally, we turn to the joint sub-

space selection problem.

6.1 Experimental setup

In all experiments comparing the performance of different

regularization schemes we study four setups:

• Independent ℓ1-regularization: For each task an inde-

pendent ℓ1-regularized logistic regression is fitted. This

is done by using Algorithm 1 specialized to the case of

blocks of size one.

• ℓ1/ℓ1-regularization: The objective function is (1) with

the logistic loss and tasks are thereby tied only by the reg-

ularization coefficient. The regularization path is obtained

for all tasks simultaneously by Algorithm 1 with blocks

of size one. Covariates enter the active set separately for

the different tasks.

• ℓ1/ℓ2-regularization: The objective is (2) with the logis-

tic loss. In this case the covariate selection processes are

coupled by the regularization. The regularization path is

obtained by Algorithm 1.

• Pooled ℓ1: When the different classification tasks are very

similar, it may make sense to consider merging the tasks

into a single classification problem in which the positive

examples and negative examples are pooled across tasks.

In this case we fit a single logistic regression with ℓ1-

regularization.

For each of these schemes, we fit the regularization path

using 3/4 of the data in the training set, retaining 1/4 of the

data as a validation set to choose the regularization coeffi-

cient λ (as the maximizing value along the path). We then

report results on a separate test set.

6.2 Synthetic data

We consider K binary classification tasks on a covariate

space of dimension p. We generate data such that there ex-

ists a subset of r ≪ p covariates that defines a subspace D

that discriminates between the two classes for each of the K

classification tasks. In particular, a classification task is de-

fined by a pair of Gaussian class-conditional densities where

both class-conditional densities are Gaussian on D, with the

vector components in the remaining p − r dimensions con-

sisting of noise uniformly distributed on the interval [0,1].
The covariance matrix for each class is drawn from an r × r-

dimensional Wishart distribution, W (r, r, Id), with r de-

grees of freedom. Pairs of classes are separated by a vec-

tor δ = μ1 − μ0 constructed as follows: a random vector is

drawn uniformly in {−1,0,1}r\{0} and then normalized so

that the mean of the Mahalanobis distances for both covari-

ance matrices is a fixed value c = 1
2

√
δ⊤	0δ + 1

2

√
δ⊤	1δ.

We picked c = 3 in our experiments which corresponds to

well-separated classes. Note that by construction, the coor-

dinates of δ are non-zero only on a subset of the r common

dimensions, so that the set of covariates that separates the

classes is not exactly the same for each classification.

6.2.1 Comparison of regularization schemes

We first focus on the relative performance obtained with the

different regularization schemes. The results averaged over

ten replications are shown in Fig. 2, where we compare in-

dependent ℓ1, ℓ1/ℓ1 and ℓ1/ℓ2-regularizations. The results

indicate that the ℓ1/ℓ1 and independent ℓ1-regularizations

perform almost identically. This is not surprising because

the essential difference between the behavior of these two

regularizations is that the regularization coefficient is shared

across tasks in the ℓ1/ℓ1 case, while a different value of

the regularization can be chosen (via cross-validation) in

the case of independent ℓ1-regularizations. But the clas-

sification problems we generated are of equal difficulty,

which means that the amount of regularization that is

needed for each problem is presumably the same. On the

other hand we see from Fig. 2 that the ℓ1/ℓ2-regularization

yields systematically better results, with dramatic improve-

ments for small training set sizes. Indeed, the error rate de-

creases initially much faster with the training size when the

ℓ1/ℓ2-regularization is used in comparison to the other reg-

ularizations. As a consequence, the relative improvement is

generally larger for small training sets. For large training

set sizes all of the regularization schemes seem to yield the
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Fig. 2 (Color online)

Misclassification error

represented as a function of the

number n of samples used for

training, in plots with increasing

number of tasks (from left to

right: K = 2,5,10,50) and

increasing number of total

covariates (from top to bottom:

p = 100,500,1000,5000), for a

fixed number r = 20 of

informative covariates, and for

three different algorithms based

on either independent

ℓ1-regularization (dotted red),

ℓ1/ℓ1-regularization (green) or

ℓ1/ℓ2-regularization (dashed

blue). Error bars at one standard

deviation are estimated from 5

replicates for each curve. Note

that the misclassification error

decreases initially faster as

function of the training size for

ℓ1/ℓ2 than for the other

regularizations. The relative

improvement is more

pronounced for larger number of

tasks and larger ambient

dimension

Fig. 3 (Color online) Average

misclassification error

represented as a function of the

total number p of covariates (on

a log scale), for a fixed number

r = 10 of informative

covariates, in plots with

increasing number of tasks

(from left to right: K = 2, 5, 10,

50) and increasing number of

datapoints (from top to bottom:

n = 10, 25, 50, 100, 200), and

for three different algorithms

based on either independent

ℓ1-regularization (dotted red),

ℓ1/ℓ1-regularization (green) or

ℓ1/ℓ2-regularization (dashed

blue). The average is based on

five replicates

same asymptotic value. The relative improvement is accen-

tuated for larger number of tasks and for larger number of

dimensions.

Figure 3 illustrates that ℓ1/ℓ2 is more robust to the num-

ber of noisy dimensions than the other regularizations, and

suggests that the growth of the error is roughly linear with
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logp but that the slope decreases significantly with the num-

ber of tasks.

6.2.2 Comparison with other algorithms

In this section we report the results of comparisons with

our implementations of the algorithms of Tseng and Yun

(2008) (henceforth “TY”) and the algorithm of Argyriou

et al. (2008) (henceforth “AEP”). These algorithms are not

path-following algorithms, and they must be evaluated on a

grid of regularization coefficients. To enhance the speed of

these algorithms, we implemented a “warm-start” technique

in which the algorithm was run for decreasing values of the

regularization coefficient and at each gridpoint the previous

optimal solution was used as an initializer.

The choice of the grid values for λ is not easy to make

a priori for these algorithms (which is an argument in fa-

vor of the use of path-following algorithms). Given that

for λ ≥ λ0 = maxj ‖∇wj
J (0)‖2 the solution is the triv-

ial null solution, we need only consider regularization co-

efficients smaller than λ0. We found that using equally-

spaced quantiles of the distribution of initial gradients was

unsatisfactory—most gradients decrease significantly along

the path and thus this approach does not explore far enough

along the path. We instead noted that both Algorithms 1

and 2 tend to decrease the values of λ exponentially; thus

we adopted the heuristic of selecting grid points for λ to

be equally spaced on a logarithmic scale between λ0 and

λ0/500.

For the TY algorithm and the AEP algorithm, we also

studied a heuristic which consists of guessing the active set

in advance based on the norms of gradients associated to

each block. In particular, we only consider those covariates

that have parameter vector with gradient in ℓ2 norm larger

than λt ; we then solve the restricted optimization problem,

check if additional covariates need to be included and, if so,

iterate.

We first compare the TY algorithm and the AEP algo-

rithm in terms of speed, using only four values of λ along

the path to maximize computational efficiency. In the same

experiment we also evaluate the active set heuristic. We use

stabilization of performance on a test set as a stopping crite-

rion. From the results are reported in Table 1 we see that the

TY algorithm is significantly faster than the AEP algorithm.

Based on these results we retained only the TY algo-

rithm in the comparison of grid search methods to our path-

following algorithm (specifically, Algorithm 1). Using as a

stopping criterion the attainment of an approximate subgra-

dient condition on the active set, ξ ≤ min{10−3,0.01λ}, and

using ten grid points for the TY algorithm, we compared the

algorithms in prediction performance, sparsity of solutions

and speed. We varied the number of tasks, the dimension of

covariate space and the sample size.

Table 1 Comparisons of running times. TY I is a grid search based on

the TY algorithm with a heuristic preselection of the active set. TY II is

the same without preselection. AEP is our implementation of the AEP

algorithm. Times were measured in seconds and were averaged over

ten runs of the algorithm on different data sets. Some running times

are not monotone in the size of the dataset, presumably because bigger

data sets yield more strongly convex objectives

K p r n TY I TY II AEP

2 100 20 10 15 17 52

2 100 20 100 5 9 95

2 100 20 200 4 9 –

10 100 20 10 41 37 209

10 100 20 100 25 22 279

10 100 20 200 31 32 –

50 100 20 10 91 77 480

50 100 20 100 124 124 872

50 100 20 200 217 218 –

2 500 20 10 50 71 3486

2 500 20 100 22 45 6629

2 500 20 200 16 40 –

10 500 20 10 170 153 12818

10 500 20 100 102 83 22623

10 500 20 200 124 114 –

50 500 20 10 385 358 24171

50 500 20 100 437 403 –

Figure 4 presents the relative prediction error for the

path-following algorithm and the TY algorithm (numbers

less than one indicate smaller error for the path-following al-

gorithm). We see that the performance achieved by the path-

following approach tends to be better than that of the TY

algorithm. Moreover, from Fig. 5 we see that the solutions

obtained from path-following are significantly sparser than

those obtained from the TY algorithm. Finally, Fig. 6 shows

that the running times of the two algorithms as we have im-

plemented them are comparable. Indeed, in the case of large

values of the covariate dimension, the path-following algo-

rithm is actually faster than the TY algorithm. Thus, in this

case we are able to obtain the entire regularization path more

quickly than its evaluation at a set of grid points via the TY

algorithm.

We also compared Algorithm 1 with the stricter Algo-

rithm 2 in Appendix B. We found (results not reported) that

the prediction performance of the two algorithms is essen-

tially identical. Algorithm 2 was slightly slower for larger

number of datapoints, presumably because identifying ex-

actly the active set for each regularization value increases the

total number of function evaluations. However, this behav-

ior was only observed for small numbers of tasks; for larger

numbers of tasks the two algorithms were equally fast.
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Fig. 4 Average of the ratio of

the error rate on the test set for

Algorithm 1 and the TY

algorithm. These ratios are

based on five replicates, and one

standard deviation confidence

intervals are indicated. Note that

the average error rate of

Algorithm 1 is almost always

smaller than that of the TY

algorithm. The improvement in

error rate is typically significant

for larger number of tasks and

larger ambient dimension

Fig. 5 Average of the ratio of

the number of active covariates

for Algorithm 1 and the same

quantity for the TY algorithm.

These ratios are based on five

replicates, and one standard

deviation confidence intervals

are indicated. The models

selected by Algorithm 1 are

almost always sparser than those

returned by the TY algorithm

6.2.3 Approximation of the path

To assess how well the path is approximated by Algorithm 1,

we compared the solutions on the exact path with solutions

obtained from the algorithm. We generated an instance of

the synthetic data with K = 5 tasks and r = 20 discrim-

inative dimensions out of p = 100, and a training set of

size n = 100. We set the step size to ǫ = 0.02 and we let
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Fig. 6 (Color online) Running

times for Algorithm 1 (solid red

curve) and the TY algorithm

(dashed blue curve)

Fig. 7 Exact regularization path (left) and approximated path obtained with Algorithm 1 (right). In both plots, the relevance of each covariate, as

measured by ‖wj‖2, is plotted as a function of − log(λ), where λ is the regularization parameter

ξ = min(0.001,0.1λ). Figure 7 illustrates the approxima-

tion of the regularization path obtained with algrefbblasso,

where the value plotted for each covariate is the norm ‖wj‖2

(intuitively, a measure of relevance of the covariate). As

shown in the figure, the ‖wj‖2 are well approximated. Sim-

ilar results were obtained for each wk
j individually (data not

shown).

6.3 Writer-specific character recognition

In this section, we investigate an application to the problem

of the optical character recognition (OCR) of handwritten

characters. Consider the problem of discriminating between

pairs of letters for different writers. The simplest approach

is to pool all the letters from all writers and build a global
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Fig. 8 (Left) The letter a

written by 40 different people.

(Right) Strokes extracted from

the data

Fig. 9 Samples of the letters s

and g for one writer

classifier for each pair; this may be justifiable if we obtain

only a few examples of each letter per writer, but large num-

bers of different writers. Another naive method is to learn a

classifier for each writer independently. We compare these

naive methods to our ℓ1/ℓ2 regularization method.

6.3.1 Data

We used letters from a handwritten words data gathered by

Rob Kassel at the MIT Spoken Language Systems Group.1

This data set contains samples from more than 180 differ-

ent writers (see Fig. 8, left, for examples). For each writer,

however, the number of examples of each letter is rather

small: between 4 and 30 depending on the letter. As shown

in Fig. 9, the letters are originally represented as 8 × 16 bi-

nary pixel images.

6.3.2 Covariates: pixels and strokes

The basic covariates we use are the 8 × 16 binary pix-

els. Since individual pixels are often uninformative, we also

used a simple, ad hoc procedure to generate combinations of

contiguous pixels (“strokes”) that appeared in the images.

To produce a stroke, we select a random image and

a random filled pixel and follow a biased random walk

on the filled pixels of the image. We use an second-order

Gaussian Markov model of strokes in which the velocity

varies slowly to bias for low-curvature lines and generated

walks of length two, four and six pixels. To produce real-

istically thick strokes we then include the pixels of the let-

ters that are neighbors of the stroke. The obtained stroke are

finally smoothed by convolution with a simple kernel com-

bining only neighboring pixels. For a new letter, the covari-

ate associated with a stroke is the scalar obtained as the dot

product between the image of the letter and the image of the

1Available at www.seas.upenn.edu/~taskar/ocr/.

stroke both considered as vectors in R
8×16. To construct a

set of strokes for the task of discriminating between two let-

ters we extracted 500 strokes in the training set from letters

of each of these two types and 100 strokes from other letter

types as well. The total number of strokes we generated in

each of our experiments was on the order of a thousand. The

strokes selected by our algorithm for the g vs. s classifica-

tion are shown in Fig. 8(right).

6.3.3 Setup

We built binary classifiers that discriminate between pairs

of letters. Specifically we concentrated on the pairs of let-

ters that are difficult to distinguish when written by hand.

We compared the four discriminative methods presented at

the beginning of Sect. 6.1. For the pooled ℓ1 scheme, the

writers are ignored and all the letters of both classes to be

discriminated are pooled. For all other schemes, a separate

model is fitted for each writer with either an independent ℓ1

regularization or a ℓ1/ℓ1 or ℓ1/ℓ2 joint regularization.

6.3.4 Results

We fitted classification models for discriminating nine pairs

of letters for 40 different writers according to the four

schemes presented in Sect. 6.3. We conducted experiments

with the two types of covariate sets proposed (pixels and

strokes). The error rates of the classifiers obtained are re-

ported in Table 2.

For the pixel covariates, the ℓ1/ℓ2-regularization method

improves significantly on pooling and on the other regular-

ization methods. Indeed, it improves in all cases except one,

with an improvement over ℓ1-regularization that is greater

than 50% in many cases.

For the stroke covariates the improvement due to the

ℓ1/ℓ2-regularization is less pronounced. There is a clear im-

provement over pooling and over ℓ1/ℓ1; on the other hand,

ℓ1 and ℓ1/ℓ2-regularizations perform comparably.

http://www.seas.upenn.edu/~taskar/ocr/
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Table 2 Average 0–1 loss on the test set, for covariate selection (left) and subspace selection (right), in the case of pixel features or stroke features,

for the four schemes proposed. The bold font indicates the best-performing scheme among ℓ1/ℓ2, ℓ1/ℓ1, independent (id.) ℓ1 or pooled ℓ1, for a

fixed type of covariate. The boxed entry indicates conditions in which performing subspace selection led to an improvement of the average 0–1

loss over the covariate selection, with the same type of covariate

Task Covariate selection Subspace selection

Strokes: error(%) Pixels: error (%) Strokes: error(%) Pixels: error (%)

ℓ1/ℓ2 ℓ1/ℓ1 id.ℓ1 Pool ℓ1/ℓ2 ℓ1/ℓ1 id.ℓ1 Pool ℓ1/ℓ2 ℓ1/ℓ1 id.ℓ1 Pool ℓ1/ℓ2 ℓ1/ℓ1 id.ℓ1 Pool

c/e 2.5 3.0 3.3 3.0 4.0 8.5 9.0 4.5 2.0 3.5 3.3 2.5 3.5 7.8 10.3 4.5

g/y 8.4 11.3 8.1 17.8 11.4 16.1 17.2 18.6 10.3 10.3 9.3 16.9 11.6 9.7 10.9 21.4

g/s 3.3 3.8 3.0 10.7 4.4 10.0 10.3 6.9 3.8 4.0 2.5 12.0 4.7 6.7 5.0 6.4

m/n 4.4 4.4 3.6 4.7 2.5 6.3 6.9 4.1 4.1 5.8 3.6 5.3 1.9 2.8 4.1 –

a/g 1.4 2.8 2.2 2.8 1.3 3.6 4.1 3.6 0.8 1.6 1.3 2.5 0.8 1.7 1.4 3.9

i/j 8.9 9.5 9.5 11.5 12.0 14.0 14.0 11.3 9.2 9.8 11.1 11.3 10.3 12.7 13.5 11.5

a/o 2.0 2.9 2.3 3.8 2.8 4.8 5.2 4.2 2.7 2.7 1.9 4.3 2.1 3.1 3.5 4.2

f/t 4.0 5.0 6.0 8.1 5.0 6.7 6.1 8.2 5.8 4.1 5.5 7.5 6.4 11.1 9.6 7.1

h/n 0.9 1.6 1.9 3.4 3.2 14.3 18.6 5.0 0.9 0.6 0.3 3.7 1.8 3.6 5.0 5.0

Fig. 10 (Color online) Plots of the discriminative masks learned for

the classification of g vs s under ℓ1/ℓ2 regularization (left) and inde-

pendent ℓ1 regularization (right), based on either pixel covariates (top)

or stroke covariates (bottom). Intuitively these masks should resemble

a yellow letter g to which is subtracted a letter s which therefore ap-

pears by contrast in darker green. The better masks capture the (yellow)

closure of the circle in g and the (dark green) diagonal stroke of s as

discriminative features of these letters

Our interpretation of these results is that classifiers based

on the weaker features (pixels) benefit more from the shar-

ing among tasks than those based on the stronger features

(strokes). As support for this interpretation, consider Fig. 10,

where we represent the “discriminative mask” learned, i.e.

a pixel image with colors ranging from yellow to dark

green corresponding to individual parameter values, repre-

senting the whole vector of parameters wk learned for each

of the 40 writers. The top two rectangles contain the para-

meters for the pixel covariates, with the results from ℓ1/ℓ2-

regularization on the left and the results from independent

ℓ1-regularization on the right. It is clear that the sharing in-

duced by the ℓ1/ℓ2-regularization has yielded parameters

that are more discriminative in this case. On the other hand,

in the case of stroke covariates (the lower two rectangles),

we see that the parameters induced by independent ℓ1 are

already quite discriminative; thus, there appears to be less

to gain from shrinkage among tasks in this case. Note also

(from Table 2) that the overall error rate from the classifiers

based on pixels is significantly higher than that of the clas-

sifiers based on strokes. Finally, for this problem pooling

does not perform well presumably because the inter-writer

variance of the letters is large compared to the inter-class

variance.

Another advantage of the ℓ1/ℓ2-regularization is that it

yields a more compact representation than the other meth-

ods (with the exception of pooling). This is particularly no-

ticeable for the stroke representation where fewer than 50

features are typically retained for the ℓ1/ℓ2-regularization

versus three to five times as many for the other regulariza-

tion schemes.

6.4 Multi-class classification

Multi-class classification can be viewed as a multiple re-

sponse problem in which a set of responses share a set of

covariates. This is certainly an appropriate perspective if the

multi-class classification problem is approached (as is often

done) by fitting a set of binary classifiers, but it is also ap-

propriate if a single multi-class classifier is fit by a single

“polychotomous” logistic regression. In either case, it may

be useful to find covariates that are useful across the set of

discriminations. Our ℓ1/ℓ2-regularization applies directly to

this setting; indeed, the methodology that we have presented
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thus far makes no reference to the fact that the loss function

is a sum of losses across tasks. We can thus replace this loss

function with any joint loss function (e.g., the polychoto-

mous logistic loss). In the remainder of this section we in-

vestigate the use of ℓ1/ℓ2-regularization in two multi-class

classification domains.

6.4.1 Digit classification

We conducted a multi-class classification experiment using

the “multi-feature digit” data set from the University of Cal-

ifornia Irvine repository (van Breukelen et al. 1998). This

data set of 2000 entries contains 200 examples of each of

the 10 digits. The data are represented by 649 covariates of

different types (76 Fourier coefficients, 216 profile correla-

tions, 64 Karhunen-Loève coefficients, 240 pixel averages

in 2×3 windows, 47 Zernike moments and 6 morphological

features). We compared models based on polychotomous lo-

gistic regression fitted with ℓ1/ℓ2 and ℓ1/ℓ1-regularizations

and the classification obtained by combining individually

regularized logistic regressions (using the ℓ1 norm). To fo-

cus on the data-poor regime in which regularization methods

would appear to be of most value, we used only 1/10 of the

data to fit the model and retained the rest for testing. We

replicated the experiment ten times.

Our results indicate that ℓ1/ℓ2-regularization is clearly

superior for this problem compared to the other regular-

ization methods. The average error rate obtained was 2.9%

(σ̂ = 0.24%) for ℓ1/ℓ2, versus 4.2% (σ̂ = 0.65%) for ℓ1/ℓ1

and 4.1% (σ̂ = 0.65%) for separate binary classifications.

6.4.2 Classification of cancers

The diagnosis of complex diseases such as cancer can be

assisted by genomic information provided by expression

microarrays; specifically, microarrays allow us to identify

genes that are differentially expressed in different cell lin-

eages or at different stages of a cancer. This is interesting

because the relationship between gene expression patterns

and the illness is more direct than that of somatic symptoms,

but it is also difficult because of the large number of genes

and the high levels of noise present in the data. We used the

ℓ1/ℓ2, ℓ1/ℓ1 and independent ℓ1-regularizations to differen-

tiate four types of skin cancers (studied by Khan et al. 2001)

based on gene expression data.

We found that all three of these regularization schemes

performed as well in terms of predictive performance as the

best-performing methods studied by Khan et al. (2001) and

Wu (2005). However, ℓ1/ℓ2-regularization achieved this re-

sult with a smaller set of non-zero parameters than the other

methods: there were 57, 81 and 85 contributing genes to

the classifier based on ℓ1/ℓ2, ℓ1/ℓ1 and independent ℓ1, re-

spectively. This small gene signature is obviously of impor-

tance in the biological setting, where simpler/cheaper tests

are desirable and where predictively-important genes may

be prioritized for further study. Note also that the parame-

ter values obtained from ℓ1/ℓ2-regularization were differ-

ent qualitatively from those obtained via the other regu-

larizations (see Fig. 11). We found that a striking feature

of the sparsity pattern obtained from ℓ1/ℓ2 was that sev-

Fig. 11 Matrix of parameters

obtained from three

regularization methods. The

ℓ1/ℓ2, ℓ1/ℓ1 and independent

ℓ1 regularizations use 57, 81

and 85 (respectively)

contributing genes to classify

four cancer types: EWS, BL,

NB, RMS. Note that the ℓ1/ℓ2

regularization has an interesting

“mikado” pattern (i.e., with

alternating, contrasted

coefficients columnwise)

indicating that a given feature

has important opposite effects in

the classification of two classes

that it discriminates well
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Fig. 12 (Color online)

Prediction errors of Algorithm 1

(solid red curve) combined with

random projections and the

algorithm of Argyriou et al.

(2008) (dashed blue curve)

eral genes used by the other regularizations were elimi-

nated because if the expression of a gene is indicative of

a cancer type, then that covariate is encouraged to be also

more discriminative for the other cancers. This might be

an efficient way to eliminate competing correlated predic-

tors.

6.5 Experiments on subspace selection

In this section we present an experimental evaluation of

our approach to subspace selection based on random pro-

jections. We compare this approach to the alternating mini-

mization algorithm of Argyriou et al. (2008), both in terms

of speed and performance. The non-differentiability of the

trace norm underlying the latter algorithm creates difficul-

ties; these were addressed by Argyriou et al. (2008) using a

numerical smoothing method. We also found that smoothing

was necessary for this algorithm; moreover, we found that it

was somewhat difficult to calibrate the amount of smooth-

ing. When the smoothing was significantly large to avoid

numerical difficulties, the resulting solutions tended to have

a spectrum of singular values that was quite different from

those of the original problem.

In a first set of experiments we returned to the artifi-

cial data described in Sect. 6.2, where we defined a 20-

dimensional subspace that discriminates the pairs of classes

in all tasks. For the random projections method, we used

5p random projections where p is the dimension of the

covariate space. (Recall that these projections serve as a

transformed set of coordinates to which we apply Algo-

rithm 1.)

We report the results of the comparison in Fig. 12, where

we report prediction errors, and Fig. 13, where we report

running times. We see from Fig. 12 that the two meth-

ods yield comparable prediction errors, with each method

outperforming the other method in a certain regime. From

Fig. 13 we see that our random projections method is gen-

erally faster than the other algorithm, particularly so for

high-dimensional covariate spaces. However, in the high-

dimensional spaces our method was less accurate than that

of Argyriou et al. Presumably this could be mitigated by

choosing a larger number of random projections; however,

we currently lack a theoretical basis for choosing the proper

tradeoff between accuracy and efficiency in terms of the

number of projections.

Finally, we report results on subspace selection using ran-

dom projections in the OCR domain. We conducted an ex-

periment that was identical to the previous OCR experiment,

but in which 500 random projections were used to transform

the pixel covariates into a new covariate space. Similarly, in

the case of the strokes covariates we used 3000 projections.

In both cases this yielded roughly four times as many pro-

jections as there were dimensions of the original covariate

space. The results of this experiment are shown in Table 2.

We see that the subspace selection yields an improvement
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Fig. 13 (Color online) Running

times of Algorithm 1 combined

with random projections (solid

red curve) and the algorithm of

Argyriou et al. (2008) (dashed

blue curve)

over the earlier covariate selection results in the case of the

pixel covariates.

7 Discussion

We have considered a regularization scheme for joint covari-

ate selection in grouped classification, where several classi-

fication models are fitted simultaneously and make simulta-

neous choices for relevant covariates. We have developed a

path-following algorithm for solving this problem and as-

sessed its performance in both artificial and real datasets

compared to ℓ1 and ℓ2-regularizations. We have also devel-

oped an extension of this approach to the subspace selection

problem.

We should emphasize that although classification has

been the focus of our presentation, the approach is generic

and applies immediately to problems based on other smooth

loss functions, including least squares regression and more

broadly generalized linear models. More generally, any

norm that induces sparse solutions can benefit from a similar

approach.

We should also point out that, even though we have used

our proposed regularization scheme to fit parameters for all

classifiers simultaneously, it is also possible to use this reg-

ularization scheme in a sequential fashion, where new tasks

are encouraged to share the same sparsity pattern as previous

classifiers. In this case, tasks are presented one after another

and, in the ℓ1/ℓ2-regularization, parameters of previously

fitted models are fixed and only the parameters for the new

task are fit. A computational advantage of this approach is

that it does not require retaining the previously fitted para-

meters in memory; rather, one only needs to keep the pre-

viously defined relevance of each covariate as measured by

the ℓ2 norm of parameters associated to that covariate across

tasks.

There are several open theoretical questions associated

with this work. First, it is of great interest to consider the

recovery problem for ℓ1/ℓ2-regularization; in particular, as-

suming that a sparse set of covariates are relevant across

multiple tasks, what are the conditions under which this set

can be recovered asymptotically? Also, our empirical results

suggest that the ℓ1/ℓ2-regularization is particularly useful

for high-variance covariates (cf. the pixel features in the

OCR problem) and in cases where the amount of data for

each classification task is limited. It would be useful to at-

tempt to characterize these tradeoffs theoretically.
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Appendix A: Proof of Proposition 1

In this Appendix we prove Proposition 1, showing that the

path-following algorithm that we have presented progresses

steadily along the path and guaranteeing that the latter is

well approximated.

The proof proceeds via a sequence of lemmas. Lemma 3

justifies the update rule λt+1 = min(λt , ǫ−1[J (W t ) −
J (W t+1)]) by showing that it ensures that each time the

regularization coefficient λt is updated, the solution sat-

isfies approximate subgradient conditions and is thus, by

Lemma 2, reasonably close to the path. The algorithm is de-

signed to move along the path smoothly in parameter space,

by taking a bounded step. Lemmas 4 and 5 establish that the

progression is steady in terms of λt and that the algorithm

terminates after a finite number of steps. More precisely,

Lemma 4 shows that the regularization decreases by at least

a constant amount ǫμmin at almost each iteration and there-

fore becomes smaller than ǫμmin/2 after a finite number of

steps. Lemma 5 establishes additionally that even the part of

the path corresponding to small values of the regularization

can be reached efficiently after a finite number of steps if

a bounded line search method is used to determine the step

size of the descent steps on J .

All lemmas assume that J is convex, continuously twice

differentiable (C 2) with a non-singular Hessian and that, as

a consequence, the spectrum of its Hessian is uniformly

bounded above and below respectively by μmax and μmin

on some fixed compact set. Lemmas 4 and 5 assume that

Algorithm 1 is used without pruning the active set A (i.e.,

once a point is inserted in A it stays in A). For a func-

tion F , we denote by ∂F (x) the set of subgradients of the

function at x and ∂jF(x) the set of subgradients in the j th

subspace.

Lemma 2 Let T be any convex function, and G(x) =
λT (x) + J (x). Then let g ∈ ∂G(x) be a subgradient of G

at x and x∗ the unique minimum of G, then

‖x∗ − x‖ ≤ 2
‖g‖
μmin

.

Proof This is an extension of a standard result in optimiza-

tion (Boyd and Vandenberghe 2004, pp. 459–460). Combin-

ing a Taylor expansion of J with a convexity inequality for

the norm we get that there exists ξ such that

J (x∗) ≥ J (x) + ∇J (x)(x∗ − x)

+ 1

2
(x∗ − x)⊤H(ξ)(x∗ − x)

T (x∗) ≥ T (x) + t⊤(x∗ − x) with t ∈ ∂T (x).

Thus, with g = λt + ∇J (x), there exists ξ such that

∃ξ, G(x∗) ≥ G(x) + g⊤(x∗ − x)

+ 1

2
(x∗ − x)⊤H(ξ)(x∗ − x),

0 ≥ G(x∗) − G(x) ≥ g⊤(x∗ − x) + 1

2
μmin‖x∗ − x‖2,

1

2
μmin‖x∗ − x‖2 ≤ ‖g‖‖x∗ − x‖,

which yields the desired result. �

Lemma 3 Let ξ0 in (4) satisfy ξ0 ≥ 1
2
ǫμmax. Then for all t

such that λt+1 < λt the approximate subgradient conditions

hold just before the gradient step at iteration t ; as a conse-

quence ‖W t −W(λt )‖ ≤ √
p

2ξ0

μmin
and J (W t )−J (W(λt )) ≤

p
2ξ2

0

μmin
where W(λt ) is the optimal solution of (2) for the reg-

ularization coefficient λt .

Proof The approximate subgradient conditions (4) are ex-

plicitly enforced by the algorithm in the active set. Using the

fact that we performed a descent step on the steepest partial

gradient we have:

J (W t+1) − J (W t ) = −ǫ‖∇wj∗ J (W t )‖

+ 1

2
ǫ2ut⊤∇2J (W̃ t )ut , (7)

with ut =
∇wj∗ J (W t )

‖∇wj∗ J (W t )‖ and W̃ t on the segment joining W t

and W t+1. Now if λt+1 < λt , then given the update rule,

it has to be the case that 1
ǫ
(J (W t ) − J (W t+1)) < λt . As a

consequence, and using (7), we have that ∀j /∈ A, wj = 0

and

‖∇wj
J (W t )‖ ≤ ‖∇wj∗ J (W t )‖

≤ 1

ǫ
(J (W t ) − J (W t+1))

+ 1

2
ǫμmax ≤ λt + ξ0.

This shows the first part of the lemma. As we argue now,

these approximate subgradient conditions imply that there

exists a subgradient of our regularized objective of size at

most
√

pξ0, which by Lemma 2 implies the result. Indeed

for every covariate j such that wj 	= 0, given the form of

the approximate subgradient conditions (4) that we main-

tain, we have ‖∇wj
J (W)‖ ≤ (λ− ξ)+ ξ = λ; then for every

covariate such that wj = 0, since the subgradient set of

λ‖ · ‖2 at 0 is the Euclidean ball of radius λ, given that

‖∇wj
J (W)‖ ≤ λ + ξ0, one can choose a subgradient of the

ℓ2 norm such that the corresponding partial subgradient of

the regularized objective with respect to wj is of norm less
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than ξ0. Since the subgradient of the norms can be cho-

sen independently in each subspace, we have a subgradi-

ent g = (g1, . . . , gp) such that maxj ‖gj‖ ≤ ξ0 and there-

fore ‖g‖ ≤ √
pξ0. Finally, the inequality in the proposition

for the gap in empirical risk J results from the convex-

ity inequality J (W t ) − J (W(λt )) ≤ −g⊤(W t − W(λt )) ≤
‖g‖‖W t − W(λt )‖ ≤ p

2ξ2
0

μmin
. �

Lemma 4 If we use steps of fixed size ǫ, after a finite num-

ber of steps λt becomes smaller than 1
2
ǫμmin.

Proof Except for a number of iterations bounded by p, at

the beginning of each iteration of the algorithm, we have

‖∇wj∗
t
J (W t )‖ ≤ λt . Indeed, any active covariate j satisfies

‖∇wj
J (W t )‖ ≤ λt after the approximate subgradient condi-

tions are enforced at the end of the previous iteration, and

if some inactive covariate has a gradient larger than λt then

the largest gets incorporated in the active set, which can only

happen once for every covariate if there is no pruning. For

all steps t such that ‖∇wj∗
t
J (W t )‖ ≤ λt , if the step taken is

ǫ ut with ut a unit vector in subspace j , then, using again

(7) with a lower bound on the Hessian term, the update of

the regularization satisfies

λt+1 = J (W t ) − J (W t+1)

ǫ

≤ ‖∇wj∗
t
J (W t )‖ − ǫ

2
μmin

≤ λt − ǫ

2
μmin.

So if steps of fixed size ǫ are used, then, after a finite number

of steps λt becomes smaller than 1
2
ǫμmin. �

Lemma 5 If, given the direction ut =
∇w

j∗
t

J (W t )

‖∇w
j∗
t

J (W t )‖ , we

choose a step size ǫt ≤ ǫ which maximizes the decrease

J (W t ) − J (W t+1), then limt λ
t ≤ 2ξ .

Proof The beginning of the previous argument is still valid

and so there exists t0 such that ∀t > t0, λt+1 ≤ λt − 1
2
ǫtμmin.

So ǫt converges to 0. In particular, there exists t1 such that

∀t > t1, ǫt < ǫ. But if ǫt < ǫ, using a Taylor expansion at

W t+1,

J (W t ) − J (W t+1) ≤ ǫt∇wj∗
t
J (W t+1) · ut + 1

2
ǫ2
t μmax

= 1

2
ǫ2
t μmax, (8)

the last equality being due to the fact that the minimizer is in

the interior of [0, ǫ]. Using Taylor expansion (7) we have the

inequality J (W t ) − J (W t+1) ≥ ǫt‖∇wj∗
t
J (W t )‖ − ǫ2

t

2
μmax.

Given that we maintain the approximate subgradient con-

ditions (4) the inequality λt − 2ξ ≤ ‖∇wj∗
t
J (W t )‖ holds

and, combining these two inequalities with Taylor expansion

at W t+1 above, we finally get λt − 2ξ ≤ ‖∇wj∗
t
J (W t )‖ ≤

ǫtμmax →
t

0. �

Appendix B: A stricter algorithm

The following algorithm maintains the constraints in (4) for

decreasing values of λ with ξ0 = 0, updating the regulariza-

tion coefficient only if none of the inactive covariates vio-

lates the approximate subgradient conditions at the end of

the previous iteration.

Algorithm 2 Maintain approximate subgradient conditions

while λt > λmin do

Set j∗ = argmaxj‖∇wj
J (W t )‖

Update w
(t+1)
j∗ = w

(t)
j∗ − ǫut with ut =

∇wj∗ J

‖∇wj∗ J‖
if ‖∇wj∗ J (W t )‖ > λt then

λt+1 = λt

else

λt+1 = min(λt ,
J (W t )−J (W t+1)

ǫ
)

end if

Add j∗ to the active set

Enforce (4) only for covariates of the active set

end while

The correctness of the algorithm results from the fact that

the regularization coefficient is unchanged when the subgra-

dient conditions of (4) are not enforced and the fact that the

algorithm terminates. Up to minor changes, Lemmas 4 and 5

in Appendix A that prove the termination of Algorithm 1

also apply to Algorithm 2.

Appendix C: Random projections, ℓ1/ℓ2 norm and

trace norm

The essential connection between the trace norm and the

ℓ1/ℓ2 norm is that the trace norm is the minimal ℓ1/ℓ2

norm over all possible orthonormal bases (cf. Argyriou et

al. 2008): for X ∈ R
p×K ,

‖X‖tr
(∗)= min

U∈Op
‖UX‖ℓ1/ℓ2

.

Combining ℓ1/ℓ2-regularization with random projections of

the data can be viewed intuitively as replacing the optimal U

in the above expression by a rectangular matrix with random

unit-length columns. The relation between the two norms is

easier to understand via their “quadratic over linear” formu-

lations which we review in the next lemma.
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Lemma 6 It is a common feature of the ℓ1, ℓ1/ℓ2 and trace

norms that they are each related to a “quadratic over lin-

ear” formulation where the variable for the linear part σ

(or 	) is constrained to lie in some truncated cone. The fol-

lowing relations hold:

‖y‖2
1 = inf

σi>0,
∑

i σi≤1

∑

i

y2
i

σi

.

If xi is the ith row of X ∈ R
p×K , then

‖X‖2
ℓ1/ℓ2

=
(∑

i

‖xi‖2

)2

= inf
σi>0,

∑
i σi≤1

∑

i

‖xi‖2
2

σi

= inf
	=diag(σ ), σi>0, tr(	)≤1

tr(X	−1X⊤).

If (λi)1≤i≤p is the set of singular values of X and � =
diag(λ) then

‖X‖2
tr = ‖λ‖2

1 = ‖�‖2
ℓ1/ℓ2

(∗)= min
U∈Op

‖UX‖2
ℓ1/ℓ2

= inf
U∈Op, 	=diag(σ ), σi>0, tr(	)≤1

tr(X⊤U⊤	−1UX)

= inf
D≻0, tr(D)≤1

tr(X⊤D−1X),

where Op ⊂ R
p×p is the set of orthonormal matrices.

Proof Except for (∗) which is proven by Argyriou et al.

(2008) all identities stem from the identity for the ℓ1 norm

which can be verified by straightforward minimization. �

To formulate optimization problems that involve the

above-mentioned norms, it is convenient to replace all the

infima by minima (i.e., the infima are attained). This is

possible if the constraint set is closed on the part of the

boundary of the set where the objective function does not

diverge, and if all inverses are extended by continuity by

their Moore-Penrose pseudoinverses. The appropriate par-

tial closure can be obtained replacing σ > 0 (resp. D ≻ 0)

by σ ≥ 0 (resp. D � 0), and imposing (σi = 0) ⇒ (yi = 0)

(resp. Im(X) ⊆ Im(D)) where Im(X) is the range of X.

The set {(X,D)|Im(X) ⊆ Im(D),D ≻ 0} is a convex set

as we argue in Lemma 7.

Lemma 7 The set X = {(X,D) | Im(X) ⊆ Im(D),D ≻ 0}
is convex.

Proof The set is obviously stable under multiplication by a

scalar. Moreover if (X1,D1) ∈ X and (X2,D2) ∈ X , then

Im(X1 +X2) ⊆ Im(X1)+ Im(X2) ⊆ Im(D1)+ Im(D2),

where the sum of two vector spaces denotes their span. The

convexity of X is therefore proved if we show that, for p.s.d.

matrices Im(D1) + Im(D2) = Im(D1 + D2). Indeed, for

p.s.d. matrices D1 and D2, Im(D1 + D2)
⊥ = Ker(D1 +

D2), which is clear if the matrix D1 + D2 is considered

in its orthonormal basis of eigenvectors. Then Ker(D1 +
D2) = Ker(D1)∩ Ker(D2), because x⊤(D1 +D2)x = 0 ⇔
(x⊤D1x = 0 & x⊤D2x = 0). Finally, Ker(D1)∩ Ker(D2) ⊆
(Im(D1) + Im(D2))

⊥. This yields Im(D1) + Im(D2) ⊆
Im(D1 + D2) and since the other inclusion holds trivially,

this proves the result. �

Using the above, we have the following corollary to

Lemma 6:

Corollary 1 For a matrix A ∈ R
p×K define J as J (A) =∑K

k=1

∑Nk

i=1 J k(ak · xk
i , yk

i ). The two following optimization

problems are equivalent:

min
A

‖A‖2
tr + 1

λ
J (A) (9a)

min
A,D

A⊤D+A + 1

λ
J (A)

s.t. D � 0, tr(D) ≤ 1 (9b)

Im(A) ⊆ Im(D)

where D+ is the Moore-Penrose pseudoinverse of D and

Im(D) is the range of D.

The following two lemmas prove Proposition 2:

Lemma 8 We consider a general learning problem with a

loss function J (A) =
∑K

k=1

∑Nk

i=1 J k(ak ·xk
i , yk

i ) depending

on products of the parameter matrix A ∈ R
p×K with K task-

specific data matrices X1, . . . ,XK where Xk ∈ R
Nk×p . Let


 ∈ R
p×d be a random projection matrix whose columns

are uniformly drawn from the unit sphere S p in R
p and let

W ∈ R
d×K be another parameter matrix. The two following

optimization problems are equivalent:

min
A

‖W‖2
ℓ1/ℓ2

+ 1

λ
J (A)

(10a)
s.t. A = 
W

min
A,D,	

A⊤D+A + 1

λ
J (A)

s.t. D � 0, tr(D) ≤ 1

Im(A) ⊆ Im(D) (10b)

D = 
	
⊤, 	 = diag(σ ),

σ ∈ R
d
+, 1⊤σ ≤ 1.

Proof We denote by 
+ = 
⊤(

⊤)+ the Moore-Penrose

pseudoinverse of 
. If 
W = A we can rewrite W =

+A + H with H ∈ R

d×K such that 
H = 0. We consider
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first

min
H

‖
+A + H‖ℓ1/ℓ2

s.t. 
H = 0

or equivalently

min
σ,H

max
�

tr((
+A + H)⊤	+(
+A + H)) + tr(�⊤
H)

s.t. 	 = diag(σ ),
(11)

σ ∈ R
d
+, 1⊤σ ≤ 1,

Im(
+A + H) ⊆ Im(	).

For any fixed A and σ the problem is convex in H and

strictly feasible so we can minimize with respect to H before

maximizing in �. Setting H as follows: H ∗ = −
+A −
	
⊤�, the range inclusion constraint is satisfied and the

partial gradient of the objective with respect to H is equal to

zero. We solve for the Lagrange multipliers �∗ by enforcing

the equality constraints: 
H ∗ = 0 = −

+A−
	
⊤�∗

which yields H ∗ = −
+A + 	
⊤(
	
⊤)+

+A. But

then, using the identities BB+B = B and B+BB+ = B+

for the pseudoinverse,

(
+A + H ∗)⊤	+(
+A + H ∗)

= A⊤

+(
	
⊤)+
		+	
⊤(
	
⊤)+

+A

= A⊤

+(
	
⊤)+

+A.

We can finally transform (11) into

min
W,A,H,	

W⊤	+W + 1

λ
J (A)

s.t. W = 
+A + H, 
H = 0,

Im(A) ⊆ Im(
W),

Im(W) ⊆ Im(	), 	 = diag(σ ),

σ ∈ R
d
+, 1⊤σ ≤ 1.

Then eliminate W and H from the previous equations to get:

min
A,	

tr(A⊤

+(
	
⊤)+

+A) + 1

λ
J (A)

s.t. Im(A) ⊆ Im(
	), 	 = diag(σ ),

σ ∈ R
d
+, 1⊤σ ≤ 1.

If we then assume that d ≥ p, then 

+ is almost surely

the identity matrix, because 
 is almost surely of full col-

umn rank and therefore so is 

+. Letting D = 
	
⊤, D

is positive semi-definite since 	 is; moreover tr(
	
⊤) =∑d
i=1 σi‖φi‖2 where φi is the ith column of 
 but by as-

sumption ‖φi‖ = 1 so that tr(D) = tr(	). Taking into ac-

count these identities, we obtain the equivalence to (10b). �

Lemma 9 If J is convex, continuous and lower bounded,

then as the number of random projections d increases, the

solutions A∗
d = 
dW ∗

d obtained from (10b) form a sequence

whose accumulation points are almost surely optimal solu-

tions for (9a).

Proof For problem (9b), denote by G(D,A) its objective

function, � its constraint set, and (D∗,A∗) an optimal

solution. Problem (10b) has the same objective function,

constraint set �d and we denote an optimal solution by

(D∗
d ,A∗

d). We first show that as d → ∞, with high probabil-

ity, there exists a full rank matrix Dd such that (Dd ,A∗) ∈
�d and Dd is close to D∗ in Frobenius norm.

Given 
 as in (10b), for any D � 0, tr(D) ≤ 1, we

can approximate D by a matrix of the form 
	
⊤ with

	 a diagonal matrix such that tr(	) ≤ 1 as follows: write

D = V 	̃V ⊤, where 	̃ is diagonal and V a matrix of eigen-

vectors of D and approximate it with 
̃	̃
̃⊤ where 
̃ is

the matrix formed of p distinct columns of 
 where each

approximation is the best to a column of V in the sense that

‖V − 
̃‖F is small. Then, since tr(	̃) ≤ 1, 
̃	̃
̃⊤ can be

rewritten as 
	
⊤ for some 	 with tr(	) ≤ 1, and we have

‖D − 
̃	̃
̃⊤‖F

= ‖V 	̃
1
2 (	̃

1
2 V ⊤ − 	̃

1
2 
̃⊤)

+ (V 	̃
1
2 − 
̃	̃

1
2 )	̃

1
2 
̃⊤‖F

≤ (‖D 1
2 ‖F + ‖
̃	̃

1
2 ‖F )‖(V − 
̃)	̃

1
2 ‖F

≤ (tr(D) + tr(
̃	̃
̃⊤))‖V − 
̃‖F tr(	̃)

≤ 2‖V − 
̃‖F ,

where we used first that the Frobenius norm satisfies the

inequality ‖AB‖F ≤ ‖A‖F ‖B‖F , next, the fact that for

a p.s.d. matrix ‖A 1
2 ‖F = tr(A), further that tr(
̃	̃
̃⊤) =

tr(	̃) since 
̃ has unit norm columns, and finally that the

traces of D and 	̃ are smaller or equal to 1.

To approximate D∗ with a full-rank matrix, note first

that it can be approximated arbitrarily closely by a full rank

matrix D′ in the p.s.d. cone and the latter can be approx-

imated by Dd = 
̃	̃
̃⊤. For a full rank matrix Dd , we

have trivially that Im(A∗) ⊆ Im(Dd) and therefore we have

(Dd ,A∗) ∈ �d .

By the previous result, as d → ∞, with high probabil-

ity there exists (Dd ,A∗) ∈ �d , such that ‖D∗ − Dd‖F ≤ ǫ.

But then, by continuity of J and the trace norm, for all

η > 0, there exists ǫ such that, if ‖D∗ − Dd‖F ≤ ǫ, then

G(Dd ,A∗) ≤ G(D∗,A∗) + η. As a consequence, with high

probability, if (D∗
d ,A∗

d) is an optimal solution of (10b), we

have a fortiori G(D∗
d ,A∗

d) ≤ G(D∗,A∗) + η. This proves

that G(D∗
d ,A∗

d) converges in probability to G(D∗,A∗) as

d → ∞. Denoting by G̃ the objective function of (9a), we
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have that G̃(A∗
d) converges in probability to G̃(A∗). How-

ever, since for all ω, the sequence G̃(A∗
d(ω)) is monotoni-

cally decreasing, the convergence to G̃(A∗) is in fact almost

sure. But since J is lower bounded and the trace norm is co-

ercive, so is G̃ and its sublevel sets are thus compact; as a

consequence (A∗
d) is deterministically bounded and, almost

surely, all converging subsequences of (A∗
d) converge to a

minimum of G̃. �

The construction in this lemma, although sufficient to

prove the almost sure convergence, seems too pessimistic

to obtain a reasonable idea of the rate of convergence. In-

deed it is a quite strong requirement to ask that each of the

eigenvectors of D be approximated by an individual column

of 
 and D could possibly be well approximated without

requiring that this property holds.
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