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ABSTRACT

Recent events demonstrated the vulnerability of power grids
to cyber attacks and to physical attacks. Therefore, we focus
on joint cyber and physical attacks and develop methods to
retrieve the grid state information following such an attack.
We consider a model in which an adversary attacks a zone by
physically disconnecting some of its power lines and blocking
the information flow from the zone to the grid’s control cen-
ter. We use tools from linear algebra and graph theory and
leverage the properties of the power flow DC approximation
to develop methods for information recovery. Using infor-
mation observed outside the attacked zone, these methods re-
cover information about the disconnected lines and the phase
angles at the buses. We identify sufficient conditions on the
zone structure and constraints on the attack characteristics
such that these methods can recover the information. We
also show that it is NP-hard to find an approximate solu-
tion to the problem of partitioning the power grid into the
minimum number of attack-resilient zones. However, since
power grids can often be represented by planar graphs, we
develop a constant approximation partitioning algorithm for
these graphs. Finally, we numerically study the relationships
between the grid’s resilience and its structural properties,
and demonstrate the partitioning algorithm on real power
grids. The results can provide insights into the design of a
secure control network for the smart grid.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Reliability, availability,
and serviceability; G.2.2 [Discrete Mathematics]: Graph
Theory—Graph algorithms, Network problems
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Figure 1: Components of the power grid and potential at-
tacks: physical attacks target the physical infrastructure
(lines, substations, etc.); Cyber attacks target the SCADA
system – an adversary can disallow the information from the
PMUs within the zone to reach the control center.

1. INTRODUCTION
Power grids are vulnerable to cyber attacks [7] and to

physical attacks (e.g., the Apr. 2014 attack on a California
substation [6]). These attacks may cause large-scale failures,
initiate cascades (e.g., [3–5]), and have devastating effects on
almost every aspect of modern life. As illustrated in Fig. 1,
two main components of the power grid are (i) the physi-
cal infrastructure of the power transmission system (power
lines, substations, power stations), and (ii) the Supervisory
Control and Data Acquisition (SCADA) system responsible
for monitoring and controlling the grid (we refer to it as the
control network). Physical attacks target the former while
cyber attacks target the latter.

The effects of a physical attack can be mitigated, if the
control center has accurate understanding of its impacts and
acts quickly to compensate for failures. However, if physical
attacks are accompanied by cyber attacks that make infor-
mation about the status of the attacked zones unavailable,
the control center cannot take effective action. Hence, in
this paper we focus on developing methods for recovering
the information about the status of the power grid following
a joint cyber and physical attack as well as on studying the
resilience of different topologies and the resilience to differ-
ent attacks.
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Figure 2: G is the power grid graph and H is an induced
subgraph of G that represents the attacked zone. An adver-
sary attacks a zone by disconnecting some of its power lines
(red dashed lines) and disallowing the information from the
PMUs within the zone to reach the control center.

We consider the linearized direct-current (DC) power flow
model1, a practical relaxation of the alternating-current (AC)
model. We also use a simplified version of the control net-
work model of [28] that includes Phasor Measurement Units
(PMU), Phasor Data Concentrators (PDC), and a control
center (see Fig. 1). We define a zone as a set of buses
(nodes), power lines (edges), PMUs, and an associated PDC.
We consider an attack on a zone that disconnects some edges
within the zone (physical attack), and disallows the infor-
mation from the PMUs within the zone to reach the con-
trol center (cyber attack). An adversary can perform the
cyber attack by, for example, disabling the zone’s associ-
ated PDC. Alternatively, the communication network be-
tween the PMUs and the PDC or between the PDC and the
control center can be attacked.

As illustrated in Fig. 2, as a result of an attack, some
lines get disconnected, and the phase angles and the status
of the lines within the attacked zone H “ pVH , EHq become
unavailable. Our objective is to recover the phase angles
and detect the disconnected lines by using the information
available outside of the attacked zone.

The idea underlying many of our results is that power
flows are governed by the laws of physics, where a failure
changes line flows and nodes’ phase angles all over the power
grid [40]. We show that based on this physical property, it
is possible to estimate the state in the attacked zone using
the information available outside of the zone. Specifically,
we use the matrix representation of the DC equations and
the notion of admittance matrix, and apply matrix analysis
and graph theoretical tools to develop methods for retrieving
the information from the attacked zone.

We present necessary and sufficient conditions on the struc-
ture of a zone such that our methods are guaranteed to re-
cover the information. We prove that if there is a matching
between the nodes inside and outside the attacked zone that
covers the inside nodes (VH), then the phase angles of the
nodes in the attacked zone are recoverable by solving a set
of linear equations of size |VH |. We also prove that if H is
acyclic, then the disconnected lines in H are detectable by
solving a set of linear equations of size |EH |. Moreover, we
show that if H is planar, under some constraints, the discon-

1The DC model is commonly used in large-scale contingency
analysis of power grids [14,15,37,49].

nected lines are detectable by solving a Linear Programming
(LP) problem.

We develop another method to simultaneously recover the
phase angles and detect disconnected lines by solving a single
LP problem. We show that if there is a partial matching
between the nodes inside and outside of H, and H is planar,
then under certain constraints on the attack (i.e., on the
disconnected lines), this method is guaranteed to recover the
information. Based on these results, we present the Post-
Attack Recovery and Detection (PARD) Algorithm.

We study the problem of partitioning the power grid into
the minimum number of attack-resilient zones (i.e., zones
in which the information can be recovered by the methods
mentioned above). We show that this problem is not approx-
imable to within n1´ǫ for all ǫ ą 0, unless P=NP. However,
since power grids can often be represented by planar graphs,
we introduce the Zone Selection (ZS) Algorithm and show
that it provides a constant approximation ratio for these
graphs. This algorithm can be used for designing a more
secure control network for smart grids.

Finally, we present numerical results to assess the rela-
tionship between the structural properties of the power grid
and its resilience to joint attacks and to demonstrate the
operation of the ZS Algorithm on several power grids.

The main contributions of this paper are three fold. We
use matrix analysis and graph theoretical tools to: (i) de-
velop methods to recover the phase angles and detect the
disconnected lines after a joint cyber and physical attack,
(ii) find graph classes for which these methods are guaran-
teed to recover the information, (iii) develop an algorithm
for partitioning the power grid into attack-resilient zones.

This paper is organized as follows. Section 2 reviews re-
lated work. Section 3 describes the models and reviews
graph theoretical terms. In Section 4, we focus on informa-
tion recovery and in Section 5, we study the grid partitioning
problem. Section 6 provides numerical results and Section 7
provides concluding remarks and directions for future work.
Most of the proofs appear in Appendix B.

2. RELATED WORK
The vulnerability of general networks to attacks was thor-

oughly studied in the past (e.g., [8, 31, 36] and references
therein). Specifically, attacks and failures in power grids
were studied using probabilistic failure propagation models
(e.g., [18,20,47], and references therein) as well as using de-
terministic DC power flows [12,14,22,32,40]. Malicious data
attacks on the power grid control network were also stud-
ied [21, 30, 33, 44]. However, to the best of our knowledge,
none of the previous works considered power grid vulnera-
bility to joint cyber and physical attacks.

In Section 4, we study the problem of recovering the phase
angles and detecting disconnected edges after a joint cyber
and physical attack. It is related to the problem of line out-
ages identification from changes in phase angles that was
studied in [42,43]. However, these studies were limited to at
most two line failures. The problem of line failure identifi-
cation in an internal system using the information from an
external system was studied in [49], which only provided a
heuristic algorithm that was evaluated for only one or two
line failures.

In Section 5, we study the problem of partitioning the
power grid into the minimum number of attack-resilient zones.
This problem is similar to the PMU placement problems



studied in [29,35,48]. Recently, this problem has attracted a
lot of attention in India after the major blackouts of 2013 [29].
In [48] the problem of PMU placement for line outage de-
tection was studied. However, none of the previous works
considered the problem of PMU placement from the secu-
rity point of view and when both the PDC/PMUs and the
physical network can be attacked.

In Section 5, we reduce the attack-resilient zone parti-
tioning problem to the problem of partitioning a graph into
subgraphs such that each subgraph is (i) acyclic, and (ii)
there is a matching between nodes inside and outside the
subgraph that covers all the subgraph nodes. This problem
is closely related to the problems of vertex arboricity (which
is known to be NP-hard to be determined [26, p.193]) and
k-matching cover of a graph (which can be found in Opn3q
time [45]). However, to the best of our knowledge, the joint
problem was not studied before.

Since the power grid and its robustness have drawn a lot of
recent attention, several performance evaluation tools were
used successfully to analyze power grids (e.g., [25, 27, 34],
and references therein). This paper continues this line of
work, using tools from linear algebra and graph theory.

3. MODEL AND DEFINITIONS

3.1 DC Power Flow Model
We adopt the linearized (or DC) power flow model, which

is widely used as an approximation for the non-linear AC
power flow model [11]. In particular, we follow [13–15] and
represent the power grid by a connected undirected graph
G “ pV,Eq where V “ t1, 2, . . . , nu and E “ te1, . . . , emu
are the set of nodes and edges corresponding to the buses and
transmission lines, respectively. Each edge ei is a set of two
nodes ei “ tu, vu. pv is the active power supply (pv ą 0)
or demand (pv ă 0) at node v P V (for a neutral node
pv “ 0). We assume pure reactive lines, implying that each
edge tu, vu P E is characterized by its reactance ruv “ rvu.

Given the power supply/demand vector ~p P R
|V |ˆ1 and

the reactance values, a power flow is a solution P P R
|V |ˆ|V |

and ~θ P R
|V |ˆ1 of:

ÿ

vPNpuq

puv “ pu, @ u P V (1)

θu ´ θv ´ ruvpuv “ 0, @ tu, vu P E (2)

where Npuq is the set of neighbors of node u, puv is the
power flow from node u to node v, and θu is the phase an-
gle of node u. Eq. (1) guarantees (classical) flow conser-
vation and (2) captures the dependency of the flow on the
reactance values and phase angles. Additionally, (2) implies
that puv “ ´pvu. When the total supply equals the total
demand in each connected component of G, (1)-(2) has a
unique solution [15, lemma 1.1].2 Eq.(1)-(2) are equivalent
to the following matrix equation:

A~θ “ ~p (3)

2The uniqueness is in the values of puvs rather than θus
(shifting all θus by equal amounts does not violate (2)).

where A P R
|V |ˆ|V | is the admittance matrix of G,3 defined

as follows:

auv “

$

’

&

’

%

0 if u ‰ v and tu, vu R E,

´1{ruv if u ‰ v and tu, vu P E,

´
ř

wPNpuq auw if u “ v.

Note that in power grids nodes can be connected by multiple
edges, and therefore, if there are k multiple edges between

nodes u and v, auv “ ´
řk

i“1
1{ruvi . Once ~θ is computed,

the flows, puv, can be obtained from (2).
Notation. Throughout this paper we use bold uppercase
characters to denote matrices (e.g., A), italic uppercase char-
acters to denote sets (e.g., V ), and italic lowercase charac-

ters and overline arrow to denote column vectors (e.g., ~θ).
For a matrix Q, qij denotes its pi, jqth entry. For a column
vector ~y, ~yt denote its transpose, yi denotes its ith entry,
}~y}1 :“

řn

i“1
|yi| is its l1-norm, and suppp~yq :“ ti|yi ‰ 0u is

its support.

3.2 Control Network
We use the simplified version of the model described in [28]

to model the SCADA system to which we refer as the control
network. Fig. 1 illusterates the components of the control
network. We assume that there is a Phasor Measurement
Unit (PMU) at each node of G. The PMU at node i reports
the phase angle θi as well as the status of the edges (either
operational or failed) adjacent to node i. Phasor Data Con-
centrators (PDC) gather the data collected by PMUs. The
data gathered by PDCs is sent to a control center which
monitors and controls the entire grid. A zone is a subgraph
induced by a subset of nodes with a single associated PDC.

3.3 Attack Model
We study attacks on power grids that affect both the phys-

ical infrastructure and the control network. We assume that
an adversary attacks a zone by: (i) disconnecting some edges
within the attacked zone (physical attack), and (ii) disallow-
ing the information from the PMUs within the zone to reach
the control center (cyber attack). An adversary can per-
form the cyber attack by, for example, disabling the zone’s
associated PDC. Alternatively, the communication network
between the PMUs and the PDC or between the PDC and
the control center can be attacked. We assume that discon-
necting edges within a zone does not make G disconnected.
Fig. 2 shows an example of an attack on the zone repre-

sented byH. Due to the attack, some edges are disconnected
(we refer to these edges as failed edges) and the phase angles
and the status of the edges within the attacked zone become
unavailable. We denote the set of failed edges in zone H

by F Ď EH . Upon failure, the edges are removed from the
graph and the flows are redistributed according to (1)-(2).

Notation. Throughout this paper, we denote an attacked
zone by H “ pVH , EHq. Without loss of generality we as-
sume that the indices are such that VH “ t1, 2, . . . , |VH |u
and EH “ te1, e2, . . . , e|EH |u. We denote the complement
of the zone H by H̄ “ GzH. If X,Y are two subgraphs of
G, AX|Y and AVX |VY

both denote the submatrix of the ad-
mittance matrix of G with rows from VX and columns from
VY . For instance, A can be written in any of the following

3When ruv “ 1 @tu, vu P E, the admittance matrix A is the
Laplacian matrix of the graph.



Table 1: Summary of notation.

Notation Description

G “ pV,Eq The graph representing the power grid

A Admittance matrix of G
~θ Vector of the phase angles of the nodes in G

H A subgraph of G representing the attacked zone

F Set of failed edges due to an attack

D Incidence matrix of G

©1 The value of © after an attack

© The complement of ©

©˚ The dual of ©

forms,

A “

„

AH|H AH|H̄

AH̄|H AH̄|H̄



,A “
“

AG|H AG|H̄

‰

,A “

„

AH|G

AH̄|G



.

We use the very same notation for the vectors. For instance
~θH and ~θH̄ are the vectors of phase angle of the nodes in H

and H̄, respectively. We use the prime symbol p1q to denote

the values after an attack. For instance, G1, A1, and ~θ1 are
used to represent the graph, the admittance matrix of the
graph, and the phase angles of the nodes after an attack.

3.4 Graph Theoretical Terms
In this paper, we use several graph theoretical terms and

theorems, most of which are reviewed in Appendix A. We
briefly review some of the important definitions in this sub-
section. Most of the definitions are borrowed from [16].
Subgraphs, Cuts, and Cycles: Let X and Y be subsets
of the nodes of a graph G. GrXs denotes the subgraph of G
induced by X. We denote by ErX,Y s the set of edges of G
with one end in X and the other end in Y . We denote the
complement of a set X by X̄ “ V zX. The coboundary of
X is the set ErX, X̄s and is denoted by BpXq. Bpvq denotes
the coboundary of X “ tvu. GrX, X̄s denotes the subgraph
of G induced by the edges from ErX, X̄s. We say that Q Ď
E is G-separable, if there are pairwise edge-disjoint cycles
Cqpq P Qq, such that @q P Q, q P Cq [39].
Planar Graphs: A graph G is planar, if it can be drawn
in the plane so that its edges intersect only at their ends. A
planar graph G partitions the rest of the plane into a number
of edgewise-connected open sets called the faces of G.

Given a planar graph G, its dual graph G˚ is defined as
follows. Corresponding to each face c of G there is a node
c˚ of G˚, and corresponding to each edge e of G there is an
edge e˚ of G˚. Two nodes c˚

1 and c˚
2 are joined by the edge

e˚ in G˚, if and only if their corresponding faces c1 and c2
are separated by the edge e in G. It is easy to see that the
dual G˚ of a planar graph G is itself a planar graph [16].
Incidence Matrix: Suppose we assign an arbitrary ori-
entation to the edges of G. We denote the set of oriented
edges by E “ tǫ1, ǫ2, . . . , ǫmu. The (node-edge) incidence

matrix of G is denoted by D P t´1, 0, 1u|V |ˆ|E| and defined
as follows,

dij “

$

’

&

’

%

0 if ǫj is not incident to node i,

1 if ǫj is coming out of node i,

´1 if ǫj is going into node i.

When we use the incidence matrix, we assume an arbitrary
orientation for the edges unless we mention an specific ori-
entation. DH P t´1, 0, 1u|VH |ˆ|EH | is the submatrix of D
with rows from VH and columns from EH .

4. ATTACK ANALYSIS
In this section, we study the effects of an attack and pro-

vide analytical methods for recovering the phase angles and
detecting failed edges in the attacked zone H. We find con-
ditions on the structural properties of a zone and constraints
on the failed edges for which these methods successfully re-
cover the phase angles and detect the failed edges. These
conditions depend on the connections between VH and V̄H as
well as the inner connections of the nodes in H. Therefore,
we refer to them as external and internal conditions on H,
respectively. Finally, based on the methods, we present the
Post-Attack Recovery and Detection (PARD) Algorithm.
Table 2 summarizes the results regarding the resilience of
a zone based on its internal and external conditions, and
the constraints on the set of failed edges F .

In this section, when we describe our methods, we assume
that there are no edges ti, ju P EH for which θ1

i “ θ1
j (we

refer to these edges as null-edges). Following (2), a null-edge
does not carry any flow. Thus, we cannot detect the status
of those edges since they cannot be distinguished from failed
edges. However, we can detect the null-edges and treat them
separately (we consider this in the PARD Algorithm).

4.1 Recovery of Phase Angles
In this subsection, we introduce a method to recover the

phase angles of the nodes in an attacked zone H. We provide
sufficient conditions on GrVH , V̄Hs such that the method re-
covers the phase angles of the nodes in VH successfully. As
we mentioned, since these conditions depend only on the
connections between VH and V̄H , we refer to them as the
external conditions on H.

The following lemma is the first step towards designing the
method for recovering the phase angles and for detecting the
failed edges (see Subsection 4.2).

Lemma 1. supppAp~θ ´ ~θ1qq Ď VH .

Proof. Suppose F “ tei1 , ei2 , . . . , eiku Ď EH are the
edges that are disconnected from the grid after the attack
on the zone H. Define the column vectors ~x1, ~x2 . . . ~xk P
t´1, 0, 1un associated with the failed edges as follows. If
eij “ tsj , tju then ~xj is 1 in its s th

j entry, ´1 in its tthj entry,
and 0 everywhere else. It is easy to see that A1 is related
to A as A1 “ A ´

řk

j“1
asjtj ~xj ~xj

t. Since the graph G does
not get disconnected after an attack, the flow equations in

G1 are A1~θ1 “ ~p. On the other hand, A~θ “ ~p, therefore

A~θ ´ A1~θ1 “ 0. Thus,

0 “ A~θ ´ A
1~θ

1 “ A~θ ´ A~θ
1 `

k
ÿ

j“1

asjtj ~xj ~xj
t~θ

1

ñ Ap~θ ´ ~θ
1q “ ´

k
ÿ

j“1

asjtj ~xj ~xj
t~θ

1

ñ supppAp~θ ´ ~θ
1qq Ď

k
ď

i“1

suppp ~xj ~xj
t~θ

1q Ď
k

ď

i“1

tsj , tju

ñ supppAp~θ ´ ~θ
1qq Ď

k
ď

i“1

tsj , tju Ď VH .

One of the immediate results of Lemma 1 is the following

corollary. This corollary gives a true statement about ~θ1

(recall that ~θ1 is partly unknown). It states that ~θ1 is in the
solution space of the matrix equation (4).
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Figure 3: An example of a graph and set of zones such that
each zone is both well-supported and acyclic.

Corollary 1. AH̄|Gp~θ ´ ~θ1q “ 0. (4)

We find sufficient conditions such that the solution ~θ1
H to

(4) is unique (given ~θ and ~θ1
H̄), and consequently ~θ1

H can
be recovered after any attack on H. We first define a well-
supported zone.

Definition 1. A zone H is called well-supported, if ~θ1
H can

be recovered after any attack on H.

Using Corollary 1, the following theorem gives sufficient
condition for a zone H to be well-supported.

Theorem 1. A zone H is well-supported, if AH̄|H has
linearly independent columns.

Proof. From Corollary 1 we know that AH̄|Gp~θ ´ ~θ1q “

0, therefore AH̄|H
~θ1
H “ AH̄|H̄p~θH̄ ´ ~θ1

H̄q ` AH̄|H
~θH . The

only unknown in this equation is ~θ1
H . Now since AH̄|H has

linearly independent columns, this equation has a unique

solution ~θ1
H which can be computed in polynomial time.

Thus, ~θ1
H can be recovered in this case and zone H is well-

supported.

It can be seen that the sufficient condition in Theorem 1
depends on the reactance values. However, the following
corollary relaxes the condition in Theorem 1. It shows that
if GrVH , V̄H s has a matching that covers VH , then for al-
most any reactance values for the edges in ErVH , V̄Hs, H is
well-supported. The idea is that the set of reactance values
for the edges in ErVH , V̄Hs for which AH̄|H does not have
linearly independent columns is a measure zero set in the
real space [38].

Corollary 2. If there is a matching in GrVH , V̄Hs that
covers VH , then H is well-supported almost surely.4

In reality, since the reactance values are derived by the
physical properties of the lines, we expect that these values
are relatively random around a mean value. Thus, following
Corollary 2, the existence of a matching that covers every
node in VH is enough for a zone to be well-supported (see
Fig. 3 for an example of a graph in which every node in a
zone is covered by a matching). Hence, in the following sec-
tions we consider the existence of a matching as a sufficient
external condition on H to be well-supported.

4.2 Detecting Failed Edges
In this subsection, we assume that after an attack, the

phase angles are recovered using the method in Subsec-
tion 4.1 (i.e., by solving (4)). We introduce methods to

detect the failed edges using ~θ1. We provide sufficient condi-
tions on H such that these methods detect the failed edges

4In probability theory, one says that an event happens al-
most surely, if it happens with probability one.

successfully. As we mentioned, since these conditions de-
pend only on the connections between the nodes in H, we
refer to them as internal conditions on H.

The following Lemma is the foundation for our approach
to find the failed edges. It limits the set of failed edges to
the solution space of the matrix equation (5). It can be
considered as the complement of Corollary 1.

Lemma 2. There exists a vector ~x P R
|EH | such that

suppp~xq “ ti|ei P F u and

DH~x “ AH|Gp~θ ´ ~θ
1q. (5)

Proof. We use the notation that we used in proof of

Lemma 1. Recall from the proof of Lemma 1 thatAp~θ´~θ1q “

´
řk

j“1
asjtj ~xj ~xj

t~θ1. It is easy to see that if ~d1, ~d2, . . . , ~dm

are the columns of the incidence matrix D, then @jp1 ď

j ď kq, there exists bj P R such that bj ~dij “ ´asjtj ~xj ~xj
t~θ1.

Therefore, Ap~θ´~θ1q “
řk

j“1
bj ~dij . Thus, if we define ~y P R

m

such that @eij P F, yij “ bj and 0 elsewhere, then Ap~θ ´
~θ1q “ D~y and suppp~yq Ď ti1, i2, . . . , iku. However, from the

Corollary 1 we know that AH̄|Gp~θ ´ ~θ1q “ 0. Moreover,
since F Ď EH , ~yH̄ “ 0. Thus, we can restrict the equation
only to the components of the zone H, which means that

AH|Gp~θ ´ ~θ1q “ DH~yH . Now it is easy to see that since we
assumed that no null-edges are in F , all the bis are nonzero
and suppp~yHq “ ti1, i2, . . . , iku. Therefore, ~x “ ~yH is a
solution to (5) and suppp~xq “ ti|ei P F u.

Lemma 2 provides important information regarding the
failed edges. It states that there exists a solution ~x to (5)
such that suppp~xq reveals the set of failed edges. However,
the solution to (5) may not be unique. The Lemma below
provides a necessary and sufficient condition on H such that
the solution to (5) is unique.

Lemma 3. The solution to (5) is unique and suppp~xq “
ti|ei P F u, if and only if H is acyclic.

According to Lemma 3 the set of failed edges for any at-
tack can be detected, if and only if H is acyclic. Fig. 3 shows
an example of a graph and set of zones such that each zone
is both well-supported and acyclic (case I in Table 2).

Although Lemma 3 requires H to be an acyclic graph in
order for the solution of (5) to be unique, by setting some
constraints on the failed edges F , we provide a method to
detect the failed edges in broader class of graphs. The un-
derlying idea is that the set of failed edges is expected to be
relatively sparse compared to the overall set of edges within a
zone. Thus, we are interested in the solutions of (5) that are
relatively sparse. The l0-norm should be used to capture the
sparseness of a vector. However, since minimizing l0-norm
is a combinatorial problem in general cases, we prefer to
use l1-norm which is known to be a good approximation of
the l0-norm. Thus, we consider the following minimization
problem,

min }~x}1 s.t. DH~x “ AH|Gp~θ ´ ~θ
1q. (6)

Notice that (6) is still linear and can be solved using Linear
Programming. Moreover, when the solution to (6) also ap-
pears to be sparse, which is usually the case in the considered
scenario, there are very fast algorithms to solve it [23].

The Lemma below states that by solving (6), the failed
edges can be detected in more cases than by solving (5).
The idea that we use in proof of Lemma 4 is the core idea
in proofs of Theorems 2 and 3, as well. Namely, the null



Table 2: Summary of the results in Section 4. The external/internal conditions on the structural properties of a zone H such
that after an attack with certain constraints, the phase angles can be recovered and the failed edges can be detected by solving
(8). Matching and partial matching refer to matchings in GrVH , V̄Hs that cover VH and VHzpV in

H Y V out

H q, respectively.

Case External conditions Internal conditions Attack constraints Resilience Results

I Matching Acyclic None attack-resilient Corollary 2/Lemma 3

II Matching Planar
@ cycle C, |C X F | ă |CzF |

F˚ is H˚-separable
weakly-attack-resilient Corollary 2/Theorem 2

III Partial matching Acyclic @v P V in

H , |Bpvq X F | ă |BpvqzF | weakly-attack-resilient Lemmas 3,6/Corollary 5

IV Partial matching
Planar

No cycle contains an
inner-connected-node

@ cycle C, |C X F | ă |CzF |

@v P V in

H , |Bpvq X F | ă |BpvqzF |

F˚ is H˚-separable

weakly-attack-resilient Theorem 3/Corollary 5

space of DH is in one-to-one correspondence with the cycle
space of the graph H. Therefore, there are graph theoretical
interpretations to the solution space of (5). Hence, by us-
ing tools from graph theory and linear algebra, we find the
solution to (5) with the minimum l1-norm.

Lemma 4. If H is a cycle and |EH X F | ă |EHzF |, the
solution to (6) is unique and suppp~xq “ ti|ei P F u.

Proof. Here without loss of generality, we assume that
DH is the incidence matrix of H when edges of H has
been oriented clockwise. Since H is connected, it is known
that rankpDHq “ |VH | ´ 1 [9, Theorem 2.2]. Therefore,

dimpNullpDHqq “ 1. Suppose ~e P R
|EH | is the all one vector.

It is easy to see that DH~e “ 0. Since dimpNullpDHqq “ 1,
~e is the basis for the null space of D. Suppose ~x is a solu-
tion to (5) such that suppp~xq “ ti|ei P F u (from Lemma 2
we know that such a solution exists). To prove that ~x is
the unique solution for (6), we only need to prove that
@c P Rzt0u, }~x}1 ă }~x ´ c~e}1. Without loss of generality
we can assume that x1, x2, . . . , xk are the nonzero elements
of ~x, in which k “ |F |. From the assumption we know that
|EH X F | ă |EHzF |, therefore k ă |EH |{2. Hence, we have

}~x ´ c~e}1 “
k

ÿ

i“1

|xi ´ c| ` p|EH | ´ kq|c|

“
k

ÿ

i“1

p|xi ´ c| ` |c|q ` p|EH | ´ 2kq|c|

ě
k

ÿ

i“1

|xi| ` p|EH | ´ 2kq|c| ą
k

ÿ

i“1

|xi| “ }~x}1.

Thus, the solution to (6) is unique.

Corollary 3. If all the cycles in H are edge-disjoint and
for any cycle C in H, |C XF | ă |CzF |, then the solution to
(6) is unique and suppp~xq “ ti|ei P F u.

The following Theorem extends the idea in the proof of
Lemma 4 and provides sufficient conditions for failed edges
in a planar graph H to be detected by solving (6) (recall
from subsection 3.4 that H˚ is the dual of the planar graph
H and F˚ is the dual of the set of failed edges).

Theorem 2. In a planar graph H, the solution to (6) is
unique and suppp~xq “ ti|ei P F u, if the following conditions
hold: (i) for any cycle C in H, |C X F | ă |CzF |, and (ii)
F˚ is H˚-separable.
Fig. 4 shows an example of a zone H for which the set of
failed edges can be detected by solving (6) based on Theo-
rem 2 (case II in Table 2).

The Corollary below states that in planar bipartite graphs,
condition (ii) in Theorem 2 immediately holds, if condition
(i) holds.

Corollary 4. In a planar bipartite graph H, the solu-
tion to (6) is unique and suppp~xq “ ti|ei P F u, if for any
cycle C in H, |C X F | ă |CzF |.

𝑂3∗
Figure 4: An example of a zone H and a set of failed edges
(shown by red dashed lines) that can be detected by solving
(6) based on Theorem 2. The diamond orange nodes are
the nodes of the dual graph H˚. As can be seen, the dual
of the failed edges can be covered by three edge disjoint
cycles O˚

1 , O
˚
2 , O

˚
3 (shown by dotted lines) in H˚. Thus, as

Theorem 2 requires, F˚ is H˚-separable.

Theorem 2 and Corollary 4 are important since power grids
are usually considered to be planar. For instance, lattice
graphs are planar bipartite.

4.3 Simultaneous Phase Angles Recovery and
Failed Edges Detection

In Subsection 4.1 we showed that the phase angles of the
zone H are recoverable, if there is a matching in GrVH , V̄H s
that covers VH . However, in reality, this condition might be
very difficult and costly to maintain (i.e., it may require to
increase the number of zones). Therefore, in this subsection,
using similar ideas as in subsection 4.2, we relax the external
conditions on H.
The key idea which is summarized in the following Lemma,

is to combine Corollary 1 and Lemma 2.
Lemma 5. There exist vectors ~x P R

|EH | and ~δH P R
|VH |

such that suppp~xq “ ti|ei P F u, ~δH “ ~θH ´ ~θ1
H , and

DH~x “ AH|H
~δH ` AH|H̄

~δH̄ (7)

AH̄|H
~δH ` AH̄|H̄

~δH̄ “ 0

where ~δH̄ “ ~θH̄ ´ ~θ1
H̄ and is known.

From Subsections 4.1 and 4.2 we know that the solution
to (7) is unique, if and only if H is acyclic and AH̄|H has
linearly independent columns. Therefore, to deal with cases
for whichAH̄|H does not have linearly independent columns,
we consider a similar optimization problem as in (6) but
with more constraints. For this reason, as we mentioned in
Subsection 4.2, since the set of failed edges is expected to
be relatively sparse compared to the overall set of edges, we
consider the following optimization problem,

min }~x}1 s.t. (8)

DH~x “ AH|H
~δH ` AH|H̄

~δH̄

AH̄|H
~δH ` AH̄|H̄

~δH̄ “ 0.



The following Lemma states that if there is an indepen-
dent set of nodes in H with no neighbors in H̄, then under

some conditions on F , we can recover F and ~θ1
H by solv-

ing (8) even when AH̄|H does not have linearly indepen-
dent columns (case III in Table 2). First, we define inner-
connected nodes.

Definition 2. A node v P VH is called H-inner-connected
if Npvq Ď VH . It is called H-outer-connected if Npvq Ď
VH̄ . We denote the set of H-inner-connected and H-outer-
connected nodes by V in

H and V out

H , respectively.

Lemma 6. Suppose H-inner-connected nodes form an in-
dependent set. If H is acyclic, rankpAH̄|Hq “ |VH | ´ |V in

H |,

and @v P V in

H , |Bpvq X F | ă |BpvqzF |, then the solution ~x, ~δ

to (8) is unique. Moreover, suppp~xq “ ti|ei P F u and
~δH “ ~θH ´ ~θ1

H .

Proof. The idea of the proof is very similar to the proof

of Lemma 4. Suppose ~x, ~δH is the solution to (7) such that

suppp~xq “ ti|ei P F u and ~δH “ ~θH ´ ~θ1
H . From Lemma 5 we

know that such a solution exists. We show that this solution
is the unique solution to (8) in this setting.

Without loss of generality in addition to assuming VH “
t1, 2, 3, . . . , |VH |u and EH “ te1, e2, . . . , e|EH |u, we can as-

sume the labeling of the nodes in G is such that V in

H “
t1, 2, . . . , tu is the set of H-inner-connected nodes. Suppose
~α1, ~α2, . . . , ~αt P R

|VH | are the coordinate vectors, in other
words ~αi is 1 at its ith entry and 0 everywhere else. It is
easy to see that @i P V in

H : AH̄|H~αi “ 0. On the other hand,
since rankpAH̄|Hq “ |VH | ´ t and ~αis are linearly indepen-
dent, ~α1, ~α2, . . . , ~αt form a basis for NullpAH̄|Hq.
Assume DH is the incidence matrix of H when its edges

are oriented such that for each i P V in

H , the edges are com-
ing out of i. Now suppose ~z is another solution to (8), it
is easy to see that DHp~z ´ ~xq “ AH|H~α for a vector ~α P
NullpAH̄|Hq. Since ~α P NullpAH̄|Hq, there are unique coeffi-
cients c1, c2, . . . , ct P R such that ~α “ c1 ~α1`c2 ~α2`¨ ¨ ¨`ct ~αt.
Thus,

DHp~z ´ ~xq “ AH|H~α “ AH|Hpc1~α1 ` c2~α2 ` ¨ ¨ ¨ ` ct~αtq

“ c1AH|H~α1 ` c2AH|H~α2 ` ¨ ¨ ¨ ` ctAH|H~αt.

Suppose ~dj is the column associated with edge ej in DH .
Notice that for each i P V in

H , Bpiq Ď EH . Therefore, @i P V in

H

and @ej P Bpiq, ~dj is a column of DH . It is easy to see that

for any i P V in

H ,
ř

j:ejPBpiq
~dj “ AH|H~αi. If for any i P V in

H

we define vector ~bi P t0, 1u|EH | as follows,

bij :“

#

1 if ej P Bpiq

0 otherwise,

then DH
~bi “ AH|H~αi for any i P V in

H . Thus,

DHpc1~b1 ` ¨ ¨ ¨ ` ct~btq “ c1AH|H~α1 ` ¨ ¨ ¨ ` ctAH|H~αt

ñ DHp~z ´ ~xq “ DHpc1~b1 ` c2~b2 ` ¨ ¨ ¨ ` ct~btq.

Now sinceH is acyclic, DH has linearly independent columns.
Thus, from the equation above we can conclude that,

~z ´ ~x “ c1~b1 ` c2~b2 ` ¨ ¨ ¨ ` ct~bt

ñ ~z “ ~x ` c1~b1 ` c2~b2 ` ¨ ¨ ¨ ` ct~bt.

Using equation above, we show that }~z}1 ą }~x}1 unless
c1 “ c2 “ ¨ ¨ ¨ “ ct “ 0. First, notice that since V in

H is an

Zone H

Figure 5: An example of a zone H and an attack such that
the phase angles can be recovered and the failed edges can be
detected by solving (8) based on Theorem 3. The squared
green nodes are the H-inner-connected nodes. The failed
edges are shown by red dashed edges.

independent set, @i ‰ j P V in

H , Bpiq X Bpjq “ H. Suppose
@i P V in

H , |Bpiq X F | “ ki, we have

}~z}1 “ }~x ` c1~b1 ` c2~b2 ` ¨ ¨ ¨ ` ct~bt}1

“
ÿ

iPV in

H

´

p|Bpiq| ´ kiq|ci| `
ÿ

jPFXBpiq

|xj ` ci|
¯

`
ÿ

iPF zBpV in

H
q

|xi|

“
ÿ

iPV in

H

´

p|Bpiq| ´ 2kiq|ci| `
ÿ

jPFXBpiq

`

|xj ` ci| ` |ci|
˘

¯

`
ÿ

iPF zBpV in

H
q

|xi|

ď
ÿ

iPV in

H

´

p|Bpiq| ´ 2kiq|ci| `
ÿ

jPFXBpiq

|xj |
¯

`
ÿ

iPF zBpV in

H
q

|xi|

ď
ÿ

iPV in

H

`

p|Bpiq| ´ 2kiq|ci|
˘

`
ÿ

iPV in

H

ÿ

jPFXBpiq

|xj | `
ÿ

iPF zBpV in

H
q

|xi|

ď
ÿ

iPV in

H

`

p|Bpiq| ´ 2kiq|ci|
˘

` }~x}1.

Now, since from the assumptions @i P V in

H , ki ă |Bpiq|{2, it
is easy to see that

ř

iPV in

H
ppBpiq ´ 2kiq|ci|q ` }~x}1 ă }~x}1,

unless c1 “ c2 “ ¨ ¨ ¨ “ ct “ 0. Since ~z is a solution to (8),
we should have c1 “ c2 “ ¨ ¨ ¨ “ ct “ 0, and ~z “ ~x. Thus,
~x is the unique solution to (8) and suppp~xq “ ti|ei P F u.

From the proof, it is easy to see that ~δH is also unique.

To generalize Lemma 6, first let us consider cases in which
H contains H-outer-connected nodes. The Lemma below
shows that the value of δ for these nodes is unique.

Lemma 7. If v is H-outer-connected and ~δH is a solution
to (7), then δv is unique and equal to δv “ 1{dpvq

ř

uPNpvq δu,

where dpvq is the degree of node v.
In the following theorem, we generalize Lemma 6. This

theorem combines Lemma 6 and Theorem 2, and provides a
broader class of graphs in which solving (8) recovers phase
angles and detects the failed edges after an attack.

Theorem 3. In a planar graph H, the solution ~x, ~δH to

(8) is unique with suppp~xq “ ti|ei P F u and ~δH “ ~θH ´
~θ1
H , if the following conditions hold: (i) @v P V in

H , |Bpvq X
F | ă |BpvqzF |, (ii) for any cycle C in H, |C X F | ă |CzF |,
(iii) F˚ is H˚-separable, (iv) in AH̄|H , columns associated
with nodes that are neither H-inner-connected nor H-outer-
connected are linearly independent, (v) no cycle in H con-
tains a H-inner-connected node, and (vi) H-inner-connected
nodes form an independent set.
Note that when H is well-supported, there are no H-inner-
connected orH-outer-connected nodes. Thus, conditions (i),
(iv), (v), and (vi) immediately hold and Theorem 3 reduces
to Theorem 2.



Algorithm 1 - Post-Attack Recovery & Detection (PARD)

Input: A connected graph G, phase angles before the attack ~θ,

and partial phase angles after the attack ~θ1
H̄
.

1: Detect the attacked zone H by checking for missing data.

2: Compute ~x, ~δH the solution to (8) by Linear Programming.

3: Compute ~θ1
H “ ~θH ´ ~δH .

4: Compute F “ tei|i P suppp~xqu.
5: Detect the set of null-edges that appear after the attack as

N “ tti, ju P EH |θ1
i “ θ1

ju.

6: return N , F , ~θ1
H .

Fig. 5 shows an example of a zone H and an attack such
that the phase angles can be recovered and the failed edges
can be detected by solving (8) using Theorem 3 (case IV in
Table 2). As it can be seen, this theorem covers a broad set
of graphs and attacks for which we can recover the phase
angles and detect the failed edges. Notice that here, with
similar argument as in Corollary 2 we can replace condi-
tion (iv) in Theorem 3 with a simpler matching condition as
follows.

Corollary 5. If there is a matching in GrVH , V̄Hs that
covers VHzpV in

H Y V out

H q, then condition (iv) in Theorem 3
holds almost surely.

To conclude, we define the attack-resilient and weakly-
attack-resilient notions to summarize the resilience of a zone
to joint cyber and physical attacks.

Definition 3. A zone H is called attack-resilient, if it is
both well-supported and acyclic.

Definition 4. A zone H is called weakly-attack-resilient, if
~θ1
H and F can be uniquely found after a constrained attack
on the zone H by solving (8).

It is easy to see that an attack-resilient zone is also weakly-
attack-resilient.

4.4 Post-Attack Recovery and Detection Al-
gorithm

In this subsection, we present the Post-Attack Recovery
and Detection (PARD) Algorithm for recovering the phase
angles and detecting the failed edges after an attack on a
zone H. Based on the results provided in previous subsec-
tions, if zone H is weakly-attack-resilient, the PARD Al-
gorithm will recover the phase angles and detect the failed
edges after a constrained attack.

Notice that if there are some failed edges but no data is
missing, then from the data that is gathered by the PDCs
from the PMUs, all the information regarding the status of
the lines and phase angles is available and there is no need
for the algorithm. Thus, as the first step, the PARD Algo-
rithm detects the attacked zone H by checking the missing
data (line 1). Then, it solves (8) by Linear Programming

to obtain ~x, ~δH . If H is weakly-attack-resilient, from the re-

sults in previous subsections, we know that ~x, ~δH are unique,
~θ1
H “ ~θH ´ ~δH (line 3), and F “ tei|i P suppp~xqu (line 4).

Finally, using ~θ1 computed in previous line, the PARD Al-
gorithm detects the set of null-edges N (line 5), and returns

N , F , and ~θ1
H .

5. ZONE SELECTION ALGORITHM
In this section we use the results from Section 4 to provide

an algorithm for partitioning the power grid into the mini-
mum number of attack-resilient zones. From Lemma 3 and

Algorithm 2 - 3-Acyclic Partition of Planar (3APP)

Input: A non-empty planar graph G.

1: Find a node v P V such that degpvq ď 5.
2: if Gzv “ H then set Q1 “ Q2 “ Q3 “ H.
3: else Find 3-partition of Gzv using 3APP Algorithm as

Q1, Q2, Q3.
4: Add v to the partition that |Npvq X Qi| is minimum.
5: return Q1, Q2, Q3.

Corollary 2, for a zone H to be attack-resilient, it is suffi-
cient that H is acyclic and there is a matching in GrVH , V̄H s
that covers every node in VH . Fig. 3 shows an example of
a partitioning such that each zone is attack-resilient. Thus,
we define a matched-forest partition of a graph G as follows.

Definition 5. Amatched-forest partition of a graphG into
H1, H2, . . . , Hk is a partition such that for any i, Hi is acyclic
and GrVHi , V̄Hi s has a matching that covers VHi .

The problem of finding a matched-forest partition of G is
closely related to two previously known problems of vertex
arboricity and k-matching cover of a graph. The vertex
arboricity apGq of a graph G is the minimum number of
subsets into which the nodes of G can be partitioned so
that each subset induces an acyclic graph. It is known that
determining apGq is NP-hard [26, p.193].
A k-matching cover of a graph G is a union of k matchings

of G which covers V . The matching cover number of G,
denoted by mcpGq, is the minimum number k such that G

has a k-matching cover. An optimal matching cover of a
graph on n nodes can be found in Opn3q time [45].

Using these results, we study the time complexity of the
minimum matched-forest partition problem.5 The following
Lemma shows that it is hard to find the minimum matched-
forest partition of a graph.

Lemma 8. The problem of finding the minimum matched-
forest partition of a graph G is NP-hard.

Moreover, we show that finding the minimum matched-
forest partition is even hard to approximate. We use the
well-known result by Zuckerman [51] that for all ǫ ą 0, it is
NP-hard to approximate chromatic number to within n1´ǫ.

Lemma 9. For all ǫ ą 0, it is NP-hard to approximate
the minimum matched-forest partition of a graph G to within
n1´ǫ.

Despite these hardness results, we provide the polynomial-
time Zone Selection (ZS) Algorithm to find a matched-forest
partition of a graph. We prove that the ZS Algorithm pro-
vides a constant approximation for the minimum matched-
forest partition of a graph G when G is planar.
Before describing the ZS Algorithm in detail, we first

describe an algorithm that is used in the ZS Algorithm,
when G is planar. It is known that for a planar graph G,
apGq ď 3 [19]. Based on the proof provided in [19], we in-
troduce a recursive 3-Acyclic Partition of Planar (3APP)
Algorithm. The Lemma below shows the correctness of this
Algorithm.

Lemma 10. The 3APP Algorithm partitions the nodes of
a planar graph G into 3 subsets such that each subset induces
an acyclic graph.

5To the best of our knowledge, this is the first time that the
problem is studied.



Algorithm 3 - Zone Selection (ZS)

Input: A connected graph G.

1: Find an optimal matching cover M1,M2, . . . ,Mt of G [45].
2: For each Mi, separate the matched nodes into two set of nodes

V2i´1, V2i such that @tv, uu P M , v P V2i´1 and u P V2i.

3: For any 1 ď i ď 2t, Qi “ Viz
Ťi´1

j“1
Qj .

4: for each Qi do

5: if GrQis is acyclic then continue

6: if GrQis is a planar graph then

7: Use 3APP Algorithm to partition GrQis.
8: else

9: Use any greedy algorithm to partition GrQis into acyclic
subgraphs.

10: Name the resulted partitions P1, . . . , Pk.
11: return P1, . . . , Pk.
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Figure 6: The relationships between the number of edges in
random graphs (or equivalently p), and the fraction of in-
duced subgraphs that form well-supported and acyclic zones
of size |VH | “ 10. For each p, 100 random graphs were gen-
erated and in each graph, 100 subgraphs were chosen ran-
domly.

We now present the ZS Algorithm. The ZS Algorithm
first finds an optimal matching cover M1,M2, . . . ,Mt of G
using an Opn3q algorithm introduced in [45] (line 1). Then,
in lines 2 and 3, it uses this matching cover to partition
V into Q1, Q2, . . . , Q2t. It is easy to see that for each Qi,
Mri{2s X ErQi, Q̄is is the matching in GrQi, Q̄is that cov-
ers nodes in Qi. Then, in order to satisfy the acyclicity
condition on the partitions, it partitions Qis that do not
induce an acyclic graph, into subsets so that each subset
induces an acyclic graph. When GrQis is a planar graph,
it uses 3APP Algorithm to partition GrQis. When it is
not, it uses any greedy algorithm to do so. Thus, the re-
sulted partition P1, P2, . . . , Pk satisfies the conditions of a
matched-forest partition.

The lemma below states that when G is planar, the ZS
Algorithm provides a constant approximation of the opti-
mal matched-forest partition. We demonstrate the results
obtained by the algorithm in the following section.

Lemma 11. If G is planar, the ZS Algorithm provides a
6-approximation of the minimum matched-forest partition
of G in Opn3q.

6. NUMERICAL RESULTS
In this section, we (i) numerically study the relationship

between the structural properties of a grid and its resilience
to joint cyber and physical attacks, and (ii) demonstrate
the results obtained by the ZS Algorithm in several known
power grid networks.

To assess the relationship between the structural proper-
ties of a grid and its resilience to attacks, we quantify the

0 2 4 6 8 10 12 14 16
|V
H

|

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f 
su

b
g
ra

p
h
s

Acyclic

Well-supported

Attack-resilient

(a) n “ 30,m “ 56

0 2 4 6 8 10 12 14 16
|V
H

|

0.0

0.2

0.4

0.6

0.8

1.0

Acyclic

Well-supported

Attack-resilient

(b) n “ 30,m “ 104

Figure 7: The relationship between the size of the zone |VH |
in scale-free graphs, and the fraction of induced subgraphs
that form well-supported and acyclic zones of size |VH |. For
each case, 1000 subgraphs were chosen randomly.

resilience by the fraction of the node induced subgraphs of
G that form attack-resilient zones. Recall from Section 4
that a zone H is attack-resilient, if it is well-supported and
acyclic. We first study the relationships between the num-
ber of edges and the fraction of induced subgraphs that form
well-supported, acyclic, and attack-resilient zones. These re-
lationships can be best demonstrated in random graphs [24],
since by increasing p (the probability that two nodes are con-
nected), the total number of edges increases.

We generated random graphs with n “ 30 and n “ 50
nodes with various p values. For each p, we generated 100
random graphs and in each graph randomly selected 100
subgraphs of size 10. We then computed the fraction of
subgraphs that form well-supported, acyclic, and attack-
resilient zones. As can be seen in Fig. 6, as p increases,
the fraction of subgraphs that form acyclic zones decreases
and the fraction that form well-supported zones increases.
In Fig. 6(a), when p « 0.14 these two fractions are equal
and the fraction of attack-resilient subgraph is maximized.
As can be seen in Fig. 6(b), the value of p for which these
two fractions are equal (i.e., the fraction of attack-resilient
subgraphs is maximized) decreases as n increases.

We also illustrate the relationships between the size of
the zone |VH | and the fraction of induced subgraphs that
form well-supported, acyclic, and attack-resilient zones. It
is known that scale-free graphs are relatively good represen-
tatives of power grid networks [10], and therefore, we focus
here on such graphs. Fig. 7 shows the relationships in scale-
free graphs with n “ 30 nodes and m “ 56 or 104 edges.
As can be seen in 7(a), as the size of the zone increases, the
fraction of zones that are well-supported decreases faster
than the fraction of zones that are acyclic. Thus, the well-
supportedness is the restricting factor for attack-resilience.
However, this trend is different in 7(b). Since the graph has
more edges, as the size of the zone increases, the fraction
of zones that are acyclic decreases faster than the fraction
of zones that are well-supported. Here, the acyclicity is the
restricting factor.

Overall, these results show that the structure of the grid
plays an important role in its resilience and should be con-
sidered when designing a control network.6

6Clearly, random and scale free graphs do not model power
grids perfectly. However, we used them to gain insight into
the relations between structural properties and resilience.
In future work, we will study more realistic network topolo-
gies [41].



Table 3: Number of partitions into which the ZS Algorithm
divides different networks.

Network Nodes Edges Partitions

IEEE 14-Bus 14 20 2

IEEE 30-Bus 30 41 2

IEEE 118-Bus 118 179 5

IEEE 300-Bus 300 409 14

Polish grid 3120 3684 10

Colorado state grid 662 864 6

Western interconnection 13135 16860 9

Zone 1

Zone 2

(a) IEEE 14 bus

Zone 1

Zone 2

(b) IEEE 30 bus

Figure 8: Partitioning of the IEEE 14 and IEEE 30 bus sys-
tems into 2 attack resilient zones (using the ZS Algorithm).

We now demonstrate results obtained by the ZS Algo-
rithm in several known power networks. Table 3 lists the
considered grids and number of resulting partitions. For ex-
ample, Fig. 8 shows the partitions obtained by ZS Algorithm
in the IEEE 14-Bus and 30-Bus benchmark systems [2]. As
can be seen, in both cases the graphs can be partitioned into
two attack-resilient zones. We also evaluated the ZS Algo-
rithm on the IEEE 118 and 300-bus systems, the Polish grid
(available with MATPOWER [50]), the Colorado state grid,
and the U.S. Western Interconnection network.7 For exam-
ple, the 6 zones into which the Colorado grid is partitioned
appear in Fig. 9. Recall form Section 5 that when G is pla-
nar, the ZS Algorithm is a 6-approximation algorithm for
the minimum matched-forest problem. However, as can be
seen from the examples above, in practice, it partitions the
networks into few zones.

We note that the ZS Algorithm does not take the geo-
graphical constraints into account. Thus, when partition-
ing very large networks such as the Western Interconnection
(see Fig. 10), the nodes in the same partition may be ge-
ographically distant from each other. This is impractical,
since the PMUs from the same zone should send the data
to a single PDC. However, it is easy to see that if a zone is
attack-resilient, any of its subgraphs is also attack-resilient.
Therefore, the partitions obtained by the ZS Algorithm can
be further divided into smaller zones based on geograph-
ical constraints (e.g., into zones within different states in
Fig. 10). This approach does not result in an optimal par-
titioning. Hence, obtaining an efficient partitioning with
geographical constraints is a subject of future work.

7. CONCLUSION
We studied joint cyber and physical attacks on power

grids. We developed methods to recover information about
the phase angles of the nodes and the disconnected edges,
using only the information available from outside of the at-
tacked zone. We identified graph structures and constraints

7The data of the Western Interconnection (and of Colorado)
was obtained from the Platts Geographic Information Sys-
tem (GIS) [1].

Figure 9: Partitioning of the Colorado state grid into 6
attack-resilient zones (using the ZS Algorithm). Nodes with
the same color are in the same zone.

Figure 10: Partitioning of the U.S. Western Interconnec-
tion into 9 attack-resilient zones (using the ZS Algorithm).
Nodes with the same color are in the same zone.

on the disconnected edges for which these methods are guar-
anteed to recover the state information. Moreover, we showed
that the problem of partitioning the grid into the mini-
mum number of attack-resilient zones is not approximable to
within n1´ǫ for all ǫ ą 0 unless P=NP. However, for planar
graphs, we developed an approximation algorithm for the
partitioning problem. Finally, we illustrated via numerical
results the relationship between the structural properties of
the power grid and its resilience to joint attacks as well as
the operation of the partitioning algorithm.

This is one of the first steps towards understanding the
vulnerabilities of power grids to joint cyber and physical
attacks and developing methods to mitigate their effects.
Hence, there are still many open problems. In particular,
we plan to generalize Theorems 2 and 3 to a broader class
of graphs. Moreover, we will develop algorithms to parti-
tion the grid into weakly-attack-resilient zones while taking
into account geographical constraints and constraints on the
number and positions of the PDCs. Finally, we will study
the interdependencies between cascading failures in power
grids and its control network when the control network faces
sophisticated cyber attacks.
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[24] P. Erdős and A. Rényi. On random graphs.
Publicationes Mathematicae Debrecen, 6:290–297,
1959.

[25] L. Gan, A. Wierman, U. Topcu, N. Chen, and S. H.
Low. Real-time deferrable load control: handling the
uncertainties of renewable generation. In Proc. ACM
e-Energy’13, May 2013.

[26] M. R. Garey and D. S. Johnson. Computers and
intractability: a guide to the theory of
np-completeness. 1979.

[27] Y. Ghiassi-Farrokhfal, S. Keshav, C. Rosenberg, and
F. Ciucu. Firming solar power. In Proc. ACM
SIGMETRICS’13 (poster description), June 2013.

[28] Y.-F. Huang, S. Werner, J. Huang, N. Kashyap, and
V. Gupta. State estimation in electric power grids:
Meeting new challenges presented by the requirements
of the future grid. IEEE Signal Process. Mag.,
29(5):33–43, 2012.

[29] K. Khandeparkar, P. Patre, S. Jain, K. Ramamritham,
and R. Gupta. Efficient PMU data dissemination in
smart grid. In Proc. ACM e-Energy’14 (poster
description), June 2014.

[30] J. Kim and L. Tong. On topology attack of a smart
grid: undetectable attacks and countermeasures. IEEE
J. Sel. Areas Commun, 31(7):1294–1305, 2013.

[31] J. Kleinberg, M. Sandler, and A. Slivkins. Network
failure detection and graph connectivity. In Proc.
ACM-SIAM SODA’04, Jan. 2004.

[32] J. Liu, C. H. Xia, N. B. Shroff, and H. D. Sherali.
Distributed optimal load shedding for disaster
recovery in smart electric power grids: A second-order
approach. In Proc. ACM SIGMETRICS’14 (poster
description), June 2014.

[33] Y. Liu, P. Ning, and M. K. Reiter. False data injection
attacks against state estimation in electric power
grids. ACM Trans. Inf. Syst. Secur., 14(1):13, 2011.

[34] L. Lu, J. Tu, C.-K. Chau, M. Chen, and X. Lin.
Online energy generation scheduling for microgrids
with intermittent energy sources and co-generation. In
Proc. ACM SIGMETRICS’13, June 2013.

[35] N. M. Manousakis, G. N. Korres, and P. S.
Georgilakis. Taxonomy of PMU placement
methodologies. IEEE Trans. Power Syst.,
27(2):1070–1077, 2012.

[36] C. Phillips. The network inhibition problem. In Proc.
ACM STOC’93, May 1993.

[37] A. Pinar, J. Meza, V. Donde, and B. Lesieutre.
Optimization strategies for the vulnerability analysis
of the electric power grid. SIAM J. Optimiz.,
20(4):1786–1810, 2010.

http://www.platts.com/Products/gisdata
http://www.ee.washington.edu/research/pstca/
http://goo.gl/RiuhI1
http://goo.gl/WgUbPI
http://statweb.stanford.edu/~donoho/Reports/2006/kstep-20061005.pdf
http://statweb.stanford.edu/~donoho/Reports/2006/kstep-20061005.pdf


[38] W. Rudin. Real and complex analysis. Tata
McGraw-Hill Education, 1987.

[39] P. D. Seymour. On odd cuts and plane
multicommodity flows. P. Lond. Math. Soc.,
3(1):178–192, 1981.

[40] S. Soltan, D. Mazauric, and G. Zussman. Cascading
failures in power grids – analysis and algorithms. In
Proc. ACM e-Energy’14, June 2014.

[41] S. Soltan and G. Zussman. A statistical method for
synthetic power grid generation based on the U.S.
Western Interconnection. Abstract presented at SIAM
NS’15, May 2015.

[42] J. E. Tate and T. J. Overbye. Line outage detection
using phasor angle measurements. IEEE Trans. Power
Syst., 23(4):1644–1652, 2008.

[43] J. E. Tate and T. J. Overbye. Double line outage
detection using phasor angle measurements. In Proc.
IEEE PES’09, July 2009.

[44] O. Vukovic, K. C. Sou, G. Dán, and H. Sandberg.
Network-layer protection schemes against stealth
attacks on state estimators in power systems. In Proc.
IEEE SmartGridComm’11, 2011.

[45] X. Wang, X. Song, and J. Yuan. On matching cover of
graphs. Math. Program., 147(1-2):499–518, 2014.

[46] D. B. West et al. Introduction to graph theory,
volume 2. Prentice hall Upper Saddle River, 2001.

[47] H. Xiao and E. M. Yeh. Cascading link failure in the
power grid: A percolation-based analysis. In Proc.
IEEE Int. Work. on Smart Grid Commun., June 2011.

[48] Y. Zhao, A. Goldsmith, and H. V. Poor. On PMU
location selection for line outage detection in
wide-area transmission networks. In Proc. IEEE
PES’12, July 2012.

[49] H. Zhu and G. B. Giannakis. Sparse overcomplete
representations for efficient identification of power line
outages. IEEE Trans. Power Syst., 27(4):2215–2224,
2012.

[50] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J.
Thomas. Matpower: Steady-state operations,
planning, and analysis tools for power systems
research and education. IEEE Trans. Power Syst.,
26(1):12–19, 2011.

[51] D. Zuckerman. Linear degree extractors and the
inapproximability of max clique and chromatic
number. In Proc. ACM STOC’06, May 2006.

APPENDIX

A. PRELIMINARIES
In this appendix we provide some of the known theorems

and definitions used in the proofs.
A bond of a graph is a minimal nonempty edge cut, that

is, a nonempty edge cut none of whose nonempty proper
subsets is an edge cut.

A graph in which each node has even degree is called an
even graph. A circuit is the union of edge-disjoint cycles. It
is easy to see that a cycle is also a circuit.

Theorem A.1 (Theorem 5.2 [39]). Let G “ pV,Eq
be a planar Eulerian graph, and let F Ď E. Then the follow-
ing are equivalent: (i) F is G-separable, (ii) for each bond
D, |D X F | ď |D ´ F |.

Theorem A.2 (Theorem 10.16 [17]). Let G be a con-
nected planar graph, and let G˚ be a planar dual of G. (i)
If C is a cycle of G, then C˚ is a bond of G˚. (ii) If B is a
bond of G, then B˚ is a cycle of G˚.

Theorem A.3 (Theorem 6.1.16 [46]). The followings
are equivalent for a planar graph G, (i) G is bipartite, (ii)
every face of G has even length, and (iii) the dual graph G˚

is Eulerian.

Theorem A.4 (Euler’s formula [16]). For any pla-
nar graph G with n nodes, m edges, r faces, and c connected
components, the following formula holds, n ` r ´ m “ c.

Lemma A.1 (Corollary 2.16 [16]). The symmetric dif-
ference of two even subgraphs is an even subgraph.

B. PROOFS
Proof of Corollary 2. Suppose M “ pU, VHq is the

matching for GrVH , V̄Hs that covers VH , and suppose U Ď
V̄H are the matched nodes which are in V̄H . Since M is the
matching in GrVH , V̄Hs that covers H, thus |U | “ |VH |. Re-
garding Theorem 1, to show that H is well-supported almost
surely, we need to show that the columns of the matrixAH̄|H

are linearly independent almost surely. For this reason, we
show that detpAU |VH

q ‰ 0 almost surely. detpAU |VH
q can

be considered as a polynomial of the nonzero entries of the
admittance matrix using Leibniz formula. Now assume U “
tu1, u2, . . . , u|VH |u are matched to VH “ tv1, v2, . . . , v|VH |u

in order. It can be seen that
ś|VH |

i“1
auivi is a term with

nonzero coefficient in detpAU |VH
q. Therefore, detpAU |VH

q is
not a zero polynomial in terms of its nonzero entries. Now
since the set of reactance values for the edges in ErVH , V̄Hs
such that detpAU |VH

q “ 0 is a measure zero set in the real
space, thus detpAU |VH

q ‰ 0 almost surely.

Proof of Lemma 3. It is easy to see that the solution
to (5) is unique if and only if DH has linearly independent
columns. It is known that rankpDHq “ |VH |´c in which c is
the number of connected components of H [9, Theorem 2.3].
Therefore, DH has linearly independent columns if and only
if each connected component of DH is a tree, which means
that DH should be acyclic.

Proof of Theorem 2. Recall that we can assume VH “
t1, 2, . . . , |VH |u and EH “ te1, e2, . . . , e|EH |u. We assign an
arbitrary orientation to the edges of H and fix the embed-
ding of H on the plane. We show the set of oriented edges
by EH “ tǫ1, ǫ2, . . . , ǫ|EH |u. Suppose H has r faces and
C1, C2, . . . , Cr are the cycles that surrounded those faces.
For each cycle Ci, define vector ~ci P t´1, 0, 1u|EH | as fol-
lows,

cij “

$

’

&

’

%

0 if ǫj R Ci,

1 if ǫj P Ci and ǫj traverse Ci clockwise,

´1 if ǫj P Ci and ǫj traverse Ci counterclockwise.

It is easy to see that @i,DH ~ci “ 0. Therefore, ~ci P NullpDq.
On the other hand it is easy to see that ~cis are linearly
independent. If c is the number of connected components
of H, then dimpNullpDqq “ |EH | ´ |VH | ` c which from
Euler’s formula is equal to r. Thus, ~cis form a basis for
the null space of the incidence matrix D. Now suppose ~x

is the solution to (5) such that suppp~xq “ ti|ei P F u (from
Lemma 2 we know that such a solution exists). We need to
prove that for any ~z “ ~x ` y1 ~c1 ` ¨ ¨ ¨ ` yr ~cr, }~z}1 ď }~x}1 iff



y1 “ y2 “ ¨ ¨ ¨ “ yr “ 0. Please notice that since ~cis are the
cycles associated with the faces of the planar graph H, each
edge ej appears in at most two cycles Ct and Cs. Thus, the
entries of ~z, zjs are in one of the following forms, (i) zj “ 0,
(ii) zj “ xj , (iii) zj “ xj ˘ yt, (iv) zj “ xj ˘ pyt ´ ysq, or
(v) zj “ ˘pyt ´ ysq.

First, we show that }~z}1 ě }~x}1. Suppose F “ tei1 , ei2 , . . . , eiku.
From the assumption, we know that F˚ is H˚-separable.
Thus, there are pairwise edge-disjoint cycles O˚

j p1 ď j ď kq

in H˚, such that @eij P F, e˚
ij

P O˚
j . For each jp1 ď j ď kq

define NOpjq “ tp|e˚
p P O˚

j u. From the definitions it is easy
to see that @p, qp1 ď p ‰ q ď kq, NOppqXNOpqq “ H. Thus,

}~z}1 ě
řk

j“1

ř

pPNOpjq |zp|. On the other hand, from the tri-
angle inequality, it is easy to see that for all 1 ď j ď k,
ř

pPNOpjq |zp| ě |xij |. Thus, }~z}1 ě
řk

j“1

ř

pPNOpjq |zp| ě
řk

j“1
|xij | “ }~x}1.

Now we show that }~z}1 “ }~x}1 is not possible unless
y1 “ y2 “ ¨ ¨ ¨ “ yr “ 0. If tj1, j2, . . . , jtu are the indices
for which yj1 “ yj2 “ ¨ ¨ ¨ “ yjt “ w, then yj1 ~cj1 ` ¨ ¨ ¨ `

yjt ~cjt “ w~c2 for which from Lemma A.1, ~c2 is the vector
associated with the circuit C2 “ Cj1∆Cj2∆ . . .∆Cjt (∆ is
the symmetric difference). Therefore we can rewrite ~z as

~x`w1
~c2
1

`w2
~c2
2

` ¨ ¨ ¨ `wq
~c2
q for which w1 ą w2 ą ¨ ¨ ¨ ą wq.

If q “ 0, then there is nothing left to prove. If q “ 1,
then it can be easily concluded from Lemma 4 that it is not
possible to have }~z}1 “ }~x}1 unless w1 “ 0 ñ y1 “ y2 “
¨ ¨ ¨ “ yr “ 0. Now assume q ą 1, from what we showed
previously, we know that in order to have }~z}1 “ }~x}1, we

should have }~z}1 “
řk

j“1

ř

pPNOpjq |zp| “
řk

j“1
|xij | “ }~x}1.

Equality }~z}1 “
řk

j“1

ř

pPNOpjq |zp| shows that suppp~zq Ď
Ťk

j“1
NOpjq. Equality

řk

j“1

ř

pPNOpjq |zp| “
řk

j“1
|xij | shows

that w1 should appear in }~z}1, half of the time positive and
half of the time negative. However, since w1 has the largest
value, it appears always as w1 ´ wi in the instances like
|w1 ´ wi|. Now from assumption we know that |suppp~xq X
C2

1 | ă |C2
1 |{2. Thus, there are more than |C2

1 |{2 instances
like |w1 ´ wi| or |w1| in }~z}1. Therefore, it is not possible
that w1 appears half of the time positive and half of the time
negative in }~z}1, which shows that if q ą 1 then }~z}1 ‰ }~x}1.
Thus, the proof is complete.

Proof of Corollary 4. H is bipartite, therefore from
Theorem A.3, H˚ is Eulerian. For any C in H, |C X F | ă
|CzF |, therefore from Theorem A.2 for any bond C˚ in H˚,
|C˚ X F˚| ă |C˚zF˚|. Combining these two, from Theo-
rem A.1 we can conclude that F˚ is H˚-separable. Thus,
we can simply apply Theorem 2.

Proof of Lemma 5. From Corollary 1 we know that ~δH “
~θH ´ ~θ1

H is a solution to AH̄|H
~δH ` AH̄|H̄

~δH̄ “ 0. Now if
~δ “ ~θ ´ ~θ1, from Lemma 2 we know that there exists a vec-
tor ~x P R

|EH | such that suppp~xq “ ti|ei P F u and DH~x “

AH|H
~δH ` AH|H̄

~δH̄ . Thus, the proof is complete.
Proof of Lemma 7. First, notice that since v isH-outer-

connected, Npvq Ď V̄H . Thus, δv “ 1{dpvq
ř

uPNpvq δu im-

plies that δv is unique. Now, let us compute the vth en-
try of the vectors on the both side of the equation DH~x “

AH|H
~δH ` AH|H̄

~δH̄ . Since v is H-outer-connected, the vth

row of DH is a zero vector. Thus, pDH~xqv “ 0 for any

~x. It is also easy to see that pAH|H
~δHqv “ δvdpvq and

pAH|H̄
~δH̄qv “ ´

ř

uPNpvq δu. Since pDH~xqv “ pAH|H
~δHqv `

pAH|H̄
~δH̄qv, we can conclude that δv “ 1{dpvq

ř

uPNpvq δu.
Thus, the proof is complete.

Proof of Theorem 3. First, using Lemma 7, since the
phase angles for the H-outer-connected nodes can be com-
puted uniquely, without loss of generality and for simplic-
ity, we can assume that H does not contain any H-outer-
connected nodes. Suppose ~c1, . . .~cr are the vectors associ-
ated with the faces in H as we defined in the proof of Theo-

rem 2. Suppose~b1, . . . ,~bt are the vectors associated with the
coboundry of the H-inner-connected nodes as we defined in
the proof of Lemma 6. All we need to prove is that if ~x is
the solution to (7) such that suppp~xq “ ti|ei P F u then for

any solution ~z for (7), }~z}1 ą }~x` y1~c1 ` ¨ ¨ ¨ ` yr~c1 `w1
~b1 `

¨ ¨ ¨ ` wt
~bt}1 unless y1 “ ¨ ¨ ¨ “ yr “ w1 “ ¨ ¨ ¨ “ wt “ 0. The

rest of the proof is exactly similar to proofs of Lemma 6 and
Theorem 2. The key is Condition (v) implies that the cycles

(~cis) and coboundries (~bis) are edge disjoint. Thus, since all
the conditions for Lemma 6 and Theorem 2 also hold here,
with exactly the same approach as in the proofs of Lemma 6
and Theorem 2 we can conclude this Theorem.

Proof of Lemma 8. We show that finding the minimum
matched-forest partition is at least as hard as vertex ar-
boricity. Suppose G “ pV,Eq is given and we are interested

in apGq. We build a new graph Ĝ “ pV̂ , Êq by getting a
copy of graph G, G2 “ pV 2, E2q and connect every node

in G to its counterpart in G2. Thus, V̂ “ V Y V 2 and
Ê “ E Y E2 Y ttvi, v

2
i u|vi P V u. We prove that Ĝ has a

matched-forest partition of size k if and only if apGq ď k.

First, let us assume Ĝ has a matched-forest partition of
size k, namely Ĥ1, Ĥ2, . . . , Ĥk. Since subgraphs induced by
Ĥ1, Ĥ2, . . . , Ĥk in Ĝ are acyclic and partition V̂ , it is easy to
see that subgraphs induced by Ĥ1 XV, Ĥ2 XV, . . . , Ĥk XV in
G are acyclic and partition V . Thus, apGq ď k. Now, let us
assume apGq ď k. There should exists a partition of nodes of
G into subsets H1, H2, . . . , Hk such that each subset induces
an acyclic graph. Assume H2

1 , H
2
2 , . . . , H

2
k are the counter-

parts of these subsets in G2. For any i, 1 ď i ď k ´ 1 define
Ĥi “ Hi Y H2

i`1, and Ĥk “ Hk Y H2
1 . It is easy to see that

Ĥ1, Ĥ2, . . . , Ĥk is a matched-forest partition of size k for Ĝ.
Thus, we proved that Ĝ has a matched-forest partition of
size k if and only if apGq ď k. It means that the minimum

matched-forest partition of Ĝ is equal to apGq, which shows
that the minimum matched-forest partition is at least as
hard as vertex arboricity and therefore it is NP-hard.

Proof of Lemma 9. For a graph G, assume χpGq is its
chromatic number. Since each color gives an independent
set of G, induced subgraph by the nodes with the same
color is acyclic with no edges. Thus, it is easy to see that
apGq ď χpGq. Suppose there is an α-approximation al-
gorithm for the minimum matched-forest problem. Define
Ĝ as in proof of Lemma 8. Assume this algorithm par-
titions Ĝ into k subsets. From the proof of Lemma 8, it
is easy to see that k ď αapGq. On the other hand, since
each acyclic graph has the chromatic number of at most
2, this algorithm gives the 2k coloring of graph G. How-
ever, 2k ď 2αapGq ď 2αχpGq. Thus, this algorithm gives
a 2α-approximation of the chromatic number of G. How-
ever, the result by Zuckerman [51] states that for all ǫ ą 0,
it is NP-hard to approximate chromatic number to within
n1´ǫ. Therefore, for all ǫ ą 0, it is NP-hard to approxi-
mate the minimum matched-forest problem to within n1´ǫ

as well.

Proof of Lemma 10. It is known that every planar graph
has a node of degree less than or equal to 5 [46]. Therefore,



line 1 of the algorithm can always find v. At line 4, recur-
sively we know that subgraphs induced by Q1, Q2, Q3 in Gzv
are acyclic. Now since degpvq ď 5, there exists a partition
such that |Npvq X Qi| ď 1. Without loss of generality we
can assume that |Npvq X Q1| ď 1. Hence, adding v to Q1

does not produces any cycles. Thus, subgraphs induced by
Q1 Y tvu, Q2, Q3 in G are acyclic.

Proof of Lemma 11. SupposeOPT is the minimum num-
ber of matched-forest partitions of G and OPTm is the num-
ber of optimal matching cover of G. Since for any subset VH

in the partition of G “ pV,Eq into matched-forest partitions
there exists a matching that covers VH , we can cover V with
OPT matchings. Thus, OPTm ď OPT . Now since G is pla-
nar, ZS Algorithm uses 3APP to partition Qis into atmost
3 subsets. Hence, if k is the number of subsets returned by
ZS Algorithm then k ď 3 ˆ 2 ˆ OPTm ď 6 ˆ OPT . Thus,
ZS Algorithm provides a 6-approximation of the minimum
matched-forest partition of G.

As for the running time, ZS algorithm takes Opn3q time to
find the optimal matching cover of G and Op|Qi|q to parti-
tion Qi. Now since k ď n and |Qi| ď n, line 4 does not take
more than Opn2q. Thus, the total running time is Opn3q.
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