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Joint D2D Assignment, Bandwidth and Power

Allocation in Cognitive UAV-enabled Networks
H. T. Nguyen, H. D. Tuan, T. Q. Duong, H. V. Poor, and W-J. Hwang

Abstract—This paper considers a cognitive communication
network, which consists of a flying base station deployed by an
unmanned aerial vehicle (UAV) to serve its multiple downlink
ground terminals (GTs), and multiple underlaid device-to-device
(D2D) users. To support the GTs’ throughput while guaranteeing
the quality-of-service for the D2D users, the paper proposes the
joint design of D2D assignment, bandwidth, and power allocation.
This design task poses a computationally challenging mixed-
binary optimization problem, for which a new computational
method for its solution is developed. Multiple binary (discrete)
constraints for the D2D assignment are equivalently expressed
by continuous constraints to leverage systematic processes of
continuous optimization. As a result, this problem of mixed-
binary optimization is reformulated by an exactly penalized con-
tinuous optimization problem, for which an alternating descent
algorithm is proposed. Each round of the algorithm invokes
two simple convex optimization problems of low computational
complexity. The theoretical convergence of the algorithm can be
easily proved and the provided numerical results demonstrate
its rapid convergence to an optimal solution. Such a cognitive
network is even more desirable as it outperforms a non-cognitive
network, which uses a partial bandwidth for D2D users only.

Index Terms—Unmanned aerial vehicle (UAV)-enabled net-
work, cognitive device-to-device (D2D) communication, band-
width allocation, power allocation, D2D assignment, mixed-
integer programming

I. INTRODUCTION

Using an unmanned aerial vehicle (UAV) as a flying base

station promises to support the coverage and throughput of

wireless communications [1]. In contrast to conventional cel-

lular communication, which is shadowed by non-line-of-sight

(NLoS) connections, such UAV-enabled communication lever-

ages the strength of line-of-sight (LoS) connections [2]. The

air-to-ground channel model is not diffracted or reflected much
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by obstructions compared to the ground-to-ground channel

model. Therefore, UAV-enabled communication can achieve a

high throughput at ground terminals (GTs) even under a long

range communication circumstance. The deployment of UAV-

enabled networks not only is cost-saving but also resolves

occupancy, which is a serious issue in urban areas. UAV-

enabled communications has found interesting applications

in military, emergency missions, and outdoor events [3]–[5],

where UAVs can act as temporary hotspots or relay nodes to

establish connections, for example, between the safety area

and disaster areas [6], [7].

To realize the benefits of UAV-enabled communication in

terms of coverage area, throughput, and energy efficiency,

many typical problems such as UAV placement [8]–[10], UAV

trajectory design [11], [12], beamwidth control [13], [14],

and power allocation [15]–[18] have been studied. Under the

coexistence of secondary networks, the effect of NLoS and

LoS connections to the GT throughput has been analyzed in

[16], [19], [20].

In recent years, device-to-device (D2D) communication

[21]–[25] to support various high-speed services without hav-

ing to install any essential infrastructures has emerged as an

important feature in the 5th generation of cellular networks

(5G) [26]. In the previous studies such as [27], [28], the

pairs in close proximity are directly linked as cognitive users

or primary users. Cognitive D2D communication, in which

D2D users reuse resources of the cellular communication

systems has received significant attention [26], [29], [30]. The

objective is interference management to guarantee the quality-

of-service (QoS) requirements for both (primary) cellular users

and (cognitive) D2D users [31]–[33].

In contrast to the well-studied conventional D2D cogni-

tive cellular networks, the viability of D2D cognitive UAV-

enabled networks remains mostly unknown. Their coverage

and throughput have been analyzed in [34]. The so called d.c.

(difference of two convex) iterations [35] are used in [36]

to maximize sum rate subject to the QoS requirements for

both GT and D2D users, who use the whole communication

bandwidth at the same time. Each d.c. iteration involves maxi-

mization of a logarithmic function, which is although a convex

problem but there is no solver of polynomial complexity.

A cognitive network of multiple primary GT users and a

single cognitive D2D user was considered in [37], where the

bandwidth allocation is only applied to the GT users while

the D2D user uses the whole bandwidth, and thus it suffers

severe interference from all the GT users. It should be noted

that the information theoretic analysis of the conventional

D2D cognitive cellular networks is based on the ground-to-
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ground fading model, where the connections between the base

station and users are NLoS. In contrast, the strong air-to-

ground fading is presented in the interference channels from

UAV to D2D users in D2D cognitive UAV-enabled networks.

As such, the throughput of cognitive D2D communication is

limited by LoS interference links. Therefore, new strategies of

interference management are essential to ensure the quality-of-

service (QoS) in terms of D2D throughput. To the best of the

authors’ knowledge, there were no previous studies concerning

with the GT throughput enhancement while guaranteeing the

QoS in terms of D2D throughput. The main contributions of

this paper are summarized as follows.

• For a cognitive communication network, which consists

of a UAV deployed as a flying base station to serve

multiple GTs and multiple underlaid D2D users, the

paper proposes a new joint design of D2D assignment,

bandwidth, and power allocation in order to maximize the

minimum GT throughput subject to the QoS requirement

for the D2D users.

• Such a design task poses a complex mixed-integer op-

timization problem, which needs a new computational

solution. The paper introduces a novel function to mea-

sure the degree of satisfaction of the binary constraints,

which helps to recast this mixed-integer optimization

problem by a new exactly penalized optimization prob-

lem of continuous optimization. An alternating descent

algorithm is then developed for its computation. Each

round of the algorithm undergoes two iterations for

alternating optimization in D2D assignment, bandwidth

and power allocations. Each iteration invokes a simple

convex optimization of low computational complexity.

The theoretical convergence of the algorithms can be

easily proved, while their rapid convergence is supported

by numerical results.

• Such a cognitive communication network is shown to

perform best when the UAV hovers at the lowest possible

altitude. This is very desirable because it is well-known

[38] that the UAV consumes the lowest energy when

hovering but not when moving or circling.

• Such a cognitive communication is also shown to out-

perform a non-cognitive network, which uses a partial

bandwidth for D2D users to completely avoid LoS inter-

ference links. Therefore, the cognitive LoS interference

enhancement instead of the non-cognitive LoS interfer-

ence rejection is well motivated.

The rest of this paper is organized as follows. The cognitive

system model and problem formulations are introduced in

Section II. An alternating descent algorithm for its compu-

tation is developed in Section III. Section IV extends the

GT throughput max-min problem in a non-cognitive system,

which allocates a partial bandwidth to D2D users for the full

UAV interference rejection. Numerical results are presented in

Section V and conclusions are drawn in Section VI.

Notation. Boldface symbols are used for optimization vari-

ables. For x = (x1, . . . , xn)
T ∈ R

n, x ≥ 0 and x2 are entry-

wise understood, i.e., x ≥ 0 means xi ≥ 0, i = 1, . . . , n and

x2 , (x2
1, . . . , x

2
n).

Fig. 1. The downlink scenario of UAV-enabled networks coexisting with D2D
communication, where the UAV is deployed at the center of the virtual cell.

The following inequalities [39] for all x > 0, y > 0, t > 0
and x̄ > 0, ȳ > 0, t̄ > 0 will be frequently used in the paper:

ln(1 +
1

x
) ≥ ln(1 +

1

x̄
) +

1

x̄+ 1

(
1−

x

x̄

)
(1)

and

y ln(1 +
1

x
) ≥ 2ȳ ln(1 +

1

x̄
) +

ȳ

x̄+ 1

(
1−

x

x̄

)

−ȳ2
ln(1 + 1/x̄)

y
, (2)

and

ln(1 +
1

xy
) ≥ ln(1 +

1

x̄ȳ
) +

1/x̄ȳ

1 + 1/x̄ȳ
(2−

x

x̄
−

y

ȳ
) (3)

and

ln(1 + 1/xy)

t
≥

2 ln(1 + 1/x̄ȳ)

t̄
+

1/x̄ȳ

t̄(1 + 1/x̄ȳ)

×(2−
x

x̄
−

y

ȳ
)−

ln(1 + 1/x̄ȳ)

t̄2
t. (4)

II. COGNITIVE SYSTEM MODEL & PROBLEM

FORMULATIONS

A. System model

Consider a downlink UAV-enabled network as illustrated by

Fig. 1, which consists of a UAV deployed at the center of the

virtual cell with radius R to transfer information to the set

of M ground terminals (GTs) GTm, m ∈ M , {1, . . . ,M}.
The GTs are randomly located in the area. There is a set of

N device-to-device (D2D) pairs Dn, n ∈ N , {1, . . . , N},
which are allowed to use the same spectrum of the UAV-

enabled communication. Assuming that all GTs and D2Ds

are located outdoors in rural areas, the communication link

between the UAV and GTs and the UAV interference to D2Ds

are dominated by LoS air-to-ground channels. The channel
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power gain for the LoS path between the UAV and GTm,

named hUG
m , is given by [13]

hUG
m = ω0/

(√
h2
UAV + (dGm)2

)αLoS

, (5)

where ω0 = (4πfc/c)
−2 is the channel power gain at the unit

reference distance (one meter) under the carrier frequency fc
and the speed of light c, hUAV is the altitude of the UAV, dGm
(dGm ≤ R) is the horizontal distance from the UAV to GTm,

while αLoS ≥ 2 is the LoS path-loss exponent.1 Similarly, the

channel power gain for LoS path between the UAV and Dn,

named gUD
n , is given by

gUD
n = ω0/

(√
h2
UAV + (dDn )2

)αLoS

, (6)

where dDn is the horizontal distance between the UAV and Dn

receiver, which is not more than R. Assuming that orthogonal

frequency bands are allocated to the multiple GTs, each

D2D pair must select one from GTs’ frequency bands for its

communication. Define the indicator

xn,m =

{
1 if Dn shares the bandwidth with GTm,

0 otherwise.

Suppose wm is the allocated bandwidth to GTm, pU
m is the

power of signal carrying the information intended for GTm,

and p
D
n is the transmit power of Dn. Further, hD

n is the direct

communication channel for the n-th D2D pair, gDG
n,m is the

interference channel between Dn transmitter and the GTm,

and gDj,n is the interference channel between Dj transmitter

and Dn receiver, which are modeled by NLoS channels.

For

xm , (xn,m)n∈N ,x , (xm)m∈M,w , (wm)m∈M,

p
U , (pU

m)m∈M,pD , (pD
n )n∈N ,p = (pU ,pD),

the throughput at GTm and Dn can be expressed as

rGm(x,w,p)

= wm ln

(
1 +

p
U
mhUG

m∑N
n=1 xn,mpD

n gDG
n,m +wmσ2

m

)
, (7)

and

rDn (x,w,p)

=

M∑

m=1

wmxn,m

× ln


1 +

p
D
n hD

n

pU
mgUD

n +
∑

j∈N\{n}

xj,mp
D
j gDj,n +wmσ2

n


 .

(8)

1Like [13] αLoS = 2 is set in this paper

B. Exactly penalized optimization reformulation

Our objective is to maximize the minimum throughput

among GTs subject to transmit power constraints on the UAV

and D2D pairs, and quality-of-service (QoS) for D2D in terms

of its throughput by addressing the following mixed-binary

optimization problem:

max
x,w,p

f(x,w,p) , min
m∈M

rGm(x,w,p) (9a)

s.t. wm ≥ 0,m ∈M, (9b)
M∑

m=1

wm = B, (9c)

x ∈ {0, 1}NM , (9d)
M∑

m=1

xn,m = 1, n ∈ N , (9e)

M∑

m=1

p
U
m ≤ PU

max, (9f)

0 < p
D
n ≤ PD

max, n ∈ N , (9g)

rDn (x,w,p) ≥ rDmin, n ∈ N . (9h)

The constraint (9c) indicates that the given bandwidth B is

divided for all GTs. Constraint (9e) guarantees that each D2D

pair reuses the spectrum of one GT only. Constraints (9f) and

(9g) represent the maximum transmit power constraints at the

UAV and D2D transmitter, respectively. Finally, constraint (9h)

ensures the QoS requirement in terms of throughput in the

D2D communication.

As mentioned in the Introduction, the work [34] is interested

in analysing the network coverage and throughput so it does

not aim to solve any optimization problem. On the other hand,

there is only a single cognitive D2D user in [37], who shares

the bandwidth with all GTs, so there is no need to assign the

D2D user to a particular GT for sharing the bandwidth. The

corresponding optimization problem is not combinatoric and

thus is much easier for computation.

To clarify the computational difficulty of the above mixed-

binary optimization problem, it is worth noticing that (9) is still

a difficult nonconvex problem in (w,p) of resource when the

binary variable x of assignment is held fixed and it is still a

difficult combinatoric optimization in the binary variable x

when the continuous variables w and p are held fixed. A

branch-and-bound algorithm of global optimization [40] has

been used in [32] for a combinatoric optimization problem

of assignment, which is not practical for moderate numbers

of D2D users. Power optimization for the conventional D2D

underlaid cellular networks has been addressed in [33] by

d.c. iterations [35]. Furthermore, a much more efficient power

optimization algorithm, which avoids logarithmic function

optimization of non tractable computation, has been recently

proposed in [39].

Our previous works [41] and [42] have demonstrated that

the exactly penalized optimization, which simultaneously max-

imizes the objective function (9a) and the degree of satisfaction

of the binary constraints (9d), is appropriate for addressing

the mixed-binary optimization problem (9). We now pro-

vide a novel exactly penalized optimization re-formulation
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of continuous optimization for the mixed-binary optimization

problem (9), which particularly involves a new continuous

reformulation of the binary constraints (9d) and also a new

measure of binary satisfaction.

First of all, the binary constraint (9d) and linear equality

constraint (9e) are equivalent to the linear equality constraint

(9e) and the box constraint

x ∈ [0, 1]NM , (10)

and the constraint
1

g(x)
≤

1

N
, (11)

with

g(x) =

N∑

n=1

M∑

m=1

x
L
n,m, (12)

for L > 1. Indeed, as xn,m ∈ [0, 1] it follows that x
L
n,m <

xn,m for xn,m ∈ (0, 1) and x
L
n,m = xn,m for xn,m ∈ {0, 1}.

Therefore,

1

g(x)
≥

1
∑N

n=1

∑M
m=1 xn,m

=
1

N
,

and 1/g(x) = 1/N if and only if xn,m ∈ {0, 1} ∀ (n,m) ∈
N ×M. The constraint (11) thus forces all xn,m to binary

values. Therefore, the function

g̃(x) =
1

N
−

1

g(x)
(13)

can be used to measure the degree of satisfaction of the binary

constraint (9d) and linear equality constraint (9e) in the sense

that g̃(x) ≤ 0 for x ∈ [0, 1]NM and g̃(x) = 0 if and only if

x ∈ {0, 1}NM .

Following our previous developments in [41], [42], instead

of handling constraint (11), we incorporate the degree of its

satisfaction into the objective in (9), leading to the following

penalized optimization problem:

max
x,w,p

fµ(x,w,p) , f(x2,w,p) + µg̃(x) (14)

s.t. (9b)− (9c), (9e)− (9h), (10),

where µ > 0 is a penalty parameter. This penalized optimiza-

tion problem is exact with a sufficiently large µ in the sense

that (14) and (9) share the same optimal solution. Note that

we have placed the variable x
2 in the place of x in function

f because x
2 = x for x ∈ {0, 1}NM .

Usually, µ is found from the beginning as follows. Taking

any feasible point x(0) for (9e), (10), iterate

max
w,p

min

{
min
m∈M

rGm(x(0),w,p)

rUmin

,min
n∈N

rDn (x(0),w,p)

rDmin

}

s.t. (9b)− (9c), (9f)− (9g), (15)

till the objective value is more than equal to one at

(w∗, p∗). Thus (x(0), w∗, p∗) is a feasible point for (14).

Here rUmin is chosen beforehand to have a reasonable value

minm∈M rGm(x(0), w∗, p∗) for initializing the computational

procedure described in the next subsections. We also describe

iterations for (15) in a later subsection.

Then set (x(0), w(0), p(0)) = (x(0), w∗, p∗) and

µ = f(x(0), w(0), p(0))/(−g̃(x(0))). (16)

Let (x(κ), w(κ), p(κ)) be a feasible point for (14) found

from the κ-th iteration. Next subsections provide the next

(κ+1)-th iteration to generate the next iterative feasible point

(x(κ+1), w(κ+1), p(κ+1)) for (14).

III. ALTERNATING DESCENT ALGORITHM FOR MAXIMIN

GT RATE OPTIMIZATION

A. D2D assignment optimization

For (w,p) held fixed at (w, p) , (w(κ), p(κ)) we consider

problem (14) in variable x:

max
x

f1(x) , min
m∈M

rGm(x2, w, p) + µg̃(x) (17a)

s.t (9e), (10),

rDn (x, w, p) ≥ rDmin, n ∈ N , (17b)

which is a difficult nonconvex optimization problem as both

functions rGm(x2, w, p) and g̃(x), making the objective func-

tion in (17a) nonconcave, and constraint (17b) is nonconvex.

Applying inequality (1) in Section I for

x =

∑N
n=1 xn,mpDn gDG

n,m + wmσ2
m

pUmhUG
m

and

x̄ =

∑N
n=1 x

(κ)
n,mpDn gDG

n,m + wmσ2
m

pUmhUG
m

yields

rGm(x2, w, p) ≥ a(κ)m + b(κ)m

×

∑N
n=1[(x

(κ)
n,m)2 − (xn,m)2]pDn gDG

n,m∑N
n=1(x

(κ)
n,m)2pDn gDG

n,m + wmσ2
m

, rG(κ)
m (x2, w, p), (18)

where

a(κ)m = wm ln

(
1 +

pUmhUG
m∑N

n=1(x
(κ)
n,m)2pDn gDG

n,m + wmσ2
m

)
,

(19)

b(κ)m =
wm

1 + (
∑N

n=1(x
(κ)
n,m)2pDn gDG

n,m + wmσ2
m)/pUmhUG

m

.

(20)

Next, each function x
L
n,m is convex in xn,m > 0 because its

derivative (xL
n,m)′ = LxL−1

n,m is an increasing function [40].

Therefore function g(x) defined by (12) is convex. This means

that for all x ≥ 0 and x(κ) ≥ 0, the following inequality is

valid

g(x) ≥ g(κ)(x)

, g(x(κ)) + 〈∇g(x(κ)),x− x(κ)〉

=
N∑

n=1

M∑

m=1

(
L(x(κ)

n,m)L−1
xn,m − (L− 1)(x(κ)

n,m)L
)
.

(21)



5

On the other hand,

g̃(x) ≥
1

N
−

1

g(κ)(x)
(22)

over the trust region

g(κ)(x) > 0, (23)

where both g(κ)(x) and 1/g(κ)(x) are convex functions.

Therefore,

f1(x) ≥ f
(κ)
1 (x, w, p) (24)

, min
m∈M

rG(κ)
m (x2, w, p) + µ

(
1

N
−

1

g(κ)(x)

)
. (25)

Function f
(κ)
1 (x, w, p) is seen concave because the first term in

(25) is concave as minimum of concave functions [40] and the

second term is already concave. Also, it can be immediately

checked that

f1(x
(κ)) = f

(κ)
1 (x(κ), w, p). (26)

Applying inequality (1) in Section I again for

x =

pUmgUD
n +

∑

j∈N\{n}

xj,mpDj gDj,n + wmσ2
n

pDn hD
n

and

x̄ =

pUmgUD
n +

∑

j∈N\{n}

x
(κ)
j,mpDj gDj,n + wmσ2

n

pDn hD
n

we obtain

rDn (x, w, p) ≥
M∑

m=1

xn,m

[
α(κ)
n,m + β(κ)

n,m

×

∑

j∈N\{n}

(x
(κ)
j,m − xj,m)pDj gDj,n

pUmgUD
n +

∑

j∈N\{n}

x
(κ)
j,mpDj gDj,n + wmσ2

n


 ,

(27)

where

0 < α(κ)
n,m

= wm ln


1 +

pDn hD
n

pUmgUD
n +

∑

j∈N\{n}

x
(κ)
j,mpDj gDj,n + wmσ2

n


 ,

(28)

0 < β(κ)
n,m

=
wm

1 + (pUmgUD
n +

∑

j∈N\{n}

x
(κ)
j,mpDj gDj,n + wmσ2

n)/p
D
n hD

n

.

(29)

For

0 < χ(κ)
n,m ,

α(κ)
n,m +

β(κ)
n,m

∑

j∈N\{n}

x
(κ)
j,mpDj gDj,n

pUmgUD
n +

∑

j∈N\{n}

x
(κ)
j,mpDj gDj,n + wmσ2

n

,

0 < δ(κ)n,m ,
β
(κ)
n,m

pUmgUD
n +

∑

j∈N\{n}

x
(κ)
j,mpDj gDj,n + wmσ2

n

,

rewrite the right hand side (RHS) of (27) as (30) in the top of

next page, over the trust region

rD(κ)
n (x, w, p) > 0, n ∈ N , (31)

which is convex because functions r
D(κ)
n are concave. The

nonconvex constraint (17b) is then innerly approximated by

the convex constraint

rD(κ)
n (x, w, p) ≥ rDmin, n ∈ N , (32)

because the feasibility set of the latter is a subset of the

feasibility set of the former.

We solve the following convex optimization problem to

generate the next iterative point x(κ+1):

max
x

f
(κ)
1 (x, w, p) s.t (9e), (10), (23), (31), (32). (33)

The computational complexity of (33) is [43]

O(α2β2.5 + β3.5), (34)

where α = NM , which is the number of its decision variables

and β = N(3+M)+1, which is the number of its constraints.

Alternatively, set

xn,m ≡ 0 whenever x(κ)
n,m < ǫ, (35)

where ǫ > 0 is a tolerance for accepting xn,m = 0 and define

D(κ)
n , {m ∈M : x(κ)

n,m > ǫ}.

Applying inequality (2) in Section I for

y =
1

xn,m

, x =

pUmgUD
n +

∑

j∈N\{n}

xj,mpDj gDj,n + wmσ2
n

pdnh
D
n

and

ȳ =
1

x
(κ)
n,m

, x̄ =

pUmgUD
n +

∑

j∈N\{n}

x
(κ)
j,mpDj gDj,n + wmσ2

n

pdnh
D
n

we obtain

rDn (x, w, p) ≥
∑

m∈D
(κ)
n

[
α̃(κ)
n,m + β̃(κ)

n,m

×

∑

j∈N\{n}

(x
(κ)
j,m − xj,m)pDj gDj,n

pUmgUD
n +

∑

j∈N\{n}

x
(κ)
j,mpDj gDj,n + wmσ2

n
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RHS of (27) =

M∑

m=1

χ(κ)
n,mxn,m −

M∑

m=1

δ(κ)n,mxn,m

∑

j∈N\{n}

xj,mpDj gDj,n

=
M∑

m=1

χ(κ)
n,mxn,m −

M∑

m=1

δ(κ)n,m


(xn,m +

1

4

∑

j∈N\{n}

xj,mpDj gDj,n)
2 − (xn,m −

1

4

∑

j∈N\{n}

xj,mpDj gDj,n)
2




≥
M∑

m=1

χ(κ)
n,mxn,m −

M∑

m=1

δ(κ)n,m(xn,m +
1

4

∑

j∈N\{n}

xj,mpDj gDj,n)
2 +

M∑

m=1

δ(κ)n,m


x(κ)

n,m −
1

4

∑

j∈N\{n}

x
(κ)
j,mpDj gDj,n




×


2xn,m − x(κ)

n,m +
1

4

∑

j∈N\{n}

(x
(κ)
j,m − 2xj,m)pDj gDj,n


 , rD(κ)

n (x, w, p), (30)

−
χ̃
(κ)
n,m

xn,m

]
(36)

, r̃D(κ)
n (x, w, p), (37)

over the trust region2

r̃D(κ)
n (x, w, p) > 0, (38)

where

ã(κ)n,m ,2wmx(κ)
n,m

× ln


1 +

pDn hD
n

pUmgUD
n +

∑

j∈N\{n}

x
(κ)
j,mpDj gDj,n + wmσ2

n


 ,

(39)

β̃(κ)
n,m ,

wmx
(κ)
n,m

1 + (pUmgUD
n +

∑

j∈N\{n}

x
(κ)
j,mpDj gDj,n + wmσ2

n)/p
D
n hD

n

,

(40)

χ̃(κ)
n,m ,wm(x(κ)

n,m)2

× ln


1 +

pDn hD
n

pUmgUD
n +

∑

j=1,j 6=n

x
(κ)
j,mpDj gDj,n + wmσ2

n


 .

(41)

Instead of (33), we solve the following optimization problem

to generate the next iterative point x(κ+1):

max
x

f
(κ)
1 (x, w, p) (42a)

s.t. (9e), (10), (23), (38),

r̃D(κ)
n (x, w, p) ≥ rDmin, n ∈ N . (42b)

The computational complexity of (42) is the same at that of

(33). We have

fµ(x
(κ), w(κ), p(κ)) = f

(κ)
1 (x(κ), w(κ), p(κ)) (43)

2The trust region (38) guarantees that xn,m > 0 for m ∈ D
(κ)
n

< f
(κ)
1 (x(κ+1), w(κ), p(κ)) (44)

≤ fµ(x
(κ+1), w(κ), p(κ)), (45)

where (43) follows from (26) while (44) is true because x(κ+1)

and x(κ) are the optimal solution and a feasible point for (33),

and (45) follows from (24).

B. Resource allocation optimization

For x held fixed at x , x(κ+1) we optimize (w,p) in (14):

max
w,p

f2(x,w,p) , min
m∈M

rGm(x2,w,p) (46a)

s.t (9b)− (9c), (9f)− (9g),

rDn (x,w,p) ≥ rDmin, n ∈ N . (46b)

It can be seen from the definitions (7) and (8) that functions

rGm(x2,w,p) and rDn (x,w,p) are of complex structure. We

will see right now that the inequalities proved in Section I

help to unravel their complexity.

The first step is to apply inequality (4) in Section I for

x = 1/pU
mhUG

m ,y =
N∑

n=1

xn,mp
D
n gDG

n,m +wmσ2
m,

t = 1/wm,

and

x̄ = 1/pU(κ)
m hUG

m ,ȳ =
N∑

n=1

xn,mpD(κ)
n gDG

n,m + w(κ)
m σ2

m,

t̄ = 1/w(κ)
m ,

to obtain

rGm(x2,w,p) ≥

a(κ)m + b(κ)m

(
1−

p
U(κ)
m

pU
m

+

N∑

n=1

(xn,m)2(pD(κ)
n − p

D
n )gDG

n,m + (w(κ)
m −wm)σ2

m

N∑

n=1

(xn,m)2pD(κ)
n gDG

n,m + w(κ)
m σ2

m



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−
c
(κ)
m

wm

,

rG(κ)
m (x2,w,p), (47)

where

a(κ)m , 2w(κ)
m ln

(
1 +

p
U(κ)
m hUG

m∑N
n=1(xn,m)2p

D(κ)
n gDG

n,m + w
(κ)
m σ2

m

)
,

(48)

b(κ)m ,
w

(κ)
m p

U(κ)
m hUG

m

p
U(κ)
m hUG

m +
∑N

n=1(xn,m)2p
D(κ)
n gDG

n,m + w
(κ)
m σ2

m

,

(49)

c(κ)m , (w(κ)
m )2 ln

(
1 +

p
U(κ)
m hUG

m∑N
n=1(xn,m)2p

D(κ)
n gDG

n,m + w
(κ)
m σ2

m

)
,

(50)

which make r
G(κ)
m (x2,w,p) a simple concave function. As a

result, the objective function f2(x,w,p) of minimum through-

put in (46a) is lower bounded by a concave function as follows

f2(x,w,p) ≥ f
(κ)
2 (x,w,p) (51)

, min
m∈M

rG(κ)
m (x2,w,p). (52)

Again function f
(κ)
2 (x,w,p) is concave as minimum of con-

cave functions [40], which also matches with f2(x,w,p) at

(w(κ), p(κ)):

f2(x,w
(κ), p(κ)) = f

(κ)
2 (x,w(κ), p(κ)). (53)

The second step is to provide an inner approximation for the

nonconvex constraint (46b). Applying inequality (4) in Section

I again for

x = 1/pD
n hD

n ,y = p
U
mgUD

n +
∑

j∈N\{n}

xj,mp
D
j gDj,n +wmσ2

n,

t = 1/wm,

and

x̄ = 1/pD(κ)
n hD

n ,

ȳ = pU(κ)
m gUD

n +
∑

j∈N\{n}

xj,mp
D(κ)
j gDj,n + w(κ)

m σ2
n,

t̄ = 1/w(κ)
m

yields

rDn (x,w,p) ≥

∑

m∈D
(κ)
n

[
α(κ)
n,m + β(κ)

n,m

(
2−

p
D(κ)
n

pD
n

−

p
U
mgUD

n +
∑

j∈N\{n}

xj,mp
D
j gDj,n +wmσ2

n

p
U(κ)
m gUD

n +
∑

j∈N\{n}

xj,mp
D(κ)
j gDj,n + w(κ)

m σ2
n




−
χ
(κ)
n,m

wm

]
,

rD(κ)
n (x,w,p), (54)

where

0 < α(κ)
n,m = 2xn,mw(κ)

m

× ln


1 +

p
D(κ)
n hD

n

p
U(κ)
m gUD

n +
∑

j∈N\{n}

xj,mp
D(κ)
j gDj,n + w(κ)

m σ2
n


 ,

(55)

0 < β(κ)
n,m = xn,mw(κ)

m

×
p
D(κ)
n hD

n

p
D(κ)
n hD

n + p
U(κ)
m gUD

n +
∑

j∈N\{n}

xj,mp
D(κ)
j gDj,n + w(κ)

m σ2
n

,

(56)

0 < χ(κ)
n,m = xn,m(w(κ)

m )2

× ln


1 +

p
D(κ)
n hD

n

p
U(κ)
m gUD

n +
∑

j∈N\{n}

xj,mp
D(κ)
j gDj,n + w(κ)

m σ2
n


 ,

(57)

which make r
D(κ)
n (x,w,p) a concave function of (w,p). The

nonconvex constraint (46b) is now innerly approximated by

the convex constraint

rD(κ)
n (x,w,p) ≥ rDmin, n ∈ N . (58)

We solve the following inner approximation problem of (17)

to generate the next iterative point (w(κ+1), p(κ+1)):

max
w,p

f
(κ)
2 (x,w,p) s.t. (9b)−(9c), (9f)−(9g), (58). (59)

The computational complexity of (59) is (34) for α = 2M+
N and β = 2N +M + 2.

We have

f2(x
(κ+1), w(κ), p(κ)) =

f
(κ)
2 (x(κ+1), w(κ), p(κ)) < (60)

f
(κ)
2 (x(κ+1), w(κ+1), p(κ+1)) ≤ (61)

f2(x
(κ+1), w(κ+1), p(κ+1)), (62)

where (60) follows from (53) while (61) is true because

(w(κ+1), p(κ+1)) and (w(κ), p(κ)) are the optimal solution and

a feasible point for (59), and (62) follows from (51), which

results in

fµ(x
(κ+1), w(κ), p(κ)) =

f2(x
(κ+1), w(κ), p(κ)) + µg̃(x(κ+1)) <

f2
µ(x

(κ+1), w(κ+1), p(κ+1)) + µg̃(x(κ+1)) =

fµ(x
(κ+1), w(κ+1), p(κ+1)). (63)

C. Initialization

It follows from (59) that initialized by a feasible point

(w0), p(0)) for the convex constraints (9b)-(9c) and (9f)-(9g),

we iterate

max
w,p

min

{
min
m∈M

r
G(κ)
m ((x(0))2,w,p)

rUmin

,
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Algorithm 1 Alternating descent maximin GT throughput

optimization algorithm

Initialization Take any feasible point x(0) for (9e), (10). Us-

ing iterations (64) to find a feasible point (x(0), w(κ), p(κ))
for (14). Calculate µ according to (16). Set κ = 0.

repeat

Solve (33) or (42) for (w, p) = (w(κ), p(κ)) to generate

x(κ+1).

Solve (59) for x = x(κ+1) to generate (w(κ+1), p(κ+1)).
Reset κ← κ+ 1.

until convergence

min
n∈N

r
D(κ)
n (x(0),w,p)

rDmin

}

s.t. (9b)− (9c), (9f)− (9g), (64)

for κ = 0, . . . , till the objective value of (15) reaches more

than or equal to 1, making (x0, w(κ), p(κ)) feasible for (14)

and thus qualifies as an initial point for the above proposed

alternating decent process.

D. Alternating descent algorithm

Algorithm 1 summarizes our proposed alternating descent

procedure. Inequalities (45) and (63) yield

fµ(x
(κ), w(κ), p(κ)) < fµ(x

(κ+1), w(κ+1), p(κ+1)). (65)

As such {x(κ), w(κ), p(κ)} is a sequence of improved feasible

points for (14), which converges to its feasible point (x̄, w̄, p̄)
such that x̄ is a Karush-Kuh-Tucker (KKT) point of (17) for

(w, p) = (w̄, p̄) while (w̄, p̄) is a KKT point of (46) for x = x̄
[42].

IV. NON-COGNITIVE SCENARIO

It can be seen from (8) that the UAV interference term

p
U
mgUD

n , which is strong compared to D2D’ interference term∑
j∈N\{n} xj,mp

D
j gDj,n because the path gain gUD

n of LoS

is much larger than path gains gDj,n of NLoS, is a major

factor limiting D2D throughput. As such, the UAV interference

is enhanced to guarantee the QoS requirement (9h) for the

D2D users. We now consider a non-cognitive network, which

dedicates a partial bandwidth resource wD with wD < B to

reject the UAV interference completely. The throughput at the

m-th GT and n-th D2D pair are now

r̃Gm(wm,pU
m) = wm ln

(
1 +

p
U
mhUG

m

wmσ2
m

)
, (66)

and

r̃Dn (wD,pD) = wD ln


1 +

p
D
n hD

n∑

j∈N\{n}

p
D
j gDj,n +wDσ2

n


 ,

(67)

which is free from the UAV interference. The GT throughput

maximin problem for non-cognitive networks can be formu-

lated as

max
w,wD,p

f̃(w,pU ) , min
m∈M

r̃Gm(wm,pU
m) (68a)

s.t. (9f)− (9g),

wm ≥ 0,m ∈M;wD ≥ 0, (68b)

M∑

m=1

wm +wD = B, (68c)

r̃Dn (wD,pU ) ≥ r̃Dmin, n ∈ N , (68d)

Let (w(κ), w
(κ)
D , p(κ)) be a feasible point for (68) found from

the κth iteration. Applying (4) in Section I for

x = 1/pG
mhUG

m , y = wmσ2
m, t = 1/wm

and

x̄ = p(G(κ))
m , ȳ = w(κ)

m σ2, t̄ = 1/w(κ)
m

yields

r̃Gm(wm,pU
m) ≥ a(κ)m + b(κ)m

(
2−

p
U(κ)
m

pU
m

−
wm

w
(κ)
m

)
−

c
(κ)
m

wm

, r̃G(κ)
m (wm,pU

m),

where

a(κ)m , 2w(κ)
m ln

(
1 +

p
U(κ)
m hUG

m

w
(κ)
m σ2

m

)
,

b(κ)m ,
w

(κ)
m p

U(κ)
m hUG

m

p
U(κ)
m hUG

m + w
(κ)
m σ2

m

,

c(κ)m , (w(κ)
m )2 ln

(
1 +

p
U(κ)
m hUG

m

w
(κ)
m σ2

m

)
.

Applying inequality (4) in Section I again for

x = 1/pD
n hD

n , y =
∑

j∈N\{n}

p
D
j gDj,n +wDσ2

n, t = 1/wD

and

x̄ = 1/pD(κ)
n , ȳ =

∑

j∈N\{n}

p
D(κ)
j gDj,n + w

(κ)
D σ2

n, t = 1/w
(κ)
D

we obtain

r̃Dn (wD,pD) ≥

α(κ)
n + β(κ)

n

(
1−

p
D(κ)
n

pD
n

+

∑

j∈N\{n}

(p
D(κ)
j − p

D
j )gDj,n + (w

(κ)
D −wD)σ2

n

∑

j∈N\{n}

p
D(κ)
j gDj,n + w

(κ)
D σ2

n


−

χ
(κ)
n

wD

,

r̃D(κ)
n (wD,pD),

where

α(κ)
n , 2w

(κ)
D ln


1 +

p
D(κ)
n hD

n∑

j∈N\{n}

p
D(κ)
j gDj,n + w

(κ)
D σ2

n


 ,

β(κ)
n ,

w
(κ)
D p

D(κ)
n hD

n

p
D(κ)
n hD

n +
∑

j∈N\{n}

p
D(κ)
j gDj,n + w

(κ)
D σ2

n

,
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Algorithm 2 Path-following GT throughput optimization al-

gorithm for non-cognitive networks

Initialization Taking any feasible point w(0), p(0) for (9f)-

(9g) and (68b)-(68c). Using iterations (70) to find a feasible

point (w(κ), p(κ)) for (68). Set κ = 0.

repeat

Solve (69b) to generate (w(κ+1), p(κ+1)).
Reset κ← κ+ 1.

until convergence

χ(κ)
n , (w

(κ)
D )2 ln


1 +

p
D(κ)
n hD

n∑

j∈N\{n}

p
D(κ)
j gDj,n + w

(κ)
D σ2

n


 .

We solve the following inner approximation problem of (68)

to generate the next iterative point (w(κ+1), p(κ+1)):

max
w,wD,p

f
(κ)
3 (w,p) , min

m∈M
r̃G(κ)
m (wm,pU

m) (69a)

s.t. (9f)− (9g), (68b)− (68c),

r̃D(κ)
n (wD,pD) ≥ r̃Dmin, n ∈ N , (69b)

where the objective function f
(κ)
3 in (69a) is concave lower

bounding function for the nonconcave objective function in

(68a) and the convex constraint (69b) (because function r̃
D(κ)
n

is concave) is an inner approximation for the nonconvex

constraint (68d). Functions f
(κ)
3 and r̃

D(κ)
n respectively match

with functions f3 and r̃Dn at (w(κ), w
(κ)
D , p(κ)).

Initialization. Initialized by a feasible point (w0), p(0)) for

the convex constraints (9f)-(9g) and (68b)-(68c), we iterate

max
w,p

min{ min
m∈M

r̃
G(κ)
m (wm,p)

r̃Umin

,min
n∈N

r̃
D(κ)
n (wD,p)

r̃Dmin

}

s.t. (9f)− (9g), (68b)− (68c) (70)

for κ = 0, . . . , till the objective value of (70) reaches more

than or equal to 1, making (w(κ), p(κ)) feasible and thus

qualifies as an initial point for (68).

By Algorithm 2 we propose a path-following algorithm for

(68) as it iterates improved feasible points for (68) in making

them converge to an optimal solution of (68).

V. SIMULATION RESULTS

A. System setup

There are M = 5 GTs and N = 20 D2D pairs, which are

uniformly distributed in the circle area with radius R = 500
m, as shown in Fig. 2. For each D2D pair, the communication

distance is close enough to satisfy the distance requirement of

D2D communication, i.e., RD < 30 m. The error tolerance of

the algorithms is set as ǫ =1e-4. The NLoS channels hD
n and

gDj,n of D2D communication and the interference link gDG
n,m

between the D2D transmitters and the GTs in cognitive UAV-

enabled networks are modeled as ω0d
−αNLoSδ, where d is the

distance (in meters) and αNLos ≥ 2 is the NLoS path-loss

exponent while δ is the Rayleigh fading coefficient, which

follows the exponential distribution with unit mean. The values

of useful parameters are summarized by Table I [13], [34].
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Fig. 2. Scenario with M = 5 GTs and N = 20 D2D pairs are uniformly
distributed.

TABLE I
PARAMETER SETTINGS

Parameter Value

UAV altitude 100 m
Carrier frequency(fc) / Bandwidth(B) 2GHz / 10 MHz
Path-loss exponent (αNLoS ) 3
Noise power density −169 dBm/Hz
The maximum transmit power of D2D 0.1 W
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Fig. 3. GT minimum throughput versus hUAV with PU
max = 0.1 W.

B. Cognitive network performance

Fig. 3 plots the GTs’ throughput performance under differ-

ent UAV altitudes hUAV with the maximum transmit power

PU
max fixed at 0.1 W. LoS channel gains are stronger under

UAV lower attitudes, which lead to higher GT throughput as

far as D2D QoS in terms of rDmin is still preserved. This means

that the optimal UAV altitude is the lowest allowable attitude,

which is also optimal with D2D users ignored. Moreover, it

is well known [38] that the UAV consumes the lowest energy
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Fig. 4. GT minimum throughput versus PU
max with rDmin = 2 Mbps.

when it hovers and keeps its position stationary, so there is no

reason for the UAV to move around this position.

The GT minimum throughput versus PU
max is plotted in Fig.

4 with the fixed rDmin = 2 Mbps. It increases sensibly in

the range of 0 < PU
max ≤ 0.2 W but then increases slightly

only for 0.2 W < PU
max < 0.6 W, and becomes saturated for

PU
max > 0.6 W. Fig. 5, which plots the UAV’s transmit power∑M
m=1 p

U
m versus PU

max, particularly clarifies this outcome: the

UAV cannot use more than 0.6 W for transmission to control

its interference to the underlaid D2D users in supporting the

required QoS for them.

Fig. 4 also shows the advantage of the proposed joint

optimization over the ”W&P Optimization” and ”X&P Op-

timization”. In the ”W&P Optimization”, the D2D assignment

is random such that the constraints (9d)-(9e) are satisfied and

then the optimization problem (59) in (w,p) is solved until its

convergence. In the ”X&P Optimization”, only D2D assign-

ment and power allocation are optimized while wm ≡ 1/M ,

i.e, GTs are allocated by the equal bandwidths. It can be seen

that the proposed joint optimization significantly outperforms

others in terms of GT throughput.

C. Cognitive performance vs non-cognitive performance

This subsection compares the performance by the cognitive

communication network described in Section II and its non-

cognitive counterpart described in Section IV, in terms of the

minimum GT throughput. Fig. 6 shows that the cognitive

network outperforms the non-cognitive one for the practical

UAV transmit power range, i.e., PU
max ≤ 0.1 W. The reduction

of GT bandwidth in the non-cognitive network cannot be

compensated by optimizing the UAV transmit power. The

non-cognitive network outperforms the cognitive network only

for unpractically high UAV transmit power range such as

PU
max ≥ 5 W because the latter cannot use such high power,

which would hurt D2D throughput very much, while the

former can certainly do so to enhance the GT throughput as

it does not effect on D2D throughput.
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Fig. 5. UAV transmit power.
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Fig. 6. GT minimum throughput versus rDmin.

D. Algorithms’ convergence

Fig. 7 and Fig. 8 plot the typical convergence of Algorithm

1 and Algorithm 2 for PU
max = 0.1 W with different rDmin

levels, respectively. As can be seen from Fig. 8, Algorithm

2 converges more rapidly than Algorithm 1, taking around

6 iterations for convergence. Indeed, Algorithm 1 needs to

deal not only bandwidth and power allocation but also D2D

assignment at the same iteration. This results also demonstrate

the increasing objective functions at each iteration. In addition,

Fig. 7(b) shows the convergence to zero of the penalty function

in (13), which results in binary values of the assignment

variables.

VI. CONCLUSIONS

This paper has considered a cognitive communication net-

work, which consists of an UAV-enabled communication to

serve multiple GT users, and multiple cognitive D2D users.
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The joint design of D2D assignment, bandwidth and power

allocation problem has been proposed to enhance the GT

throughput subject to the QoS of D2D communication. A non-

cognitive network was also examined to show the advantages

of the cognitive exploitation. All the design problems pose

difficult optimization problems, for which the paper has de-

veloped efficient solvers of low computational complexity. The

numerical results have been provided to show their ability

in supporting high GT throughput while guaranteeing the

required QoS for the D2D users.

Exploiting improper Gaussian signaling to further improve

D2D throughput is under current study.
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