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Abstract

End-to-end automatic speech recognition

(ASR) has become a popular alterna-

tive to conventional DNN/HMM sys-

tems because it avoids the need for

linguistic resources such as pronuncia-

tion dictionary, tokenization, and context-

dependency trees, leading to a greatly

simplified model-building process. There

are two major types of end-to-end archi-

tectures for ASR: attention-based meth-

ods use an attention mechanism to per-

form alignment between acoustic frames

and recognized symbols, and connection-

ist temporal classification (CTC), uses

Markov assumptions to efficiently solve

sequential problems by dynamic program-

ming. This paper proposes a joint de-

coding algorithm for end-to-end ASR

with a hybrid CTC/attention architecture,

which effectively utilizes both advantages

in decoding. We have applied the pro-

posed method to two ASR benchmarks

(spontaneous Japanese and Mandarin Chi-

nese), and showing the comparable per-

formance to conventional state-of-the-art

DNN/HMM ASR systems without lin-

guistic resources.

1 Introduction

Automatic speech recognition (ASR) is currently

a mature set of technologies that have been widely

deployed, resulting in great success in interface

applications such as voice search. A typical ASR

system is factorized into several modules includ-

ing acoustic, lexicon, and language models based

on a probabilistic noisy channel model (Jelinek,

1976). Over the last decade, dramatic improve-

ments in acoustic and language models have been

driven by machine learning techniques known as

deep learning (Hinton et al., 2012).

However, current systems lean heavily on the

scaffolding of complicated legacy architectures

that grew up around traditional techniques. For

example, when we build an acoustic model from

scratch, we have to first build hidden Markov

model (HMM) and Gaussian mixture model

(GMM) followed by deep neural networks (DNN).

In addition, the factorization of acoustic, lexicon,

and language models is derived by conditional in-

dependence assumptions (especially Markov as-

sumptions), although the data do not necessarily

follow such assumptions leading to model mis-

specification. This factorization form also yields

a local optimum since the above modules are

optimized separately. Further, to well factorize

acoustic and language models, the system requires

linguistic knowledge based on a lexicon model,

which is usually based on a hand-crafted pronun-

ciation dictionary to map word to phoneme se-

quence. In addition to the pronunciation dictio-

nary issue, some languages, which do not ex-

plicitly have a word boundary, need language-

specific tokenization modules (Kudo et al., 2004;

Bird, 2006) for language modeling. Finally, in-

ference/decoding has to be performed by integrat-

ing all modules resulting in complex decoding.

Consequently, it is quite difficult for non-experts

to use/develop ASR systems for new applications,

especially for new languages.

End-to-end ASR has the goal of simplifying

the above module-based architecture into a single-

network architecture within a deep learning frame-

work, in order to address the above issues. There

are two major types of end-to-end architectures

for ASR: attention-based methods use an attention

mechanism to perform alignment between acous-

tic frames and recognized symbols, and connec-

tionist temporal classification (CTC), uses Markov
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assumptions to efficiently solve sequential prob-

lems by dynamic programming (Chorowski et al.,

2014; Graves and Jaitly, 2014).

The attention-based end-to-end method solves

the ASR problem as a sequence mapping from

speech feature sequences to text by using encoder-

decoder architecture. The decoder network uses

an attention mechanism to find an alignment be-

tween each element of the output sequence and

the hidden states generated by the acoustic en-

coder network for each frame of acoustic input

(Chorowski et al., 2014, 2015; Chan et al., 2015;

Lu et al., 2016). This basic temporal attention

mechanism is too flexible in the sense that it allows

extremely non-sequential alignments. This may be

fine for applications such as machine translation

where input and output word order are different

(Bahdanau et al., 2014; Wu et al., 2016). How-

ever, in speech recognition, the feature inputs and

corresponding letter outputs generally proceed in

the same order. Another problem is that the input

and output sequences in ASR can have very dif-

ferent lengths, and these vary greatly from case to

case, depending on the speaking rate and writing

system, making it more difficult to track the align-

ment.

However, an advantage is that the attention

mechanism does not require any conditional in-

dependence assumptions, and could address all

the problems cited above. Although the align-

ment problems of attention-based mechanisms

have been partially addressed in (Chorowski et al.,

2014; Chorowski and Jaitly, 2016) using various

mechanisms, here we propose more rigorous con-

straints by using CTC-based alignment to guide

the decoding.

CTC permits an efficient computation of a

strictly monotonic alignment using dynamic pro-

gramming (Graves et al., 2006; Graves and Jaitly,

2014) although it requires language models and

graph-based decoding (Miao et al., 2015) except

in the case of huge training data (Amodei et al.,

2015; Soltau et al., 2016). We propose to take ad-

vantage of the constrained CTC alignment in a hy-

brid CTC/attention based system during decoding.

The proposed method adopts a CTC/attention hy-

brid architecture, which was originally designed

to regularize an attention-based encoder network

by additionally using a CTC during training (Kim

et al., 2017). The proposed method extends the ar-

chitecture to perform one-pass/rescoring joint de-

coding, where hypotheses of attention-based ASR

are boosted by scores obtained by using CTC out-

puts. This greatly reduces irregular alignments

without any heuristic search techniques.

The proposed method is applied to Japanese

and Mandarin ASR tasks, which require extra

linguistic resources including morphological an-

alyzer (Kudo et al., 2004) or word segmentation

(Xue et al., 2003) in addition to pronunciation dic-

tionary to provide accurate lexicon and language

models in conventional DNN/HMM ASR. Sur-

prisingly, the method achieved performance com-

parable to, and in some cases superior to, several

state-of-the-art DNN/HMM ASR systems, with-

out using the above linguistic resources.

2 From DNN/HMM to end-to-end ASR

This section briefly provides a formulation of con-

ventional DNN/HMM ASR and CTC or attention

based end-to-end ASR.

2.1 Conventional DNN/HMM ASR

ASR deals with a sequence mapping from T -

length speech feature sequence X = {xt ∈
R
D|t = 1, · · · , T} to N -length word sequence

W = {wn ∈ V|n = 1, · · · , N}. xt is a D

dimensional speech feature vector (e.g., log Mel

filterbanks) at frame t and wn is a word at posi-

tion n in vocabulary V . ASR is mathematically

formulated with the Bayes decision theory, where

the most probable word sequence Ŵ is estimated

among all possible word sequences V∗ as follows:

Ŵ = arg max
W∈V∗

p(W |X). (1)

The posterior distribution p(W |X) is factorized

into the following three distributions by using the

Bayes theorem and introducing HMM state se-

quence S = {st ∈ {1, · · · , J}|t = 1, · · · , T}:

Eq. (1) ≈ argmax
W

∑

S

p(X|S)p(S|W )p(W ).

The three factors, p(X|S), p(S|W ), and p(W ),
are acoustic, lexicon, and language models, re-

spectively. These are further factorized by using

a probabilistic chain rule and conditional indepen-

dence assumption as follows:







p(X|S) ≈
∏

t
p(st|xt)
p(st)

,

p(S|W )≈
∏

t p(st|st−1,W ),

p(W ) ≈
∏

n p(wn|wn−1, . . . , wn−m−1),
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where the acoustic model is replaced with

the product of framewise posterior distributions

p(st|xt) computed by powerful DNN classi-

fiers by using so-called pseudo likelihood trick

(Bourlard and Morgan, 1994). p(st|st−1,W ) is

represented by an HMM state transition given W ,

and the conversion from W to HMM states is de-

terministically performed by using a pronuncia-

tion dictionary through a phoneme representation.

p(wn|wn−1, . . . , wn−m−1) is obtained based on

an (m − 1)th-order Markov assumption as a m-

gram model.

These conditional independence assumptions

are often regarded as too strong assumption, lead-

ing to model mis-specification. Also, to train the

framewise posterior p(st|xt), we have to provide

a framewise state alignment st as a target, which

is often provided by a GMM/HMM system. Thus,

conventional DNN/HMM systems make the ASR

problem formulated with Eq. (1) feasible by us-

ing factorization and conditional independence as-

sumptions, at the cost of the problems discussed in

Section 1.

2.2 Connectionist Temporal Classification

(CTC)

The CTC formulation also follows from Bayes de-

cision theory (Eq. (1)). Note that the CTC formu-

lation uses L-length letter sequence C = {cl ∈
U|l = 1, · · · , L} with a set of distinct letters U .

Similarly to Section 2.1, by introducing frame-

wise letter sequence with an additional ”blank”

( < b >) symbol Z = {zt ∈ U ∪ < b >|t =
1, · · · , T}, and by using the probabilistic chain

rule and conditional independence assumption, the

posterior distribution p(C|X) is factorized as fol-

lows:

p(C|X) ≈
∑

Z

∏

t

p(zt|zt−1, C)p(zt|X)

︸ ︷︷ ︸

,pctc(C|X)

p(C)

p(Z)

(2)

As a result, CTC has three distribution com-

ponents similar to the DNN/HMM case, i.e.,

framewise posterior distribution p(zt|X), tran-

sition probability p(zt|zt−1, C)1, and prior dis-

tributions of letter and hidden-state sequences,

1Note that in the implementation, the transition value is
not normalized (i.e., not a probabilistic value) (Graves and
Jaitly, 2014; Miao et al., 2015), similar to the HMM state
transition implementation (Povey et al., 2011)

p(C) and p(Z), respectively. We also define

the CTC objective function pctc(C|X) used in

the later formulation. The framewise posterior

distribution p(zt|X) is conditioned on all in-

puts X , and it is quite natural to be modeled

by using bidirectional long short-term memory

(BLSTM): p(zt|X) = Softmax(Lin(ht)) and

ht = BLSTM(X). Softmax(·) is a sofmax activa-

tion function, and Lin(·) is a linear layer to convert

hidden vector ht to a (|U|+1) dimensional vector

(+1 means a blank symbol introduced in CTC).

Although Eq. (2) has to deal with a summa-

tion over all possible Z, it is efficiently computed

by using dynamic programming (Viterbi/forward-

backward algorithm) thanks to the Markov prop-

erty. In summary, although CTC and DNN/HMM

systems are similar to each other due to condi-

tional independence assumptions, CTC does not

require pronunciation dictionaries and omits an

GMM/HMM construction step.

2.3 Attention mechanism

Compared with hybrid and CTC approaches, the

attention-based approach does not make any con-

ditional independence assumptions, and directly

estimates the posterior p(C|X) based on a prob-

abilistic chain rule, as follows:

p(C|X) =
∏

l

p(cl|c1, · · · , cl−1, X)

︸ ︷︷ ︸

,patt(C|X)

, (3)

where patt(C|X) is an attention-based objective

function. p(cl|c1, · · · , cl−1, X) is obtained by

p(cl|c1, · · · , cl−1, X) = Decoder(rl,ql−1, cl−1)

ht = Encoder(X) (4)

alt = Attention({al−1}t,ql−1,ht) (5)

rl =
∑

t

altht. (6)

Eq. (4) converts input feature vectors X into a

framewise hidden vector ht in an encoder net-

work based on BLSTM, i.e., Encoder(X) ,

BLSTM(X). Attention(·) in Eq. (5) is based on

a content-based attention mechanism with convo-

lutional features, as described in (Chorowski et al.,

2015) (see Appendix A). alt is an attention weight,

and represents a soft alignment of hidden vector ht

for each output cl based on the weighted summa-

tion of hidden vectors to form letter-wise hidden

vector rl in Eq. (6). A decoder network is another
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recurrent network conditioned on previous output

cl−1 and hidden vector ql−1, similar to RNNLM,

in addition to letter-wise hidden vector rl. We use

Decoder(·) , Softmax(Lin(LSTM(·))).
Attention-based ASR does not explicitly sep-

arate each module, and potentially handles the

all issues pointed out in Section 1. It implic-

itly combines acoustic models, lexicon, and lan-

guage models as encoder, attention, and decoder

networks, which can be jointly trained as a single

deep neural network.

Compared with DNN/HMM and CTC, which

are based on a transition form from t − 1 to t due

to the Markov assumption, the attention mecha-

nism does not maintain this constraint, and often

provides irregular alignments. A major focus of

this paper is to address this problem by using joint

CTC/attention decoding.

3 Joint CTC/attention decoding

This section explains a hybrid CTC/attention net-

work, which potentially utilizes both benefits of

CTC and attention in ASR.

3.1 Hybrid CTC/attention architecture

Kim et al. (2017) uses a CTC objective function as

an auxiliary task to train the attention model en-

coder within the multitask learning (MTL) frame-

work, and this paper also uses the same archi-

tecture. Figure 1 illustrates the overall architec-

ture of the framework, where the same BLSTM is

shared with CTC and attention encoder networks,

respectively). Unlike the sole attention model, the

forward-backward algorithm of CTC can enforce

monotonic alignment between speech and label

sequences during training. That is, rather than

solely depending on data-driven attention meth-

ods to estimate the desired alignments in long se-

quences, the forward-backward algorithm in CTC

helps to speed up the process of estimating the de-

sired alignment. The objective to be maximized is

a logarithmic linear combination of the CTC and

attention objectives, i.e., pctc(C|X) in Eq. (2) and

patt(C|X) in Eq. (3):

LMTL = λ log pctc(C|X) + (1− λ) log patt(C|X),
(7)

with a tunable parameter λ : 0 ≤ λ ≤ 1.

3.2 Decoding strategies

The inference step of our joint CTC/attention-

based end-to-end speech recognition is performed
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Figure 1: Joint CTC/attention based end-to-end

framework: the shared encoder is trained by both

CTC and attention model objectives simultane-

ously. The shared encoder transforms our input

sequence {xt · · ·xT } into high level features H =
{ht · · ·hT }, and the attention decoder generates

the letter sequence {c1 · · · cL}.

by label synchronous decoding with a beam

search similar to conventional attention-based

ASR. However, we take the CTC probabilities into

account to find a hypothesis that is better aligned

to the input speech, as shown in Figure 1. Here-

after, we describe the general attention-based de-

coding and conventional techniques to mitigate the

alignment problem. Then, we propose joint de-

coding methods with a hybrid CTC/attention ar-

chitecture.

3.2.1 Attention-based decoding in general

End-to-end speech recognition inference is gener-

ally defined as a problem to find the most probable

letter sequence Ĉ given the speech input X , i.e.

Ĉ = arg max
C∈U∗

log p(C|X). (8)

In attention-based ASR, p(C|X) is computed by

Eq. (3), and Ĉ is found by a beam search tech-

nique.

Let Ωl be a set of partial hypotheses of the

length l. At the beginning of the beam search,

Ω0 contains only one hypothesis with the start-

ing symbol <sos> and the hypothesis score

α(<sos>, X) is set to 0. For l = 1 to Lmax, each

partial hypothesis in Ωl−1 is expanded by append-

ing possible single letters, and the new hypothe-

ses are stored in Ωl, where Lmax is the maximum
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length of the hypotheses to be searched. The score

of each new hypothesis is computed in the log do-

main as

α(h,X) = α(g,X) + log p(c|g,X), (9)

where g is a partial hypothesis in Ωl−1, c is a letter

appended to g, and h is the new hypothesis such

that h = g · c. If c is a special symbol that repre-

sents the end of a sequence, <eos>, h is added to

Ω̂ but not Ωl, where Ω̂ denotes a set of complete

hypotheses. Finally, Ĉ is obtained by

Ĉ = argmax
h∈Ω̂

α(h,X). (10)

In the beam search process, Ωl is allowed to hold

only a limited number of hypotheses with higher

scores to improve the search efficiency.

Attention-based ASR, however, may be prone

to include deletion and insertion errors because

of its flexible alignment property, which can at-

tend to any portion of the encoder state sequence

to predict the next label, as discussed in Section

2.3. Since attention is generated by the decoder

network, it may prematurely predict the end-of-

sequence label, even when it has not attended to

all of the encoder frames, making the hypothesis

too short. On the other hand, it may predict the

next label with a high probability by attending to

the same portions as those attended to before. In

this case, the hypothesis becomes very long and

includes repetitions of the same letter sequence.

3.2.2 Conventional decoding techniques

To alleviate the alignment problem, a length

penalty term is commonly used to control the hy-

pothesis length to be selected (Chorowski et al.,

2015; Bahdanau et al., 2016). With the length

penalty, the decoding objective in Eq. (8) is

changed to

Ĉ = arg max
C∈U∗

{log p(C|X) + γ|C|} , (11)

where |C| is the length of the sequence C, and γ is

a tunable parameter. However, it is actually diffi-

cult to completely exclude hypotheses that are too

long or too short even if γ is carefully tuned. It

is also effective to control the hypothesis length

by the minimum and maximum lengths to some

extent, where the minimum and maximum are se-

lected as fixed ratios to the length of the input

speech. However, since there are exceptionally

long or short transcripts compared to the input

speech, it is difficult to balance saving such excep-

tional transcripts and preventing hypotheses with

irrelevant lengths.

Another approach is the coverage term re-

cently proposed in (Chorowski and Jaitly, 2016),

which is incorporated in the decoding objective in

Eq. (11) as

Ĉ = arg max
C∈U∗

{log p(C|X) + γ|C|

+η · coverage(C|X)} , (12)

where the coverage term is computed by

coverage(C|X) =
T∑

t=1

[
L∑

l=1

alt > τ

]

. (13)

η and τ are tunable parameters. The coverage term

represents the number of frames that have received

a cumulative attention greater than τ . Accord-

ingly, it increases when paying close attention to

some frames for the first time, but does not in-

crease when paying attention again to the same

frames. This property is effective for avoiding

looping of the same label sequence within a hy-

pothesis. However, it is still difficult to obtain a

common parameter setting for γ, η, τ , and the op-

tional min/max lengths so that they are appropriate

for any speech data from different tasks.

3.2.3 Joint decoding

Our joint CTC/attention approach combines the

CTC and attention-based sequence probabilities in

the inference step, as well as the training step.

Suppose pctc(C|X) in Eq. (2) and patt(C|X) in

Eq. (3) are the sequence probabilities given by

CTC and the attention model. The decoding ob-

jective is defined similarly to Eq. (7) as

Ĉ = arg max
C∈U∗

{λ log pctc(C|X)

+(1− λ) log patt(C|X)} . (14)

The CTC probability enforces a monotonic align-

ment that does not allow large jumps or looping

of the same frames. Accordingly, it is possible

to choose a hypothesis with a better alignment

and exclude irrelevant hypotheses without relying

on the coverage term, length penalty, or min/max

lengths.

In the beam search process, the decoder needs

to compute a score for each partial hypothesis us-

ing Eq. (9). However, it is nontrivial to combine

the CTC and attention-based scores in the beam
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search, because the attention decoder performs it

output-label-synchronously while CTC performs

it frame-synchronously. To incorporate the CTC

probabilities in the hypothesis score, we propose

two methods.

Rescoring

The first method is a two-pass approach, in which

the first pass obtains a set of complete hypotheses

using the beam search, where only the attention-

based sequence probabilities are considered. The

second pass rescores the complete hypotheses us-

ing the CTC and attention probabilities, where the

CTC probabilities are obtained by the forward al-

gorithm for CTC (Graves et al., 2006). The rescor-

ing pass obtains the final result according to

Ĉ = argmax
h∈Ω̂

{λαctc(h,X) + (1− λ)αatt(h,X)} ,

(15)

where
{

αctc(h,X) , log pctc(h|X)

αatt(h,X) , log patt(h|X)
. (16)

One-pass decoding

The second method is one-pass decoding, in which

we compute the probability of each partial hypoth-

esis using CTC and an attention model. Here, we

utilize the CTC prefix probability (Graves, 2008)

defined as the cumulative probability of all label

sequences that have the partial hypothesis h as

their prefix:

pctc(h, . . . |X) =
∑

ν∈(U∪{<eos>})+

pctc(h · ν|X),

and we define the CTC score as

αctc(h,X) , log pctc(h, . . . |X), (17)

where ν represents all possible label sequences ex-

cept the empty string. The CTC score cannot be

obtained recursively as in Eq. (9), but it can be

computed efficiently by keeping the forward prob-

abilities over the input frames for each partial hy-

pothesis. Then it is combined with αatt(h,X).
The beam search algorithm for one-pass decod-

ing is shown in Algorithm 1. Ωl and Ω̂ are ini-

tialized in lines 2 and 3 of the algorithm, which

are implemented as queues that accept partial hy-

potheses of the length l and complete hypothe-

ses, respectively. In lines 4–25, each partial hy-

pothesis g in Ωl−1 is extended by each label c

Algorithm 1 Joint CTC/attention one-pass decod-

ing

1: procedure ONEPASSBEAMSEARCH(X ,Lmax)
2: Ω0 ← {<sos>}

3: Ω̂← ∅
4: for l = 1 . . . Lmax do
5: Ωl ← ∅
6: while Ωl−1 6= ∅ do
7: g ← HEAD(Ωl−1)
8: DEQUEUE(Ωl−1)
9: for each c ∈ U ∪ {<eos>} do

10: h← g · c
11: α(h,X)←λαctc(h,X)+(1−λ)αatt(h,X)
12: if c = <eos> then
13: ENQUEUE(Ω̂, h)
14: else
15: ENQUEUE(Ωl, h)
16: if |Ωl| > beamWidth then
17: REMOVEWORST(Ωl)
18: end if
19: end if
20: end for
21: end while
22: if ENDDETECT(Ω̂, l) = true then
23: break ⊲ exit for loop
24: end if
25: end for
26: return argmax

h∈Ω̂ α(h,X)
27: end procedure

in the label set U . Each extended hypothesis h

is scored in line 11, where CTC and attention-

based scores are obtained by αctc() and αatt(). Af-

ter that, if c = <eos>, the hypothesis h is as-

sumed to be complete and stored in Ω̂ in line 13.

If c 6= <eos>, h is stored in Ωl in line 15, where

the number of hypotheses in Ωl is checked in line

16. If the number exceeds the beam width, the hy-

pothesis with the worst score in Ωl is removed by

REMOVEWORST() in line 17.

In line 11, the CTC and attention model scores

are computed for each partial hypothesis. The at-

tention score is easily obtained in the same man-

ner as Eq. (9), whereas the CTC score requires

a modified forward algorithm that computes it

label-synchronously. The algorithm to compute

the CTC score is summarized in Appendix B. By

considering the attention and CTC scores during

the beam search, partial hypotheses with irregu-

lar alignments can be excluded, and the number of

search errors is reduced.

We can optionally apply an end detection tech-

nique to reduce the computation by stopping the

beam search before l reaches Lmax. Function

ENDDETECT(Ω̂, l) in line 22 returns true if

there is little chance of finding complete hypothe-

ses with higher scores as l increases in the future.
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In our implementation, the function returns true

if

M−1∑

m=0

[

max
h∈Ω̂:|h|=l−m

α(h,X)−max
h′∈Ω̂

α(h′, X)<Dend

]

=M,

(18)

where Dend and M are predetermined thresholds.

This equation becomes true if complete hypothe-

ses with smaller scores are generated M times

consecutively. This technique is also available in

attention-based decoding and rescoring methods

described in Sections 3.2.1–3.2.3.

4 Experiments

We used Japanese and Mandarin Chinese ASR

benchmarks to show the effectiveness of the pro-

posed joint CTC/attention decoding approach.

The main reason for choosing these two languages

is that those ideogram languages have relatively

shorter lengths for letter sequences than those in

alphabet languages, which reduces computational

complexities greatly, and makes it easy to handle

context information in a decoder network. Our

preliminary investigation shows that Japanese and

Mandarin Chinese end-to-end ASR can be eas-

ily scaled up, and shows state-of-the-art perfor-

mance without using various tricks developed in

English tasks. Also, we would like to emphasize

that the system did not use language-specific pro-

cessing (e.g., morphological analyzer, Pinyin dic-

tionary), and simply used all appeared characters

in their transcriptions including Japanese syllable

and Kanji, Chinese, Arabic number, and alphabet

characters, as they are.

4.1 Corpus of Spontaneous Japanese (CSJ)

We demonstrated ASR experiments by using the

Corpus of Spontaneous Japanese (CSJ) (Maekawa

et al., 2000). CSJ is a standard Japanese ASR task

based on a collection of monologue speech data

including academic lectures and simulated presen-

tations. It has a total of 581 hours of training

data and three types of evaluation data, where each

evaluation task consists of 10 lectures (totally 5

hours). As input features, we used 40 mel-scale

filterbank coefficients, with their first and second

order temporal derivatives to obtain a total of 120-

dimensional feature vector per frame. The encoder

was a 4-layer BLSTM with 320 cells in each layer

and direction, and linear projection layer is fol-

lowed by each BLSTM layer. The 2nd and 3rd

bottom layers of the encoder read every second

hidden state in the network below, reducing the

utterance length by the factor of 4. We used the

content-based attention mechanism (Chorowski

et al., 2015), where the 10 centered convolution

filters of width 100 were used to extract the con-

volutional features. The decoder network was a

1-layer LSTM with 320 cells. The AdaDelta algo-

rithm (Zeiler, 2012) with gradient clipping (Pas-

canu et al., 2012) was used for the optimization.

Dend and M in Eq (18) were set as log 1e−10 and

3, respectively. The hybrid CTC/attention ASR

was implemented by using the Chainer deep learn-

ing toolkit (Tokui et al., 2015).

Table 1 first compares the character error rate

(CER) for conventional attention and MTL based

end-to-end ASR without the joint decoding. λ in

Eq. (7) was set to 0.1. When decoding, we man-

ually set the minimum and maximum lengths of

output sequences by 0.025 and 0.15 times input

sequence lengths, respectively. The length penalty

γ in Eq. (11) was set to 0.1. Multitask learning

(MTL) significantly outperformed attention-based

ASR in the all evaluation tasks, which confirms

the effectiveness of a hybrid CTC/attention archi-

tecture. Table 1 also shows that joint decoding,

described in Section 3.2, further improved the per-

formance without setting any search parameters

(maximum and minimum lengths, length penalty),

but only setting a weight parameter λ = 0.1 in

Eq. (15) similar to the MTL case. Figure 2 also

compares the dependency of λ on the CER for the

CSJ evaluation tasks, and showing that λ was not

so sensitive to the performance if we set λ around

the value we used at MTL (i.e., 0.1).

We also compare the performance of the

proposed MTL-large, which has a larger net-

work (5-layer encoder network), with the con-

ventional state-of-the-art techniques obtained by

using linguistic resources. The state-of-the-art

CERs of GMM discriminative training and DNN-

sMBR/HMM systems are obtained from the Kaldi

recipe (Moriya et al., 2015) and a system based on

syllable-based CTC with MAP decoding (Kanda

et al., 2016). The Kaldi recipe systems use aca-

demic lectures (236h) for AM training and all

training-data transcriptions for LM training. Un-

like the proposed method, these methods use lin-

guistic resources including a morphological an-

alyzer, pronunciation dictionary, and language

model. Note that since the amount of training
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Table 1: Character error rate (CER) for conventional attention and hybrid CTC/attention end-to-end

ASR. Corpus of Spontaneous Japanese speech recognition (CSJ) task.

Model Hour Task1 Task2 Task3

Attention 581 11.4 7.9 9.0

MTL 581 10.5 7.6 8.3

MTL + joint decoding (rescoring) 581 10.1 7.1 7.8

MTL + joint decoding (one pass) 581 10.0 7.1 7.6

MTL-large + joint decoding (rescoring) 581 8.4 6.2 6.9

MTL-large + joint decoding (one pass) 581 8.4 6.1 6.9

GMM-discr. (Moriya et al., 2015) 236 for AM, 581 for LM 11.2 9.2 12.1

DNN/HMM (Moriya et al., 2015) 236 for AM, 581 for LM 9.0 7.2 9.6

CTC-syllable (Kanda et al., 2016) 581 9.4 7.3 7.5
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Figure 2: The effect of weight parameter λ in

Eq. (14) on the CSJ evaluation tasks (The CERs

were obtained by one-pass decoding).

data and experimental configurations of the pro-

posed and reference methods are different, it is

difficult to compare the performance listed in the

table directly. However, since the CERs of the

proposed method are superior to those of the best

reference results, we can state that the proposed

method achieves the state-of-the-art performance.

4.2 Mandarin telephone speech

We demonstrated ASR experiments on HKUST

Mandarin Chinese conversational telephone

speech recognition (MTS) (Liu et al., 2006).

It has 5 hours recording for evaluation, and

we extracted 5 hours from training data as a

development set, and used the rest (167 hours)

as a training set. All experimental conditions

were same as those in Section 4.1 except that

we used the λ = 0.5 in training and decoding

instead of 0.1 based on our preliminary investi-

gation and 80 mel-scale filterbank coefficients

with pitch features as suggested in (Miao et al.,

2016). In decoding, we also added a result of

the coverage-term based decoding (Chorowski

and Jaitly, 2016), as discussed in Section 3.2

(η = 1.5, τ = 0.5, γ = −0.6 for attention model

and η = 1.0, τ = 0.5, γ = −0.1 for MTL),

since it was difficult to eliminate the irregular

alignments during decoding by only tuning the

maximum and minimum lengths and length

penalty (we set the minimum and maximum

lengths of output sequences by 0.0 and 0.1 times

input sequence lengths, respectively and set

γ = 0.6 in Table 2).

Table 2 shows the effectiveness of MTL and

joint decoding over the attention-based approach,

especially showing the significant improvement of

the joint CTC/attention decoding. Similar to the

CSJ experiments in Section 4.1, we did not use

the length-penalty term or the coverage term in

joint decoding. This is an advantage of joint de-

coding over conventional approaches that require

many tuning parameters. We also generated more

training data by linearly scaling the audio lengths

by factors of 0.9 and 1.1 (speed perturb.). The fi-

nal model achieved 29.9% without using linguistic

resources, which defeats moderate state-of-the-art

systems including CTC-based methods2.

4.3 Decoding speed

We evaluated the speed of the joint decoding meth-

ods described in Section 3.2.3. ASR decoding was

performed with different beam widths of 1, 3, 5,

10, and 20, and the processing time and CER were

measured using a computer with Intel(R) Xeon(R)

processors, E5-2690 v3, 2.6 GHz. Although the

processors were multicore CPUs and the computer

had GPUs, we ran the decoding program as a

2 Although the proposed method did not reach the perfor-
mance obtained by a time delayed neural network (TDNN)
with lattice-free sequence discriminative training (Povey
et al., 2016), our recent work scored 28.0%, and outper-
formed the lattice-free MMI result with advanced network
architectures.
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Table 2: Character error rate (CER) for conventional attention and hybrid CTC/attention end-to-end

ASR. HKUST Mandarin Chinese conversational telephone speech recognition (MTS) task.

Model dev eval

Attention 40.3 37.8

MTL 38.7 36.6

Attention + coverage 39.4 37.6

MTL + coverage 36.9 35.3

MTL + joint decoding (rescoring) 35.9 34.2

MTL + joint decoding (one pass) 35.5 33.9

MTL-large (speed perturb.) + joint decoding (rescoring) 31.1 30.1

MTL-large (speed perturb.) + joint decoding (one pass) 31.0 29.9

DNN/HMM – 35.9

LSTM/HMM (speed perturb.) – 33.5

CTC with language model (Miao et al., 2016) – 34.8

TDNN/HMM, lattice-free MMI (speed perturb.) (Povey et al., 2016) – 28.2

single-threaded process on a CPU to investigate its

basic computational cost.

Table 3: RTF versus CER for the one-pass and

rescoring methods.

Beam Rescoring One pass
Task

width RTF CER RTF CER

1 0.66 10.9 0.66 10.7

CSJ 3 1.11 10.3 1.02 10.1

Task1 5 1.50 10.2 1.31 10.0

10 2.46 10.1 2.07 10.0

20 5.02 10.1 3.76 10.0

1 0.68 37.1 0.65 35.9

HKUST 3 0.89 34.9 0.86 34.4

Eval set 5 1.04 34.6 1.03 34.2

10 1.55 34.4 1.50 34.0

20 2.66 34.2 2.55 33.9

Table 3 shows the relationships between the

real-time factor (RTF) and the CER for the CSJ

and HKUST tasks. We evaluated the rescoring and

one-pass decoding methods when using the end

detection in Eq. (18). In every beam width, we

can see that the one-pass method runs faster with

an equal or lower CER than the rescoring method.

This result demonstrates that the one-pass decod-

ing is effective for reducing search errors. Finally,

we achieved 1xRT with one-pass decoding when

using a beam width around 3 to 5, even though it

was a single-threaded process on a CPU. However,

the decoding process has not yet achieved real-

time ASR since CTC and the attention mechanism

need to access all of the frames of the input utter-

ance even when predicting the first label. This is

an essential problem of most end-to-end ASR ap-

proaches and will be solved in future work.

5 Summary and discussion

This paper proposes end-to-end ASR by us-

ing joint CTC/attention decoding, which outper-

formed ordinary attention-based end-to-end ASR

by solving the misalignment issues. The joint de-

coding methods actually reduced most of the ir-

regular alignments, which can be confirmed from

the examples of recognition errors and alignment

plots shown in Appendix C.

The proposed end-to-end ASR does not re-

quire linguistic resources, such as morphological

analyzer, pronunciation dictionary, and language

model, which are essential components of conven-

tional Japanese and Mandarin Chinese ASR sys-

tems. Nevertheless, the method achieved com-

parable/superior performance to the state-of-the-

art conventional systems for the CSJ and MTS

tasks. In addition, the proposed method does not

require GMM/HMM construction for initial align-

ments, DNN pre-training, lattice generation for se-

quence discriminative training, complex search in

decoding (e.g., FST decoder or lexical tree search

based decoder). Thus, the method greatly simpli-

fies the ASR building process, reducing code size

and complexity.

Future work will apply this technique to the

other languages including English, where we have

to solve an issue of long sequence lengths, which

requires heavy computation cost and makes it dif-

ficult to train a decoder network. Actually, neu-

ral machine translation handles this issue by us-

ing a sub word unit (concatenating several letters

to form a new sub word unit) (Wu et al., 2016),

which would be a promising direction for end-to-

end ASR.
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A Location-based attention mechanism

This section provides the equations of a location-

based attention mechanism Attention(·) in Eq. (5).

alt = Attention({al−1}t,ql−1,ht),

where {al−1}t = [al−1,1, · · · , al−1,T ]
⊤. To obtain

alt, we use the following equations:

{ft}t = K ∗ al−1 (19)

elt = g⊤tanh(Gqql−1 +Ghht +Gfft + b)
(20)

alt =
exp(etl)

∑

t exp(etl)
(21)

K, Gq, Gh, Gf are matrix parameters. b and g are

vector parameters. ∗ denotes convolution along in-

put feature axis t with matrix K to produce feature

{ft}t.

Algorithm 2 CTC hypothesis score

1: function αCTC(h,X)
2: g, c← h ⊲ split h into the last label c and the rest g
3: if c = <eos> then
4: return log{γ

(n)
T

(g) + γ
(b)
T

(g)}
5: else

6: γ
(n)
1 (h)←

{

p(z1 = c|X) if g = <sos>

0 otherwise

7: γ
(b)
1 (h)← 0

8: Ψ← γ
(n)
1 (h)

9: for t = 2 . . . T do

10: Φ← γ
(b)
t−1(g) +

{

0 if last(g)=c

γ
(n)
t−1(g) otherwise

11: γ
(n)
t (h)←

(

γ
(n)
t−1(h) + Φ

)

p(zt = c|X)

12: γ
(b)
t (h) ←

(

γ
(b)
t−1(h) + γ

(n)
t−1(h)

)

p(zt =

<b>|X)
13: Ψ← Ψ+Φ · p(zt = c|X)
14: end for
15: return log(Ψ)
16: end if
17: end function

B CTC-based hypothesis score

The CTC score αctc(h,X) in Eq. (17) is computed

as shown in Algorithm 2. Let γ
(n)
t (h) and γ

(b)
t (h)

be the forward probabilities of the hypothesis h

over the time frames 1 . . . t, where the superscripts

(n) and (b) denote different cases in which all

CTC paths end with a nonblank or blank sym-

bol, respectively. Before starting the beam search,

γ
(n)
t () and γ

(b)
t () are initialized for t = 1, . . . , T

as

γ
(n)
t (<sos>) = 0, (22)

γ
(b)
t (<sos>)=

t∏

τ=1

γ
(b)
τ−1(<sos>)p(zτ =<b>|X),

(23)

where we assume that γ
(b)
0 (<sos>) = 1 and <b>

is a blank symbol. Note that the time index t and

input length T may differ from those of the input

utterance X owing to the subsampling technique

for the encoder (Povey et al., 2016; Chan et al.,

2015).

In Algorithm 2, the hypothesis h is first split

into the last label c and the rest g in line 2. If c

is <eos>, it returns the logarithm of the forward

probability assuming that h is a complete hypothe-

sis in line 4. The forward probability of h is given

by

pctc(h|X) = γ
(n)
T (g) + γ

(b)
T (g) (24)

according to the definition of γ
(n)
t () and γ

(b)
t (). If

c is not <eos>, it computes the forward proba-
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bilities γ
(n)
t (h) and γ

(b)
t (h), and the prefix proba-

bility Ψ = pctc(h, . . . |X) assuming that h is not

a complete hypothesis. The initialization and re-

cursion steps for those probabilities are described

in lines 6–14. In this function, we assume that

whenever we compute the probabilities γ
(n)
t (h),

γ
(b)
t (h) and Ψ, the forward probabilities γ

(n)
t (g)

and γ
(b)
t (g) have already been obtained through

the beam search process because g is a prefix of

h such that |g| < |h|.

C Examples of irregular alignments

We list examples of irregular alignments caused by

attention-based ASR. Figure 3 shows an example

of repetitions of word chunks. The first chunk of

blue characters in attention-based ASR (MTL) is

appeared again, and the whole second chunk part

becomes insertion errors. Figure 4 shows an ex-

ample of deletion errors. The latter half of the

sentence in attention-based ASR (MTL) is bro-

ken, which causes deletion errors. The hybrid

CTC/attention with both multitask learning and

joint decoding avoids these issues. Figures 5 and 6

show alignment plots corresponding to Figs. 3 and

4, respectively, where X-axis shows time frames

and Y-axis shows the character sequence hypoth-

esis. These visual plots also demonstrate that the

proposed joint decoding approach can suppress ir-

regular alignments.

id: (20040717_152947_A010409_B010408-A-057045-057837) 
Reference 

但 是 如 果 你 想 想 如 果 回 到 了 过 去 你 如 果 带 着 这 个 现 在 的 记 

忆 是 不 是 很 痛 苦 啊 

MTL 

Scores: (#Correctness #Substitution #Deletion #Insertion) 28 2 3 45 

但 是 如 果 你 想 想 如 果 回 到 了 过 去 你 如 果 带 着 这 个 现 在 的 节 

如 果 你 想 想 如 果 回 到 了 过 去 你 如 果 带 着 这 个 现 在 的 节 如 果 
你 想 想 如 果 回 到 了 过 去 你 如 果 带 着 这 个 现 在 的 机 是 不 是 很 

・ ・ ・ 

Joint decoding 

Scores: (#Correctness #Substitution #Deletion #Insertion) 31 1 1 0 
HYP:  但 是 如 果 你 想 想 如 果 回 到 了 过 去 你 如 果 带 着 这 个 现 

在 的 ・ 机 是 不 是 很 痛 苦 啊 

Figure 3: Example of insertion errors appeared in

attention-based ASR with MTL and joint decod-

ing.
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Joint decoding 

Scores: (#Correctness #Substitution #Deletion #Insertion) 67 9 1 0 
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Figure 4: Example of deletion errors appeared in

attention-based ASR with MTL and joint decod-

ing.

(a) MTL (b) Joint decoding

Figure 5: Example of alignments includ-

ing insertion errors in attention-based ASR

with MTL and joint decoding (Utterance

id: 20040717 152947 A010409 B010408-A-

057045-057837).

(a) MTL (b) Joint decoding

Figure 6: Example of alignments includ-

ing deletion errors in attention-based ASR

with MTL and joint decoding (Utterance id:

A01F0001 0844951 0854386).
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