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Abstract—This paper deals with the case of a high speed
mobile receiver operating in an orthogonal-frequency-division-
multiplexing (OFDM) communication system. Assuming the
knowledge of delay-related information, we propose an iterative
algorithm for joint multi-path Rayleigh channel complex gains
and data recovery in fast fading environments. Each complex gain
time-variation, within one OFDM symbol, is approximated by a
polynomial representation. Based on the Jakes process, an auto-
regressive (AR) model of the polynomial coefficients dynamics is
built, making it possible to employ the Kalman filter estimator
for the polynomial coefficients. Hence, the channel matrix is
easily computed, and the data symbol is estimated with free
inter-sub-carrier-interference (ICI) thanks to the use of a QR-
decomposition of the channel matrix. Our claims are supported
by theoretical analysis and simulation results, which are obtained
considering Jakes’ channels with high Doppler spreads.

Index Terms—OFDM, channel estimation, time-varying chan-
nels, Kalman filters, QR-decomposition.

I. INTRODUCTION

O
RTHOGONAL frequency division multiplexing

(OFDM) is widely known as the promising

communication technique in the current broadband wireless

mobile communication system due to the high spectral

efficiency and robustness to the multipath interference.

Currently, OFDM has been adapted to the digital audio

and video broadcasting (DAB/DVB) system, high-speed

wireless local area networks (WLAN) such as IEEE802.11x,

HIPERLAN II and multimedia mobile access communications

(MMAC), ADSL, digital multimedia broadcasting (DMB)

system and multi-band OFDM type ultra-wideband (MB-

OFDM UWB) system, etc. However, OFDM system is very

vulnerable when the channel changes within one OFDM

symbol. In such case, the orthogonality between subcarriers is

easily broken down resulting the inter-sub-carrier-interference

(ICI) so that system performance may be considerably

degraded.

A dynamic estimation of channel is necessary since the

radio channel is frequency selective and time-varying for

wideband mobile communication systems [8] [21]. In practice,

the channel may have significant changes even within one

OFDM symbol, therefore it is preferable to estimate channel

by inserting pilot tones into each OFDM symbol which is

Part of this work was presented in IEEE ISWCS, Reykjavik, Iceland,
October 2008 [4]

called comb-type pilot [9]. Assuming such a strategy, conven-

tional methods consist generally of estimating the channel at

pilot frequencies and next interpolating the channel frequency

response [22].

For fast time-varying channels, many existing works re-

sort to estimating the equivalent discrete-time channel taps,

which are modeled by the basis expansion model (BEM)

[10] [11]. The BEM methods [10] are Karhunen-Loeve BEM

(KL-BEM), prolate spheroidal BEM (PS-BEM), complex-

exponential BEM (CE-BEM) and polynomial BEM (P-BEM).

The KL-BEM is optimal in terms of mean square error (MSE),

but is not robust to statistical channel mismatches, whereas

the PS-BEM is a general approximation for all kinds of

channel statistics, although its band-limited orthogonal spher-

oidal functions have maximal time concentration within the

considered interval. The CE-BEM is independent of channel

statistics, but induces a large modeling error. Finally, a great

deal of attention has been paid to the P-BEM [11], although

its modeling performance is rather sensitive to the Doppler

spread; nevertheless, it provides a better fit for low, than for

high Doppler spreads. In [23], a piece-wise linear method

is used to approximate the channel taps, and the channel

tap slopes are estimated from the cyclic prefix or from both

adjacent OFDM symbols.

As channel delay spread increases, the number of channel

taps also increases, thus leading to a large number of BEM

coefficients, and consequently more pilot symbols are needed.

In contrast to the research described in [10], we sought to

directly estimate the physical channel, instead of the equiv-

alent discrete-time channel taps. This means estimating the

physical propagation parameters such as multi-path delays

and multi-path complex gains. In [1] [2], we have proposed

an iterative algorithm for complex gain time-variation es-

timation and inter-sub-carrier-interference (ICI) suppression

whose execution is done per block of OFDM symbols. This

algorithm demands very high computation. In [3] [5], we have

proposed a low-complexity iterative algorithm based on the

demonstration that each complex gain time-variation can be

approximated in a polynomial fashion within several OFDM

symbols. Both algorithms above reduce the ICI by using

successive interference suppression (SIS), and have a good

performance for normalized Doppler spread (fdT ) up to 10%.

For ICI mitigation, MMSE and successive interference

cancellation (SIC) schemes, with optimal ordering, were devel-
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oped in [23]. Since the number of sub-carriers is usually very

large, these receivers are highly complex. In [24] [25], a low-

complexity MMSE and decision-feedback equalizer (DFE)

were developed, based on the fact that most of a symbol’s

energy is distributed over just a few sub-carriers, and that ICI

on a sub-carrier originates mainly from its neighbouring sub-

carriers. These equalizers are in the case of pure Doppler-

induced ICI (i.e., with sufficient guard interval). In the case

of insufficient cyclic prefix, inter-symbol-interference (ISI) oc-

curs and can lead to a considerable performance degradation.

In [26], the authors suggest an iterative technique for the

equalization of ICI and ISI.

In this paper, we present a new iterative algorithm for joint

multi-path Rayleigh channel complex gains and data recovery

in very fast fading environments (fdT > 10%). Exploiting the

channel nature, the delays are assumed invariant (over several

OFDM symbols) and perfectly estimated as we have already

done in OFDM [1] [3] and CDMA [14] contexts. It should

be noted that an initial, and generally accurate estimation of

the number of paths and time delays can be obtained by using

the MDL (minimum description length) and ESPRIT (estima-

tion of signal parameters by rotational invariance techniques)

methods [13]. However, we test by simulation the sensitivity of

our algorithm to errors of estimated delays. In order to make

the polynomial approximation in [3] [5] more accurate, we

approximate the time-variation of each complex gain within

one OFDM symbol by a polynomial model. Based on the Jakes

process, an auto-regressive (AR) model of the polynomial

coefficients dynamics is built, making it possible to employ the

Kalman filter estimator for the polynomial coefficients. Hence,

the channel matrix can be easily computed. The Kalman filter

estimator was also examined in [28] for tracking the channel

frequency response in case of slow time-varying channels (no

ICI). In order to perform polynomial coefficients estimation,

we use the estimate along with the channel matrix output to

recover the transmitted data. On can, in turn, use the detected

data along with pilots to enhance the polynomial coefficients

estimate giving rise to an iterative technique for complex gains

and data recovery. This intuitive idea is the basis of joint

channel estimation and data detection proposed in MIMO

context [15]. The detection is performed over the free ICI

data symbol thanks to the use of a QR (orthogonal-triangle)

decomposition [16] of the channel matrix, which is better that

the SIS equalizer. The QR equalizer was previously used in the

MIMO Receivers [27]. The present proposed algorithm has a

good performance for very high Doppler spread (fdT > 10%).

This paper is organized as follows: Section II introduces

the OFDM system and the polynomial modeling. Section III

describes the AR model for the polynomial coefficients and

the Kalman filter. Section IV covers the algorithm for joint

complex gains and data estimation. Section V presents the

simulations results which validate our technique. Finally, our

conclusions are presented in Section VI.

The notations adopted are as follows: Upper (lower) bold

face letters denote matrices (column vectors). [x]k denotes the

kth element of the vector x, and [X]k,m denotes the [k,m]th
element of the matrix X. We will use the matlab notation

X[k1:k2,m1:m2] to extract a submatrix within X from row k1

to row k2 and from column m1 to column m2. IN is a

N × N identity matrix and 0N,L is a N × L matrix of zeros

(0N = 0N,N ). diag{x} is a diagonal matrix with x on its

main diagonal, diag{X} is a vector whose elements are the

elements of the main diagonal of X and blkdiag{X, Y} is a

block diagonal matrix with the matrices X and Y on its main

diagonal. The superscripts (·)T and (·)H stand respectively for

transpose and Hermitian operators. Tr(·) and E[·] are the trace

and expectation operations, respectively. J0(·) is the zeroth-

order Bessel function of the first kind.

II. OFDM SYSTEM AND POLYNOMIAL MODELING

A. OFDM System Model

Consider an OFDM system with N subcarriers, and a

cyclic prefix length Ng . The duration of an OFDM symbol is

T = vTs, where Ts is the sampling time and v = N +Ng . Let

x(n) =
[

x(n)[−
N
2 ], x(n)[−

N
2 +1], ..., x(n)[

N
2 −1]

]T
be the nth

transmitted OFDM symbol, where {x(n)[b]} are normalized

QAM-symbols (i.e., E
[

x(n)[b]x(n)[b]
∗
]

= 1). After transmis-

sion over a multi-path Rayleigh channel, the nth received

OFDM symbol y(n) =
[

y(n)[−
N
2 ], y(n)[−

N
2 +1], ..., y(n)[

N
2 −

1]
]T

is given by [3] [1]:

y(n) = H(n) x(n) + w(n) (1)

where w(n) =
[

w(n)[−
N
2 ], w(n)[−

N
2 +1], ..., w(n)[

N
2 −1]

]T
is

a white complex Gaussian noise vector with covariance matrix

σ2IN and H(n) is a N×N channel matrix with elements given

by:

[H(n)]k,m =
1

N

L
∑

l=1

[

e−j2π( m−1

N
− 1

2
)τl

N−1
∑

q=0

α
(n)
l (qTs)e

j2π m−k

N
q
]

(2)

where L is the total number of propagation paths, αl is the lth
complex gain of variance σ2

αl
and τl × Ts is the lth delay (τl

is not necessarily an integer, but τL < Ng). The L individual

elements of {α
(n)
l (qTs) = αl(qTs + nT )} are uncorrelated

with respect to each other. They are wide-sense stationary

(WSS), narrow-band complex Gaussian processes, with the so-

called Jakes’ power spectrum of maximum Doppler frequency

fd (i.e., E [αl(q1Ts)α
∗
l (q2Ts)] = σ2

αl
J0

(

2πfdTs(q1 − q2)
)

)
[20]. The average energy of the channel is normalized to one,

i.e.,
∑L

l=1 σ2
αl

= 1.

B. Complex Gain Polynomial Modeling

In order to properly the Lv samples of the complex gains,

using the Nobservation equations in (1), we represent the

time-variation of the complex gains by a more compact model.

In [23], a piece-wise linear method is used to approximate the

equivalent discrete-time channel taps. In [5] [3], the authors

show that the time-variation of Rayleigh channel complex

gain, within Nc OFDM symbols, can be approximated by a

polynomial model of Nc coefficients, chosen according to the

Doppler spread fdT .

In this section, in order to make the approximation in [3]

more accurate for high Doppler spread, we show that, for any

value of fdT ≤ 0.5, each Rayleigh channel complex gain
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α
(n)
l =

[

α
(n)
l (−NgTs), ..., α

(n)
l

(

(N − 1)Ts

)]T
, within one

OFDM symbol, has a polynomial time-variation of Nc ≤ 5
coefficients (i.e., a (Nc − 1) degree polynomial). Thus, for

q ∈ D = [−Ng, N − 1], α
(n)
l (qTs) can be expressed as:

α
(n)
l (qTs) =

Nc−1
∑

d=0

c
(n)
d,l qd + ξ

(n)
l [q] (3)

where c
(n)
l =

[

c
(n)
1,l , ..., c

(n)
Nc,l

]T
are the Nc polynomial coeffi-

cients and ξ
(n)
l [q] is the model error.

The optimal polynomial α
(n)
pol

l

, which is least-squares fitted

(linear and polynomial regression) [17] to α
(n)
l , and its Nc

coefficients c
(n)
l are given by:

α
(n)
pol

l

= QT c
(n)
l = Sα

(n)
l and c

(n)
l =

(

QQT
)−1

Qα
(n)
l (4)

where Q and S are a Nc×v and a v×v matrices, respectively,

defined as:

[Q]k,m = (m − Ng − 1)(k−1) (5)

S = QT
(

QQT
)−1

Q (6)

It provides the MMSE approximation for all polynomials

containing Nc coefficients, given by:

MMSEl =
1

v
E
[

ξ
(n)
l

H

ξ
(n)
l

]

=
1

v
Tr

(

(Iv − S)R(0)
αl

(Iv − ST )
)

(7)

where ξ
(n)
l = α

(n)
l − α

(n)
pol

l

=
[

ξ
(n)
l [−Ng], ..., ξ

(n)
l [N − 1]

]T

is the model error and R(s)
αl

= E

[

α
(n)
l α

(n−s)
l

H
]

is the v × v

correlation matrix of α
(n)
l with elements given by:

[R(s)
αl

]k,m = σ2
αl

J0

(

2πfdTs(k − m + sv)

)

(8)

It should be noted that the MMSE is increasing in terms of

fdT and decreasing in terms of Nc. Moreover, the MMSE

is independent of the number of subcarriers N . By using a

normalized channel with L = 6 paths and v = 144, we

have MMSE < 4 · 10−7 for fdT ≤ 0.5 and Nc = 5. This

proves that, for high values of fdT , α
(n)
l can be represented

by a polynomial model of Nc ≤ 5 coefficients. Moreover,

for fdT ≤ 0.001 and Nc = 1, we have MMSE < 4 · 10−7.

This means that, for low values of fdT , the complex gains are

time-invariant within one OFDM symbol.

c
(n)
l are correlated complex Gaussian variables with zero-

means and correlation matrix given by:

R(s)
cl

= E[c
(n)
l c

(n−s)
l

H

] =
(

QQT
)−1

QR(s)
αl

QT
(

QQT
)−1

(9)

It should be noted that the variance of the coefficients de-

creases very quickly in terms of the number of coefficients.

For fdT = 0.3 and Nc = 5 coefficients, the average (over

L = 6 paths) variance of the first three coefficients are equal

to 0.1667, 1.4 × 10−5 and 4.6 × 10−10, respectively. This

means that the last coefficients are very small. Hence, it is not

efficient to estimate all the coefficients in presence of noise. In

the sequel, we will study the performance of the coefficients

estimator in terms of Nc and fdT . More explanation about

polynomial modeling for jakes’ process can be found in [7]

[5] [3].

Under this polynomial approximation, the observation

model in (1) for the nth OFDM symbol can be rewritten as:

y(n) = K(n) c(n) + w(n) (10)

where c(n) = [c
(n)
1

T

, ..., c
(n)
L

T

]T is a LNc × 1 vector,

K(n) = 1
N

[Z
(n)
1 , ..., Z

(n)
L ] is a N × LNc matrix and Z

(n)
l =

[M1diag{x(n)}fl, ..., MNc
diag{x(n)}fl] is a N × Nc matrix,

where fl is the lth column of the N ×L Fourier matrix F and

Md is a N × N matrix given by:

[F]k,l = e−j2π( k−1

N
− 1

2
)τl , [Md]k,m =

N−1
∑

q=0

qd−1ej2π m−k

N
q

(11)

Moreover, the channel matrix can be easily computed as [3]:

H(n) =

Nc
∑

d=1

Md diag{Fχ
(n)
d } (12)

where χ
(n)
d =

[

c
(n)
d,1 , ..., c

(n)
d,L

]T
. Notice that the matrices Md

can be easily computed and stored, using the properties of

power series.

It should be noted that if the complex gains are time-

invariant within one OFDM symbol (i.e., α
(n)
l (−NgTs) =

... = α
(n)
l

(

(N−1)Ts

)

= c
(n)
1,l ) then, H(n) is a diagonal matrix,

Nc = 1, K(n) = diag{x(n)}F and R(p)
cl

= σ2
αl

J0

(

2πfdTp
)

.

III. AR MODEL AND KALMAN FILTER

A. The AR Model for c(n)

As we have seen, c
(n)
l are correlated complex Gaussian

variables with zero-means and correlation matrix R(s)
cl

. Hence,

the dynamics of c
(n)
l can be well modeled by an auto-

regressive (AR) process [18] [19]. A complex AR process of

order p can be generated as:

c
(n)
l = −

p
∑

i=1

A
(i)
l c

(n−i)
l + u

(n)
l (13)

where A
(1)
l , ..., A

(p)
l are Nc × Nc matrices and u

(n)
l is a

Nc × 1 complex Gaussian vector with covariance matrix Ul.

A
(1)
l , ..., A

(p)
l and Ul are the AR model parameters obtained

by solving the set of Yule-Walker equations defined as:

TlAl = − Vl and Ul = R(0)
cl

+

p
∑

i=1

A
(i)
l R(−i)

cl
(14)

where Al = [A
(1)
l

T

, ..., A
(p)
l

T

]T , Vl = [R(1)
cl

T
, ..., R(p)

cl

T
]T are

pNc ×Nc matrices and Tl is a pNc × pNc correlation matrix

defined by:

Tl =







R(0)
cl

· · · R(−p+1)
cl

...
. . .

...

R(p−1)
cl

· · · R(0)
cl






(15)
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Using (13), we obtain the AR model of order p for c(n) =

[c
(n)
1

T

, ..., c
(n)
L

T

]T :

c(n) = −

p
∑

i=1

A(i)c(n−i) + u(n) (16)

where A(i) = blkdiag
{

A
(i)
1 , ..., A

(i)
L

}

is a LNc ×LNc matrix

and u(n) = [u
(n)
1

T

, ..., u
(n)
L

T

]T is a LNc×1 complex Gaussian

vector with covariance matrix U = blkdiag {U1, ..., UL}.

B. The Kalman Filter

Based on the AR model of c(n) in (16), we define

the state space model for the OFDM system as g(n) =

[cT
(n), ..., cT

(n−p+1)]
T . Thus, using (16) and (10), we obtain:

g(n) = S1g(n−1) + S2u(n) (17)

y(n) = S3g(n) + w(n) (18)

where S2 = [ILNc
, 0LNc,(p−1)LNc

]T is a pLNc ×LNc matrix,

S3 = [K(n), 0N,(p−1)LNc
] is a N×pLNc measurement matrix

and S1 is a pLNc × pLNc transition matrix defined as:

S1 =















−A(1) −A(2) −A(3) · · · −A(p)

ILNc
0LNc

0LNc
· · · 0LNc

0LNc
ILNc

0LNc
· · · 0LNc

...
. . .

. . .
. . .

...

0LNc
· · · 0LNc

ILNc
0LNc















(19)

The state model (17) and the observation model (18) allow

us to use Kalman filter to adaptively track the polynomial

coefficients c(n). Let ĝ(n) be our a priori state estimate at step

n given knowledge of the process prior to step n, ĝ(n|n) be our

a posteriori state estimate at step n given measurement y(n)

and, P(n) and P(n|n) are the a priori and the a posteriori error

estimate covariance matrix of size pLNc×pLNc, respectively.

We initialize the Kalman filter with g(0|0) = 0pLNc,1 and P(0|0)

given by:

P(0|0)[t(l,s),t(l,s′)]
= R(s′−s)

cl
for l∈[1,L] s,s′∈[0,p−1] (20)

where t(l, s) = 1+(l−1)Nc+sLNc : lNc+sLNc and R(s)
cl

is

the correlation matrix of cl
(n) defined in (9). Notice that there

are zero matrices between the block matrices R(s)
cl

since the

L complex gains are uncorrelated with respect to each other.

For K = L = 2, P(0|0) is given by:

P(0|0) =









R(0)
c1

0Nc
R(1)

c1
0Nc

0Nc
R(0)

c2
0Nc

R(1)
c2

R(−1)
c1

0Nc
R(0)

c1
0Nc

0Nc
R(−1)

c2
0Nc

R(0)
c2









(21)

The Kalman filter is a recursive algorithm composed of

two stages: Time Update Equations and Measurement Update

Equations. These two stages are defined as:

Time Update Equations:

ĝ(n) = S1ĝ(n−1|n−1)

P(n) = S1P(n−1|n−1)S
H
1 + S2USH

2 (22)

Measurement Update Equations:

K(n) = P(n)S
H
3

(

S3P(n)S
H
3 + σ2IN

)−1

ĝ(n|n) = ĝ(n) + K(n)

(

y(n) − S3ĝ(n)

)

P(n|n) = P(n) − K(n)S3P(n) (23)

where K(n) is the Kalman gain. The Time Update Equations

are responsible for projecting forward (in time) the current

state and error covariance estimates to obtain the a priori

estimates for the next time step. The Measurement Update

Equations are responsible for the feedback, i.e., for incor-

porating a new measurement into the a priori estimate to

obtain an improved a posteriori estimate. The Time Update

Equations can also be thought of a predictor equations, while

the Measurement Update Equations can be thought of a

corrector equations.

IV. JOINT QR-DETECTION AND KALMAN ESTIMATION

A. Data QR-detection

The QR-detection allow us to estimate the data symbol

with free ICI. First, we transform the channel matrix H(n)

by performing a so-called QR-decomposition:

H(n) = Q(n)R(n) (24)

where Q(n) is a N×N unitary matrix (i.e., Q
H
(n)Q(n) = IN )

and R(n) is a N × N upper triangular matrix. Then, we can

rewrite equation (1) as:

y′

(n) = Q
H
(n)y(n) = R(n)x(n) + Q

H
(n)w(n) (25)

The upper triangular form of R(n) now allow us to iteratively

calculate estimates, with free ICI, for the originally data

symbols
{

[x(n)]N , [x(n)]N−1, ..., [x(n)]1
}

as:

[

x̃(n)

]

k
=

[

y′

(n)

]

k
−

N
∑

m=k+1

[

R(n)

]

k,m

[

x̂(n)

]

m

[

R(n)

]

k,k
[

x̂(n)

]

k
= O

(

[

x̃(n)

]

k

)

(26)

where O(.) denotes the quantization operation appropriate to

the constellation in use.

B. Iterative Algorithm

In the iterative algorithm for joint data QR-detection and

complex gains Kalman estimation, the Np pilots subcarriers

are evenly inserted into the N subcarriers at the positions P =
{pr | pr = (r − 1)Lf + 1, r = 1, ..., Np}, where Lf is the

distance between two adjacent pilots. The algorithm proceeds

as follows, where i represents the iteration number:

C. Computational Complexity

The purpose of this section is to determine the implementa-

tion complexity in terms of the number of the multiplications

needed for our algorithm. The matrices F and Md are pre-

computed and stored if the delays are invariant for a great

number of OFDM symbols. The computational cost of com-

puting the matrix K(n) is NL
(

N(Nc−1)+1
)

and the channel
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initialization:

• g(0|0) = 0pLNc,1

• compute P(0|0) as (20)
• n← n + 1

• execute the Time Update Equations of Kalman filter (22)
• compute the channel matrix using (12)
• i← 1

recursion:

1) remove the pilot ICI from the received data subcarriers
2) QR-detection of data symbols (24) (25) (26)
3) execute the Measurement Update Equations of Kalman filter

(23)
4) compute the channel matrix using (12)
5) i← i + 1

matrix H(n) is NNc(N + L) − N2, since 1
N

M1 = IN . The

complexity of removing the ICI in step 1 is NpNd, and of

the QR-decomposition and the data QR-detection in step 2

is 2
3N3

d + N2
d + 7

3N2
d and 1

2Nd(Nd + 1), respectively, where

Nd = N − Np. The complexity of Time Update Equations

and Measurement Update Equations of the Kalman filter is

pLN2
c + 2(pLNc)

2 and NLNc(p + 1)(N + LNc + 1) +
N(pLNc)

2 + 2N2(N − 1) + N , respectively, since S1 and

S3 are sparse matrices. In practice, p, L and Nc are much

smaller than N , therefore, the computational complexity of

our algorithm is O(N3).

D. Mean Square Error (MSE) Analysis

The error between the lth exact complex gain and the lth

estimated polynomial α̂
(n)
pol

l

is given by:

e
(n)
l = α

(n)
l − α̂

(n)
pol

l

= ξ
(n)
l + QT e

(n)
cl

(27)

where e
(n)
cl

= c
(n)
l − ĉ

(n)
l and ξ

(n)
l is the polynomial model

error defined in section II-B. Neglecting the cross-covariance

terms between ξ
(n)
l and e

(n)
cl

, the mean square error (MSE)

between α
(n)
l and α

(n)
pol

l

is given by:

MSEl =
1

v
E
[

e
(n)
l

H

e
(n)
l

]

= MMSEl +
1

v
Tr

(

QT MSEcl
Q

)

(28)

where MSEcl
= E

[

e
(n)
cl

e
(n)
cl

H]

. Notice that, at the convergence

of the Kalman filter, we have:

MSEcl
= P(n|n)[t(l,0),t(l,0)]

(29)

provided that the data symbols are perfectly estimated (i.e.,
data-aided).

The on-line Bayesian Cramer-Rao Bound (BCRB) is an

important criterion for evaluating the quality of our com-

plex gains Kalman estimation. In [6], we have derived the

expression of the on-line BCRB, in data-aided (DA) and non-

data-aided (NDA) contexts, for the dynamic estimation of

time-varying multi-path Rayleigh channel complex gains with

slowly variations. In [7], we have extended this BCRB of [6]

TABLE I
A

(1)
l

FOR AR MODEL AND TAYLOR POLYNOMIAL EXPANSION WITH

Nc = 3 AND v = 144

AR with fdT = 0.01 −A
(1)
l

=

24 1 144 20734

2.10−10
0.99 288

−2.10−11
−10

−5
0.99

35
AR with fdT = 0.1 −A

(1)
l

=

24 0.99 143 20579

2.10−6
0.96 286

−2.10−7
−10

−3
0.69

35
AR with fdT = 0.3 −A

(1)
l

=

24 0.99 135 19360

−6.10−5
0.574 240.8

−10
−5

−0.0061 −0.973

35
Taylor Expansion −A

(1)
l

=

241 v v2

0 1 2v
0 0 1

35
for the case of rapidly time-varying channels. This on-line

BCRB for the estimation of α
(n)
l , in DA context, is given by:

BCRB(α
(∞)
l ) = MMSEl +

1

v
Tr

(

QT BCRB(c
(∞)
l )Q

)

(30)

where BCRB(c
(K)
l ) is the on-line BCRB associated to the

estimation of c
(K)
l which is given by:

BCRB(c
(K)
l ) = BCRB(c)[t(l,0),t(l,0)] (31)

where the index t(l, s) is defined by (20). BCRB(c) is the

on-line BCRB for the estimation of c = [c(K)
T , ..., c(1)

T ]T in

DA context which is given by:

BCRB(c) =
(

blkdiag
{

J(K), ..., J(2), J(1)

}

+ R−1
c

)−1

(32)

where Rc is calculated in the same way as P(0|0) with s, s′ ∈

[0,K−1], and J(n) = 1
N2σ2 F

H
(n)MF (n). M and F (n) are a

NNc×NNc and a NNc×LNc matrices, respectively, defined

as:

M =







M1,1 · · · M1,Nc

...
. . .

...

MNc,1 · · · MNc,Nc






(33)

F (n) =
[

F
(n)
1 · · · F

(n)
L

]

(34)

where Md,d′ and F
(n)
l are a N×N and a NNc×Nc matrices,

respectively, defined as:

Md,d′ = diag
{

diag
{

MH
d Md′

}}

(35)

F
(n)
l = blkdiag

{

v
(n)
l , v

(n)
l , ..., v

(n)
l

}

(36)

with v
(n)
l = diag{x(n)}fl. It should be noted that, when the

number of observations K increases, BCRB(c
(K)
l ) decreases

and converges to an asymptote BCRB(c
(∞)
l ).
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Fig. 1. MSE vs SNR for fdT = 0.3 and Nc = 3

V. SIMULATION

In this section, we verify the theory by simulation and we

test the performance of the iterative algorithm. The normalized

channel model is GSM Rayleigh model [1] [5] with L = 6
paths and maximum delay τmax = 10Ts. A 4QAM-OFDM

system with normalized symbols, N = 128 subcarriers, Ng =
N
8 subcarriers, Np = 16 or 32 pilots (i.e., Lf = 8 or 4) and
1
Ts

= 2MHz is used (note that (SNR)dB = ( Eb

N0

)dB+3dB).
These parameters are selected in order to be in concordance

with the standard Wimax IEEE802.16e. The MSE and the

BER are evaluated under a rapid time-varying channel such

as fdT = 0.1, fdT = 0.2 and fdT = 0.3 corresponding

to a vehicle speed Vm = 140km/h, Vm = 280km/h and

Vm = 420km/h, respectively, for fc = 5GHz.

It should be noted that we have a small improvement when

the order p increases. So, in the sequel, in order to decrease the

complexity of the Kalman filter, we choose an AR model of

order p = 1. In Table I, we give the AR model parameter A
(1)
l

for Nc = 3 and different value of fdT . We notice that, for low

Doppler spread fdT = 0.01, A
(1)
l is an upper triangular matrix

with ones on its diagonal. This corroborates the model of

Taylor polynomial for a constant second derivative (i.e., third

order), given in Table I. When fdT increases, A
(1)
l becomes

a roughly upper triangular matrix without having ones on the

diagonal. This is normal because, for high Doppler spread,

the concavity of the complex gain changes after each OFDM

symbol, whereas it is invariant for low fdT .

Fig. 1 shows the evolution of MSE versus SNR, with the

iterations, for fdT = 0.3 and Nc = 3. It is observed that,

with DA, the MSE obtained by simulation agrees with the

theoretical value of MSE given by (29). Fig. 1 also shows

that MSE with DA and the on-line BCRB are superimposed.

This means that the Kalman filter works very well. After four

and ten iterations, a great improvement is realized and the

MSE is close to the MSE with DA.

Fig. 2 gives the BER performance of our algorithm for

fdT = 0.2 with Nc = 3, compared to the algorithms in [3],

[1] and [10]. These results are obtained with the channel used

in [10] ( 1
Ts

= 1MHz and τmax = 5Ts), where the number of

discrete channel taps L′ and the number of paths L are equal

to 6. The algorithm of [10] characterizes each channel tap with

5 discrete KL-BEM coefficients and uses the banded LMMSE

equalizer proposed in [30]. So, the number of coefficients to

estimate in our algorithm (3×6 = 18) is less than of that in the
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Fig. 2. BER vs SNR for Nc = 3 and fdT = 0.2
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Fig. 3. SNR = 20dB: (a) MSE vs fdT ; (b) BER vs fdT

algorithm of [10] (5×6 = 30). Thus leading to use more pilot

symbols for the channel taps estimation [10]. As reference, we

plotted the performance of QR-detector obtained with perfect

knowledge of channel. This result shows that our algorithm

performs better than the algorithms proposed in [3], [1] and

[10]. After seven iterations, a significant improvement occurs;

the performance of our algorithm and the performance of QR-

detector with perfect knowledge of channel are very close. At a

very high SNR, it is normal to not reach the reference because

we have an error floor due to the data symbol detection error.

We now study the MSE and the BER versus fdT = 0.1, 0.2

and 0.3 (high normalized Doppler spread) with Nc = 3. From

Fig. 3 (a), it is observed that we have, with the iterations,

a more significant improvement when fdT increases. This
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Fig. 5. Delay estimation errors for the fourth and sixth paths, using the
ESPRIT method [13] (estimated correlation matrix, averaged over K = 1000

OFDM symbols, i.e 0.072sec), for fdT = 0.3

means that, in order for the algorithm to converge, we need

more iterations for a Doppler spread more large. Fig. 3 also

gives the BER versus fdT in (b) for Lf = 8 and 4. It

is obvious that when the number of pilots is increased, the

performance will improve. It is interesting to note that the

results presented here demonstrate that with a lower number

of pilots, our algorithm has better performance than the

algorithms proposed in [3] and [1]. However, we can verify

that the algorithms proposed in [3] and [1] do not work well

for fdT > 0.1, even with more pilots, whereas our algorithm

works well.

Fig. 4 gives the BER performance after ten iterations of our

proposed iterative algorithm, for Nc = 4 and fdT = 0.3, with

imperfect delay knowledge. SD denotes the standard deviation

of the time delay errors (modeled as zero mean Gaussian

variables). It can be noticed that the algorithm is not very

sensitive to a delay error of SD< 0.1Ts. By using the ESPRIT

method [13] to estimate the delays, we have a SD< 0.05Ts, for

all SNR as shown in Fig. 5. When combined with the ESPRIT

method, our algorithm thus has negligible sensitivity to delay

errors. We now discuss the assumption of negligible time-

variation of the delays during a block of K OFDM symbols.

Indeed, for a vehicle speed Vm = 140km/h, the maximal

variation of the delay during K = 1000 OFDM symbols is

given by Vm

c
.K.T = 9ns, where c is the wave propagation

velocity. We can therefore conclude that for a transmission

of several OFDM symbols, where the channel estimation is

performed, the delays can be considered invariant (with respect
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Fig. 6. Comparison of BER, for the case of wrong estimate of L, with
Nc = 3 and fdT = 0.2
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Fig. 7. The probability of correct detection of the number of paths based on
the MDL criterion [13] (estimated correlation matrix, averaged over K=[50
75 100 200 300 400 500] OFDM symbols, i.e [7.2 10.8 14.4 28.8 43.2 57.6
72] msec), for fdT = 0.2

to the temporal resolution Ts = 500 ns).

We now study the effect of the wrong estimate of L on

our algorithm. A study on this issue was made in [29] and

an algorithm was proposed for slowly time-varying channels

estimation (no ICI). In case of an overestimated (Le = 7 and

L = 6), it is shown that such a mismatch ends up in slight

degrades of performance as shown in Fig. 6. However, in case

of underestimated (Le = 5 and L = 6), the performance of our

algorithm suffers from this disappearing of paths. Moreover,

by estimating the number of path L via the minimum descrip-

tion length (MDL) criterion [13] (L is assumed constant over

each K OFDM symbols), the performance of this method,

in terms of probability of correct detection, is satisfactory

even at slow SNR as shown in Fig. 7. So, we can say when

combined with the MDL method, our algorithm can still

correctly perform.

Fig. 8 shows the effect of the error in the estimation of

Doppler frequency fd and complex gain variance σ2
αl

, on the

BER performance after ten iterations, for SNR = 30dB,

Nc = 3 and fdT = 0.3. We denote the fd error percentage

and the σ2
αl

error percentage by Efd
and Eσ2

αl

, respectively.

It should be noted that a negative percentage means that we

have underestimated whereas a positive percentage means that

we have overestimated. For example Efd
= Eσ2

αl

= −10% and

Efd
= Eσ2

αl

= 10% means that (f̂d = 0.9fd, σ̂2
αl

= 0.9σ2
αl

)

and (f̂d = 1.1fd, σ̂2
αl

= 1.1σ2
αl

), respectively. We observe that
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Fig. 8. BER, for the case of imperfect knowledge of σ2
αl

and fd, with
SNR = 30dB, Nc = 3 and fdT = 0.3

our algorithm is more sensitive to the fd error than to the σ2
αl

error and to the overestimation than to the underestimation.

For exact fd and σ2
αl

, BER = 10−3 and for 50% fd and σ2
αl

error percentages, BER =8.10−3. So, in brief, our algorithm

is not very sensitive to fd and σ2
αl

errors.

VI. CONCLUSION

In this paper, we have presented a new iterative algorithm

for joint multi-path Rayleigh channel complex gains and data

recovery in fast fading environments. The rapid time-variation

complex gain within one OFDM symbol are approximated by

a polynomial model. Exploiting the fact that the delays can be

assumed to be invariant (over several symbols) and perfectly

estimated, the polynomial coefficients are tracked using the

Kalman filter. The data symbols are estimated by performing a

QR-decomposition of the channel matrix. Theoretical analysis

and simulation results show that our algorithm has a good

performance for high Doppler spread.
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