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Abstract
Many kinds of independence have been defined in non-commutative probability theory. Natural
independence is an important class of independence; this class consists of five independences (ten-
sor, free, Boolean, monotone and anti-monotone ones). In the present paper, a unified treatment
of joint cumulants is introduced for natural independence. The way we define joint cumulants
enables us not only to find the monotone joint cumulants but also to give a new characterization
of joint cumulants for other kinds of natural independence, i.e., tensor, free and Boolean indepen-
dences. We also investigate relations between generating functions of moments and monotone
cumulants. We find a natural extension of the Muraki formula, which describes the sum of mono-
tone independent random variables, to the multivariate case.

1 Introduction

Many kinds of independence are known in non-commutative probability theory. The most im-
portant example is the usual independence in probability theory, naturally extended to the non-
commutative case. This is called tensor independence. Free independence is another famous
example [17, 18] and there are many researches on it (see [19] for early results). After the ap-
pearance of free independence, Boolean [16] and monotone independence [8] were found as
other interesting examples of independence. To classify these independences, Speicher defined
in [15] universal independence which satisfies some nice properties such as associativity of inde-
pendence. After that, Schürmann and Ben Ghorbal formulated the universal independence in a
categorical setting in [3]. In [9] Muraki defined quasi-universal independence which allows non-
commutativity of independence by replacing partitions in the definition of universal independence
by ordered partitions. Later Muraki introduced natural independence in [10] as a generalization
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of the paper [3]. He proved that there are only five kinds of natural independence: tensor, free,
Boolean, monotone and anti-monotone independences. Since essential difference does not appear
between monotone and anti-monotone independences for the purpose of this paper, we do not
consider anti-monotone independence.
Let (A ,ϕ) be an algebraic probability space, i.e., a pair of a unital ∗-algebra and a state on it.
Let Aλ be ∗-subalgebras, where λ ∈ Λ are indices. The above mentioned four independences are
defined as rules to calculate moments ϕ(X1 · · ·Xn) for

X i ∈Aλi
, λi 6= λi+1, 1≤ i ≤ n− 1, n≥ 2.

Definition 1.1. (1) Tensor independence:
�

Aλ
	

is tensor independent if

ϕ(X1 · · ·Xn) =
∏

λ∈Λ

ϕ
�−−−→∏

i;X i∈Aλ

X i

�

,

where
−→∏

i∈V X i is the product of X i , i ∈ V in the same order as they appear in X1 · · ·Xn.
(2) Free independence [17]: We assume allAλ contain the unit ofA .

�

Aλ
	

is free independent
if

ϕ(X1 · · ·Xn) = 0

holds whenever ϕ(X1) = · · ·= ϕ(Xn) = 0.
(3) Boolean independence [16]:

�

Aλ
	

is Boolean independent if

ϕ(X1 · · ·Xn) = ϕ(X1) · · ·ϕ(Xn).

(4) Monotone independence [8]: We assume that Λ is equipped with a linear order <. Then
�

Aλ
	

is monotone independent if

ϕ(X1 · · ·X i · · ·Xn) = ϕ(X i)ϕ(X1 · · ·X i−1X i+1 · · ·Xn)

holds when i satisfies λi−1 < λi and λi > λi+1 (one of the inequalities is eliminated when i = 1 or
i = n).

Independence for subsets Sλ ⊂A is defined by taking the algebras Aλ generated by Sλ (without
the unit ofA in the case of monotone or Boolean independence).
Many probabilistic notions have been introduced for each kind of independence. In particular,
analogues of cumulants are a central topic in this field. In the usual probability theory, cumulants
are extensively used in the study such as the correlation function of a stochastic process. When
more than one random variables are concerned, cumulants for a single random variable are not
adequate and their extension to the multivariate case is required. Cumulants for the multivariate
case is called joint cumulants or sometimes multivariate cumulants. In free probability theory,
Voiculescu introduced free cumulants in [17, 18] for a single random variable as an analogy of the
cumulants in probability theory. Later Speicher defined free cumulants for the multivariate case
[14]. Speicher also clarified that non-crossing partitions appear in the relation between moments
and free cumulants. The reader is referred to [11] for further references. Boolean cumulants were
introduced in [16] in the single variable case and seemingly in [7] in the multivariate case.
Lehner unified many kinds of cumulants in non-commutative probability theory in terms of Good’s
formula. A crucial idea was a very general notion of independence called an exchangeability
system [7]. Monotone cumulants however cannot be defined in Lehner’s approach. This is because
monotone independence is non-commutative: if X and Y are monotone independent, then Y and
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X are not necessarily monotone independent. Therefore, the concept of “mutual independence of
random variables” fails to hold. In spite of this, we found a way to define monotone cumulants
uniquely for a single variable in [6]. In the present paper, we generalize the method to define
joint cumulants for monotone independence.
For tensor, free and Boolean cumulants, the following properties are considered to be basic.

(MK1) Multilinearity: Kn :A n→ C is multilinear.

(MK2) Polynomiality: There exists a polynomial Pn such that

Kn(X1, · · · , Xn) = ϕ(X1 · · ·Xn) + Pn
�

{ϕ(X i1 · · ·X ip
)}1≤p≤n−1,

i1<···<ip

�

.

(MK3) Vanishment: If X1, · · · , Xn are divided into two independent parts, i.e., there exist nonempty,
disjoint subsets I , J ⊂ {1, · · · , n} such that I ∪ J = {1, · · · , n} and {X i , i ∈ I}, {X i , i ∈ J} are
independent, then Kn(X1, · · · , Xn) = 0.

Cumulants for a single variable can be defined from joint cumulants: Kn(X ) := Kn(X , · · · , X ).
Clearly the additivity of cumulants for a single variable follows from the property (MK3): Kn(X +
Y ) = Kn(X ) + Kn(Y ) if X and Y are independent.
The additivity of monotone cumulants for a single variable does not hold because of the non-
commutativity of monotone independence. Instead, we proved in [6] that monotone cumulants
for a single variable satisfy that K M

n (N .X1) := K M
n (X1 + · · ·+ XN ) = NK M

n (X1) holds if X1 · · · , XN
are identically distributed and monotone independent.
The notion of a dot operation is important throughout this paper. This notion was used in the
classical umbral calculus [12]. Section 2 is devoted to the definition of the dot operation associated
to each notion of independence.
In Section 3 we define joint cumulants for natural independence in a unified way along an idea
similar to [6]. The new notion here is monotone joint cumulants denoted as K M

n . The property
(MK3) however does not hold for the reason above. Alternatively, it is expected that (MK3)
holds for identically distributed random variables in view of the single-variable case. This is,
however, not the case; as we shall see later, K M

3 (X , Y, X ) 6= 0 for monotone independent, identically
distributed X and Y . To solve this problem, we generalize the condition (MK3) in Section 3. We
can prove the uniqueness of joint cumulants under the generalized condition.
Then we prove the moment-cumulant formulae for natural independences in Section 4 and Section
5. The formulae for universal independences (tensor, free, Boolean) are known facts, but our
proof relates the highest coefficients and the moment-cumulant formulae. This proof is however
not applicable to the monotone case and monotone moment-cumulant formula is proved in a more
direct way.
In Section 6 we clarify the relation of generating functions for monotone independence. We need
to introduce a parameter t which arises naturally from the dot operation. This parameter can be
understood to be a parameter of a formal convolution semigroup.

2 Dot operation

We used in [6] the dot operation associated to a given notion of independence. This is also crucial
in the definition of joint cumulants for natural independence, that is, tensor, free, Boolean and
monotone ones.
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Definition 2.1. We fix a notion of independence among tensor, free, Boolean and monotone. Let
(A ,ϕ) be an algebraic probability space. We take copies {X ( j)} j≥1 in an algebraic probability
space ( fA , eϕ) for every X ∈A such that
(1) X 7→ X ( j) is a ∗-homomorphism fromA to fA for each j ≥ 1;
(2) eϕ(X ( j)1 X ( j)2 · · ·X

( j)
n ) = ϕ(X1X2 · · ·Xn) for any X i ∈A , j, n≥ 1;

(3) the subalgebrasA ( j) := {X ( j)}X∈A , j ≥ 1 are independent.
Then we define the dot operation N .X by

N .X = X (1) + · · ·+ X (N)

for X ∈A and a natural number N ≥ 0. We understand that 0.X = 0. Similarly we can iterate the
dot operation more than once; for instance N .(M .X ) can be defined (in a suitable space).

Remark 2.2. (1) The notation N .X is inspired from “the classical umbral calculus” [12]. Indeed,
this notion can be used to develop some kind of umbral calculus in the context of quantum prob-
ability.
(2) In many cases, we denote eϕ by ϕ for simplicity.

We can explicitly construct the above copies as follows. Let ? be any one of the natural prod-
ucts of states (tensor, free, Boolean and monotone) on the free product of algebras and Λ :=
{(i1, · · · , in) : i j ∈ N (1 ≤ j ≤ n), n ∈ N}. For an algebraic probability space (A ,ϕ), we prepare
copies {(A λ,ϕλ)}λ∈Λ of it, i.e., (A λ,ϕλ) = (A ,ϕ) for any λ ∈ Λ. Let us define a free product of
algebras fA := ∗λ∈ΛA λ and a natural product of states eϕ := ?λ∈Λϕλ on fA . Let (·)λ : A 3 X 7→
X λ ∈A λ ⊂ fA be the embedding ofA into fA , where X λ is equal to X as an element ofA =A λ.
We denote by the same symbol (·)(i) the map A (i1,··· ,in) 3 X (i1,··· ,in) 7→ X (i1,··· ,in,i) ∈ A (i1,··· ,in,i) ⊂ fA ,
which can be extended to a ∗-homomorphism on fA . Then iteration of dot operations can be

realized in this space. For instance, N .(M .X ) is defined as
∑N

j=1

�

∑M
i=1 X (i)

�( j)
=
∑N

j=1

∑M
i=1 X (i, j).

Remark 2.3. While tensor, free and Boolean independences provide exchangeability systems,
monotone independence does not. However, we can extend an exchangeability system to include
monotone independence. More precisely, an exchangeability system for an algebraic probability
space (A ,ϕ) consists of copies {X (i)}i≥1 of random variables X ∈ A such that, for arbitrary ran-
dom variables X1, · · · , Xn ∈ A and a sequence (i1, · · · , in) of natural numbers, a joint moment
ϕ(X (i1)1 · · ·X (in)n ) is equal to ϕ(X (σ(i1))1 · · ·X (σ(in))n ) under any permutation σ of N. Let us consider
a weaker invariance that the joint moment is invariant under any order-preserving permutation
σ, i.e., a permutation σ of N such that i < j implies σ(i) < σ( j). Then the copies in Defini-
tion 2.1 satisfy this weaker invariance for monotone independence as well as for the other three
independences.

Proposition 2.4. (Associativity of dot operation). We fix a notion of independence among the four.
Then the dot operation satisfies that

ϕ
�

N .(M .X1) · · ·N .(M .Xn)
�

= ϕ
�

(MN).X1 · · · (MN).Xn
�

for any X i ∈A , n≥ 1.

Proof. N .(M .X i) is the sum

X (1,1)
i + X (2,1)

i + · · ·+ X (M ,1)
i + X (1,2)

i + · · ·+ X (M ,N)
i , (2.1)
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where {X (1, j)
i }ni=1, · · · , {X (M , j)

i }ni=1 are independent for each j and {X (1, j)
i + X (2, j)

i + · · ·+ X (M , j)
i }ni=1

( j = 1, · · · , N) are independent. On the other hand, (N M).X i is the sum

X (1)i + · · ·+ X (N M)
i , (2.2)

where {X (1)i }
n
i=1, · · · , {X (N M)

i }ni=1 are independent. Since natural independence is associative, the
random variables in (2.2) satisfy a stronger condition of independence than those in (2.1). By the
way, the condition of independence in (2.1) is enough to calculate the expectation only by sums
and products of joint moments of X1, · · · , Xn. Therefore, ϕ

�

N .(M .X1) · · ·N .(M .Xn)
�

must be equal
to ϕ

�

(MN).X1 · · · (MN).Xn
�

.

3 Generalized cumulants

The following properties are basic for joint cumulants in tensor, free and Boolean independences.

(MK1) Multilinearity: Kn :A n→ C is multilinear.

(MK2) Polynomiality: There exists a polynomial Pn such that

Kn(X1, · · · , Xn) = ϕ(X1 · · ·Xn) + Pn
�

{ϕ(X i1 · · ·X ip
)}1≤p≤n−1,

i1<···<ip

�

.

(MK3) Vanishment: If X1, · · · , Xn are divided into two independent parts, i.e., there exist nonempty,
disjoint subsets I , J ⊂ {1, · · · , n} such that I ∪ J = {1, · · · , n} and {X i , i ∈ I}, {X i , i ∈ J} are
independent, then Kn(X1, · · · , Xn) = 0.

Monotone cumulants do not satisfy (MK3), even if X i ’s are identically distributed. For instance,
K M

3 (X , Y, X ) = 1
2
(ϕ(X 2)ϕ(Y )− ϕ(X )ϕ(Y )ϕ(X )) if X and Y are monotone independent (see Ex-

ample 5.4 in Section 5). Instead we consider the following property.

(MK3’) Extensivity: Kn(N .X1, · · · , N .Xn) = NKn(X1, · · · , Xn).

The terminology of extensivity is taken from the property of Boltzmann entropy.
In the tensor, free and Boolean cases, it is well known that there exist cumulants which satisfy
(MK1), (MK2) and (MK3), and hence generalized cumulants exist obviously. Here we discuss the
uniqueness of generalized cumulants for all natural independences, including monotone indepen-
dence.

Theorem 3.1. For any one of tensor, free, Boolean and monotone independences, joint cumulants
satisfying (MK1), (MK2) and (MK3’) are unique.

Proof. We fix a notion of independence. Let {K (1)n } and {K (2)n } be two families of cumulants with
possibly different polynomials in the conditions (MK1), (MK2) and (MK3’). By the recursive use of
(MK2), ϕ(X1 · · ·Xn) can be represented as a polynomial of K (1)p ’s, and also as another polynomial

of K (2)p ’s:

ϕ(N .X1 · · ·N .Xn)

= K (1)n (X1, · · · , Xn) +Q(1)n (K
(1)
p (X i1 , · · · , X ip

) : 1≤ p ≤ n− 1, i1 < · · ·< ip)

= K (2)n (X1, · · · , Xn) +Q(2)n (K
(2)
p (X i1 , · · · , X ip

) : 1≤ p ≤ n− 1, i1 < · · ·< ip).
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It follows from (MK1) that these polynomials Q(1) and Q(2) have no constant terms or linear terms
with respect to K (i)p ’s. Then ϕ(N .X1 · · ·N .Xn) has forms such as

ϕ(N .X1 · · ·N .Xn) = NK (1)n (X1, · · · , Xn)

+ N2 · (a polynomial of N and {K (1)p (X i1 , · · · , X ip
)}1≤p≤n−1,

i1<···<ip

)

= NK (2)n (X1, · · · , Xn)

+ N2 · (a polynomial of N and {K (2)p (X i1 , · · · , X ip
)}1≤p≤n−1,

i1<···<ip

)

because both K (1)p ’s and K (2)p ’s satisfy (MK3’). The coefficients of N in the above two lines must be

the same. Therefore, K (1)n = K (2)n for any n.

The above theorem implies that generalized cumulants coincide with the usual cumulants in ten-
sor, free and Boolean independences since (MK3’) is weaker than (MK3). This is nothing but a
new characterization of those cumulants.
The existence of cumulants is not trivial. A key fact is the following.

Proposition 3.2. For tensor, free, Boolean and monotone independence, ϕ(N .X1 · · ·N .Xn) is a poly-
nomial of N and ϕ(X i1 · · ·X ik) (1 ≤ k ≤ n, i1 < · · · < ik) without a constant term with respect to
N.

Proof. First we notice that there exists a polynomial Sn (depending on the choice of independence)
for any n≥ 1 such that if {X i}ni=1 and {Yj}nj=1 are independent,

ϕ((X1 + Y1) · · · (Xn + Yn)) = ϕ(X1 · · ·Xn) +ϕ(Y1 · · ·Yn)
+ Sn

�

{ϕ(X i1 · · ·X ip
)}1≤p≤n−1,

i1<···<ip

, {ϕ(Yj1 · · ·Yjq)}1≤q≤n−1,
j1<···< jq

�

. (3.1)

For each i ∈ {1, · · · , n}, let {X ( j)i } j≥1 be copies of X i appearing in Definition 2.1. We prove the
theorem by induction on n. The claim is obvious for n = 1 since the expectation is linear. We
assume that the claim is the case for n ≤ k. We replace X i and Yi in (3.1) by X (1)i and X (2)i + · · ·+
X (L+1)

i , respectively. Then one has

ϕ((L+ 1).X1 · · · (L+ 1).Xk+1)−ϕ(L.X1 · · · L.Xk+1)
= ϕ(X1 · · ·Xk+1) + Sk+1

�

{ϕ(X i1 · · ·X ip
)} 1≤p≤k,

i1<···<ip

, {ϕ(L.X j1 · · · L.X jq)} 1≤q≤k,
j1<···< jq

�

.

The right hand side is a polynomial of L by assumption. Therefore, the sum

Nϕ(X1 · · ·Xk+1) +
N−1
∑

L=0

Sk+1
�

{ϕ(X i1 · · ·X ip
)} 1≤p≤k,

i1<···<ip

, {ϕ(L.X j1 · · · L.X jq)} 1≤q≤k,
j1<···< jq

�

is also a polynomial of N without a constant.

Definition 3.3. We define the n-th monotone (resp. tensor, free, Boolean) cumulant K M
n (resp.

K T
n , K F

n , KB
n ) by the coefficient of N in ϕ(N .X1 · · ·N .Xn) for monotone (resp. tensor, free, Boolean)

independence.
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It is easy to see from the proof of Proposition 3.2 that the multilinearity (MK1) and polynomiality
(MK2) hold. The extensivity (MK3’) comes from the associative law of the dot operation as follows.

Proposition 3.4. The cumulants K M
n , K T

n , K F
n , KB

n satisfy the condition (MK3’).

Proof. The idea is the same as in [6]. We recall that the dot operation is associative:

ϕ(M .(N .X1) · · ·M .(N .Xn)) = ϕ((MN).X1 · · · (MN).Xn).

By definition, ϕ(M .(N .X1) · · ·M .(N .Xn)) is of such a form as

MKn(N .X1, · · · , N .Xn) +M2 · (a polynomial of M and {ϕ(N .X i1 · · ·N .X ip
)}1≤p≤n−1,

i1<···<ip

).

Also by definition ϕ((MN).X1 · · · (MN).Xn) is of such a form as

MNKn(X1, · · · , Xn) +M2N2 · (a polynomial of MN and {ϕ(X i1 · · ·X ip
)}1≤p≤n−1,

i1<···<ip

).

The coefficients of M coincide, and hence, (MK3’) holds.

We know that K T , K F and KB are no other than the usual tensor, free and Boolean cumulants,
respectively, because of Theorem 3.1. Therefore, it is obvious that the property (MK3) holds.
However, we can also prove (MK3) directly on the basis of Definition 3.3 as follows.

Proposition 3.5. The property (MK3) holds for tensor, free and Boolean independences.

Proof. We prove the claim for tensor independence; the other cases can be proved in the same
way. Let (Ai ,ϕi) be algebraic probability spaces for i = 1, 2 and (A3,ϕ3) be defined by (A3,ϕ3) =
(A1 ∗A2,ϕ1 ⊗ ϕ2). Moreover, for i = 1, 2,3 let ( fAi , eϕi , {ι

(k)
i }k≥1) be the tensor exchangeability

system constructed in [7]. Namely, let {(A (k)i ,ϕ(k)i )}k≥1 be copies of (Ai ,ϕi) for each i ∈ {1,2, 3},
fAi := ∗k≥1A

(k)
i , eϕi := ⊗k≥1ϕ

(k)
i and ι(k)i : Ai → A

(k)
i ⊂ fA3 be the natural inclusion. We shall

prove that fA1 and fA2 are tensor independent in ( fA3, eϕ3). This follows from the equality of states

eϕ3 =⊗k≥1(ϕ
(k)
1 ⊗ϕ

(k)
2 ) = (⊗k≥1ϕ

(k)
1 )⊗ (⊗k≥1ϕ

(k)
2 ) = eϕ1 ⊗ eϕ2

under the natural isomorphism

fA3 = ∗k≥1
�

A (k)1 ∗A (k)2

�∼= fA1 ∗ fA2.

This is because the tensor product of states is commutative.
Now we take X1, · · · , Xn ∈ A1 ∪A2 satisfying I := {i; X i ∈ A1} 6= ; and J := {i; X i ∈ A2} 6= ;.
Then, we have

eϕ3(N .X1 · · ·N .Xn) = eϕ1

�−→∏

i∈I

(N .X i)
�

eϕ2

�−→∏

j∈J

(N .X j)
�

,

since the sets {N .X i; i ∈ I} and {N .X i; i ∈ J} are independent. The definition of cumulants and
the property (MK3’) imply that the left hand side contains the term NK T

n (X1, · · · , Xn) while the
coefficient of N in the right hand side is zero. Therefore, K T

n (X1, · · · , Xn) = 0.

Corollary 3.6. For any one of tensor, free and Boolean independences, cumulants satisfying (MK1),
(MK2) and (MK3) uniquely exist.
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4 New look at moment-cumulant formulae for universal inde-
pendences

Lehner proved in [7] the moment-cumulant formulae in a unified way for tensor, free and Boolean
independence via Good’s formula. Therefore, one may naturally expect that the moment-cumulant
formulae can also be proved on the basis of Definition 3.3. In this section, the crucial concept is
universal independence or a universal product introduced by Speicher in [15]. He proved that
there are only three kind of universal independence, i.e., tensor, free and Boolean ones.
We introduce preparatory notations and concepts. π is said to be a partition of {1, · · · , n} if
π = {V1, · · · , Vk}, where Vi are non-empty, disjoint subsets of {1, · · · , n} and ∪k

i=1Vi = {1, · · · , n}.
The number k of elements of π is denoted as |π|. A partition π is said to be crossing if there are
blocks V, W ∈ π such that elements a, c ∈ V and b, d ∈ W exist satisfying a < b < c < d. π
is said to be non-crossing if it is not crossing. Moreover, a non-crossing partition π is called an
interval partition if there are natural numbers 0 = m1 < m2 < · · · < mk < mk+1 = n such that
π = {V1, · · · , Vk}, where Vi = {mi + 1, mi + 2, · · · , mi+1} for 1 ≤ i ≤ k. The sets of partitions, non-
crossing partitions and interval partitions are respectively denoted as P (n), N C (n) and I (n).
A partial ordering can be defined on P (n). For partitions π and σ, σ ≤ π means that for any
block V ∈ σ, there exists a block W ∈ π such that V ⊂ W . The partition consisting of one block
{1, · · · , n} is larger than any other partition.
For random variables {X i}ni=1 and a subset W = { j1, · · · , jk} of {1, · · · , n} with j1 < · · ·< jk, let XW

denote the product
−→∏

i∈W X i = X j1 · · ·X jk . We use the same notation for multilinear functionals: for
multilinear functionals Tp :A p → C (1 ≤ p ≤ n) and the subset W above, we define Tk(XW ) :=
Tk(X j1 , · · · , X jk). Moreover, for a partition π= {V1, · · · , V|π|} of {1, · · · , n}, we define Tπ(X1, · · · , Xn)
to be the product T|V1|(XV1

) · · · T|V|π||(XV|π|).
Given a family (Ai ,ϕi) and a partition π = {V1, · · · , Vp} ∈ P (n), we denote X1 · · ·Xn ∈ Aπ when
X i and X j are in the same Ak if i and j are in the same block of π. Consider a finer partition
σ = {W1, · · · , Wr} ≤ π and define k(l) for l = 1, · · · , r by X i ∈Ak(l) for i ∈Wl . In this case we put

ϕσ(X1 · · ·Xn) := ϕk(1)(XW1
) · · ·ϕk(r)(XWr

). (4.1)

Let a product of states on (unital) algebras
�

(A1,ϕ1), (A2,ϕ2)
�

7→ (A1 ∗A2,ϕ1 ? ϕ2) be given,
where ∗ denotes the free product (with identification of units in the case of unital algebras).

Definition 4.1. The product ? is called a universal product if it satisfies the following properties.

(1) Associativity: For all pairs (A1,ϕ1), (A2,ϕ2) and (A3,ϕ3),

ϕ1 ? (ϕ2 ? ϕ3) = (ϕ1 ? ϕ2) ? ϕ3 (4.2)

under the natural identification of (A1 ∗A2) ∗A3 withA1 ∗ (A2 ∗A3).

(2) Universal calculation rule for moments: There exist coefficients c(π;σ) ∈ C depending on
σ ≤ π ∈ P (n) such that

ϕ(X1 · · ·Xn) =
∑

σ≤π
c(π;σ)ϕσ(X1 · · ·Xn) (4.3)

holds for any π ∈ P (n), n≥ 1 and any X1 · · ·Xn ∈Aπ. Here ϕ stands for the product

ϕ = ϕk1
? ϕk2

? · · · ? ϕkp

if X1X2 · · ·Xn ∈ ∗
p
i=1Aki

.
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The coefficients c(π;π) are called the highest coefficients.

We give a new proof of the moment-cumulant formulae obtained in the literature. The proof below
makes it clear how a partition structure appears in a moment-cumulant formula. The following
lemma is a simple consequence of the condition (2) of a universal product and (MK2).

Lemma 4.2. Let ? be a universal product, i.e., the tensor, free or Boolean product. Then there exist
d(π) ∈ C for π ∈ P (n) such that

ϕ(X1 · · ·Xn) =
∑

π∈P (n)

d(π)Kπ(X1, · · · , Xn).

Theorem 4.3. Let c(π;σ) be the universal coefficients for a given universal independence. Let d(π)
be as in Lemma 4.2. Then d(π) = c(π;π).

Proof. Let π ∈ P (n) and X1 · · ·Xn ∈Aπ. Then

ϕ(N .X1 · · ·N .Xn) =
∑

σ≤π
c(π;σ)ϕσ(N .X1 · · ·N .Xn)

= c(π;π)N |π|Kπ(X1, · · · , Xn)
+ a polynomial of N with degree more than |π|.

On the other hand, Lemma 4.2 implies that

ϕ(N .X1 · · ·N .Xn) =
∑

σ∈P (n)

d(σ)Kσ(N .X1, · · · , N .Xn)

=
∑

σ∈P (n)

d(σ)N |σ|Kσ(X1, · · · , Xn).

We used (MK3), or weaker, (MK3’) in the second line. Then, by (MK3), which is stronger than
(MK3’), Kσ(X1, · · · , Xn) = 0 unless σ ≤ π. Therefore, we have the form

ϕ(N .X1 · · ·N .Xn) = d(π)N |π|Kπ(X1, · · · , Xn)
+ a polynomial of N with degree more than |π|.

Since the coefficients of N |π| coincide, d(π) = c(π;π).

We have used the vanishing property (MK3) of joint cumulants, not only (MK3’), for universal
independence. Therefore, we cannot apply the above proof to monotone independence. We prove
a moment-cumulant formula for monotone independence in the next section.
The highest coefficients for tensor, free and Boolean products are known as follows.

Theorem 4.4. (R. Speicher [15]) The highest coefficients are given as follows.

(1) In the tensor case, c(π;π) = 1 for π ∈ P (n).

(2) In the free case, c(π;π) = 1 for π ∈ N C (n) and c(π;π) = 0 for π /∈ N C (n).

(3) In the Boolean case, c(π;π) = 1 for π ∈ I (n) and c(π;π) = 0 for π /∈ I (n).
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The above result, combined with Theorem 4.3, completes the unified proof for moment-cumulant
formulae for universal products. Namely, we obtain

ϕ(X1 · · ·Xn) =
∑

π∈P (n)

K T
π (X1, · · · , Xn), (4.4)

ϕ(X1 · · ·Xn) =
∑

π∈N C (n)

K F
π(X1, · · · , Xn), (4.5)

ϕ(X1 · · ·Xn) =
∑

π∈I (n)

KB
π(X1, · · · , Xn). (4.6)

5 The monotone moment-cumulant formula

We call a subset V ⊂ {1, · · · , n} a block of interval type if there exist i, j, 1 ≤ i ≤ n, 0 ≤ j ≤ n− i
such that V = {i, · · · , i+ j}. We denote by IB(n) the set of all blocks of interval type.
Let V be a subset of {1, · · · , n} written as V = {k1, · · · , km} with k1 < · · ·< km, m= |V |. We collect
all 1≤ i ≤ m+1 satisfying ki−1+1< ki , where k0 := 0 and km+1 := n+1. We label them i1, · · · , ip.
Let V1, · · · , Vp be blocks defined by Vq := {kiq−1 + 1, · · · , kiq − 1}. The figure used in Theorem 6.1
is helpful to understand the situation.
Under the above notation, we can prove the following.

Proposition 5.1. If {X i}ni=1 and {Yj}nj=1 are monotone independent,

ϕ((X1 + Y1) · · · (Xn + Yn)) =
∑

V⊂{1,··· ,n}

ϕ(XV )
p
∏

j=1

ϕ(YVj
). (5.1)

Proof. The subsets Vj play roles of choosing positions of Yi ’s. Then the claim follows immediately.

Let us define a multilinear functional ϕN (X1, · · · , Xn) := ϕ(N .X1 · · ·N .Xn) for n ∈ N and N ∈ N.
Since this is a polynomial of N , we can replace N ∈ N by t ∈ R and then obtain a multilinear
functional ϕt :A n → C for n ∈N and t ∈ R. As in Section 4, let ϕt(XW ) denote ϕt(X j1 , · · · , X jk)
for a subset W = { j1, · · · , jk} of N with j1 < · · · < jk. Then the following is immediate from
Proposition 5.1.

Corollary 5.2. We have the following recurrent differential equations.
(1) d

d t
ϕt(X1, · · · , Xn) =

∑

V⊂{1,··· ,n},V 6=; K M
|V |(XV )

∏p
j=1ϕt(XVj

).

(2) d
d t
ϕt(X1, · · · , Xn) =

∑

V∈IB(n) K
M
|V |(XV )ϕt(XV c ).

Proof. We replace X i and Yi in Proposition 5.1 by N .X i and (N + M).X i − N .X i respectively. We
notice that {N .X i}ni=1 and {(N+M).X i−N .X i}ni=1 are monotone independent and that (N+M).X i−
N .X i is identically distributed to M .X i . We replace N by t and M by s and then the equality

ϕt+s(X1, · · · , Xn) =
∑

V⊂{1,··· ,n}

ϕt(XV )
p
∏

j=1

ϕs(YVj
)

holds. The equations (1) and (2) follows from respectively the derivation d
d t
|t=0 and d

ds
|s=0. We

note that the coefficient of s appears only when V c ∈ IB(n) and therefore we obtain (2) by replac-
ing V c by V .
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Now we prove the moment-cumulant formula which generalizes the result for the single-variable
case [6]. In addition to partitions, we need ordered partitions in this section. An ordered partition
of {1, · · · , n} is a sequence (V1, · · · , Vk), where {V1, · · · , Vk} is a partition of {1, · · · , n}. An ordered
partition can be written as a pair (π,λ), where π is a partition and λ is an ordering of the blocks.
For blocks V, W ∈ π, we denote by V >λ W if V is larger than W under the order λ. Let LP (n)
be the set of ordered partitions.
For a non-crossing partition π, we introduce a partial order on π. For V, W ∈ π, V � W means
that there are i, j ∈W such that i < k < j for all k ∈ V . Visually V �W means that V lies in the
inner side of W . We then define a subsetM (n) of LP (n) by

M (n) := {(π,λ) : π ∈ N C (n), if V, W ∈ π satisfy V �W , then V >λ W}. (5.2)

An element of M (n) is called a monotone partition. The set of monotone partitions was first
introduced by Muraki [9] to classify natural independence.

Theorem 5.3. The moment-cumulant formula is expressed as

ϕ(X1 · · ·Xn) =
∑

(π,λ)∈M (n)

1

|π|!
K M
π (X1, · · · , Xn).

Proof. We prove this by induction on n. Assume that

ϕt(X1, · · · , Xk) =
∑

(π,λ)∈M (k)

t |π|

|π|!
K M
π (X1, · · · , Xk)

holds for t ∈ R and k ≤ n. We recall that an element (π,λ) ∈ M (n) can be expressed as a
sequence (V1, · · · , V|π|). We can use a discussion similar to [5, 6]. A prototype of this discussion
is in [13]. Let IB(k, m) be the subset of IB(k) defined by {V ∈ IB(k); |V | = m}. Let 1k be the

partition of P (k) consisting of one block. There is a bijection f :M (n+ 1)→
�

⋃n
k=1M (n+ 1−

k)× IB(n+ 1, k)
�

∪ {1n+1} defined by

f : (V1, · · · , V|π|) 7→ ((V1, · · · , V|π|−1), V|π|).

Therefore, the sum
∑

(π,λ)∈M (n) can be replaced by
∑

V∈IB(n+1)

∑

(σ,µ)∈M (n+1−|V |) and we have

∑

(π,λ)∈M (n+1)

t |π|

|π|!
K M
π (X1, · · · , Xn) =

∑

V∈IB(n+1)

∑

(σ,µ)∈M (n+1−|V |)

t |σ|+1

(|σ|+ 1)!
K M
σ (XV c )K M

|V |(XV )

=
∑

V∈IB(n+1)

∫ t

0

ds
∑

(σ,µ)∈M (n+1−|V |)

s|σ|

|σ|!
K M
σ (XV c )K M

|V |(XV )

=
∑

V∈IB(n+1)

∫ t

0

dsϕs(XV c )K M
|V |(XV )

=

∫ t

0

d

ds
ϕs(X1, · · · , Xn+1)ds

= ϕt(X1, · · · , Xn+1).

We used assumption of induction in the third line and Corollary 5.2 (2) in the fourth line. The
claim follows from the case t = 1.
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Example 5.4. We show the monotone cumulants up to the forth order.

K M
1 (X1) = ϕ(X1), K M

2 (X1, X2) = ϕ(X1X2)−ϕ(X1)ϕ(X2),

K M
3 (X1, X2, X3) = ϕ(X1X2X3)−ϕ(X1X2)ϕ(X3)−ϕ(X1)ϕ(X2X3)−

1

2
ϕ(X1X3)ϕ(X2)

+
3

2
ϕ(X1)ϕ(X2)ϕ(X3),

K M
4 (X1, X2, X3, X4)

= ϕ(X1X2X3X4)−ϕ(X1X2X3)ϕ(X4)−
1

2
ϕ(X1X3X4)ϕ(X2)

−
1

2
ϕ(X1X2X4)ϕ(X3)−ϕ(X1)ϕ(X2X3X4)−ϕ(X1X2)ϕ(X3X4)

−
1

2
ϕ(X1X4)ϕ(X2X3) +

3

2
ϕ(X1X2)ϕ(X3)ϕ(X4) +

2

3
ϕ(X1X4)ϕ(X2)ϕ(X3)

+
3

2
ϕ(X1)ϕ(X2)ϕ(X3X4) +

1

2
ϕ(X1)ϕ(X2X4)ϕ(X3) +

3

2
ϕ(X1)ϕ(X2X3)ϕ(X4)

+
1

2
ϕ(X1X3)ϕ(X2)ϕ(X4)−

8

3
ϕ(X1)ϕ(X2)ϕ(X3)ϕ(X4).

6 Generating functions

Let C[[z1, · · · , zr]] be the ring of formal power series of non-commutative generators z1, · · · , zr .
An element P(z1, · · · , zr) in C[[z1, · · · , zr]] can be expressed as

P(z1, · · · , zr) = p; +
∞
∑

n=1

r
∑

i1,··· ,in=1

pi1,··· ,in zi1 · · · zin .

We define a generating function of the joint moments of X = (X1, · · · , X r) by

MX (z1, · · · , zr) := 1+
∞
∑

n=1

r
∑

i1,··· ,in=1

ϕ(X i1 · · ·X in)zi1 · · · zin ∈ C[[z1, · · · , zr]].

First we show the following “multivariate Muraki formula” for generating functions.

Theorem 6.1. For any X = (X1, · · · , X r) and Y = (Y1, · · · , Yr) with {X i}ri=1 and {Yj}rj=1 monotone
independent,

MX+Y (z1, · · · , zr) = MY (z1, · · · , zr)MX (z1MY (z1, · · · , zr), · · · , zr MY (z1, · · · , zr)).

Proof. For a fixed sequence (i1, · · · , in), 1≤ i1, · · · , in ≤ r, let us compare the coefficient of zi1 · · · zin
in the both hands sides. In the left hand side, it was calculated in Proposition 5.1. The right hand
side is expanded as

MY MX (z1MY , · · · , zr MY )

=
∞
∑

k=0

r
∑

j1,··· , jk=1

ϕ(X j1 · · ·X jk)MY z j1 MY z j2 MY · · · z jk MY ,
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where the summation is understood to be MY for k = 0. The question is when the term zi1 · · · zin
appears in MY z j1 MY z j2 MY · · · z jk MY . This happens if and only if the sequence ( j1, · · · , jk) is a sub-
sequence of (i1, · · · , in). In this case, we can interpolate ( j1, · · · , jk) to recover the whole sequence
(i1, · · · , in), by choosing unique terms from MY ’s appearing in MY z j1 MY z j2 MY · · · z jk MY . In terms
of a partition of a set {i1, · · · , in}, ( j1, · · · , jk) can be described by a block V and then the other
blocks (Vi) as in Fig. 1 interpolate ( j1, · · · , jk). From Proposition 5.1, the coefficients of the both
hands sides coincide.

V V V V

V

1 2

3

3

4

4

142 6 7

Figure 1: This figure corresponds to the expectationϕ(Y1)ϕ(Y3Y4Y5)ϕ(Y8 · · ·Y13)ϕ(Y15Y16Y17)ϕ(X2X6X7X14).
The blocks V1, V2, V3, V4 are defined by V1 = {1}, V2 = {3,4, 5}, V3 = {8,9, 10,11, 12,13} and
V4 = {15, 16,17}.

A generating function of the monotone cumulants of X = (X1, · · · , X r) is defined by

K M
X (z1, · · · , zr) :=

∞
∑

n=1

r
∑

i1,··· ,in=1

K M
n (X i1 , · · · , X in)zi1 · · · zin ∈ C[[z1, · · · , zr]].

We denote by MX (t; z1, · · · , zr) the generating function of the joint moments for the multilinear
functionals ϕt(X1, · · · , Xn). We also denote MX (z1, · · · , zr) simply by MX ; MX (t; z1, · · · , zr) by
MX (t); K M

X (z1, · · · , zr) by K M
X . An important property is that ∂MX (t)

∂ t
|t=0 = K M

X holds.
For random variable X = (X1, · · · , X r), let µX ,i(z1, · · · , zr) := zi MX (z1, · · · , x r), µX ,i(t) := zi MX (t)
and κX ,i(z1, · · · , zr) := ziK

M
X (z1, · · · , zr). We also introduce vectors

µX := (µX ,1, · · ·µX ,r), µX (t) := (µX ,1(t), · · · ,µX ,r(t)) and κX := (κX ,1, · · ·κX ,r).

One can see that every component of a vector has the same information. Therefore, one compo-
nent is sufficient to understand the whole information on joint moments or cumulants. However,
these vectors are useful to formulate a “multivariate Muraki’s formula”.

Corollary 6.2. For any X = (X1, · · · , X r) and Y = (Y1, · · · , Yr) where {X i}ri=1 and {Yi}ri=1 are mono-
tone independent,

µX+Y = µX ◦µY .

Using this, we can derive a relation between a flow and a vector field.

Theorem 6.3. The following equalities hold.

(1) µX (t + s) = µX (t) ◦µX (s).

(2) ∂MX (t)
∂ t
= MX (t)K M

X (z1MX (t), · · · , zr MX (t)), or equivalently, ∂ µX (t)
∂ t
= κX (µX (t)).
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Proof. (1) is immediate from Corollary 6.2: one just has to replace X by X (1)+ · · ·+X (M) and Y by
X (M+1)+ · · ·+X (M+N). Then (1) is true as formal power series, where coefficients are polynomials
regarding M and N . Then we can extend N and M to real numbers t and s, respectively. (2)
follows from the derivative d

d t
|0.

It is worthy to compare Theorem 6.3(2) with the relation in free probability. Let RX (z1, · · · , zr) be
the generating function of free cumulants

RX (z1, · · · , zr) :=
∞
∑

n=1

r
∑

i1,··· ,in=1

K F
n (X i1 , · · · , X in)zi1 · · · zin ∈ C[[z1, · · · , zr]].

Then it is known that
MX − 1= RX (z1MX , · · · , zr MX ). (6.1)

The reader is referred to Corollary 16.16 in [11]. The above relation can also be expressed as
MX − 1= RX ◦µX which is similar to the differential equation in Theorem 6.3(2).

Remark 6.4. In the previous paper [6], we did not mention the relation between generating
functions and cumulants. Now we explain the relation in detail. The differential equation becomes
∂

∂ t
MX (t; z) = MX (t; z)K M

X (zMX (t; z)) in the one variable case. If we use AX (z) := −zK M
X (

1
z
) and

the reciprocal Cauchy transform HX (t; z) = z
M(t; 1

z
)
, the differential equation becomes

∂

∂ t
HX (t; z) = AX (HX (t; z)). (6.2)

This is the basic relation of a monotone convolution semigroup, first obtained in [8]. Actually, a
motivation of the paper [6] was the observation that the coefficients of AX (z) had nice properties
as cumulants. For instance, the arcsine law with mean 0 and variance 1 is characterized by AX (z) =
− 1

z
, or equivalently, K M

1 (X ) = 0, K M
2 (X ) = 1, K M

n (X ) = 0 for n ≥ 3. Therefore, the problem was
how to define cumulants for all probability measures. We can say that we defined monotone
cumulants so that (6.2) holds. In a recent paper [5], another way is presented to define monotone
cumulants and their generalization on the basis of the differential equation (6.2). However, it is
difficult to generalize the method in [5] to the multivariate case. In this sense, the present method
has advantage. Theorem 6.3 extends (6.2) to the multivariate case.
As is explained in the above, t means a parameter of a “formal” convolution semigroup. Let us
focus on this point more. Let X be bounded and self-adjoint for simplicity. Then MX (t; z) may
not be a moment generating function of a probability measure for general t ≥ 0 and X . More
precisely, MX (t; z) becomes a moment generating function of a probability measure for any t ≥ 0
if and only if the probability distribution of X is monotone infinitely divisible.
The reader might wonder if there is a relation between the moment and cumulant generating
functions without the use of t. For instance, one does not need the parameter t in free probability
theory [18]. In this case the cumulant generating function KX is called an R-transform and is
denote by RX . The basic relation is given by

MX (z) = 1+ RX (zMX (z)).

Therefore, RX can be expressed by using the inverse function of zMX (z). However, such a relation
does not exist for monotone cumulants because of the difficulty of the correspondence between a
holomorphic map and its vector field [1, 2, 4].
In spite of the above, we can also understand this difficulty in a positive way since the use of
the parameter t indicates a new insight into relationship between independence and differential
equations.
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