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ABSTRACT

JOINT DECISIONS ON INVENTORY

REPLENISHMENT AND EMISSION REDUCTION

INVESTMENT UNDER DIFFERENT EMISSION

REGULATIONS

Haşim Özlü

M.S. in Industrial Engineering

Supervisor: Assist. Prof. Dr. Ayşegül Toptal

August, 2013

Carbon emission regulation policies have emerged as mechanisms to control firms’

carbon emissions. To meet regulatory requirements, firms can change their oper-

ations or invest in green technologies. In this thesis, we analyze a retailer’s joint

decisions on inventory replenishment and carbon emission reduction investment

under three carbon emission regulation policies. Particularly, we first study the

economic order quantity model to consider carbon emissions reduction investment

availability under carbon cap, tax, and cap-and-trade policies. We analytically

show that carbon emission reduction investment opportunities, additional to re-

ducing emissions as per regulations, further reduce carbon emissions while reduc-

ing costs. We also provide an analytical comparison between various investment

opportunities and compare different carbon emission regulation policies in terms

of costs and emissions. We document the results of a numerical study to further

illustrate the effects of investment availability and regulation parameters. We

later extend our analysis to a retailer operating in a newsvendor setting, taking

into account the existence of environmentally sensitive customers.

Keywords: Green technology, carbon emissions, investment, economic order quan-

tity.
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ÖZET

FARKLI EMİSYON DÜZENLEMELERİ ALTINDA

ENVANTER YENİLEME VE EMİSYON AZALTMA

YATIRIMININ ORTAK KARARI

Haşim Özlü

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Ayşegül Toptal

Ağustos, 2013

Karbon emisyonu düzenleme politikaları firmaların karbon emisyonlarını kontrol

etmek için ortaya çıkan araçlardır. Bu araçların firmalara getirdiǧi gereksin-

imleri karşılamak için, operasyonel işlemler değiştirilebilir ya da temiz teknolo-

jilere yatırım yapılabilir. Bu tezde, üç farklı emisyon düzenleme politikası

altında bir perakendecinin envanter yenileme ve emisyon azaltma yatırımlarının

ortak kararı analiz edilmiştir. Spesifik olarak, iktisadi sipariş verme mod-

elinin bir uzantısı, emisyon üst sınırı, emisyon vergisi, ve emisyon üst sınırı

ve ticareti politikaları altında, temiz teknolojilere yatırım olanaǧı düşünülerek

çalışılmıştır. Emisyon azaltma yatırımlarının, düzenleme politikalarının saǧlamış

olduǧu emisyon azaltımına ilaveten, hem maliyetleri hem de karbon emisyonunu

azalttıǧı analitik olarak gösterilmiştir. Ayrıca, çeşitli yatırım fırsatları arasında

analitik karşılaştırmalar yapılmış ve farklı karbon emisyon düzenleme politikaları

maliyet ve emisyon bakımından birbiriyle karşılaştırılmıştır. Temiz teknolojilere

yatırım fırsatının ve düzenleme politikalarına ait parametrelerin etkilerini daha

iyi göstermek için yapılan bir sayısal çalışmanın sonuçları da sunulmuştur. Son

olarak, benzer bir analiz, literatürde gazete satıcısı problemi olarak bilinen bir

ortama sahip perakendeci için, çevresel duyarlı müşteriler de göz önünde bulun-

durularak, yapılmıştır.

Anahtar sözcükler : Temiz teknoloji, karbon emisyonu, yatırım, en kazançlı ısmar-

lama miktarı.
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and support during my thesis. She guided me with not only her knowledge and

intelligence, but also her wisdom and principles. I think that I taught from her a

lot and I am lucky to have a chance to work with her.

I am grateful to Assist. Prof. Dr. Alper Şen and Assist. Prof. Dr. Nagihan
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Chapter 1

Introduction

Global warming, environmental disasters, and increased public awareness about

environmental issues are encouraging countries to reduce greenhouse gas (GHG)

emissions. The Kyoto Protocol, signed in 1997 by 37 industrialized countries

and European Union (EU) members, enabled nations to aggregately focus on

GHG emission abatement. Several government programs (e.g., the EU Emis-

sions Trading System, the New Zealand Emissions Trading Scheme, the U.S.’ Re-

gional Greenhouse Gas Initiative), private voluntary-membership organizations

(e.g., the Chicago Climate Exchange, the Montreal Climate Exchange), and many

emissions-offset companies have emerged as control mechanisms over firms’ GHG

emissions, primarily carbon emissions (other GHG emissions can be measured

in terms of equivalent carbon emissions, see, e.g., EPA [1]). To reduce carbon

emissions, policy makers either provide incentives to achieve emission reduction

or impose costs on carbon emissions.

Under carbon emission regulation policies, firms seek cost-efficient methods to

decrease emissions, mainly through replanning (changing) their operations and

investing in carbon emission abatement (Bouchery et al. [2]). A firm can reduce

its carbon emissions level via changing its production, inventory, warehousing,

logistics, and transportation operations (Benjaafar et al. [3], Hua et al. [4]).

For instance, after 60,000 suppliers of Wal-Mart decreased their packaging by
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5% upon Wal-Mart’s request, they achieved 667,000 m3 of CO2 emission reduc-

tion (Hoffman [5]). Hewlett-Packard (HP) reported that they decreased toxic

inventory release to the air from 26.1 tonnes to 18.3 tonnes in 2010 by adjusting

operations (HP [6]).

A firm can also reduce its carbon emissions level by directly investing in car-

bon emission reduction projects such as greener transportation fleets (see, e.g.,

Bae et al. [7]), energy-efficient warehousing (see, e.g., Ilic et al. [8]), and environ-

mentally friendly manufacturing processes (see, e.g., Liu et al. [9]). McKinsey

& Company reports that U.S. carbon emissions can be reduced by three to 4.5

gigatons in 2030 using tested approaches and high-potential technologies (Creyts

et al. [10]). Additional to directly investing in carbon emission reduction projects

that decrease emissions from internal operations, companies can indirectly invest

in carbon emission reduction by purchasing carbon offsets (see, e.g., Benjaafar et

al. [3], Song and Leng [11]), which can compensate for a company’s carbon emis-

sions and be used to increase its carbon emissions cap. Carbon-offset projects are

referred to as clean development mechanisms (CDM) under the Kyoto Protocol.

The United Nations Framework for Convention on Climate Change provides a

list of CDM (See [12]). The World Bank reports that the global carbon market,

including traded allowances and offset transactions, reached $176 billion in 2011

(Kossoy and Guigon [13]).

Examples of how emission abatement increases companies’ competitiveness

and profitability can be extended. Some retailers follow environmental friendly

supply chain operations via new technologies to boost their demands and to

decrease their operational costs. Carrefour uses a new refrigeration system to

reduce both emission and energy consumption (Schotter et al. [14]). They also

invest in solar panels for some of their hypermarkets in Italy and France (Jacobs

and Smits [15]). Similarly, Wall-Mart has assigned $500 million to sustainability

projects to improve the effectiveness of its vehicle fleet, decrease the energy usage

in its store and mitigate solid waste in U.S. stores (Robb et al. [16]). Lindeman

reports that a 10% energy reduction in a grocery store may lead to 6% increase

in the retailer’s profit ([17]).
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In this thesis, we consider three different carbon emission regulations; cap,

cap-and-trade, and tax. There is an ongoing debate about how these regulations

compare to one another in terms of their effectiveness. While a significant num-

ber of economists favor cap-and-trade or tax policies, environmental advocacy

groups consider these policies as “licences to pollute” and they favor cap policy

(Stavins [18]). Under the cap policy, a firm’s carbon emissions should not exceed

a pre-determined amount, which is referred to as a carbon cap. The cap can be

determined by a government agency and/or the firm’s green goals (Chen et al.

[19]). The US Environmental Protection Agency (EPA) regulated SO˙2 emission

between the years 1970 and 1990 using a cap policy (see Popp [20]). Furthermore,

in a recent New York Times article (Broder [21]), it is reported that “President

Obama is preparing regulations limiting carbon dioxide emissions from existing

power plants...”

Cap-and-trade policy is the most common regulation instrument due to its

market-based structure. Under the cap-and-trade policy, carbon emissions are

tradable through a system such as the EU Emissions Trading System or the New

Zealand Emissions Trading Scheme; a firm can buy or sell carbon allowances

at a specified market price. Under the tax policy, a firm is charged for its car-

bon emissions through taxes. While some countries are enacted a state based

emission tax (e.g. USA and China), others choose to introduce a product-based

emission tax (e.g. coal tax in India and fossil fuel tax in Japan (SBS [22])). It

is reported that South Africa government is planning to implement a tax policy

in 2015 (Galbraith [23]). Since South Africa has an oligopoly in energy market,

they thought that tax policy is more appropriate than cap-and-trade policy for

their short and medium carbon emission goals (National Treasury: Republic of

South Africa [24]). In this thesis, we study a retailer’s joint decisions on inven-

tory replenishment and carbon emission reduction investment under these three

policies.

As the world economy becomes increasingly conscious of the environmental

concerns, evidence suggests that companies who make better business decisions

to consider the interests of other stakeholders, including the human and natu-

ral environments, will succeed (Jaber [25]). While the environmental regulation
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policies aim to protect consumers, employees and the environment, cost of com-

pliance should not deter companies to do business. Inventories play an important

role in the operations and the profitability of a company. Therefore, one of our

goals in this thesis is to provide guidance to companies to make better inventory

decisions while utilizing the available environmental technologies under different

regulation policies. Our other purpose is to help policy makers understand the

implications of each regulation policy on the profitability of a company, and the

role that green technologies play in the resulting carbon emissions and costs of

the company.

In light of the above objectives, two main problems are studied. In the first

part of the thesis (mainly in Chapters 2, 3, 4), which is the core of the the-

sis, we consider a retailer operating under the conditions of the classical EOQ

model. We provide a solution method for the retailer’s joint inventory control

and carbon emission reduction investment decisions for each carbon regulation

policy considered. The resulting optimal values of the order quantity and the

yearly investment amount under a certain policy simultaneously minimize the

retailers average annual costs if that policy is in place. This analysis is later

extended to the Newsboy setting in the second part of the thesis (i.e., Chapter

5). Different than the first problem, in this part of the thesis, we also model the

existence of customers who are environmentally sensitive. That is, an investment

in green technology not only decreases the carbon emission, but it also increases

the customers’ willingness to buy the product.

In our analysis of the first problem, we compare the retailer’s annual costs

and carbon emissions with and without investment availability under each car-

bon regulation policy. We analytically show that availability of carbon emission

reduction investment, additional to the reductions achieved by carbon emission

regulation policies, further reduces carbon emissions while reducing costs under

the tax and cap-and-trade policies. Under the cap policy, emissions level does not

decrease due to investment, however, the same emissions level is achieved with

lower costs. Therefore, we conclude that it is more important for governments

to stimulate green technology under the tax and cap-and-trade policies. Several
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investment options with varying cost and carbon emission reduction character-

istics may be available to the retailer. The retailer may thus need to select one

investment opportunity. We provide analytical and numerical comparisons of the

resulting costs and carbon emissions between different investment opportunities

available to the retailer under each carbon emission regulation policy.

Our analysis enables comparing carbon emission regulation policies with the

carbon emission reduction investment option. Our results indicate that when

the retailer can invest in carbon emission reduction, compared to a given tax

policy, a cap policy that will lower costs and not increase carbon emissions is

possible. Furthermore, we show that for any given cap policy, there exists a cap-

and-trade policy that will lower costs and carbon emissions. Further analytical

and numerical results are discussed about the effects of policy parameters on the

retailer’s costs and emissions. These results can be utilized by policy makers in

legislating carbon emissions or in constructing specific carbon emission regulation

policies.

The rest of the thesis is organized as follows: In Chapter 2, we present a

review of the studies in the literature. Then, we describe the first problem in

more detail in Chapter 3, and provide solutions for the retailer’s order quantity

and carbon emission reduction investment decisions under cap, tax, and cap-

and-trade policies. In this chapter, we also present the analytical results on the

benefits of the carbon emission reduction investment option, the comparison of

different carbon emission reduction investment opportunities and comparison of

the carbon regulation policies. We summarize our numerical studies concerning

the first problem in Chapter 4. We describe the second problem in Chapter 5

and provide some preliminary analysis. We conclude the thesis with some final

remarks in Chapter 6.
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Chapter 2

Literature Review

Environmental considerations in supply chains have drawn the attention of many

researchers in recent years. Most of the papers in the operations research and

the management science literature concerning this area are published in the last

five years since it is a progressing research area. In this chapter, we present a

survey of the related literature with an emphasis on the following four attributes:

(i) what the research question of the study is about, (ii) in what ways the study

differs from others, (iii) what the basic models and solution methods in the study

are, and (iv) how the study contributes to the literature.

Our review of the literature is based on a classification of the studies into two

groups (see Table 2.1 and Table 2.2). First group of papers propose emission

reduction through better production/inventory related decisions. Second group

of studies consider investing in green technologies for emission reduction.
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Table 2.1: Studies in the Literature (Part I)

Studies on Emission Reduction via Replanning Inventory Replenishment Decisions

Paper Problem/s Demand

Property

♯ of Items Planning

Horizon

Backlogging Components

of Emission

Investment Function

Hoen et al. (2010) Transport Mode

Selection Problem

Stochastic (Nor-

mal)

Single-item Infinite Horizon Allowed Distance, Volume

and Product Den-

sity

–

Chen et al. (2013) EOQ Model Deterministic Single-item Infinite Horizon Not Allowed Transportation,

Inventory Holding

and Production

–

The Facility Loca-

tion Model

Stochastic (Uni-

form)

– – – Facility and Dis-

tance

–

The Newsvendor

Model

Stochastic Single-item Finite Horizon Allowed Shortage and Over-

age

Cap Offset

Arslan and Türkay

(2013)

EOQ Model Deterministic Single-item Infinite Horizon Not Allowed Setup, Transporta-

tion and Produc-

tion

–

Bouchery et al.

(2012)

Multi-objective

EOQ and Two

Echelon Sustain-

able EOQ model

Deterministic Single-item Infinite Horizon Not Allowed Ordering and In-

ventory Holding

–

Letmathe and Bal-

akrishnan (2005)

Lot Sizing Problem Deterministic Multi-item Finite Horizon Not Allowed Production –

Absi et al. (2013) Lot Sizing Problem Deterministic Multi-item Finite Horizon Not Allowed Production –

Song and Leng

(2012)

The Newsvendor

Problem

Stochastic Single-item Finite Horizon Allowed Production Cap Offset

Jaber et al. (2013)The Buyer-Vendor

Coordination

Problem

Deterministic Single-item Infinite Horizon Not Allowed Quadratic Func-

tion of Production

Rate

–

777



Table 2.1 – continued from previous page

Paper Problem/s Demand

Property

♯ of Items Planning

Horizon

Backlogging Components

of Emission

Investment Function

Kim et al. (2009) Transportation

Cost and Emis-

sion Relationship

for Inter-Modal

and Truck-Only

Networks

Deterministic - Finite Horizon Not Allowed Transportation

and Transshipment

–

Benjaafar et al.

(2013)

Lot Sizing Problem Deterministic Single/Multi-item Finite Horizon Not Allowed Ordering, Produc-

tion and Inventory

Holding

Carbon Offset

888



Table 2.2: Studies in the Literature (Part II)

Studies on Emission Reduction via Investment Opportunities

Paper Problem/s Demand

Property

♯ of Items Planning

Horizon

Backlogging Components

of Emission

Investment Function

Zavanella et al.

(2013)

The buyer-Vendor

Coordination

Problem

Deterministic

(Price and En-

vironmentally

Performance De-

pendent)

Single-item Infinite Horizon Not Allowed – Nonlinear

Swami and Shah

(2013)

The Channel Coor-

dination Problem

Deterministic

(Price and En-

vironmentally

Performance De-

pendent)

Single-item Finite Horizon Not Allowed – Quadratic

Raz et al. (2013) Life Cycle Ap-

proach Using

The Newsvendor

Problem

Stochastic (Price

and Environ-

mentally Effort

Dependent)

Single-item Finite Horizon Allowed – Quadratic

Krass et al. (2013) The Firms Green

Technology Choice

Under Tax Policy

Deterministic

(Price Dependent)

Single-item Finite Horizon Not Allowed Production Discrete

Jiang and Klabjan

(2012)

Single/Multi Pe-

riod Carbon Emis-

sion Reduction

Investment

Stochastic Single-item Finite Horizon Allowed Production Linear

9



2.1 Studies on Emission Reduction via Better

Production/Inventory Related Decisions

Most papers focusing on replanning production/inventory related decisions for

environmental considerations, study the classic economic order quantity (EOQ)

setting. In Arslan and Türkay [26], EOQ model is examined under environmental

and social criteria. Firstly, optimal order quantities are found for five different

carbon emission control policies which are direct accounting, carbon tax, direct

cap, cap-and-trade, and carbon offset. Secondly, labor working hours are used

as social criterion for evaluating EOQ model. Then, an analysis is made for an

integrated model that takes into account both the environmental and the so-

cial criteria. Based on their analytical and numerical results, the authors give

recommendations about which actions should be taken by organizations and gov-

ernments to reduce carbon emission. This article contributes to the literature

by considering EOQ with different emission policies and incorporation of social

criteria.

Hua et al. [4] construct an environmental inventory model based on the

single-product EOQ model. This paper examines inventory operations under the

cap-and-trade system in which a firm sells or buys carbon capacity according to

its carbon emission cap. Optimal order quantity under the cap-and-trade system

is compared to EOQ and minimum emission solutions. A detailed analysis is

made to investigate the behavior of the optimal order quantity with varying

levels of carbon price and carbon cap. This article contributes to the literature

by proposing a solution algorithm for an environmental EOQ model under cap-

and-trade policy and by providing a detailed analysis about ordering policies

under different parameters of the problem.

Chen et al. [19] examine an environmentally sensitive EOQ model under

an emission cap in order to derive analytical results about carbon emission and

inventory related cost. The quantity intervals where emission is reduced are

derived, and it is concluded that it is possible to maximize the difference between

emission reduction and cost by adjusting operational decisions. In addition, the

10



classical facility location model and the newsvendor model are extended in this

paper under environmental considerations. It is found that a significant emission

reduction can be achieved at a reasonable cost increase. This article contributes

to the literature by pointing out that reduction in emission is possible for different

operational models at an acceptable cost increase.

It should be noted that while Hua et al. [4], Chen et al. [19] and Arslan and

Türkay [26] consider the existence of a carbon regulation policy, there are also

studies that propose extensions of the EOQ model with environmental considera-

tions in the absence of carbon emission regulation policies. For instance, Bonney

and Jaber [2] question the necessity of classical inventory modeling system be-

cause of the emerging environmental problems and emphasize the importance of

environmentally responsible inventory models to cope with environmental prob-

lems. This paper examines results and causes of environmental problems in the

scope of inventory systems and proposes what actions should be taken by stake-

holders. Bonney and Jaber [2] also suggest some possible performance metrics

for environmental inventory systems and exemplify an environmental-EOQ model

indicating the effects of transportation on environment. This article contributes

to the literature by evaluating the environmentally responsible inventory system

in a broader sense and by pointing out the importance of taking precautions.

Similarly, Bouchery et al. [27] study how the firms can improve sustain-

ability of their inventory systems by making operational adjustments. They inte-

grate sustainability criteria into EOQ model and call it sustainable order quantity

(SOQ) model. Then, they extend SOQ model for a two-echelon system consist-

ing of a retailer and a warehouse. For both the SOQ model and its two-echelon

extension, Pareto optimal solutions are provided. The authors find out that the

firms can decrease their carbon emission in an important amount by small cost

increase. They also compare the different emission regulation policies and make

some suggestions for policy makers about how they can decrease carbon emission.

This study contributes to the literature by considering multiple objectives in the

EOQ model.
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It is worthwhile noting that along with the ordering decisions in the EOQ set-

ting, some classical supply chain problems have been revisited in regard to envi-

ronmental considerations. For instance, Letmathe and Balakrishnan [28] analyze

the product mix problem under cap and cap-and-trade policies. They consider the

product mix problem with a single operating procedure, and a multiple operating

procedure which has multiple available resources, production yields and emission

outputs. Unlike most of the studies in the literature, they model the customer de-

mand as dependent on emission output of products (i.e., demand decreases with

emission amount of the the firm). This study contributes to the literature by ex-

plicitly modeling multiple products and finite capacities on production resources

within the context of production planning under environmentally regulations.

Benjaafar et al. [3] consider the integration of environmental regulations into

operational models. They evaluate single and multi-stage lot sizing problems un-

der some regulation options such as mandatory cap, emission tax, cap-and-trade

policy and carbon offset. Benjaafar et al. [3] present some insightful recommen-

dations for both the firms and the policy makers to decrease environmental effects

of the firms at minimum cost. This paper contributes to the literature by sug-

gesting managerial results to understand the emission reduction by operational

adjustments.

Similar to Benjaafar et al. [3], Absi et al. [29] focus on the environmental con-

straints on the production and distribution planning of the firms. They analyze

a multi-sourcing lot-sizing problem under different carbon emission constraints

such as periodic carbon emission constraint, cumulative carbon emission con-

straint, global carbon emission constraint and rolling carbon emission constraint.

In their setting, the firm’s unitary environmental effect is subject to a maximum

emission amount per period. They find a polynomial dynamic programming al-

gorithm for the uncapacitated lot sizing problem with periodic carbon emission

constraint and show that the problem with any of the other emisssion constraints

is NP -hard. This study contributes to the literature by integrating different car-

bon emission constraints into lot-sizing problem.

Song and Leng [11] discuss the single-period stochastic replenishment problem
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(The Newsvendor Problem) for perishable products with short lifespan under cap,

tax, and, cap-and-trade policies. They investigate the impact of emission regu-

lations on carbon emission reduction and expected profit of the firm. Song and

Leng [11] examine the single-period problem for the low-margin, the moderate-

margin and high-margin firms and give different managerial advices to the firms

under different emission policies. They also propose basic results for policy mak-

ers to abate carbon emission. The authors make a scenario analysis to observe

the influence of policy parameters on the firm’s emission and expected total cost.

This article contributes to the literature by drawing some managerial advices for

both policy makers and the firms with different profit margins.

In Hoen et al. [30], transport mode selection problem (TMSP) is analyzed

under carbon emission constraint (ETMSP) and carbon emission cost minimiza-

tion (ECTMSP) policies. Carbon emissions for different transportation types are

calculated based on Network for Transport and Environment (NTM) method.

Then, the choice of transport mode for the ranges of emission cost is found for

TMSP, ETMSP, and ECTMSP, and the effect of parameters (distance, volume

and product density) on ECTMSP and indifference emission cost is examined.

It is concluded that road is the preferable transport mode for TMSP, ETMSP

and ECTMSP by a numerical example. This article contributes to the literature

by presenting a detailed analysis about transport mode selection problem un-

der some possible environmental regulations. Hoen et al. [31] extend the study

of Hoen et al. [30] by further analyzing ECTMSP. They present more detailed

analytical results for ECTMSP.

Jaber et al. [32] examine the buyer-vendor coordination problem under dif-

ferent environmental cost schemes. In addition to buyer’s emission related pa-

rameters, they also model the fact that carbon is emitted due to manufacturing

operations of the vendor and excessive emission is penalized with a carbon cost.

Jaber et al. [32] incorporate carbon tax and emission penalty cost simultaneously

into total supply chain cost function, and present an algorithm for finding the

vendor’s optimal production rate and optimal vendor-buyer coordination multi-

plier. Then, they numerically analyze the effects of carbon tax, emission penalty
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and manufacturer-retailer coordination on the total supply chain cost and to-

tal carbon emission. They find that combination of emission tax and emission

penalty may be the most effective in reducing carbon emission. This article con-

tributes to the literature by studying a two-level supply chain under European

Union Emission Trading System.

In Kim et al. [33], the relationship between transportation cost and carbon

emission is analyzed for intermodal and truck-only freight networks. A multi-

objective optimization model with the objectives of minimizing freight cost and

carbon emission is constructed and a procedure is proposed for estimating pareto-

optimal solutions. In addition, a case study is presented to compare different

inter-modal transportation networks under different market situations. This ar-

ticle contributes to the literature by examining the trade-offs between freight cost

and carbon emission for intermodal networks.

2.2 Studies on Emission Reduction via Invest-

ment Opportunities

As noted in Chapter 1, leading companies in their sectors invest to decrease the

environmental effects of their products and production and logistical processes,

or to curb emissions through offset projects. Although investment decisions for

environmental considerations is still a developing area in the operations research

and the management science literature, it is possible to classify the related studies

in three groups. The first group of papers (e.g., Zavanenella et al. [34], Swami

and Shah [35], Raz et al. [36]) study the ordering and investment decisions in

settings where consumer demand is sensitive to the environmental quality of the

product, which in turn, can be increased through investment. Zavanenella et al.

[34] study the coordination problem in a single-buyer, single-vendor system under

environmental considerations. They decide the order quantity of the buyer, num-

ber of batches sent by the vendor, selling price of product and investment amount

made by vendor to increase environmental quality of product. Their model as-

sumes that demand is decreasing in the product’s retail price and increasing in
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its environmental performance. They use a nonlinear investment function which

has decreasing return in environmental quality. They also model production cost

as increasing in the ratio of investment amount to the customer demand. Za-

vanenella et al. [34] compare the solution of independent policy and coordinated

policy numerically and conclude that coordination leads to increase in supply

chain profitability and improvement in the product’s environmental quality. This

study contributes to the literature by modeling demand that is dependent on

both the price and the environmental quality of the product within the context

of buyer-vendor coordination problem.

Swami and Shah [35] also study the channel coordination problem from a

perspective of green supply chain management. They consider a setting in which

the manufacturer decides the wholesale price and sells the product to the single

retailer who determines the retail price. In their setting, customer demand is

linearly decreasing in retail price and increasing in environmental efforts of both

the retailer and manufacturer. They assume that cost of environmental effort is

quadratically increasing in the efforts of the retailer and the manufacturer. The

authors investigate the effects of problem parameters on cost of environmental ef-

forts and pricing decisions. This study contributes to the literature by examining

nonobligatory environmental efforts in supply chain coordination problem.

Raz et al. [36] study the economical and environmental impacts of innovation

investments made by firms to change environmental performance of the prod-

uct. They assume that manufacturing stage innovations reduce the cost of the

product while use stage innovations increase the customer demand by lowering

price sensitivity of customer. The authors evaluate the newsvendor problem by

considering two aspects of product type (i.e. functional or innovative products)

and environmental effect in life-cycle stage (i.e. manufacturing or use stage).

They also present some analytical results on the firm’s ordering and investment

decisions, and ex-ante environmental effect of decisions. This article contributes

to the literature by integrating environmental friendly design innovations into the

firm’s production decisions.

We would like to note that the above group of studies do not consider any
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regulation policies; the only motivation for investing in greening efforts is to

increase demand by improving customers’ perception of the product. The second

group of papers model carbon offset investments when a cap-and-offset policy is

in place (e.g., Benjaafar et al. [3], Song and Leng [11], and Chen et al. [19]). A

cap-and-offset policy can be considered as a mix of cap and cap-and-trade policies.

It differs from a cap policy in that the carbon allowance can be increased with

offset investments. It differs from a cap-and-trade policy in that it does not

allow carbon allowances to be tradable. The second group of studies exhibit two

important characteristics. First, all three papers (i.e., Benjaafar et al. [3], Song

and Leng [11], and Chen et al. [19]) assume unit reduction in carbon emissions

per unit investment (which is included as an additional component in the cost

function). Second, this type of investment modeling (i.e., offset investments) is

not relevant within the context of other regulation policies.

The final group of studies consider investing in technology to reduce emissions

under a regulation policy. We have identified two papers that fall into this group,

i.e., Jiang and Klabjan [37] and Krass et al. [38], taking a firm’s perspective to

analyze the effects of investment decisions on the profitability and carbon emis-

sions. This thesis also contributes to the third group of literature by modeling and

solving a retailer’s joint inventory replenishment and carbon emission reduction

investment decisions under each of the three stated carbon emission regulation

policies.

Jiang and Klabjan [37] analyze production and carbon emission reduc-

tion investment decisions under different regulation policies (i.e, cap-and-trade,

command-and-control). They consider a setting in which carbon trading price

and demand are stochastic, and assume a linear investment function. The deci-

sion maker first decides on production capacity and carbon emission reduction

investment, and then, after the carbon trading price and demand are realized, the

operations are adjusted. The authors extend this model to analyze investment

timing decisions in two periods. They also investigate the effects of production

cost change due to carbon emission reduction under cap-and-trade policy.

Krass et al. [38] discuss the firm’s green technology choice under emission tax.
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They model a Stackelberg game between a firm (i.e., the follower) and a policy

maker (i.e., the leader) where the firm decides the product price and makes an

investment over finite technology opportunities with different costs and emission

reduction amounts to maximize its profit while the policy maker determines the

tax price. Krass et al. [38] claim that higher tax does not always lead to lower

emission, it may force the firm to choose the dirtier technology. They also model

a social welfare problem which depends on firm’s profit, consumer surplus and en-

vironmental damage. Then they investigate the effects of governmental subsidies

and consumer rebates on the firm’s emission and profit. This article contributes to

the literature by analyzing taxation of emission over available technology choices.

Our study differs from Jiang and Klabjan [37] and Krass et al. [38] in two

major ways. First, we analyze the classic EOQ model with an investment option

under cap, tax, and cap-and-trade policies and provide an extension to under-

stand the retailer’s behavior under stochastic demand. Second, we consider a

nonlinear investment function. We treat the investment amount as capital ex-

penditure, similar to Billington [39], that is, some amount of money is invested

per unit time and the reduction in carbon emissions per unit time is a function

of the invested money. We benefit from Huang and Rust [40] in creating a corre-

lation between investment and carbon emission reduction. Huang and Rust [40]

note that spending on green technologies has decreasing marginal returns in pol-

lution/environmental damage reduction. Therefore, the firm’s carbon emission

reduction per unit time is assumed to be an increasing concave function of the

investment money per unit time. Through this functional form, we generalize

the linear relation (i.e., constant marginal returns of the investment amount in

carbon emission reduction) assumed by Benjaafar [3], Song and Leng [11], Chen

et al. [19], and Jiang and Klabjan [37], and discrete relation (i.e. specific emis-

sion reduction for fixed investment over available green technologies) assumed by

Krass et al. [38].
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Chapter 3

Problem Definition and Analysis

Under Different Carbon Emission

Policies

3.1 Problem Definition

In this part of the thesis, a retailer’s emission reduction investment and inven-

tory replenishment decisions are analyzed under different government regulations

on carbon emissions. It is assumed that the retailer operates under the condi-

tions of the classical EOQ model. That is, the retailer orders Q units at each

replenishment to meet deterministic and steady demand on time in the infinite

horizon. In the setting of interest, there is significant carbon emission due to

ordering, inventory holding, and procurement. The carbon emitted per replen-

ishment, per-unit purchase and per-unit per-year inventory holding amount to Â,

ĉ, and ĥ, respectively.

We consider three different carbon emission policies: cap, tax, and cap-and-

trade. Under the cap policy, the retailer’s carbon emissions per year cannot

exceed an emission cap, denoted by C. Under the tax policy, the retailer is

taxed p monetary units for unit carbon emission. Under the cap-and-trade policy,
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the retailer can trade a unit carbon emission for a value of cp monetary units.

These policies are intended to reduce carbon emissions by affecting the retailer’s

operations, however, the retailer can also reduce his/her carbon emissions by

investing in new technology, equipment, or machinery. Mainly, annual carbon

emission can be decreased in an amount of αG − βG2 in return for G monetary

units invested per year (0 ≤ G ≤ α
β
). Here, α reflects the efficiency of green

technology in reducing emissions, and β is a decreasing return parameter (Huang

and Rust [40]). In each case, the problem is to find the order quantity and the

investment amount that jointly minimize the retailer’s total average annual costs.

Table 3.1 summarizes the notation used in this part of the thesis. Additional

notation will be defined as needed.

Without any carbon emission policy in place, the total average annual costs

due to ordering, inventory holding, procurement, and investment is given by

TC(Q,G) =
AD

Q
+

hQ

2
+ cD +G, (3.1)

and the total average annual emission amount is given by

E(Q,G) =
ÂD

Q
+

ĥQ

2
+ ĉD − αG+ βG2. (3.2)

When the retailer makes no investment, i.e., G = 0, Expression (3.1) provides

the total average annual costs in the EOQ model, and its value is minimized

at Q0 =
√

2AD
h

, which we refer to as the “cost-optimal quantity”. If there is

no carbon emission policy in place, (Q0, 0) will in fact be the optimizing pair of

order quantity and investment amount for the retailer. Furthermore, it follows

from Expression (3.2) that
√

2ÂĥD+ ĉD is the minimum average annual carbon

emission possible without investment, and is achieved when the retailer orders

Qe =
√

2ÂD

ĥ
units, which we refer to as the “emission-optimal quantity”.

The problem parameters are assumed to satisfy the following conditions:

(A1) The minimum annual carbon emission possible due to ordering decisions is

more than the maximum yearly emission reduction possible due to invest-

ment decisions. That is,
√

2ÂĥD + ĉD >
α2

4β
. (3.3)
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Table 3.1: Problem Parameters and Decision Variables

Retailer’s Parameters
A fixed cost of inventory replenishment
h cost of holding one unit inventory for a year
c unit procurement cost
D demand per year

Â carbon emission amount due to inventory replenishment

ĥ carbon emission amount due to holding one unit inventory for a year
ĉ carbon emission amount due to unit procurement

Policy Parameters
i carbon policy index; i = 1 for cap, i = 2 for tax, and i = 3 for

cap-and-trade policies
C annual carbon emission cap
p tax paid for one unit of emission
cp unit carbon emission trading price

Retailer’s Decision Variables
Q order quantity
G annual investment amount for carbon emission reduction
X traded quantity of emission capacity in cap-and-trade policy

Functions and Optimal Values of Decision Variables
TC(Q,G) total average annual costs as a function of Q and G without a carbon policy
E(Q,G) carbon emissions per year as a function of Q and G

TCi(Q,G) total average annual costs as a function of Q and G under carbon policy i

Q∗

i optimal order quantity under carbon policy i

G∗

i optimal investment amount under carbon policy i

(A2) For the tax policy under consideration, there exists a value ofG > 0 at which

savings in taxes when G monetary units are invested in new technology to

reduce carbon emissions exceeds the cost of investment. Hence, we have

αp > 1. (3.4)

(A3) For the cap-and-trade policy under consideration, there exists a value of

investment amount G > 0 at which more reduction in carbon emissions can

be achieved by investing in new technology rather than purchasing carbon

capacity at a total value of G monetary units. Hence, we have

αcp > 1. (3.5)

(A4) For the cap policy under consideration, there exist values of the invest-

ment amount that can reduce the annual carbon emission to below carbon
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capacity. Hence, we have

√
2ÂĥD + ĉD − α2

4β
< C. (3.6)

The right hand side of Inequality (3.3), that is, α2

4β
, is the maximum possible

value of annual carbon emission reduction and is achieved when G = α
2β
. Recall

that
√
2ÂĥD+ĉD is the minimum possible value of yearly carbon emissions due to

ordering decisions. An implication of Assumption (A1), therefore, is that carbon

emissions cannot be completely eliminated with new technology. Assumption

(A2), in mathematical terms, is equivalent to saying that there exists some G > 0

at which (αG − βG2)p > G. Dividing both sides of this inequality by G and

considering the fact that βGp > 0 leads to αp > 1. If Assumption (A2) does

not hold, then any investment to reduce carbon emissions does not pay off, and

hence, an investment decision should not be of concern. Similarly, Assumption

(A3) can be written as αG − βG2 > G
cp

for some positive value of G, which in

turn implies αcp > 1. Finally, Assumption (A4) is necessary for the retailer to

be in business under the current cap policy. If the minimum carbon emission

possible (i.e.,
√

2ÂĥD+ ĉD− α2

4β
) due to ordering and investment decisions were

more than the cap C, then there would be no feasible solution to the retailer’s

inventory problem.

3.2 Analysis Under Different Carbon Emission

Policies

In this section, we solve the retailer’s integrated problem of finding the optimal

order quantity and carbon emission reduction investment under the three car-

bon emission regulation policies: cap, tax, and cap-and-trade. We represent the

optimal solution under each policy i as a pair of values (Q∗
i , G

∗
i ).

Recall that, by definition of the investment function, there exists an upper

bound on G, that is, G ≤ α
β
. We do not include this restriction as a constraint
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because the nature of our formulations for all emission regulations makes it re-

dundant. That is, the investment value in all optimal solutions without incorpo-

rating G ≤ α
β
already satisfies this constraint. In fact, due to the strict concavity

of αG− βG2 with respect to G and the fact that α
2β

is its unique maximizer, for

every investment value that is greater than α
2β
, the corresponding reduction in

annual carbon emission can be achieved by a smaller investment amount within

the range 0 ≤ G ≤ α
2β
. Therefore, the optimal investment value will always be less

than or equal to α
2β
. The optimal solutions for the cap, tax, and cap-and-trade

policies, as they are stated in Theorems 1, 2, and 3, justify these observations.

3.2.1 Cap Policy

Under a cap policy, the retailer is subject to an upper bound, that is an “emission

cap”, on the total average annual carbon emission. The retailer’s problem is to

find the optimal order quantity and the investment amount to minimize average

annual total cost without exceeding the emission cap C. This problem can be

formulated as follows:

min TC1(Q,G) = AD
Q

+ hQ

2
+ cD +G

s.t. ÂD
Q

+ ĥQ

2
+ ĉD − αG+ βG2 ≤ C ,

Q ≥ 0, G ≥ 0.

Note that, when G = 0, there exists a feasible solution to the above problem

as long as C ≥
√
2ÂĥD + ĉD. Given that G = 0, the feasible region consists of

all pairs (Q, 0) such that Q1 ≥ Q ≥ Q2, where

Q1 =
C − ĉD +

√
(C − ĉD)2 − 2ÂĥD

ĥ
(3.7)
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and

Q2 =
C − ĉD −

√
(C − ĉD)2 − 2ÂĥD

ĥ
. (3.8)

Q1 and Q2 are the two roots of
ÂD
Q

+ ĥQ

2
+ ĉD = C. It is important to note that

the existence of Q1 and Q2 depend on how (C − ĉD) compares to
√
2ÂĥD, and

is not guaranteed. In fact, in Theorem 1, we characterize the optimal solution

to the retailer’s problem in two parts, considering the following two cases: (i)

C ≥
√

2ÂĥD + ĉD and (ii)
√
2ÂĥD + ĉD − α2

4β
< C <

√
2ÂĥD + ĉD. In the

latter case, the restriction on the maximum carbon emission cannot be overcome

only by ordering decisions, the retailer must also take advantage of investment

opportunities. Assumption (A4) guarantees that there exists a feasible solution

in this case. Prior to stating the retailer’s optimal order quantity and investment

decisions under a cap policy, let us also introduce the following solution pairs:

(Q3, G3) =

(
(C−ĉD+αG3−βG2

3)+
√

(C−ĉD+αG3−βG2
3)

2−2ÂĥD

ĥ
,
2D(Aα+Â)−Q2

3(αh+ĥ)

2β(2AD−Q2
3h)

)
,

(Q4, G4) =

(
(C−ĉD+αG4−βG2

4)−
√

(C−ĉD+αG4−βG2
4)

2−2ÂĥD

ĥ
,
2D(Aα+Â)−Q2

4(αh+ĥ)

2β(2AD−Q2
4h)

)
,

(Q5, G5) =


Qe,

α−
√

α2 − 4β
(
−C + ĉD +

√
2ÂDĥ

)

2β


 .

Note that ÂD
Q

+ ĥQ

2
+ ĉD−αG+βG2 = C when (Q,G) is any one of the pairs

(Q3, G3), (Q4, G4), and (Q5, G5). For 0 ≤ G ≤ α
2β
, it can be shown that

Q3 ≥ Q1 ≥ Q2 ≥ Q4. (3.9)

As characterized in the next theorem and its proof, the optimal solution to

the retailers problem under the cap policy is given by one of the following pairs:
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(Q0, 0), (Q1, 0), (Q2, 0), (Q3, G3), (Q4, G4), (Q5, G5). If (Q∗
1, G

∗
1) = (Q0, 0),

then the cost-optimal solution satisfies the emission constraint already. If

(Q∗
1, G

∗
1) = (Q1, 0) or (Q∗

1, G
∗
1) = (Q2, 0), then the retailer is able to satisfy

the emission constraint by ordering a quantity other than the cost-optimal one

while not making any investment. In other cases where G∗
1 > 0, the retailer mini-

mizes his/her costs under the emission constraint by investing in new technology

besides carefully-made ordering decisions.

Theorem 1 Under a cap policy, the optimal pair of the retailer’s replenishment

quantity and his/her investment amount is as follows:

If C ≥
√

2ÂĥD + ĉD then,

(Q∗
1, G

∗
1) =





(Q0, 0) if Q2 ≤ Q0 ≤ Q1,

(Q1, 0) if Qα < Q1 < Q0,

(Q3, G3) if Qe < Q3 ≤ Qα,

(Q2, 0) if Q0 < Q2 < Qα,

(Q4, G4) if Qα ≤ Q4 < Qe,

and if
√

2ÂĥD + ĉD − α2

4β
< C <

√
2ÂĥD + ĉD, then

(Q∗
1, G

∗
1) =





(Q3, G3) if Qe < Q3 ≤ Qα,

(Q4, G4) if Qα ≤ Q4 < Qe,

(Q5, G5) o.w.,

where Qα =
√

2(Â+Aα)D

ĥ+hα
.

Proof: The proof will follow by making use of the Karush-Kuhn-Tucker (KKT)

conditions. The objective function is differentiable, and it is convex because its

Hessian matrix

(
2AD

Q3 0

0 0

)
is positive semi-definite. Emission cap constraint is also

differentiable, and it is strictly convex in Q and G because its Hessian matrix
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(
2ÂD

Q3 0

0 2β

)
is positive definite. In addition, Assumption (A4) implies that there

exists a feasible point in the set { ÂD
Q

+ ĥQ

2
+ ĉD−αG+βG2 < C, Q ≥ 0, G ≥ 0 }.

As a result, we conclude that the KKT conditions listed below guarantee global

optimality along with feasibility conditions.

−AD

Q2
+

h

2
+ λ1

(
−ÂD

Q2
+

ĥ

2

)
− µ1 = 0, (3.10)

1 + λ1(−α + 2βG)− µ2 = 0, (3.11)

λ1

(
C − ÂD

Q
− ĥQ

2
− ĉD + αG− βG2

)
= 0, (3.12)

µ1Q = 0, (3.13)

µ2G = 0, (3.14)

λ1 ≥ 0, µ1 ≥ 0, µ2 ≥ 0. (3.15)

The multipliers λ1, µ1, and µ2 may be equal to zero or be greater than zero.

Considering these alternatives, there are eight possible cases, however, only the

following three may lead to feasible solutions.

Case 1: λ1 = 0, µ1 = 0, µ2 > 0

Expression (3.12) and Expression (3.13) are satisfied because λ1 = 0 and

µ1 = 0. Expression (3.11) implies µ2 = 1. Because µ2 > 0, Expression (3.14)

leads to G = 0. Finally, evaluating Expression (3.10) at λ1 = 0 and µ1 = 0, we

obtain Q = Q0 =
√

2AD
h

.

Now, let us check the feasibility ofQ =
√

2AD
h

andG = 0. WhenG = 0, to find

a feasible order quantity, we should have C ≥
√
2ÂDĥ+ ĉD, because the contrary

implies that even the minimum carbon emission possible by ordering decisions

would exceed the emission cap. In addition, any feasible order quantity Q should

satisfy ÂD
Q

+ ĥQ

2
+ ĉD ≤ C. This inequality further yields Q2 ≤ Q ≤ Q1, where

Q1 and Q2 are defined in (3.7) and (3.8). Observe that since C ≥
√

2ÂDĥ+ ĉD,

25



both Q1 and Q2 exist. Therefore, if C ≥
√
2ÂDĥ+ ĉD and Q2 ≤ Q0 ≤ Q1, then

Q∗
1 = Q0 and G∗

1 = 0.

Case 2: λ1 > 0, µ1 = 0, µ2 > 0

Using the fact that µ1 = 0, Expression (3.10) can be rewritten as

−AD

Q2
+

h

2
+ λ1

(
−ÂD

Q2
+

ĥ

2

)
= 0. (3.16)

Since µ2 > 0, Expression (3.14) implies G = 0. Therefore, Expression (3.11)

reduces to

1− αλ1 − µ2 = 0. (3.17)

Because λ1 > 0 and G = 0, Expression (3.12) implies

C − ÂD

Q
− ĥQ

2
− ĉD = 0.

Note that, Q1 and Q2 are the two values of Q that satisfy the above equality.

Since G = 0, we should have C ≥
√
2ÂDĥ+ ĉD for the same reason as discussed

in Case 1, which in turn, implies that Q1 and Q2 exist. In the rest of our analysis

for Case 2, we will consider the following two possibilities:

Case 2.1: C =
√
2ÂDĥ+ ĉD

It can be shown that if C =
√
2ÂDĥ + ĉD, then Q1 = Q2 =

√
2ÂD

ĥ
. In

this case, Expression (3.16) holds for any positive value of λ1 as long as A
h
= Â

ĥ
.

However, due to the relationship between λ1 and µ2 as stated in Expression (3.17)

and the fact that µ2 > 0, λ1 should be chosen such that λ1 < 1
α
. Therefore, if

A
h
= Â

ĥ
, then Q∗

1 = Q0 and G∗
1 = 0.

Case 2.2: C >
√
2ÂDĥ+ ĉD

If C >
√
2ÂDĥ + ĉD, then Q1 6= Q2. For Q = Q1 or Q = Q2 to be optimal,

there must exist positive values of λ1 and µ2 that satisfy Expression (3.16) and

Expression (3.17). Using Expression (3.16), we obtain

λ1 =

AD
Q2 − h

2

− ÂD
Q2 + ĥ

2

=
2AD − hQ2

−2ÂD + ĥQ2
.
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Note that, since C >
√

2ÂDĥ + ĉD, it turns out that the denominator of the

above expression is different than zero for Q = Q1 and Q = Q2, therefore, λ1 is

finite. Utilizing this expression in (3.17) further leads to

µ2 = 1− α
2AD − hQ2

−2ÂD + ĥQ2
.

Since λ1 > 0 and µ2 > 0, any optimal Q should then satisfy

0 <
2AD − hQ2

−2ÂD + ĥQ2
<

1

α
. (3.18)

Now, let us check the conditions for Q1 to satisfy the above expression, and hence,

to be optimal. Since C >
√

2ÂDĥ+ ĉD, we have

2(C − ĉD)2 − 4ÂDĥ > 0.

Combining C >
√

2ÂDĥ+ ĉD with the fact that
√

2ÂDĥ > 0, we conclude

2(C − ĉD)2 + 2(C − ĉD)

√
(C − ĉD)2 − 2ÂDĥ− 4ÂDĥ > 0,

which can be rewritten as

[
C − ĉD +

√
(C − ĉD)2 − 2ÂDĥ

]2
− 2ÂDĥ > 0.

The above inequality implies

−2ÂD + ĥ

[
C − ĉD +

√
(C − ĉD)2 − 2ÂDĥ

]2

ĥ2
> 0.

Observe from Expression (3.7) that, the fractional term in the above expression

is equal to Q2
1, therefore, we have

−2ÂD + ĥQ2
1 > 0.

Based on the above result, for Expression (3.18) to hold for Q = Q1, we should

have 2AD − hQ2
1 > 0 and

2AD−hQ2
1

−2ÂD+ĥQ2
1

< 1
α
. Evaluating these two expressions, we

conclude that if Q1 < Q0 =
√

2AD
h

and Q1 > Qα =
√

2(Â+Aα)D

ĥ+hα
, then Q∗

1 = Q1

and G∗
1 = 0.
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To check the conditions for optimality of Q2, we use a similar methodology.

Since C >
√
2ÂDĥ+ ĉD, we have

(
(C − ĉD)2 − 2ÂDĥ

)2
< (C − ĉD)2

(
(C − ĉD)2 − 2ÂDĥ

)
,

which, in turn, implies that

(C − ĉD)2 − 2ÂDĥ− (C − ĉD)

√
(C − ĉD)2 − 2ÂDĥ < 0.

Multiplying both sides of the above expression with 2

ĥ
leads to

−2ÂD + ĥ

[
(C − ĉD)−

√
(C − ĉD)2 − 2ÂDĥ

]2

ĥ2
< 0.

Observe from Expression (3.8) that, the fractional term in the above expres-

sion is equal to Q2
2, therefore, we have

−2ÂD + ĥQ2
2 < 0.

Based on the above result, for Expression (3.18) to hold for Q = Q2, we should

have 2AD − hQ2
2 < 0 and

2AD−hQ2
2

−2ÂD+ĥQ2
2

< 1
α
. Evaluating these two expressions, we

conclude that if Q2 > Q0 =
√

2AD
h

and Q2 < Qα =
√

2(Â+Aα)D

ĥ+hα
, then Q∗

1 = Q2

and G∗
1 = 0.

Case 3: λ1 > 0, µ1 = 0, µ2 = 0

Expression (3.13) and Expression (3.14) are satisfied because µ1 = 0 and

µ2 = 0. Using the fact that µ1 = 0, Expression (3.10) can be rewritten as

−AD

Q2
+

h

2
+ λ1

(
−ÂD

Q2
+

ĥ

2

)
= 0. (3.19)

Since µ2 = 0, Expression (3.13) reduces to

1 + λ1(−α + 2βG) = 0. (3.20)

As λ1 > 0, Expression(3.12) implies

ÂD

Q
+

ĥQ

2
+ ĉD − C − αG+ βG2 = 0. (3.21)
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Now, we should find nonnegative values of Q and G, and a positive value of λ1

that solve the system of equations as given by (3.19), (3.20), and (3.21). It follows

from Expression (3.20) that G < α
2β
. For any value of G, Expression (3.21) is

satisfied at the following two values of Q, which we refer to as Q3(G) and Q4(G):

Q3(G) =
(C − ĉD + αG− βG2) +

√
(C − ĉD + αG− βG2)2 − 2ÂĥD

ĥ
, (3.22)

Q4(G) =
(C − ĉD + αG− βG2)−

√
(C − ĉD + αG− βG2)2 − 2ÂĥD

ĥ
, (3.23)

For the existence of such Q3(G) and Q4(G), we should have C− ĉD+αG−βG2 ≥√
2ÂĥD. In the rest of our analysis for Case 3, we will consider the following

two possibilities:

Case 3.1: C − ĉD + αG− βG2 =
√
2ÂDĥ

In this case, Q3(G) = Q4(G) = Qe =
√

2ÂD

ĥ
. WhenQ = Qe, Expression (3.19)

holds for any λ1 > 0 as long as Â

ĥ
= A

h
. Now, for any value of G that satisfies

C − ĉD + αG − βG2 =
√
2ÂDĥ to be optimal, we should have 0 ≤ G < α

2β
.

Although there are two real roots of this equation, these conditions only hold at

G = G5 =
α−

√

α2−4β

(

−C+ĉD+
√

2ÂDĥ

)

2β
. Therefore, if

√
2ÂĥD + ĉD − α2

4β
< C <√

2ÂĥD + ĉD and Â

ĥ
= A

h
, then Q∗

1 = Qe and G∗
1 = G5.

Case 3.2: C − ĉD + αG− βG2 >
√

2ÂDĥ

If C−ĉD+αG−βG2 >
√
2ÂDĥ, then Q3(G) 6= Q4(G). For any (Q3(G), G) or

(Q4(G), G) pair to be optimal, there must exist corresponding positive values of λ1

that satisfy Expression (3.16). That is, we should have λ1 =
2AD−hQ2

−2ÂD+ĥQ2
> 0. Now,

let us check the conditions for Q3(G) to satisfy this inequality. It can be shown

that −2ÂD+ ĥQ2
3(G) > 0, or equivalently Q3(G) > Qe, for any given value of G

that satisfies C− ĉD+αG−βG2 >
√

2ÂDĥ. Combining the condition of having

λ1 > 0 with the fact that −2ÂD+ ĥQ2
3(G) > 0, we conclude 2AD−hQ2

3(G) > 0.

This implies Q3(G) < Q0.
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Next, utilizing λ1 =
2AD−hQ2

−2ÂD+ĥQ2
in Expression (3.20), we obtain

G =
2(αA+ Â)D − (αh+ ĥ)Q2

3(G)

2β(2AD − hQ2
3(G))

. (3.24)

At this point, the above expression with Expression (3.22) lead to a unique pair

of (Q,G), which we refer to as (Q3, G3). The condition that G ≥ 0, jointly with

2AD−hQ2
3 > 0, implies that 2(αA+ Â)D− (αh+ ĥ)Q2

3 ≥ 0. This, in turn, leads

to Q3 ≤ Qα =
√

2D(αA+Â)

αh+ĥ
.

We have shown that the optimality of Q3 is due to the following conditions:

Q3 > Qe, Q3 < Q0 and Q3 ≤ Qα. Note that Q3 > Qe and Q3 < Q0 simul-

taneously hold only if A
h

> Â

ĥ
. Having A

h
> Â

ĥ
further implies that Qα < Q0.

Therefore, we conclude that if
√

2ÂĥD + ĉD − α2

4β
< C <

√
2ÂĥD + ĉD and

Qe < Q3 ≤ Qα, then Q∗
1 = Q3 and G∗

1 = G3.

With a similar approach, it can be shown that (Q4, G4) obtained by solving

Expression (3.23) and G =
2(αA+Â)D−(αh+ĥ)Q2

4(G)

2β(2AD−hQ2
4(G))

simultaneously, is optimal if
√

2ÂĥD + ĉD − α2

4β
< C <

√
2ÂĥD + ĉD and Qα ≤ Q4 < Qe. �

The result that will be highlighted next, applies to the special case of the

problem where Â

ĥ
= A

h
, and is a consequence of Theorem 1 and its proof.

Remark 1 If Â

ĥ
= A

h
, the optimal replenishment quantity is always given by

the cost-optimal solution Q0, which is equal to the emission-optimal solution Qe.

However, if C ≥
√

2ÂĥD + ĉD, then G∗
1 = 0, and if C <

√
2ÂĥD + ĉD, then

G∗
1 > 0.

It is worthwhile to note that, when there is no investment opportunity for

carbon emissions reduction, Theorem 1 coincides with the results of Chen et al.

[19]. The next corollary presents the annual carbon emission level resulting from

the retailer’s optimal decisions as given in Theorem 1.

Corollary 1 The average annual carbon emission resulting from the retailer’s
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optimal solution under a cap policy is

E(Q∗
1, G

∗
1) =





√
D(Âh+ĥA)√

2Ah
+ ĉD if Q2 ≤ Q0 ≤ Q1,

C o.w.

As seen in Corollary 1, the maximum carbon emissions per year are bounded

by C. However, as long as C is not binding such that Q2 ≤ Q0 ≤ Q1, annual

carbon emissions are linearly increasing with Â and ĥ. For those nonbinding C

values, annual carbon emissions are also dependent on an A/h ratio, and in fact,

increases with A/h if A
h

> Â

ĥ
. Furthermore, the carbon emissions level is not

dependent on investment parameters α and β.

In the next lemma, we investigate the impact of having an investment option

for carbon emission reduction on the retailer’s annual emission level under a cap

policy. In doing this, we consider the following two measures: E (Q∗
1(0), 0) −

E (Q∗
1, G

∗
1) and TC1 (Q

∗
1(0), 0) − TC1 (Q

∗
1, G

∗
1). We use the notation Q∗

1(0) to

refer to the retailer’s optimal replenishment quantity under a cap policy, given

that the investment amount is zero. Note that, a feasible value for Q∗
1(0) may

not always exist, specifically when C <
√

2ÂĥD + ĉD. The lemma, which will

be presented without a proof, follows from Corollary 1 and the expression for

E (Q∗
1(0), 0) provided in Chen et al. [19]. The result applies to cases in which a

feasible value of Q∗
1(0) can be found.

Lemma 1 Having an investment opportunity for carbon emission reduction does

not change the annual carbon emission level under a cap policy, however, it

may lead to lower average annual costs for the retailer. That is, E (Q∗
1(0), 0) −

E (Q∗
1, G

∗
1) = 0 and TC1 (Q

∗
1(0), 0)− TC1 (Q

∗
1, G

∗
1) ≥ 0.

If C <
√

2ÂĥD+ ĉD and an investment option is not available for the retailer

to reduce his/her carbon emissions, there is no feasible replenishment quantity,

and therefore it does not make sense for him/her to be in business. Therefore, in

such cases, the savings in costs due to having an investment option may as well be

considered as infinity. Note that when C ≥
√

2ÂĥD + ĉD, Q∗
1(0) is given by Q0
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if Q2 ≤ Q0 ≤ Q1, by Q2 if Q0 < Q2, and by Q1 if Q1 < Q0. The optimal (Q,G)

pairs in the problems with and without the investment option coincide in those

cases. Therefore, the savings in costs due to investment can be strictly positive

only under the circumstances in which C ≥
√

2ÂĥD + ĉD, and the solution to

the problem with investment option is given by either (Q3, G3) or (Q4, G4).

Next, we study the effects of a cap policy on the retailer’s annual carbon

emissions and costs in comparison to a case where there is no governmental reg-

ulation. In the latter case, the retailer orders Q0 units and makes no investment

for emission reduction.

Lemma 2 Under a cap policy, the retailer’s optimal decisions for replenishment

quantity and investment amount may reduce the yearly carbon emissions with an

annual cost that is no less than what it would be when no emission policy is in

place. That is, TC1 (Q
∗
1, G

∗
1) ≥ TC (Q0, 0) and E (Q∗

1, G
∗
1) ≤ E (Q0, 0).

Proof: It follows from the expressions for TC(Q,G) and TC1(Q,G), and the def-

inition of Q0, that TC(Q0, 0) ≤ TC1(Q
∗
1, 0). Furthermore, we have TC1(Q

∗
1, 0) ≤

TC1(Q
∗
1, G

∗
1); thus, TC1(Q

∗
1, G

∗
1) ≥ TC(Q0, 0). The result about the annual emis-

sion levels follows from Corollary 1 and the fact that E (Q0, 0) =
√
D(Âh+ĥA)√

2Ah
+ ĉD.

�

Under any of the emission regulation policies, there may exist investment

options with different parameters α and β. If this is the case, then the retailer

must choose among different investment options. The result presented in the

next lemma may help the retailer to make such a decision when a cap policy is

in place.

Lemma 3 Let us consider two feasible investment options (i.e., they satisfy As-

sumption (A4)): one with parameters α1 and β1, and the other with parameters

α2 and β2. Let (Q̄2, Ḡ2) be the retailer’s optimal solution if the second invest-

ment option (i.e., the one with parameters α2 and β2) is adopted. If β2 ≥ β1

and α2 ≤ α1, then under the first investment option, there exists a solution which

leads to the same annual emission level with no more costs.
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Proof: First, we will show that there exists a feasible solution under the first

investment option, say
(
Q̄1, Ḡ1

)
, that leads to the same annual emissions level as

that of
(
Q̄2, Ḡ2

)
under the second investment option. Second, we will show that

the annual costs at
(
Q̄1, Ḡ1

)
, when the first investment option is adopted, are

lower than or equal to the annual costs at
(
Q̄2, Ḡ2

)
under the second investment

option.

Let us set Q̄1 = Q̄2. The two conditions for
(
Q̄1, Ḡ1

)
along with the first

investment option to lead to the same annual emissions level as that of
(
Q̄2, Ḡ2

)

under the second investment option are:

α1Ḡ1 − β1

(
Ḡ1

)2
= α2Ḡ2 − β2

(
Ḡ2

)2
(3.25)

and

Ḡ1 ≤
α1

2β1

. (3.26)

We will show that there exists a unique solution to Expression (3.25) that also

satisfies Expression (3.26).

The two values of Ḡ1 that satisfy Expression (3.25) are:

α1 +

√
(α1)2 − 4β1

(
α2Ḡ2 − β2

(
Ḡ2

)2)

2β1

, (3.27)

and

α1 −
√

(α1)2 − 4β1

(
α2Ḡ2 − β2

(
Ḡ2

)2)

2β1

. (3.28)

Note that (α2)2

4β2
is the maximum of the annual emission reduction under the sec-

ond investment option. Therefore, α2Ḡ2 − β2

(
Ḡ2

)2 ≤ (α2)2

4β2
. Since α1 ≥ α2

and β1 ≤ β2, we have (α2)2

4β2
≤ (α1)2

4β1
. This in turn implies that (α1)2

4β1
≥

α2Ḡ2 − β2

(
Ḡ2

)2
, and hence, (α1)

2 ≥ 4β1

(
α2Ḡ2 − β2

(
Ḡ2

)2)
. Therefore, Ex-

pression (3.27) and Expression (3.28) lead to positive values. However, value of

Ḡ1 provided by Expression (3.28) leads to lower annual costs, therefore, we set

Ḡ1 =
α1−

√

(α1)2−4β1

(

α2Ḡ2−β2(Ḡ2)
2
)

2β1
, which also satisfies Expression (3.26).

We show above the feasibility of
(
Q̄1, Ḡ1

)
for the retailer’s problem if the

first investment option is adopted. Note that in this solution, Q̄1 = Q̄2 and
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Ḡ1 =
α1−

√

(α1)2−4β1

(

α2Ḡ2−β2(Ḡ2)
2
)

2β1
. Now, assume that

(
Q̄1, Ḡ1

)
leads to greater

annual costs. Then, due to the objective function under the cap policy, it must

be that G2 < G1. Since α1G− β1G
2 is strictly increasing over those values of G

such that G ≤ α1

2β1
, it follows that

α1Ḡ1 − β1

(
Ḡ1

)2
> α1Ḡ2 − β1

(
Ḡ2

)2
.

As α2 ≤ α1 and β2 ≥ β1, we have

α1Ḡ2 − β1

(
Ḡ2

)2 ≥ α2Ḡ2 − β2

(
Ḡ2

)2
.

The above two inequalities jointly imply that α1Ḡ1−β1

(
Ḡ1

)2
> α2Ḡ2−β2

(
Ḡ2

)2
,

which contradicts with Expression (3.25). Therefore, in contrary to our assump-

tion, we must have G2 ≥ G1. This implies the annual costs of
(
Q̄1, Ḡ1

)
along

with the first investment option are lower than or equal to the optimum costs

under the second investment option. �

The above lemma implies that between two different investment options, the

retailer should choose the one with higher α and smaller β. If the investment

option with higher α does not also have smaller β, we will show, in the numerical

analysis in Chapter 4, that the problem parameters determine which investment

option is better in terms of costs. Recall from Corollary 1 that the annual carbon

emissions level under the cap policy is independent of the investment parameters

α and β. Therefore, annual costs due to each investment option is the only

criterion that determines which investment option is better.

3.2.2 Tax Policy

Under a tax policy, the retailer pays p monetary units in taxes for unit carbon

emission. There is no restriction on the maximum carbon emissions. The retailer’s

problem can be formulated as follows:
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min TC2(Q,G) = AD
Q

+ hQ

2
+ cD +G+ pE(Q,G)

s.t. E(Q,G) = ÂD
Q

+ ĥQ

2
+ ĉD − αG+ βG2 ,

Q ≥ 0, G ≥ 0.

The following theorem characterizes the solution to the above problem:

Theorem 2 Under a tax policy, the optimal pair of retailer’s replenishment

quantity and his/her investment amount is given by

(Q∗
2, G

∗
2) =



√

2(A+ Âp)D

h+ ĥp
,
αp− 1

2pβ


 .

Proof: Plugging ÂD
Q

+ ĥQ

2
+ ĉD−αG+ βG2 in place of E(Q,G) in the objective

function, it turns out be

(A+ pÂ)D

Q
+

(h+ ĥp)Q

2
+ (c+ ĉp)D +G− αpG+ pβG2.

The Hessian matrix corresponding to the above function is

(
2D(A+Âp)

Q3 0

0 2pβ

)
,

with a determinant 4(A+pÂ)Dpβ

Q3 , which is greater than zero. Combined with the

fact that 2D(A+Âp)
Q3 > 0, this result implies the objective function is jointly and

strictly convex in Q and G, and hence, Q∗
2 and G∗

2 should satisfy the following

system of equations:

∂TC2

∂Q
(Q∗

2, G
∗
2) = −(A+ pÂ)D

(Q∗
2)

2
+

(h+ pĥ)

2
= 0,

∂TC2

∂G
(Q∗

2, G
∗
2) = 1− αp+ 2pβG∗

2 = 0.

Solving for Q∗
2 and G∗

2 in the above two expressions leads to the result in the

theorem. �
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It can be observed that G∗
2 is increasing with p. Furthermore, Q∗

2 is increasing

with p when A
h
< Â

ĥ
, Q∗

2 is decreasing with p when A
h
> Â

ĥ
, and Q∗

2 is not affected

by p when A
h
= Â

ĥ
. In fact, when A

h
= Â

ĥ
, we have Q∗

2 = Q0 = Qe. The next

corollary follows from plugging the expressions for Q∗
2 and G∗

2 in the emission

function and the cost function.

Corollary 2 The average annual carbon emission and the average annual cost

resulting from the retailer’s optimal solution under a tax policy are

E (Q∗
2, G

∗
2) =

√
D
[
Â(h+ pĥ) + ĥ(A+ pÂ)

]

√
2(A+ pÂ)(h+ pĥ)

+
1− α2p2

4p2β
+ ĉD, (3.29)

TC2 (Q
∗
2, G

∗
2) =

√
2(A+ pÂ)(h+ pĥ)D +D(c+ ĉp)− (αp− 1)2

4pβ
. (3.30)

Proof: When (Q∗
2, G

∗
2) =

(√
2(A+Âp)D

h+ĥp
, αp−1

2pβ

)
is plugged in E(Q,G) = ÂD

Q
+

ĥQ

2
+ ĉD − αG+ βG2, we have

E(Q∗
2, G

∗
2) =

ÂD√
2(A+Âp)D

h+ĥp

+
ĥ
√

2(A+Âp)D

h+ĥp

2
+ ĉD − α

αp− 1

2pβ
+ β

(
αp− 1

2pβ

)2

,

which can be rewritten as

E(Q∗
2, G

∗
2) = Â

√
(h+ ĥp)D

2(A+ Âp)
+ĥ

√
(A+ Âp)D

2(h+ ĥp)
+ĉD+

−α2p+ α

2pβ
+
α2p2 − 2αp+ 1

(2p)2β
.

Writing the first and the second terms of the above expression under a common

denominator, similarly writing the fourth and the fifth terms under a common

denominator, and doing some cancellation of terms leads to

E(Q∗
2, G

∗
2) =

√
D
[
Â(h+ pĥ) + ĥ(A+ pÂ)

]

√
2(A+ pÂ)(h+ pĥ)

+ ĉD +
1− α2p2

4p2β
.

Now, let us continue with deriving a closed form expression for TC2(Q
∗
2, G

∗
2).

Plugging ÂD
Q

+ ĥQ

2
+ ĉD−αG+βG2 in place of E(Q,G) in the objective function

of the model for tax policy, leads to

(A+ pÂ)D

Q
+

(h+ ĥp)Q

2
+ (c+ ĉp)D + (1− αp)G+ pβG2.
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When we put Q∗
2 =

√
2(A+Âp)D

h+ĥp
and G∗

2 =
αp−1
2pβ

in place of Q and G, respectively,

the above expression turns out to be

(A+ pÂ)D√
2(A+Âp)D

h+ĥp

+
(h+ ĥp)

√
2(A+Âp)D

h+ĥp

2
+ (c+ ĉp)D − (αp− 1)2

2pβ
+

(αp− 1)2

4pβ
,

which can be rewritten as
√

(A+ Âp)(h+ ĥp)D

2
+

√
(A+ Âp)(h+ ĥp)D

2
+ (c+ ĉp)D − (αp− 1)2

4pβ
.

The above expression is equal to

√
2(A+ Âp)(h+ ĥp)D + (c+ ĉp)D − (αp− 1)2

4pβ
.

�

It can be verified by Assumptions (A1) and A(3) that E (Q∗
2, G

∗
2) and

TC2 (Q
∗
2, G

∗
2) are positive. E (Q∗

2, G
∗
2) is decreasing in p and TC2 (Q

∗
2, G

∗
2)

is increasing in p. In the next lemma, we quantify the reduction in emis-

sions and the savings in costs due to the investment option. For this pur-

pose, we consider the following two measures: E (Q∗
2(0), 0) − E (Q∗

2, G
∗
2) and

TC2 (Q
∗
2(0), 0) − TC2 (Q

∗
2, G

∗
2). Here, Q∗

2(0) refers to the retailer’s optimal re-

plenishment quantity under the tax policy, given that the investment amount is

zero.

Lemma 4 Under a tax policy, having an investment opportunity for carbon emis-

sion reduction leads to positive savings in annual carbon emissions and in annual

costs, as quantified by the following:

E (Q∗
2(0), 0)− E (Q∗

2, G
∗
2) =

α2p2 − 1

4p2β
,

TC2 (Q
∗
2(0), 0)− TC2 (Q

∗
2, G

∗
2) =

(αp− 1)2

4pβ
.

Proof: Under a tax policy, if there is no investment opportunity to reduce carbon

emissions, the retailer minimizes the following function to find Q:
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TC2(Q, 0) =
(A+ pÂ)D

Q
+

(h+ pĥ)Q

2
+ (c+ pĉ)D.

TC2(Q, 0) is minimized at Q∗
2(0) =

√
2(A+pÂ)D

(h+pĥ)
. In turn, the retailer’s annual

costs at Q∗
2(0) are

TC2(Q
∗
2(0), 0) =

√
2(A+ pÂ)(h+ pĥ)D + (c+ pĉ)D,

and his/her annual carbon emissions are

E(Q∗
2(0), 0) =

√
D[Â(h+ pĥ) + ĥ(A+ pÂ)]√

2(A+ pÂ)(h+ pĥ)
+ ĉD.

Expressions (3.29) and (3.30) are then utilized to compute the differences

E(Q∗
2(0), 0)− E(Q∗

2, G
∗
2) and TC2(Q

∗
2(0), 0)− TC2(Q

∗
2, G

∗
2). �

Lemma 4 along with Assumption (A2) imply that the reduction in annual

costs and the reduction in annual carbon emissions due to utilizing the investment

opportunity are both increasing in p. The reduction in annual carbon emissions

is bounded by α2

4β
and its rate of change with increasing p decreases. This, in turn,

implies that if the government further increases the tax for one unit of emission

at its already large values, a retailer investing in new technology does very little

to reduce emissions. However, the retailer still invests in new technology because

he/she can reduce his/her costs significantly by means of tax savings. Note that

the total taxes the retailer must pay may be very large at high values of p,

therefore, even a marginal reduction in emissions may save the retailer a lot of

money.

In the next lemma, we study the effects of the carbon tax policy on the

retailer’s annual carbon emissions and costs. Without a carbon emission policy

in place, the retailer minimizes Expression (3.1), and he/she orders Q0 units and

makes no investment in emissions reduction.

Lemma 5 Under a tax policy, the retailer’s cost-optimal decisions for replen-

ishment quantity and investment amount lead to lower annual emissions and
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higher annual costs, in comparison to a case with no emission policy. That is,

TC2 (Q
∗
2, G

∗
2) > TC (Q0, 0) and E (Q∗

2, G
∗
2) < E (Q0, 0).

Proof: By definitions of TC (Q,G) and TC2 (Q,G), we know that TC (Q,G) ≤
TC2 (Q,G) as E (Q,G) ≥ 0. It then follows that TC (Q∗

2, G
∗
2) < TC2 (Q

∗
2, G

∗
2) be-

cause E (Q∗
2, G

∗
2) > 0, as noted in Corollary 2. Furthermore, we have TC (Q0, 0) <

TC (Q∗
2, G

∗
2) because (Q0, 0) minimizes TC(Q,G). Combining this with the fact

that TC (Q∗
2, G

∗
2) < TC2 (Q

∗
2, G

∗
2) leads to TC2 (Q

∗
2, G

∗
2) > TC (Q0, 0).

Now, let us prove the second part of the lemma. We have from Theorem

2 and Assumption (A2) that E (Q∗
2, G

∗
2) < E (Q∗

2, 0). The remaining part of

the proof will follow by showing that E (Q∗
2, 0) < E (Q0, 0) in case A

h
6= Â

ĥ
, and

that E (Q∗
2, 0) = E (Q0, 0), in case A

h
= Â

ĥ
. Therefore, we will conclude that

E (Q∗
2, G

∗
2) < E (Q0, 0) in all cases.

If A
h
= Â

ĥ
, we have Q∗

2 = Q0, which implies E (Q∗
2, 0) = E (Q0, 0). We will

analyze the case of A
h

6= Â

ĥ
in two parts. First, suppose that A

h
> Â

ĥ
. In this

case, we have Qe < Q∗
2 < Q0. This further leads to E (Q∗

2, 0) < E (Q0, 0) due to

the strict convexity of E(Q, 0) and the fact that Qe is the unique minimizer of

E(Q, 0). Now, suppose that A
h
< Â

ĥ
. In this case, we have Qe > Q∗

2 > Q0. It

again follows from the strict convexity of E(Q, 0) and the definition of Qe that

we have E(Q∗
2, 0) < E(Q0, 0). �

The above lemma implies that a tax policy is effective in reducing a retailer’s

annual carbon emissions, but it increases the retailer’s annual costs even if he/she

has access to an investment opportunity for carbon emission reduction. In what

follows, we compare two investment opportunities under the tax policy.

Lemma 6 Let us consider two investment options: one with parameters α1 and

β1, and the other with parameters α2 and β2. When a tax policy is in place, the

retailer’s annual costs and emissions under one option compare to those under

another in the following way:

• If β2 ≥ β1 and α2 ≤ α1, then the first investment option (i.e., the one with
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parameters α1 and β1) leads to no greater annual emissions and no greater

annual costs for the retailer than the second investment option does.

• If β2 ≥ β1 and α2 > α1, then

– If the second investment option leads to greater annual costs than the

first one does, then it also results in greater annual emissions.

– If the second investment option leads to annual costs lower than or

equal to the first one, then it results in lower annual emissions if
1−α2

2p2

β2
< 1−α1

2p2

β1
holds, otherwise, it results in no lower annual emis-

sions than the first investment option does.

Proof: We will prove the different parts of the lemma in the following two cases.

Case 1: β2 ≥ β1, α2 ≤ α1

It follows from β2 ≥ β1 that we have
α2p−1√

β2
≤ α2p−1√

β1
. Also, the fact that α2 ≤ α1

leads to α2p−1√
β1

≤ α1p−1√
β1

. Combining these two results, we have α2p−1√
β2

≤ α1p−1√
β1

, and

hence (α2p−1)2

4pβ2
≤ (α1p−1)2

4pβ1
. Expression (3.30) and the fact that (α2p−1)2

4pβ2
≤ (α1p−1)2

4pβ1

jointly imply that the annual costs under the first investment option is lower than

or equal to the annual costs under the second investment option.

Now, let us compare the annual emissions under the two investment options. It

follows from α2p−1√
β2

≤ α1p−1√
β1

that α1p
√
β2−

√
β2 ≥ α2p

√
β1−

√
β1. Because β2 ≥ β1,

we have 2
√
β2 ≥ 2

√
β1. Combining this with α1p

√
β2−

√
β2 ≥ α2p

√
β1−

√
β1 leads

to α1p
√
β2 +

√
β2 ≥ α2p

√
β1 +

√
β1, which in turn implies α1p+1√

β1
≥ α2p+1√

β2
. Since

α1p−1√
β1

≥ α2p−1√
β2

and α1p+1√
β1

≥ α2p+1√
β2

, it follows that
α2
1p

2−1

β1
≥ α2

2p
2−1

β2
, or equivalently,

1−α2
1p

2

β1
≤ 1−α2

2p
2

β2
. This implies, due to Expression (3.29), that annual emissions

under the first investment option are lower than or equal to annual emissions

under the second investment option.

Case 2: β2 ≥ β1, α2 > α1

If the second investment option leads to greater annual costs than the first one

does, then Expression (3.30) implies that (α2p−1)2

4pβ2
< (α1p−1)2

4pβ1
, or equivalently, that

α2p
√
β1−

√
β1 < α1p

√
β2−

√
β2. Now, in contrary to the lemma, assume that the
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annual emissions level resulting from the second investment option is lower than

or equal to that of the first investment option. In mathematical terms, assume

that
1−α2

2p
2

4p2β2
≤ 1−α2

1p
2

4p2β1
, which is equivalent to

α2p− 1√
β2

× α2p+ 1√
β2

≥ α1p− 1√
β1

× α1p+ 1√
β1

.

Due to (α2p−1)2

4pβ2
< (α1p−1)2

4pβ1
, we have α2p−1√

β2
< α1p−1√

β1
. Therefore, in order for the

above inequality to hold, we should have α2p+1√
β2

> α1p+1√
β1

, or equivalently, α2p
√
β1+√

β1 > α1p
√
β2+

√
β2. Since β2 ≥ β1, this implies α2p

√
β1−

√
β1 > α1p

√
β2−

√
β2,

which contradicts α2p
√
β1 −

√
β1 < α1p

√
β2 −

√
β2. Therefore, if the second

investment option leads to greater annual costs than the first one, it must be

that the annual emissions level resulting from the second investment is greater

than that of the first investment.

If the second investment option leads to lower than or equal annual costs than

the first one, the annual emission levels of the two investment options depend

on the second term of Expression (3.29). If
1−α2

2p
2

4p2β2
<

1−α2
1p

2

4p2β1
, or equivalently,

1−α2
2p

2

β2
<

1−α2
1p

2

β1
, holds, then the second investment option is better in terms of

the retailer’s annual emissions; otherwise, the annual emissions level is greater

than or equal to that of the first investment option. �

3.2.3 Cap-and-Trade Policy

Under a cap-and-trade policy, similar to the cap policy, the retailer is subject

to an emissions cap, C, on the total carbon emissions per year. However, if

the annual carbon emission is more than the cap C, the firm can buy carbon

permits equivalent to its excess demand for carbon capacity, at a market price of

cp monetary units per unit emission. On the other hand, if the retailer’s annual

carbon emission is lower than the carbon cap, she/he can sell the extra carbon

capacity at the same market price, i.e., cp. It is assumed that carbon permits are

always available for buying and selling. In particular, let X denote the carbon

amount the retailer trades annually. X > 0 indicates a case in which the retailer

sells his/her carbon permits, whereas X < 0 implies a case in which the retailer
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purchases carbon permits. The retailer’s problem of deciding the replenishment

quantity and the investment amount is formulated below.

min TC3(Q,G) = AD
Q

+ hQ

2
+ cD +G−Xcp

s.t. ÂD
Q

+ ĥQ

2
+ ĉD − αG+ βG2 +X = C,

Q ≥ 0, G ≥ 0.

In the following theorem, we present the solution to the above problem:

Theorem 3 Under a cap-and-trade policy, the optimal pair of retailer’s replen-

ishment quantity and his/her investment amount is given by

(Q∗
3, G

∗
3) =

(√
2(A+ Âcp)D

h+ ĥcp
,
αcp − 1

2cpβ

)
.

It then follows that X∗ = C−E(Q∗
3, G

∗
3), where X

∗ is the retailer’s optimal traded

carbon amount per year.

Proof: Plugging C − ÂD
Q

− ĥQ

2
− ĉD + αG − βG2 in place of X, the objective

function turns out be

(A+ cpÂ)D

Q
+

(h+ ĥcp)Q

2
+ cpβG

2 + (1− αcp)G+ (c+ ĉcp)D − cpC.

Following similar steps to those in the proof of Theorem 2 for checking the struc-

tural properties of TC2(Q,G), it can be shown that TC3(Q,G) is also jointly and

strictly convex in Q and G, and hence, Q∗
3 and G∗

3 should satisfy the following

system of equations:

∂TC3

∂Q
(Q∗

3, G
∗
3) = −(A+ cpÂ)D

(Q∗
3)

2
+

(h+ ĥcp)

2
= 0,

∂TC3

∂G
(Q∗

3, G
∗
3) = 1− αcp + 2cpβG

∗
3 = 0.
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Solving for Q∗
3 and G∗

3 in the above two expressions leads to the result in the

theorem. �

Using the expression for G∗
3, one can show that G∗

3 is increasing with cp.

Furthermore, Q∗
3 is increasing with cp when A

h
< Â

ĥ
, Q∗

3 is decreasing with cp

when A
h
> Â

ĥ
, and it is not affected by cp when A

h
= Â

ĥ
. In case A

h
= Â

ĥ
, we have

Q∗
3 = Q0 = Qe. The next three corollaries follow from Theorem 3.

Corollary 3 If
√

2ÂĥD+ ĉD− α2

4β
> C, then the retailer does not sell any carbon

permits (i.e., X ≤ 0), regardless of what the carbon trading price cp is.

At high values of cp, the retailer may want to sell his/her permits in the market

for extra revenue. However, Corollary 3 implies that if the cap is smaller than the

minimum carbon emissions possible due to ordering and investment decisions, the

retailer must purchase carbon permits to be within the allowed limits of annual

carbon emissions at any value of cp.

Corollary 4 The average annual carbon emissions and the average annual costs

resulting from the retailer’s optimal decisions under a cap-and-trade policy are

E(Q∗
3, G

∗
3) =

√
D(Â(h+ cpĥ) + ĥ(A+ cpÂ))√

2(A+ cpÂ)(h+ cpĥ)
+

1− α2c2p
4c2pβ

+ ĉD, (3.31)

TC3(Q
∗
3, G

∗
3) =

√
2(A+ cpÂ)(h+ cpĥ)D+D(c+ ĉcp)−

(αcp − 1)2

4cpβ
− cpC. (3.32)

Equation (3.31) implies that the carbon emissions level does not change with

carbon cap C. Hua et al. [4] obtain a similar result for the case when there is no

investment option. It can be shown using Assumption (A3) that E(Q∗
3, G

∗
3) > 0;

however, TC3(Q
∗
3, G

∗
3) may assume any value depending on the magnitude of C.

If TC3(Q
∗
3, G

∗
3) < 0, then the retailer has excess carbon capacity in such a large

amount that by selling this amount he/she covers the inventory-related costs and

even makes a profit. (In practice, this should be avoided for the cap and trade

policy to be effective.) Based on this result, the next corollary proposes an upper
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bound on the value of C that the policy maker should impose on the retailer in

this setting.

Corollary 5 Under a cap-and-trade policy with a carbon trading price cp, an

upper bound on the carbon capacity C is given by

C <

√
2(A+ cpÂ)(h+ cpĥ)D +D(c+ ĉcp)− (αcp−1)2

4cpβ

cp
.

To quantify the reduction in emissions and the savings in costs due to the

investment option under a cap-and-trade policy, in the next lemma we con-

sider the following two measures: E (Q∗
3(0), 0)−E (Q∗

3, G
∗
3) and TC3 (Q

∗
3(0), 0)−

TC3 (Q
∗
3, G

∗
3). Here, Q

∗
3(0) refers to the retailer’s optimal replenishment quantity

under the cap-and-trade policy, given that the investment amount is zero.

Lemma 7 Under a cap-and-trade policy, having an investment opportunity for

carbon emission reduction leads to positive savings in annual carbon emissions

and in annual costs, as quantified by the following:

E (Q∗
3(0), 0)− E (Q∗

3, G
∗
3) =

α2cp
2 − 1

4cp2β
,

TC3 (Q
∗
3(0), 0)− TC3 (Q

∗
3, G

∗
3) =

(αcp − 1)2

4cpβ
.

Proof: Under a cap-and-trade policy, if there is no investment opportunity to

reduce carbon emissions, the retailer minimizes the following function to find Q:

TC3(Q, 0) =
(A+ cpÂ)D

Q
+

(h+ cpĥ)Q

2
+ (c+ cpĉ)D.

TC3(Q, 0) is minimized at Q∗
3(0) =

√
2(A+cpÂ)D

(h+cpĥ)
. In turn, the retailer’s annual

costs at Q∗
3(0) are

TC3(Q
∗
3(0), 0) =

√
2(A+ cpÂ)(h+ cpĥ)D + (c+ cpĉ)D,
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and his/her annual carbon emissions are

E(Q∗
3(0), 0) =

√
D[Â(h+ cpĥ) + ĥ(A+ cpÂ)]√

2(A+ cpÂ)(h+ cpĥ)
+ ĉD.

Expressions (3.31) and (3.32) are then utilized to compute the differences

E(Q∗
3(0), 0)− E(Q∗

3, G
∗
3) and TC3(Q

∗
3(0), 0)− TC3(Q

∗
3, G

∗
3). �

Lemma 7 and Assumption (A3) jointly imply that the reduction in annual

costs and the reduction in annual carbon emissions due to utilizing the investment

opportunity are both increasing in cp. The reduction in annual carbon emissions

is again bounded by α2

4β
, as in the case of the tax policy, and, its rate of change with

increasing cp decreases. With an interpretation similar to the one we developed

for Lemma 4, it can be concluded that the incremental benefit of retailer’s one-

unit investment on emission reduction diminishes at large values of unit carbon

emission trading prices. However, the retailer still invests in new technology,

because he/she can reduce his/her costs significantly either by creating excess

carbon capacity and selling it at high prices, or by avoiding the need to purchase

excess capacity at high prices with the capacity generated from new technology.

In the next lemma, we study the effects of the cap-and-trade policy on the

retailer’s annual carbon emissions and costs. For this purpose, we compare the

annual carbon emissions and the annual costs in case of no government regulation

to the results in Corollary 4. Note that, in the former case, the retailer orders Q0

units and makes no investment in emission reduction.

Lemma 8 Under a cap-and-trade policy, the retailer’s cost-optimal decisions for

replenishment quantity and investment amount lead to lower annual emissions in

comparison to a case with no emission policy. That is, E (Q∗
3, G

∗
3) < E (Q0, 0).

However, annual costs may increase or decrease depending on C. Specifically, we

have TC3 (Q
∗
3, G

∗
3) ≤ TC (Q0, 0) if C ≥

√
2(A+Âcp)(h+ĥcp)D−

√
2AhD

cp
− (αcp−1)2

4c2pβ
+ ĉD,

and we have TC3 (Q
∗
3, G

∗
3) > TC (Q0, 0) otherwise.

Proof: The first part of the lemma follows from a similar discussion to the proof

of Lemma 5 and Assumption A(3). The second part follows from comparing

Equation (3.32) to TC(Q0, 0). �
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The next lemma presents a result for the cap-and-trade policy, similar to the

one in Lemma 6 for the tax policy.

Lemma 9 Let us consider two investment options: one with parameters α1 and

β1, and the other with parameters α2 and β2. The retailer’s annual costs and

emissions under one option compare to those under the other in the following

way:

• If β2 ≥ β1 and α2 ≤ α1, then the first investment option (i.e., the one with

parameters α1 and β1) leads to no greater annual emissions and no greater

annual costs for the retailer than the second investment option does.

• If β2 ≥ β1 and α2 > α1, then

– If the second investment option leads to greater annual costs than the

first one does, then it also results in greater annual emissions.

– If the second investment option leads to annual costs lower than or

equal to the first one, then it results in lower annual emissions if
1−α2

2c2p
β2

<
1−α1

2c2p
β1

holds, otherwise, it results in no lower annual emis-

sions than the first investment option does.

Proof: We will prove the different parts of the lemma in the following two cases.

Case 1: β2 ≥ β1, α2 ≤ α1

It follows from β2 ≥ β1 that we have α2cp−1√
β2

≤ α2cp−1√
β1

. Also, the fact

that α2 ≤ α1 leads to α2cp−1√
β1

≤ α1cp−1√
β1

. Combining these two results, we have
α2cp−1√

β2
≤ α1cp−1√

β1
, and hence, (α2cp−1)2

4cpβ2
≤ (α1cp−1)2

4cpβ1
. Expression (3.32) and the

fact that (α2cp−1)2

4cpβ2
≤ (α1cp−1)2

4cpβ1
jointly imply that the annual costs under the first

investment option is less than or equal to the annual costs under the second

investment option.

Now, let us compare the annual emissions under the two investment op-

tions. It follows from α2cp−1√
β2

≤ α1cp−1√
β1

that α1cp
√
β2 −

√
β2 ≥ α2cp

√
β1 −

√
β1.

Since β2 ≥ β1, we have 2
√
β2 ≥ 2

√
β1. Combining this with α1cp

√
β2 −

√
β2 ≥
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α2cp
√
β1 −

√
β1 leads to α1cp

√
β2 +

√
β2 ≥ α2cp

√
β1 +

√
β1, which in turn, im-

plies α1cp+1√
β1

≥ α2cp+1√
β2

. Since α1cp−1√
β1

≥ α2cp−1√
β2

and α1cp+1√
β1

≥ α2cp+1√
β2

, it follows that
α2
1c

2
p−1

β1
≥ α2

2c
2
p−1

β2
, or equivalently

1−α2
1c

2
p

β1
≤ 1−α2

2c
2
p

β2
. This implies, due to Expression

(3.31), that the annual emissions under the first investment option is less than or

equal to the annual emissions under the second investment option.

Case 2: β2 ≥ β1, α2 > α1

If the second investment option leads to more annual costs than the first

one does, then Expression (3.32) implies that (α2cp−1)2

4cpβ2
< (α1cp−1)2

4cpβ1
, or equivalently

that α2cp
√
β1 −

√
β1 < α1cp

√
β2 −

√
β2. Now, assume in contrary to the lemma,

that the annual emissions level resulting from the second investment option is

less than or equal to that of the first investment option. In mathematical terms,

assume that
1−α2

2c
2
p

4c2pβ2
≤ 1−α2

1c
2
p

4c2pβ1
, which can be rewritten as

α2cp − 1√
β2

× α2cp + 1√
β2

≥ α1cp − 1√
β1

× α1cp + 1√
β1

.

Due to (α2cp−1)2

4cpβ2
< (α1cp−1)2

4cpβ1
, we have α2cp−1√

β2
< α1cp−1√

β1
. Therefore, in order for

the above inequality to hold, we should have α2cp+1√
β2

> α1cp+1√
β1

, or equivalently

α2cp
√
β1 +

√
β1 > α1cp

√
β2 +

√
β2. Since β2 ≥ β1, this implies α2cp

√
β1 −

√
β1 >

α1cp
√
β2−

√
β2, which contradicts with α2cp

√
β1−

√
β1 < α1cp

√
β2−

√
β2. There-

fore, if the second investment option leads to more annual costs than the first

one does, it must be that the annual emissions level resulting from the second

investment is more than that of the first investment.

If the second investment option leads to less than or equal to annual costs

than the first one does, the annual emissions levels of the two investment options

depend on the second term of Expression (3.31). If
1−α2

2c
2
p

4c2pβ2
<

1−α2
1c

2
p

4c2pβ1
, or equiva-

lently
1−α2

2c
2
p

β2
<

1−α2
1c

2
p

β1
, holds, then the second investment option is better in terms

of retailer’s annual emissions, otherwise, its annual emissions level is more than

or equal to that of the first investment option. �
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3.2.4 Analytical Results on the Comparison of the Three

Emission Policies

In Sections 3.2.1, 3.2.2 and 3.2.3, we derived analytical solutions to the retailer’s

problem of finding the replenishment quantity and the investment amount under

the three carbon regulation policies. We obtained two sets of results: one about

the impact of an investment opportunity on the annual costs and emissions (see

Lemmas 1, 4, and 7), and the other about how the different emission policies

change the retailer’s annual costs and emissions in comparison to a no-policy

case (see Lemmas 2, 5, and 8). Looking into the first set of results, we arrive at

the following conclusions:

• Under any of the three carbon regulation policies, total annual costs without

the investment option are greater than or equal to the total annual costs

with the investment option.

• While annual carbon emissions levels with and without the investment op-

tion are equal under the cap policy, carbon emissions level without the

investment option is greater than the carbon emissions level with the in-

vestment option under the tax policy and cap-and-trade policy.

The above results imply that having an investment option under a cap policy

does not reduce the retailer’s emission level in comparison to a case with no such

option; however, it may help him/her achieve the same carbon amount with lower

costs. On the other hand, having an investment option under a tax policy or a

cap-and-trade policy has a more pronounced effect on the retailer’s annual carbon

emissions and costs: the retailer can take advantage of the investment option and

reduce both his/her emissions and costs. From an environmental point of view,

the above implies that an investment option along with a tax policy or a cap-

and-trade policy as an emission regulation further enhances emission reduction.

Therefore, governments should enable opportunities for companies to invest in

emission reduction, particularly if a tax policy or a cap-and-trade policy is in

place.
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The second set of results leads to the following conclusion:

• In comparison to the case where there is no emission regulation in place,

the cap policy and the tax policy reduce annual carbon emissions at the

expense of increased annual total costs. (If the cap is not binding, annual

costs and emissions do not change under the cap policy.) On the other

hand, it is possible to reduce carbon emissions with decreased annual total

costs under a cap-and-trade policy.

In the next two lemmas, we present some results following a direct comparison

of the different regulation policies.

Lemma 10 For any tax policy with parameter p > 0, a better cap policy can be

designed by an appropriate choice of parameter C > 0 so that TC1(Q
∗
1, G

∗
1) <

TC2(Q
∗
2, G

∗
2) and E(Q∗

1, G
∗
1) ≤ E(Q∗

2, G
∗
2). On the other hand, for a cap policy

with parameter C > 0, a better tax policy with parameter p > 0 cannot be found

to result in TC2(Q
∗
2, G

∗
2) < TC1(Q

∗
1, G

∗
1) and E(Q∗

2, G
∗
2) ≤ E(Q∗

1, G
∗
1).

Proof: Consider a tax policy with parameter p > 0. Let C = E(Q∗
2, G

∗
2).

Note that C > 0 because E(Q∗
2, G

∗
2) > 0. It follows from the expressions for

TC1(Q,G) and TC2(Q,G), and the fact that E(Q∗
2, G

∗
2) > 0 and p > 0, that we

have TC1(Q
∗
2, G

∗
2) < TC2(Q

∗
2, G

∗
2). Furthermore, as C = E(Q∗

2, G
∗
2), the optimal

solution of the tax policy (i.e., (Q∗
2, G

∗
2)), is also a feasible solution for the newly

designed cap policy. Let (Q∗
1, G

∗
1) be the retailer’s optimal solution under the cap

policy. It follows from this definition that TC1(Q
∗
1, G

∗
1) ≤ TC1(Q

∗
2, G

∗
2). Combin-

ing this with TC1(Q
∗
2, G

∗
2) < TC2(Q

∗
2, G

∗
2) leads to TC1(Q

∗
1, G

∗
1) < TC2(Q

∗
2, G

∗
2).

Also, note that E(Q∗
1, G

∗
1) ≤ C, therefore, E(Q∗

1, G
∗
1) ≤ E(Q∗

2, G
∗
2).

For the second part of the proof, consider a cap policy with parameter

C > 0. Suppose that a tax policy with parameter p > 0 can be found so

that TC2(Q
∗
2, G

∗
2) < TC1(Q

∗
1, G

∗
1) and E(Q∗

2, G
∗
2) ≤ E(Q∗

1, G
∗
1). By definition

of (Q∗
1, G

∗
1), E(Q∗

1, G
∗
1) ≤ C, thus E(Q∗

2, G
∗
2) ≤ C as well. This implies that

(Q∗
2, G

∗
2) is a feasible solution to the retailer’s problem under the cap policy. Be-

cause (Q∗
1, G

∗
1) is the optimal solution under the cap policy, it must be that
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TC1(Q
∗
1, G

∗
1) ≤ TC2(Q

∗
2, G

∗
2). This contradicts TC2(Q

∗
2, G

∗
2) < TC1(Q

∗
1, G

∗
1),

therefore a tax policy with the assumed characteristics cannot be found. �

Lemma 10 indicates that for any tax policy, it is possible to design a lower-

cost cap policy for the retailer without increasing his/her emissions levels. It

is worthwhile noting that Lemma 10 takes the perspective of the retailer by

consideration of annual costs and emissions as comparison criteria, and disregards

the government’s financial gains. A tax policy may benefit to the society in

the long run if the government uses the revenues from environmental taxes in

subsidizing green technologies. In the next lemma, we present the result of a

similar comparison between the cap policy and the cap-and-trade policy.

Lemma 11 Consider a cap policy with parameter C > 0, and a cap-and-trade

policy with parameters C > 0 and cp > 0. We have TC3(Q
∗
3, G

∗
3) ≤ TC1(Q

∗
1, G

∗
1)

for any value of cp. Furthermore, given a value of the common parameter C,

there exists a positive value of cp such that E(Q∗
3, G

∗
3) ≤ E(Q∗

1, G
∗
1).

Proof: By definition of (Q∗
1, G

∗
1), we know that E(Q∗

1, G
∗
1) ≤ C. Since X =

C−E(Q∗
1, G

∗
1) ≥ 0, it follows from the expressions for TC1(Q,G) and TC3(Q,G)

that TC3(Q
∗
1, G

∗
1) ≤ TC1(Q

∗
1, G

∗
1) for cp > 0. Combining this with the fact that

TC3(Q
∗
3, G

∗
3) ≤ TC3(Q

∗
1, G

∗
1), we have TC3(Q

∗
3, G

∗
3) ≤ TC1(Q

∗
1, G

∗
1).

For the second part of the proof, let us consider Expression (3.2). This ex-

pression, independent of the emission regulation type, assumes a minimum value

of
√

2ÂĥD + ĉD − α2

4β
when Q = Qe units are ordered and G = α

2β
monetary

units are invested. Therefore, E(Q∗
1, G

∗
1) ≥

√
2ÂĥD + ĉD − α2

4β
. Furthermore, at

very large values of cp, (Q
∗
3, G

∗
3) approaches

(
Qe, α

2β

)
and E(Q∗

3, G
∗
3) approaches√

2ÂĥD + ĉD − α2

4β
. Therefore, a large enough value of cp can be chosen such

that E(Q∗
1, G

∗
1) ≥ E(Q∗

3, G
∗
3). �

Lemma 11 implies that corresponding to every cap policy, there exists a cap-

and-trade policy with lower carbon emissions and lower costs per unit time for

the retailer if the value of the carbon trading price is right. Lemmas 10 and 11
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together imply that given a tax policy it is possible to have

TC3 (Q
∗
3, G

∗
3) ≤ TC1 (Q

∗
1, G

∗
1) ≤ TC2 (Q

∗
2, G

∗
2)

with appropriate values of C and cp.
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Chapter 4

Numerical Analysis

In this chapter, we present the results of a numerical study to further investi-

gate how the retailer’s annual costs and emissions change with respect to the

policy parameters, and how the investment option and its parameters affect the

annual costs and emissions under each policy. In addition to TCi (Q
∗
i , G

∗
i ) and

Ei (Q
∗
i , G

∗
i ), we define a new measure to assess the increase in costs relative to the

decrease in emissions. We refer to this measure as cost of unit emission reduction

and we define it as follows for policy i

TCi (Q
∗
i , G

∗
i )− TC (Q0, 0)

E (Q0, 0)− E (Q∗
i , G

∗
i )

.

It is important to note that some of our analytical results in Chapter 3 pro-

vide general explanations to the issues that are brought up in this section more

explicitly. Our numerical analysis complements these findings, particularly where

only limited analytical results were possible. Because the solution under the cap

policy as given in Theorem 1 is more complex than those under the tax and the

cap-and-trade policies, it has been possible to obtain more analytical results in-

volving the latter two policies. Therefore, it is no coincidence that more of the

numerical results in this chapter concern the cap policy.

Our analysis in Chapter 3 reveals that how A
h
compares to Â

ĥ
is an important

characteristic of the setting that affects the solutions under all three policies.
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Therefore, our analysis considers two sets of instances: one with A = 100, h = 3,

Â = 4, and ĥ = 3, and the other with A = 10, h = 4, Â = 100, and ĥ = 8.

Here, we have A
h
> Â

ĥ
in the first set of instances and A

h
< Â

ĥ
in the second set of

instances. In all instances, we take D = 500, c = 6, and ĉ = 2. In what follows,

we first present our results for the cap policy, then we proceed with our findings

on the tax and cap-and-trade policies.

4.1 Numerical Study for Cap Policy

In this section, we present the results of our numerical study on cap policy with

two main objectives: first, to characterize how the annual costs, savings achieved

by investment, and the cost of unit emission reduction change under different

values of the policy parameter C, and secondly, to gain insights on how the retailer

makes a choice between two investment options with different parameters.

Figure 4.1(a) shows an illustration of how TC1(Q
∗
1, G

∗
1) changes with respect

to varying values of C for the case of A
h

> Â

ĥ
. Figure 4.1(b) is a similar plot

for the case of A
h
< Â

ĥ
. The resulting annual cost and emission levels for some

specific instances under three scenarios (i.e., cap policy, cap policy without invest-

ment, no-policy) are also presented in Table 4.1. It can be observed from Figures

4.1(a) and 4.1(b) that starting from the smallest possible values of C (based on

Expression (3.6)), TC1(Q
∗
1, G

∗
1) first exhibits a strictly decreasing pattern with

respect to increasing values of C, and then, the costs level in both figures. The

value of C after which annual costs become constant coincides with E (Q0, 0).

If C ≥ E (Q0, 0), then the cap is no longer restrictive, and the solution to the

retailer’s problem under no emission policy optimizes his/her costs under the cap

policy as well. As a result, in both figures, TC1(Q
∗
1, G

∗
1) ranges from TC1

(
Qe, α

2β

)

to TC1 (Q
0, 0). It can also be observed from both figures that a one-unit decrease

in the cap is more costly to the retailer at its already small values.

Table 4.1 reports some instances to illustrate the possible different solution

types to the retailer’s problem under the cap policy, as given in Theorem 1 (see
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Figure 4.1: Behavior of TC1 (Q
∗
1, G

∗
1) for Varying Values of C Under a Cap Policy

(a) An Illustration for the Case of A
h
> Â

ĥ
(b) An Illustration for the Case of A

h
< Â

ĥ

Table A.1 and Table A.2 for more illustrative examples). In the first set of

instances, characterized by A
h

> Â

ĥ
, Q∗

1 = Q0 and G∗
1 = 0 for C ≥ 1284.816.

Similarly, in the second set of instances, Q∗
1 = Q0 and G∗

1 = 0 for C ≥ 2200.

For those values of C that are large enough (i.e., C ≥ 1284.816 and C ≥ 2200

in the first and second sets, respectively), having a cap policy does not change

the solution in comparison to a no-policy case because the cap amount is not

restrictive. Therefore, we have TC1 (Q
∗
1, G

∗
1) = TC1 (Q

∗
1(0), 0) = TC (Q0, 0) in

such instances. In the third instances of each set (C = 1270 and C = 2110 in

the first and the second sets, respectively), we have TC (Q0, 0) < TC1 (Q
∗
1, G

∗
1) =

TC1 (Q
∗
1(0), 0) and E (Q0, 0) > E (Q∗

1, G
∗
1) = E (Q∗

1(0), 0). Here, the cap policy

helps to decrease emissions at the expense of increased costs, and the retailer

does not invest in new technology to further reduce emissions even if such an

option exists. In the second instances of each set (C = 1170 and C = 1910 in

the first and the second sets, respectively), we have TC (Q0, 0) < TC1 (Q
∗
1, G

∗
1) <

TC1 (Q
∗
1(0), 0) and E (Q0, 0) > E (Q∗

1, G
∗
1) = E (Q∗

1(0), 0). Again, the cap policy

reduces annual emissions and increases annual costs, but different than the third

instances, the investment option helps to achieve the same emissions at lower

costs in comparison to no investment opportunity. Finally, the first instances of

each set are illustrative of situations in which it is not possible to be within the
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Table 4.1: Varying Numerical Examples Under the Cap Policy for Some Values
of the Cap Given α = 4 and β = 0.01

Instances with A
h
> Â

ĥ

(
Q0 = 182.574, Qe = 36.515, Qα = 164.114, E

(
Q0, 0

)
= 1284.816, TC

(
Q0, 0

)
= 3547.723

)

C Q1 Q2 Q∗

1
(0) Q∗

1
G∗

1
E (Q∗

1
, G∗

1
) TC1 (Q

∗

1
, G∗

1
) E (Q∗

1
(0), 0) TC1 (Q

∗

1
(0), 0)

1070 – – – 158.904 51.994 1070 3605.005 – –
1170 100 13.333 100 162.127 22.666 1170 3574.257 1170 3650
1270 172.26 7.74 172.26 172.26 0 1270 3548.649 1270 3548.649
1370 241.137 5.529 182.574 182.574 0 1284.816 3547.723 1284.816 3547.723

Instances with A
h
< Â

ĥ

(
Q0 = 50, Qe = 111.803, Qα = 76.376, E

(
Q0, 0

)
= 2200, TC

(
Q0, 0

)
= 3200

)

C Q1 Q2 Q∗

1
(0) Q∗

1
G∗

1
E (Q∗

1
, G∗

1
) TC1 (Q

∗

1
, G∗

1
) E (Q∗

1
(0), 0) TC1 (Q

∗

1
(0), 0)

1710 – – – 82.556 68.043 1710 3293.72 – –
1910 134.704 92.796 92.796 77.283 11.879 1910 3231.142 1910 3239.474
2110 220.918 56.582 56.582 56.582 0 2110 3201.531 2110 3201.531
2310 283.391 44.109 50 50 0 2200 3200 2200 3200

allowed emission limits without making an investment.

In Lemma 1, we have shown that TC1 (Q
∗
1(0), 0) − TC1 (Q

∗
1, G

∗
1) ≥ 0. The

exact value of TC1 (Q
∗
1(0), 0) − TC1 (Q

∗
1, G

∗
1) is a measure of the savings due to

the investment opportunity under the cap policy. Figure 4.2 illustrates how this

difference changes with respect to C for the cases of A
h

> Â

ĥ
and A

h
< Â

ĥ
. In

both cases, values of C for which Q∗
1(0) exists are considered. As a result, we

have C ≥ 1109.545 in Figure 4.2(a) and C ≥ 1894.427 in Figure 4.2(b). Observe

also that the savings due to the investment opportunity are more significant at

tight values of the cap. Furthermore, the retailer no longer uses the investment

opportunity (i.e., G∗
1 = 0) if C is greater than or equal to E (Qα, 0).

Figures 4.3(a) and 4.3(b) illustrate how the cost of unit emission reduction

changes for varying values of the cap in cases of A
h
> Â

ĥ
and A

h
< Â

ĥ
, respectively.

We know from Lemma 2 that E (Q∗
1, G

∗
1) ≤ E (Q0, 0). Both figures are plotted

for those values of C at which E (Q∗
1, G

∗
1) < E (Q0, 0). Mainly, Figure 4.3(a)

considers values of C up to 1284.816 and Figure 4.3(b) considers values of C up

to 2200. Observe that in both cases, reducing the annual emission level by one

unit is more costly at small values of C. Furthermore, in case of A
h
> Â

ĥ
, the cost

of a one-unit emission increases more rapidly as C gets smaller in comparison to

the case of A
h
< Â

ĥ
.

Figure 4.4 shows the effect of α on total average annual cost in cap policy.
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Figure 4.2: Savings due to an Investment Opportunity for Varying Values of the
Cap Under a Cap Policy

(a) An Illustration for the Case of A
h
> Â

ĥ
(b) An Illustration for the Case of A

h
< Â

ĥ

The α values are chosen to satisfy (A1) and (A4) simultaneously in both graphs

(see Table A.3 and Table A.4 for detailed solutions of the underlying instances).

Total cost is bounded below by TC1(Q
0, 0) and above by TC1(Q

e, α
2β
). It can be

observed from the plots that the retailer’s costs are lowered if he/she chooses the

investment option with higher value of α for a given β. The relation between

β and total average cost for different A
h
and Â

ĥ
values is depicted in Figure 4.5.

Again, β values are chosen to satisfy assumptions (A1) and (A4) simultaneously.

The total costs are bounded below by TC1(Q
0, 0) and above by TC1(Q

e, α
2β
)

similar to Figure 4.4. We can observe from the graphs that the retailer prefers

the investment option with a smaller β among those with the same value of α.

In Lemma 3, we have shown that among two investment options with different

parameters, the retailer should choose the one with higher α and smaller β. In

Figure 4.6, we show over numerical examples that if the investment option with

higher α does not have smaller β, whether it is a better investment option or not

depends on how high the α value is. Specifically, in Figure 4.6(a), for the case

of A
h
> Â

ĥ
, setting C = 840, α1 = 9.4, β1 = 0.02, and β2 = 0.02, we change the

value of α2 and track the difference between the minimum annual costs resulting

from the two investment options. TC1 (Q
∗
1, G

∗
1|α1 = 9.4, β1 = 0.02) refers to the
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Figure 4.3: Cost of Unit Emission Reduction for Varying Values of the Cap Under
a Cap Policy

(a) An Illustration for the Case of A
h
> Â

ĥ
(b) An Illustration for the Case of A

h
< Â

ĥ

minimum costs, given that the first investment option has parameters α1 = 9.4

and β1 = 0.02. Similarly, TC1 (Q
∗
1, G

∗
1|α2, β2 = 0.025) denotes the minimum costs

if the second investment option has a value of α2 as given on the x-axis, and

β2 = 0.025. Figure 4.6(a) shows that for all values of α2 < 9.656, the first

investment option has lower costs. As α2 increases beyond this value, the second

investment option becomes more preferable. Figure 4.6(b) illustrates a similar

result for the case of A
h

< Â

ĥ
, setting C = 1700, α1 = 12.3, and β1 = 0.02,

β2 = 0.025. The second investment option becomes better as α2 is increased

beyond 12.445. Notice that for values of α2 between 12.3 and 12.445, the second

investment option still has higher α and higher β, yet the first investment option

leads to lower annual costs.

Figure 4.7 presents the retailer’s total cost indifference curves between the

efficiency parameter α and the decreasing return parameter β for the two general

cases. Figure 4.7a illustrates the case of A
h

> Â

ĥ
in a setting where C = 840.

Here, α takes values between 3.219 and 6, and β ranges from 0.005 to 0.026. Any

values of α and β paired on this curve lead to the same total average annual cost

(i.e., 3724.965). In Figure 4.7b, we consider the case of A
h
< Â

ĥ
in a setting where

C = 1700. Any values of α and β paired on this curve lead to 3297.559 as the
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Figure 4.4: Behavior of TC1 (Q
∗
1, G

∗
1) for Varying Values of α

(a) An Illustration for the Case of A
h
> Â

ĥ
and C=840

(b) An Illustration for the Case of A
h
< Â

ĥ
and C=1700

retailer’s total average annual cost. In this figure, α values are between 3.636

and 6, and β ranges from 0.005 to 0.041. We can see that total cost indifference

curves have nonlinear shapes in both figures. However, they can be approximated

by linear lines over α and β. This shows that any amount of increase in the value

of the diminishing return parameter β can be compensated by almost the same

amount of increase in efficiency parameter α irrespective of the current absolute

values of α and β.

4.2 Numerical Study for Tax Policy and Cap-

and-Trade Policy

Corollary 2 and Lemma 4 provide analytical results for TC2 (Q
∗
2, G

∗
2) and

TC2 (Q
∗
2(0), 0) − TC2 (Q

∗
2, G

∗
2), which imply that both measures are increasing

in p. In our numerical analysis for the tax policy, then, we proceed with in-

vestigating the effect of policy parameter p on the cost of unit emission reduc-

tion (i.e.,
TC2(Q∗

2,G
∗

2)−TC(Q0,0)
E(Q0,0)−E(Q∗

2,G
∗

2)
). In Figure 4.8(a), which pertains to the case of
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Figure 4.5: Behavior of TC1 (Q
∗
1, G

∗
1) for Varying Values of β

(a) An Illustration for the Case of A
h
> Â

ĥ
and C=840

(b) An Illustration for the Case of A
h
< Â

ĥ
and C=1700

A
h
> Â

ĥ
, the cost of unit emission reduction is strictly convex in p, with a min-

imum at p = 0.463. In our numerical experimentation with various instances

having A
h
< Â

ĥ
, we observe that

TC2(Q∗

2,G
∗

2)−TC(Q0,0)
E(Q0,0)−E(Q∗

2,G
∗

2)
assumes a shape similar to

the one in Figure 4.8(a). In Figure 4.8(b), for the case of A
h

< Â

ĥ
, we change

the value of Â to 1000 to illustrate an extreme situation where the cost of unit

emission reduction increases almost linearly with increasing p over all its possible

values.

As in the case of the tax policy, our numerical analysis for the cap-and-trade

policy focuses on investigating how the cost of unit emission reduction changes

with respect to policy parameters. Corollary 4 and Lemma 8 provide analytical

results for TC3 (Q
∗
3, G

∗
3) and TC3 (Q

∗
3(0), 0) − TC3 (Q

∗
3, G

∗
3). Figure 4.9 presents

three different illustrations of how the cost of unit emission reduction behaves

with changing values of cp. In the examples underlying Figures 4.9(a) and 4.9(c),

there exist values of cp (cp ≥ 0.9754 in Figure 4.9(a) and cp ≥ 1.148 in Figure

4.9(c)) at which the retailer sells his/her cap. In both of these examples, as

cp increases beyond these values, TC3 (Q
∗
3, G

∗
3) gets smaller and smaller due to

the revenue earned from selling permits. TC3 (Q
∗
3, G

∗
3) falls below TC (Q0, 0)

when cp ≥ 4.061 and when cp ≥ 9.75 in the examples of Figure 4.9(a) and
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Figure 4.6: Comparison of Costs under Two Different Investment Options in Case
of a Cap Policy

(a) An Illustration for the Case of A
h
> Â

ĥ
and C = 840

(b) An Illustration for the Case of A
h
< Â

ĥ
and = 1700

Figure 4.9(c), respectively. Figure 4.9(b) illustrates an example to Corollary 3.

Because the retailer does not sell any carbon permits, regardless of the value of cp,

TC3 (Q
∗
3, G

∗
3) is always greater than TC3 (Q

∗
3(0), 0). Furthermore, as cp increases,

the cost of unit emission reduction increases.

4.3 Numerical Comparison of the Three Policies

In Section 3.2.4, we proved that for any tax policy, there exists a cap policy with

lower annual costs and no greater annual emissions. Similarly, for any cap policy,

there exists a cap-and-trade policy with no greater annual costs and no greater

annual emissions. In this subsection, we investigate how the differences between

the annual costs and the annual emissions of any two policies change with respect

to the problem parameters.

In Figure 4.10, we present two illustrations for the comparison of the cap and

tax policies in a setting with parameters A = 100, h = 3, Â = 4, ĥ = 3, α = 4,

and β = 0.01. Figure 4.10(a) shows a plot of how TC1 (Q
∗
1, G

∗
1) − TC2 (Q

∗
2, G

∗
2)
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and E (Q∗
1, G

∗
1)−E (Q∗

2, G
∗
2) simultaneously change for varying values of C, given

that the tax policy has p = 0.26. For values of C lower than 758.832, the tax

policy is better in terms of annual costs. As C increases beyond this value, the cap

policy becomes better in terms of annual costs and annual emissions up until C =

1227.296. For C values larger than 1227.296, the cap policy is more advantageous

because of its resulting costs, however the tax policy is better because of its

resulting emissions. Figure 4.10(b) presents a similar plot, given that tax policy

has p = 1.26. At all values of C, the cap policy is more advantageous for the

retailer because of its resulting costs. However, the tax policy leads to lower

annual emissions for the retailer in comparison to any cap policy with parameter

C ≥ 818.520. Observe from both Figure 4.10(a) and Figure 4.10(b) that there is

no value of C at which the tax policy is better for both its costs and its emissions,

as also implied by Lemma 10.

For the same setting underlying Figure 4.10, we next compare the cap policy to

the cap-and-trade policy. We consider two different values of cp for the latter: 0.26

and 1.26. Figure 4.11(a) shows how TC1 (Q
∗
1, G

∗
1)−TC2 (Q

∗
2, G

∗
2) and E (Q∗

1, G
∗
1)−

E (Q∗
2, G

∗
2) simultaneously change with varying values of C when cp = 0.26. At

all values of C, the cap-and-trade policy leads to lower annual costs, however,

the cap policy results in lower annual emissions than the cap-and-trade does if

C < 1227.296. Otherwise, the cap-and-trade policy is also better in terms of

annual emissions. Similarly, Figure 4.11(b) shows that cap-and-trade policy is

more advantageous for the retailer because of its resulting costs at all values of

C, however, the dominance of one policy over another in terms of annual emissions

changes depending on the value of C. Specifically, if C ≥ 818.520, then the cap-

and-trade policy dominates in terms of both measures, otherwise, the cap policy

leads to lower annual emissions for the retailer.
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Figure 4.7: Total Cost Indifference Curves Between α and β Under a Cap Policy

(a) An Illustration for the Case of A
h

> Â

ĥ
and TC1 (Q

∗

1
, G∗

1
) =

3724.965

(b) An Illustration for the Case of A
h

< Â

ĥ
and TC1 (Q

∗

1
, G∗

1
) =

3297.559
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Figure 4.8: Cost of Unit Emission Reduction for Varying Values of Tax Under a
Tax Policy

(a) An Illustration for the Case of A
h
> Â

ĥ
(b) An Illustration for the Case of A

h
< Â

ĥ
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Figure 4.9: Cost of Unit Emission Reduction for Varying Values of the Trading
Price Under a Cap-and-Trade Policy

(a) An Illustration for the Case of A
h

> Â

ĥ

(Â = 4, ĥ = 3)

(b) An Illustration for the Case of A
h
> Â

ĥ
(Â =

20, ĥ = 8000)

(c) An Illustration for the Case of A
h
< Â

ĥ
(Â =

200, ĥ = 8)
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Figure 4.10: Comparison of Tax Policy to Cap Policy for Annual Costs and
Annual Emissions

(a) An Illustration if Tax Policy has p = 0.26

(b) An Illustration if Tax Policy has p = 1.26
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Figure 4.11: Comparison of Cap Policy to Cap-and-Trade Policy for Annual Costs
and Annual Emissions

(a) An Illustration if Cap-and-Trade Policy has cp = 0.26

(b) An Illustration if Cap-and-Trade Policy has cp = 1.26
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Chapter 5

An Extension to the Newsvendor

Problem

In this chapter, we extend our analysis to the newsvendor problem under a cap-

and-trade policy with an opportunity to invest in green technologies. In this

setting, the retailer sells each unit of a single product type at $r. The procurement

cost of the product is $c per unit and leftover products can be salvaged at a price

$v/unit. The retailer incurs $b as loss of goodwill cost per unit of unsatisfied

demand. The retailer’s carbon emission associated with replenishment is linearly

proportional to the replenishment quantity by a factor of e (i.e., carbon emission

quantity is e × Q units if Q units are ordered). As in the case of EOQ model

studied in earlier chapters, carbon emission can be reduced in an amount of

αG− βG2 when $G are invested in green technologies.

Demand during the single selling period, D(A, h(G)), is composed of two

elements; a random component A and a deterministic component h(G) (i.e.,

D(A, h(G)) = A + h(G). f(.) and F (.) are corresponding the p.d.f and c.d.f.

of random component A. In this setting, there is a pool of customers who are

environmentally sensitive. If $G are invested in green technologies, not only the

carbon emission is reduced, but also demand increases in an amount of h(G) due

to the existence of environmentally sensitive customers.
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Effect of environmental effort on customer demand is observed more in case

of clean production technologies rather than in case of end-of-pipe emission re-

duction technologies. Clean production technologies may increase the customers’

valuation of the product by changing product design or improving manufactur-

ing process (e.g., customers’ willingness to pay a premium for hybrid-electric car

Toyota Pirius, or increase in demand of electric vehicles as reported in Tesla Mo-

tors’ web site [41]). As mentioned in Chapter 2, a product’s environmental effect

on its demand has been studied before. Letmathe and Balakrishnan [28] model

product demand as a decreasing function of emission amount. Krass et al. [38]

put an emphasis on premium demand of different emission reduction technolo-

gies. Raz et al. [36] construct a price dependent demand model in which price

elasticity decreases (i.e., demand increases) with innovation effort shown by the

firm. Different than these studies, we model explicitly the existence of an emission

regulation policy. Also, in our problem setting, investment in green technologies

reduces emissions and increases demand simultaneously. Finally, although we

later study the special cases, our general analysis does not assume any special

functional forms for the dependency between demand and environmental efforts.

In this setting, although there is a significant number of environmentally sen-

sitive customers, we assume that there exists an upper bound on the total number

that can be attracted by investing in green technologies. Specifically, we assume

that h(G) ≤ Ā. Furthermore, we take h(G) as a nondecreasing and concave func-

tion of the investment amount (i.e., h
′

(G) ≥ 0 and h
′′

(G) ≤ 0 where h(0) = 0).

We also study some special cases of this function; those are h(G) = δG and

h(G) = δ(αG− βG2). The first function reflects a setting where environmentally

sensitive customers are kind of myopic in the sense that they are affected by the

information on company’s investment amount, but they are short-sighted about

how much actual reduction in emissions will be achieved. The second function re-

flects a setting where environmentally sensitive customers make more informative

decisions caring about the actual emission reduction rather than the monetary

value of the investment amount.

Other characteristics of this system are:
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(A1) The ordinal relationship between the product’s retail price, procurement

cost and salvage value as in the classical Newsboy model, also holds in this

setting. That is,

r > c > v. (5.1)

(A2) Unit underage cost of the product is more than the profit that would be

gained by selling carbon equivalent permit of one unit production at the

market price. That is,

r + b− c > cpe. (5.2)

(A3) Let QNV CT be the solution of the equation F (Q) = r+b−c−cpe

r+b−v
, which is

the solution of newsvendor problem under cap-and-trade policy without

investment option. We have

eQNV CT − α2

4β
> 0. (5.3)

Due to (A1), the retailer’s marginal profit from the sales of a unit item is

positive and there is no motivation for the retailer to order an infinite amount.

(A2) guarantees that the retailer would not be better off by not doing business in

the current season and selling all his/her carbon allowance in the market instead.

Finally, (A3) is equivalent to saying that emission due to ordering the optimal

replenishment quantity of the retailer under a cap-and-trade system without in-

vestment opportunity cannot be totally eliminated even if the maximum reduction

of emission is achieved by investment. Note that, under this assumption, we also

have eQ − α2

4β
> 0 for all Q > QNV CT . It is important to emphasize that the

retailer’s optimal order quantity without the cap-and-trade regulation, say QNV

(i.e., the Newsvendor solution), is greater than QNV CT as F
(
QNV

)
= r+b−c

r+b−v
.

This, jointly with (A3), implies that eQNV − α2

4β
> 0.

In the next subsection, we formulate and analyze the retailer’s problem under

a cap-and-trade policy and assuming the existence of an investment opportunity

as described above.
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5.1 General Analysis

The retailer is subject to a carbon cap of C units under a cap-and-trade policy.

The unit carbon trading price is $cp. The timeline of events is as follows: cap

amount C is determined by policy makers and the retailer decides the production

quantity Q and investment amount G at the beginning of the period. Then,

demand is realized and the retailer sells or buys carbon allowance depending on

C at the end of the period.

The problem can be formulated as follows:

max πCT (Q,G)

s.t. eQ− αG+ βG2 +X = C,

Q ≥ 0,

G ≥ 0,

h(G) ≤ Ā.

where πCT (Q,G) = rE[min{A,Q − h(G)}] + h(G)r − cQ + cpX + vE[Q − A −
h(G)]+−bE[A+h(G)−Q]+−G. Note that an alternative expression for πCT (Q,G)

is given by

πCT (Q,G) = rE[A] + rh(G) + vQ− vE[A]− vh(G)− cQ

+(r + b− v)

∫ ∞

Q−h(G)

(Q− h(G)− a)f(a)da+ cpX −G.

Here, E[A] refers to the expected value of the random component of demand.

In the next theorem, we characterize the optimal solution of the retailer under

the cap-and-trade policy and availability of investment option. We refer to the

optimal pair of order quantity and investment amount as (Q∗, G∗).

Theorem 4 Let G1 and G2 be the investment values such that G1 =
h
′

(G1)(r−c−cpe)+αcp−1

2βcp
and h(G2) = Ā, respectively. Define Q1 and Q2 as the order
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quantities such that F (Q1 − h(G1)) = r+b−c−cpe

r+b−v
, F (Q2 − h(G2)) = r+b−c−cpe

r+b−v
.

Optimal solution of the retailer’s problem is as follows:

(Q∗, G∗) = arg max
(Q,G)∈S

πCT (Q,G)

where S = {(Q,G) ∈ S̃ s.t. Q ≥ 0, G ≥ 0, h(G) ≤ Ā}. Here, S̃ =

{(Q1, G1), (Q2, G2), (Q
NV CT , 0)}.

Proof: Plugging C − eQ + αG − βG2 in place of X, the objective function can

be rewritten as

(5.4)
rE[min{A,Q− h(G)}] + h(G)r − cQ+ cp(C − eQ+ αG− βG2)

+ vE[Q− A− h(G)]+ − bE[A+ h(G)−Q]+ −G.

The above expression is continuous and differentiable, and its Hessian matrix is

(
−(r+b−v)f(Q−h(G)) (r+b−v)h

′

(G)f(Q−h(G))

(r+b−v)h
′

(G)f(Q−h(G)) (r+b−v)h
′′

(G)F (Q−h(G))−(r+b−v)(h
′

(G))2f(Q−h(G))−2βcp−h
′′

(G)b

)
.

This matrix is not necessarily negative semidefinite, therefore the objective func-

tion, depending on the form of h(G), may not be jointly concave with respect to

Q and G. Hence, KKT conditions are necessary but not sufficient. The necessary

conditions for optimality are as follows:

r + b− c− cpe− (r + b− v)F (Q− h(G)) + µ1 = 0, (5.5)

cp(α−2βG)+h
′

(G)(r+b−v)F (Q−h(G))−1−bh
′

(G)−λ1h
′

(G)+µ2 = 0, (5.6)

λ1(Ā− h(G)) = 0 (5.7)

µ1Q = 0 (5.8)

µ2G = 0 (5.9)

λ1 ≥ 0, µ1 ≥ 0, µ2 ≥ 0 (5.10)

Q ≥ 0, G ≥ 0. (5.11)
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There are 8 possible scenarios depending on the values of KKT multipliers.

However, only 3 of them may lead to feasible solutions.

Case 1: λ1 = 0, µ1 = 0, µ2 = 0

Expressions (5.7), (5.8), and (5.9) are satisfied since all multipliers are zero.

Expression (5.5) leads to

(r + b− v)F (Q− h(G)) = r + b− c− ecp. (5.12)

Utilizing this in Expression (5.6), we obtain

cp(α− 2βG) + h
′

(G)(r + b− c− ecp)− 1− bh
′

(G) = 0,

which further leads to

G =
h

′

(G)(r − c− cpe) + αcp − 1

2βcp
. (5.13)

Referring Q1 and G1 as the order quantity and the investment amount that

simultaneously satisfy Expression (5.12) and Expression (5.13), Q1 and G1 may

be optimal if they also satisfy the feasibility conditions (those are Q ≥ 0, G ≥ 0,

and h(G) ≤ Ā).

Case 2: λ1 6= 0, µ1 = 0, µ2 = 0

Since λ1 6= 0, Expression (5.7) implies

h(G) = Ā. (5.14)

Using the above expression and the fact that µ1 = 0, Expression (5.5) can be

rewritten as

r + b− c− ecp − (r + b− v)F (Q− Ā) = 0. (5.15)

Let Q2 and G2 be the order quantity and the investment amount that simultane-

ously satisfy Expression (5.14) and (5.15). For this pair to be a feasible solution,

λ1 has to be greater than zero. Expression (5.6), which involves λ1, now reduces

to

cp(α− 2βG) + h
′

(G)(r + b− c− ecp)− 1− bh
′

(G)− λ1h
′

(G) = 0,
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which leads to

λ1 = (r − c− ecp) +
cp(α− 2βG)− 1

h′(G)
.

λ1 > 0 should be satisfied for (Q2, G2) to be considered.

Case 3: λ1 = 0, µ1 = 0, µ2 6= 0

Expression (5.9) jointly with the fact µ2 6= 0 implies G = 0. Expression (5.5)

then reduces to

r + b− c− ecp − (r + b− v)F (Q) = 0. (5.16)

Note that, the above expression has a unique solution, which is QNV CT . The

feasibility of of this solution necessitates µ2 > 0. Expression (5.6), which involves

µ2, can now be rewritten as

αcp + h
′

(0)(r + b− c− ecp)− 1− bh
′

(0) + µ2 = 0.

Therefore, we should have 1− αcp − h
′

(0)(r − c− cpe) > 0. �

Corollary 6 Let the random component of customer demand have exponential

distribution with parameter θ. Then, the optimal solution is the pair among

(Q1, G1), (Q2, G2), (Q
NV CT , 0) that maximizes the retailer’s expected profits sub-

ject to feasibility conditions. Here,

G1 =
h

′

(G1)(r − c− cpe) + αcp − 1

2βcp
, Q1 = h(G1)−

ln( c+cpe−v

r+b−v
)

θ
,

h(G2) = Ā, Q2 = Ā−
ln( c+cpe−v

r+b−v
)

θ
,

and

QNV CT = −
ln( c+cpe−v

r+b−v
)

θ
.

In the remaining part of this chapter, we will analyze the special cases of the

general problem where h(G) assumes specific forms.
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5.1.1 Analysis of Special Case I: h(G) = δG

In this case, deterministic part of demand that reflects the behavior of the environ-

mentally sensitive customers, exhibits a linearly increasing pattern with respect

to the investment amount. The optimal solution presented in the next corollary,

follows from Theorem 4. Furthermore, when h(G) assumes this special form,

proof of Theorem 4 implies that the retailer’s objective function is concave with

respect to Q and G, and hence, KKT conditions are sufficient for optimality.

Corollary 7 Let Q1 and Q2 be the order quantities such that

F

(
Q1 − δ

(
α

2β
+

δ(r − c− cpe)− 1

2βcp

))
=

r + b− c− cpe

r + b− v
,

and

F (Q2 − Ā) =
r + b− c− cpe

r + b− v
.

Then, optimal pair of retailer’s order quantity and his/her investment amount

can be obtained as follows:

(Q∗, G∗)) =





(QNV CT , 0) if δ(r − c− cpe) + αcp − 1 < 0,

(Q2,
Ā
δ
) if α

2β
+ δ(r−c−cpe)−1

2βcp
> Ā

δ
,(

Q1,
α
2β

+ δ(r−c−cpe)−1

2βcp

)
o.w.

5.1.2 Analysis of Special Case II: h(G) = δ(αG− βG2)

In this case, deterministic part of demand that reflects the behavior of the environ-

mentally sensitive customers, exhibits a linearly increasing pattern with respect

to the actual emission reduction amount with the use of green technologies. The

optimal solution presented in the next corollary, again follows from Theorem 4.

Corollary 8 Let G1 = α
2β

− 1
2β(δ(r−c−cpe)+cp)

, G2 = α
2β

−
√

α2− 4βĀ
δ

2β
and G3 =

α
2β

+

√

α2− 4βĀ
δ

2β
be the investment values. Define Q1 and Q2 as the order quanti-

ties such that F
(
Q1 − δ

(
α2

4β
− 1

4β(δ(r−c−cpe)+cp)
2

))
= r+b−c−cpe

r+b−v
and F

(
Q2 − Ā

)
=
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r+b−c−cpe

r+b−v
, respectively. Then, optimal pair of retailer’s order quantity and invest-

ment amount to his/her maximization problem can be obtained as follows:

(Q∗, G∗) = arg max
(Q,G)∈S

πCT (Q,G)

where S = {(Q,G) ∈ S̃ s.t. Q ≥ 0, G ≥ 0, δ (αG− βG2) ≤ Ā}. Here, S̃ =

{(Q1, G1), (Q2, G2), (Q2, G3), (Q
NV CT , 0)}.
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Chapter 6

Conclusion

In this thesis, we mainly study a retailer’s joint decisions on inventory replenish-

ment and emission reduction investment operating under the conditions of the

classic EOQ model. We consider three emission regulation policies; cap, tax, and

cap-and-trade. Our results provide guidelines and insights about five issues: (i)

how much the retailer should order at each replenishment and how much he/she

should invest in emission reduction to minimize long-run average costs, (ii) what

the impact of having an investment option is on the retailer’s annual costs and

emissions, (iii) how the retailer’s annual costs and emissions under an emission

regulation policy compare to those when no regulation is in place, (iv) how the

retailer should choose among different investment options available, and (v) how

the different regulation policies compare in terms of the retailer’s annual emissions

and costs.

Analytical expressions for the optimal replenishment quantity and investment

amount for the cap policy, tax policy, and cap-and-trade policy are presented

in Theorems 1, 2, and 3, respectively. Our findings imply that an investment

option may help the retailer to reduce his/her costs significantly under all policies;

however, the retailer’s annual emissions level does not decrease due to investing

in case of the cap policy. Under the tax policy and the cap-and-trade policy, the

retailer always takes advantage of the investment opportunity to further reduce

his/her emissions, which implies that there is better motivation for governments
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to make investment opportunities available under the tax or cap-and-trade policy.

When carefully designed, all three regulation policies are effective in reducing

carbon emissions. The cap and tax policies always lead to higher annual costs

for the retailer compared to when no regulation policy is in place. On the other

hand, under a cap-and-trade policy, the retailer may reduce his/her costs by

selling permits equivalent to his/her excess carbon capacity. For the retailer not

to profit solely from selling permits, there must exist an upper bound on the

maximum annual carbon emission (see Corollary 5).

The investment function considered in this study has a nonlinear form char-

acterized by two parameters. Lemmas 3, 6, and 9 provide guidelines in terms of

those parameters on how the retailer should choose among different investment

options. Our results imply that in case of the cap policy, the right choice of in-

vestment opportunity may help the retailer further reduce his/her annual costs,

but it does not have an impact on annual emissions. We show that a better

investment opportunity for reducing costs may lead to more annual emissions in

some cases under a tax policy or a cap-and-trade policy. We also characterize

the cases in which it is possible to reduce both the annual costs and the annual

emissions by the right choice of investment opportunity.

We also show that for a given cap or cap-and-trade policy, it is not possible

to design a tax policy that leads to both lower costs and lower emissions. On the

other hand, for a given tax policy, a better cap policy can be designed by the

appropriate choice of cap value. Further, for a given cap policy, there may exist a

cap-and-trade policy that is better for both the resulting costs and the resulting

emissions.

In our numerical analysis, we have defined a measure that we refer to as “cost

of unit emission reduction”. This measure is the ratio of the cost increase to

the savings in emissions, and its value for a certain policy can be considered as

the social cost of that policy. We have observed that the social cost becomes

very high as the policy parameters are tightened in case of cap and tax policies

(i.e., annual carbon emission cap is decreased in cap policy, or tax paid for one

unit emission in increased in tax policy). In fact, the increase in social cost

77



is more emphasized when the company’s ratio of fixed cost of replenishment to

his/her inventory holding cost rate is very high (i.e. A
h
> Â

ĥ
in terms of problem

parameters). This suggests, in an inventory setting under a cap or a tax policy,

reducing the company’s ordering costs along with green technologies may decrease

the social cost. However, we believe further research is needed to explore what

kind of production/inventory related parameters are of significance in reducing

cost of compliance to emission regulations. Our numerical analysis (see Figure

4.9) shows that a cap-and-trade policy, considering the measure of cost of unit

emission reduction, may sometimes be rewarding (other times costly) depending

on whether the company is able to generate excess carbon allowance to sell or

not.

The use of a quadratic emission reduction function has made it possible to

obtain analytical results that lead to the implications as discussed above. An

important characteristic of this function, which we have utilized extensively in

our analysis, is that it is a concave, increasing function until a certain value

of investment (i.e., α
(2β)

). The increasing behavior of the function upto a certain

point shows that investment in green technology is efficient in reducing emissions,

but there is a maximum potential of abatement. The concavity implies that it

becomes more costly to reduce emissions as emissions are decreased (the low

hanging fruit has been picked). The analytical expressions we have derived,

naturally depend on the parameters of this function, however, we believe our

general conclusions still hold in case of other investment functions which exhibit

these characteristics.

A similar model has also been developed for a retailer operating under the

conditions of the newsboy model assuming a cap-and-trade policy is in place.

Different than the EOQ model, the existence of environmentally sensitive cus-

tomers is taken into account. That is, an investment in green technology not

only reduces carbon emissions but also helps to attract more customers. A pre-

liminary analysis has been done for this model, however, its implications have to

be further investigated.

Our models assume a single item. An immediate extension would be to study
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the joint decisions for replenishment and allocation of limited investment budget

(for emission reduction) among multiple items to maximize the profits. The

core of our study considers a retailer operating under the conditions of the EOQ

model, which is one of the fundamental models of inventory theory. The questions

raised in this thesis can also be investigated for settings with different inventory

replenishment policies.
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Table A.1: Numerical Illustrations Under the Cap Policy for Varying Values of the

Cap Given α = 4 , β = 0.01 and A
h
< Â

ĥ

Instances with A
h
< Â

ĥ

(
Q0 = 182.574, Qe = 36.515, Qα = 164.114, E

(
Q0, 0

)
= 1284.816, TC

(
Q0, 0

)
= 3547.723

)

C Q1 Q2 Q∗

1
(0) Q∗

1
G∗

1
E (Q∗

1
, G∗

1
) TC1 (Q

∗

1
, G∗

1
) E (Q∗

1
(0), 0) TC1 (Q

∗

1
(0), 0)

1495 – – 0 109 194.14 1495 3458.485 – –

1500 – – 0 104 181.219 1500 3438.056 – –

1505 – – 0 102 173.777 1505 3426.934 – –

1510 – – 0 100 167.857 1510 3418.364 – –

1515 – – 0 99 162.76 1515 3411.155 – –

1520 – – 0 98 158.2 1520 3404.829 – –

1525 – – 0 97 154.027 1525 3399.131 – –

1530 – – 0 96 150.153 1530 3393.913 – –

1535 – – 0 95 146.516 1535 3389.074 – –

1540 – – 0 94 143.075 1540 3384.545 – –

1545 – – 0 93 139.8 1545 3380.276 – –

1550 – – 0 93 136.667 1550 3376.228 – –

1555 – – 0 92 133.659 1555 3372.372 – –

1560 – – 0 92 130.76 1560 3368.684 – –

1565 – – 0 91 127.958 1565 3365.145 – –

1570 – – 0 91 125.245 1570 3361.739 – –

1575 – – 0 90 122.61 1575 3358.453 – –

1580 – – 0 90 120.049 1580 3355.275 – –
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Table A.1 – continued from previous page

C Q1 Q2 Q∗

1
(0) Q∗

1
G∗

1
E (Q∗

1
, G∗

1
) TC1 (Q

∗

1
, G∗

1
) E (Q∗

1
(0), 0) TC1 (Q

∗

1
(0), 0)

1585 – – 0 89 117.554 1585 3352.196 – –

1590 – – 0 89 115.121 1590 3349.208 – –

1595 – – 0 89 112.744 1595 3346.303 – –

1600 – – 0 88 110.42 1600 3343.475 – –

1605 – – 0 88 108.145 1605 3340.72 – –

1610 – – 0 87 105.917 1610 3338.03 – –

1615 – – 0 87 103.732 1615 3335.404 – –

1620 – – 0 87 101.587 1620 3332.835 – –

1625 – – 0 87 99.481 1625 3330.322 – –

1630 – – 0 86 97.412 1630 3327.86 – –

1635 – – 0 86 95.377 1635 3325.447 – –

1640 – – 0 86 93.374 1640 3323.08 – –

1645 – – 0 85 91.403 1645 3320.757 – –

1650 – – 0 85 89.462 1650 3318.475 – –

1655 – – 0 85 87.548 1655 3316.233 – –

1660 – – 0 85 85.662 1660 3314.028 – –

1665 – – 0 84 83.802 1665 3311.86 – –

1670 – – 0 84 81.967 1670 3309.725 – –

1675 – – 0 84 80.155 1675 3307.623 – –

1680 – – 0 84 78.367 1680 3305.552 – –

1685 – – 0 84 76.601 1685 3303.512 – –

1690 – – 0 83 74.855 1690 3301.5 – –

1695 – – 0 83 73.131 1695 3299.516 – –
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Table A.1 – continued from previous page

C Q1 Q2 Q∗

1
(0) Q∗

1
G∗

1
E (Q∗

1
, G∗

1
) TC1 (Q

∗

1
, G∗

1
) E (Q∗

1
(0), 0) TC1 (Q

∗

1
(0), 0)

1700 – – 0 83 71.426 1700 3297.559 – –

1705 – – 0 83 69.74 1705 3295.627 – –

1710 – – 0 83 68.072 1710 3293.72 – –

1715 – – 0 82 66.422 1715 3291.837 – –

1720 – – 0 82 64.79 1720 3289.977 – –

1725 – – 0 82 63.174 1725 3288.139 – –

1730 – – 0 82 61.575 1730 3286.322 – –

1735 – – 0 82 59.991 1735 3284.526 – –

1740 – – 0 81 58.422 1740 3282.751 – –

1745 – – 0 81 56.868 1745 3280.994 – –

1750 – – 0 81 55.329 1750 3279.257 – –

1755 – – 0 81 53.804 1755 3277.538 – –

1760 – – 0 81 52.292 1760 3275.837 – –

1765 – – 0 81 50.793 1765 3274.153 – –

1770 – – 0 81 49.307 1770 3272.486 – –

1775 – – 0 80 47.834 1775 3270.835 – –

1780 – – 0 80 46.373 1780 3269.2 – –

1785 – – 0 80 44.924 1785 3267.58 – –

1790 – – 0 80 43.487 1790 3265.975 – –

1795 – – 0 80 42.061 1795 3264.385 – –

1800 – – 0 80 40.646 1800 3262.809 – –

1805 – – 0 80 39.242 1805 3261.247 – –

1810 – – 0 79 37.849 1810 3259.699 – –
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Table A.1 – continued from previous page

C Q1 Q2 Q∗

1
(0) Q∗

1
G∗

1
E (Q∗

1
, G∗

1
) TC1 (Q

∗

1
, G∗

1
) E (Q∗

1
(0), 0) TC1 (Q

∗

1
(0), 0)

1815 – – 0 79 36.466 1815 3258.164 – –

1820 – – 0 79 35.093 1820 3256.641 – –

1825 – – 0 79 33.73 1825 3255.132 – –

1830 – – 0 79 32.376 1830 3253.634 – –

1835 – – 0 79 31.033 1835 3252.149 – –

1840 – – 0 79 29.698 1840 3250.675 – –

1845 – – 0 79 28.372 1845 3249.213 – –

1850 – – 0 79 27.056 1850 3247.762 – –

1855 – – 0 78 25.748 1855 3246.321 – –

1860 – – 0 78 24.449 1860 3244.892 – –

1865 – – 0 78 23.158 1865 3243.473 – –

1870 – – 0 78 21.875 1870 3242.065 – –

1875 – – 0 78 20.6 1875 3240.666 – –

1880 – – 0 78 19.334 1880 3239.277 – –

1885 – – 0 78 18.075 1885 3237.898 – –

1890 – – 0 78 16.824 1890 3236.529 – –

1895 115.877 107.873 107.873 78 15.58 1895 3235.169 1895 3262.097

1900 125 100 100 77 14.343 1900 3233.818 1900 3250

1905 130.366 95.884 95.884 77 13.114 1905 3232.476 1905 3243.914

1910 134.704 92.796 92.796 77 11.892 1910 3231.142 1910 3239.474

1915 138.492 90.258 90.258 77 10.677 1915 3229.818 1915 3235.912

1920 141.926 88.074 88.074 77 9.469 1920 3228.501 1920 3232.919

1925 145.106 86.144 86.144 77 8.267 1925 3227.193 1925 3230.33
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Table A.1 – continued from previous page

C Q1 Q2 Q∗

1
(0) Q∗

1
G∗

1
E (Q∗

1
, G∗

1
) TC1 (Q

∗

1
, G∗

1
) E (Q∗

1
(0), 0) TC1 (Q

∗

1
(0), 0)

1930 148.094 84.406 84.406 77 7.072 1930 3225.893 1930 3228.049

1935 150.93 82.82 82.82 77 5.884 1935 3224.602 1935 3226.011

1940 153.642 81.358 81.358 77 4.702 1940 3223.318 1940 3224.173

1945 156.25 80 80 77 3.527 1945 3222.041 1945 3222.5

1950 158.77 78.73 78.73 77 2.357 1950 3220.773 1950 3220.969

1955 161.213 77.537 77.537 76 1.194 1955 3219.511 1955 3219.56

1960 163.589 76.411 76.411 76 0.037 1960 3218.258 1960 3218.258

1965 165.906 75.344 75.344 75 0 1965 3217.05 1965 3217.05

1970 168.171 74.329 74.329 74 0 1970 3215.927 1970 3215.927

1975 170.388 73.362 73.362 73 0 1975 3214.879 1975 3214.879

1980 172.562 72.438 72.438 72 0 1980 3213.9 1980 3213.9

1985 174.698 71.552 71.552 72 0 1985 3212.983 1985 3212.983

1990 176.798 70.702 70.702 71 0 1990 3212.124 1990 3212.124

1995 178.865 69.885 69.885 70 0 1995 3211.316 1995 3211.316

2000 180.902 69.098 69.098 69 0 2000 3210.557 2000 3210.557

2005 182.911 68.339 68.339 68 0 2005 3209.843 2005 3209.843

2010 184.894 67.606 67.606 68 0 2010 3209.17 2010 3209.17

2015 186.852 66.898 66.898 67 0 2015 3208.536 2015 3208.536

2020 188.788 66.212 66.212 66 0 2020 3207.939 2020 3207.939

2025 190.703 65.547 65.547 66 0 2025 3207.375 2025 3207.375

2030 192.598 64.902 64.902 65 0 2030 3206.843 2030 3206.843

2035 194.474 64.276 64.276 64 0 2035 3206.341 2035 3206.341

2040 196.332 63.668 63.668 64 0 2040 3205.868 2040 3205.868
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Table A.1 – continued from previous page

C Q1 Q2 Q∗

1
(0) Q∗

1
G∗

1
E (Q∗

1
, G∗

1
) TC1 (Q

∗

1
, G∗

1
) E (Q∗

1
(0), 0) TC1 (Q

∗

1
(0), 0)

2045 198.174 63.076 63.076 63 0 2045 3205.421 2045 3205.421

2050 200 62.5 62.5 63 0 2050 3205 2050 3205

2055 201.811 61.939 61.939 62 0 2055 3204.603 2055 3204.603

2060 203.607 61.393 61.393 61 0 2060 3204.228 2060 3204.228

2065 205.39 60.86 60.86 61 0 2065 3203.876 2065 3203.876

2070 207.16 60.34 60.34 60 0 2070 3203.544 2070 3203.544

2075 208.918 59.832 59.832 60 0 2075 3203.231 2075 3203.231

2080 210.664 59.336 59.336 59 0 2080 3202.938 2080 3202.938

2085 212.398 58.852 58.852 59 0 2085 3202.663 2085 3202.663

2090 214.122 58.378 58.378 58 0 2090 3202.405 2090 3202.405

2095 215.836 57.914 57.914 58 0 2095 3202.163 2095 3202.163

2100 217.539 57.461 57.461 57 0 2100 3201.938 2100 3201.938

2105 219.233 57.017 57.017 57 0 2105 3201.727 2105 3201.727

2110 220.918 56.582 56.582 57 0 2110 3201.531 2110 3201.531

2115 222.594 56.156 56.156 56 0 2115 3201.35 2115 3201.35

2120 224.261 55.739 55.739 56 0 2120 3201.182 2120 3201.182

2125 225.921 55.329 55.329 55 0 2125 3201.027 2125 3201.027

2130 227.572 54.928 54.928 55 0 2130 3200.884 2130 3200.884

2135 229.216 54.534 54.534 55 0 2135 3200.754 2135 3200.754

2140 230.853 54.147 54.147 54 0 2140 3200.635 2140 3200.635

2145 232.483 53.767 53.767 54 0 2145 3200.528 2145 3200.528

2150 234.105 53.395 53.395 53 0 2150 3200.432 2150 3200.432

2155 235.721 53.029 53.029 53 0 2155 3200.346 2155 3200.346
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Table A.1 – continued from previous page

C Q1 Q2 Q∗

1
(0) Q∗

1
G∗

1
E (Q∗

1
, G∗

1
) TC1 (Q

∗

1
, G∗

1
) E (Q∗

1
(0), 0) TC1 (Q

∗

1
(0), 0)

2160 237.331 52.669 52.669 53 0 2160 3200.271 2160 3200.271

2165 238.934 52.316 52.316 52 0 2165 3200.205 2165 3200.205

2170 240.532 51.968 51.968 52 0 2170 3200.149 2170 3200.149

2175 242.123 51.627 51.627 52 0 2175 3200.102 2175 3200.102

2180 243.709 51.291 51.291 51 0 2180 3200.065 2180 3200.065

2185 245.29 50.96 50.96 51 0 2185 3200.036 2185 3200.036

2190 246.865 50.635 50.635 51 0 2190 3200.016 2190 3200.016

2195 248.435 50.315 50.315 50 0 2195 3200.004 2195 3200.004

2200 250 50 50 50 0 2200 3200 2200 3200

2205 251.56 49.69 50 50 0 2200 3200 2200 3200

2210 253.115 49.385 50 50 0 2200 3200 2200 3200

2215 254.666 49.084 50 50 0 2200 3200 2200 3200

2220 256.212 48.788 50 50 0 2200 3200 2200 3200

2225 257.754 48.496 50 50 0 2200 3200 2200 3200

2230 259.292 48.208 50 50 0 2200 3200 2200 3200

2235 260.825 47.925 50 50 0 2200 3200 2200 3200

2240 262.355 47.645 50 50 0 2200 3200 2200 3200

2245 263.88 47.37 50 50 0 2200 3200 2200 3200
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Table A.2: Numerical Illustrations Under the Cap Policy for Varying Values of the

Cap Given α = 4 , β = 0.01 and A
h
> Â

ĥ

Instances with A
h
> Â

ĥ

(
Q0 = 182.574, Qe = 36.515, Qα = 164.114, E

(
Q0, 0

)
= 1284.816, TC

(
Q0, 0

)
= 3547.723

)

C Q1 Q2 Q∗

1
(0) Q∗

1
G∗

1
E (Q∗

1
, G∗

1
) TC1 (Q

∗

1
, G∗

1
) E (Q∗

1
(0), 0) TC1 (Q

∗

1
(0), 0)

710 39.993 199.581 -7.162 -186.171 4509.79 710 – – 0

715 49.949 198.117 -7.298 -182.702 4274.056 715 – – 0

720 56.224 196.971 -7.439 -179.227 4170.603 720 – – 0

725 61.559 195.843 -7.587 -175.747 4100.416 725 – – 0

730 66.397 194.684 -7.74 -172.26 4047.325 730 – – 0

735 70.914 193.472 -7.9 -168.766 4004.925 735 – – 0

740 75.196 192.194 -8.068 -165.266 3969.92 740 – – 0

745 79.292 190.842 -8.243 -161.757 3940.36 745 – – 0

750 83.233 189.407 -8.426 -158.241 3914.982 750 – – 0

755 87.035 187.884 -8.618 -154.715 3892.917 755 – – 0

760 90.711 186.267 -8.819 -151.181 3873.536 760 – – 0

765 94.265 184.554 -9.031 -147.635 3856.371 765 – – 0

770 97.7 182.739 -9.254 -144.079 3841.06 770 – – 0

775 101.016 180.823 -9.489 -140.511 3827.319 775 – – 0

780 104.211 178.805 -9.737 -136.929 3814.919 780 – – 0

785 107.281 176.686 -10 -133.333 3803.672 785 – – 0

790 110.225 174.47 -10.278 -129.722 3793.425 790 – – 0

795 113.038 172.163 -10.574 -126.092 3784.048 795 – – 0
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Table A.2 – continued from previous page

C Q1 Q2 Q∗

1
(0) Q∗

1
G∗

1
E (Q∗

1
, G∗

1
) TC1 (Q

∗

1
, G∗

1
) E (Q∗

1
(0), 0) TC1 (Q

∗

1
(0), 0)

800 115.719 169.77 -10.889 -122.444 3775.43 800 – – 0

805 118.264 167.3 -11.226 -118.774 3767.479 805 – – 0

810 120.673 164.763 -11.586 -115.081 3760.115 810 – – 0

815 122.948 162.17 -11.973 -111.36 3753.268 815 – – 0

820 125.09 159.532 -12.39 -107.61 3746.879 820 – – 0

825 127.102 156.859 -12.842 -103.824 3740.897 825 – – 0

830 128.99 154.163 -13.333 -100 3735.275 830 – – 0

835 130.757 151.453 -13.87 -96.13 3729.976 835 – – 0

840 132.411 148.738 -14.46 -92.206 3724.966 840 – – 0

845 133.959 146.026 -15.114 -88.22 3720.213 845 – – 0

850 135.405 143.324 -15.843 -84.157 3715.694 850 – – 0

855 136.759 140.639 -16.667 -80 3711.384 855 – – 0

860 138.025 137.974 -17.607 -75.726 3707.265 860 – – 0

865 139.211 135.334 -18.7 -71.3 3703.318 865 – – 0

870 140.323 132.722 -20 -66.667 3699.528 870 – – 0

875 141.366 130.141 -21.597 -61.736 3695.881 875 – – 0

880 142.346 127.591 -23.67 -56.33 3692.367 880 – – 0

885 143.268 125.075 -26.667 -50 3688.973 885 – – 0

890 144.136 122.592 -33.333 -40 3685.69 890 – – 0

895 144.955 120.144 – – 3682.511 895 – – 0

900 145.729 117.73 – – 3679.427 900 – – 0

905 146.46 115.351 – – 3676.431 905 – – 0

910 147.153 113.006 – – 3673.518 910 – – 0
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C Q1 Q2 Q∗

1
(0) Q∗

1
G∗

1
E (Q∗

1
, G∗

1
) TC1 (Q

∗

1
, G∗

1
) E (Q∗

1
(0), 0) TC1 (Q

∗

1
(0), 0)

915 147.81 110.695 – – 3670.682 915 – – 0

920 148.434 108.417 – – 3667.918 920 – – 0

925 149.027 106.171 – – 3665.221 925 – – 0

930 149.592 103.957 – – 3662.588 930 – – 0

935 150.13 101.774 – – 3660.014 935 – – 0

940 150.644 99.622 – – 3657.496 940 – – 0

945 151.134 97.499 – – 3655.032 945 – – 0

950 151.604 95.405 – – 3652.617 950 – – 0

955 152.053 93.339 – – 3650.251 955 – – 0

960 152.484 91.3 – – 3647.929 960 – – 0

965 152.898 89.287 – – 3645.65 965 – – 0

970 153.295 87.301 – – 3643.412 970 – – 0

975 153.676 85.339 – – 3641.213 975 – – 0

980 154.043 83.402 – – 3639.051 980 – – 0

985 154.397 81.488 – – 3636.924 985 – – 0

990 154.738 79.597 – – 3634.831 990 – – 0

995 155.067 77.729 – – 3632.771 995 – – 0

1000 155.384 75.882 – – 3630.742 1000 – – 0

1005 155.69 74.056 – – 3628.742 1005 – – 0

1010 155.987 72.251 – – 3626.771 1010 – – 0

1015 156.273 70.466 – – 3624.828 1015 – – 0

1020 156.551 68.7 – – 3622.911 1020 – – 0

1025 156.82 66.952 – – 3621.019 1025 – – 0
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C Q1 Q2 Q∗

1
(0) Q∗

1
G∗

1
E (Q∗

1
, G∗

1
) TC1 (Q

∗

1
, G∗

1
) E (Q∗

1
(0), 0) TC1 (Q

∗

1
(0), 0)

1030 157.08 65.223 – – 3619.152 1030 – – 0

1035 157.333 63.512 – – 3617.309 1035 – – 0

1040 157.578 61.819 – – 3615.489 1040 – – 0

1045 157.816 60.142 – – 3613.691 1045 – – 0

1050 158.048 58.482 – – 3611.914 1050 – – 0

1055 158.272 56.838 – – 3610.157 1055 – – 0

1060 158.491 55.209 – – 3608.421 1060 – – 0

1065 158.704 53.596 – – 3606.704 1065 – – 0

1070 158.911 51.997 – – 3605.005 1070 – – 0

1075 159.112 50.413 – – 3603.325 1075 – – 0

1080 159.309 48.844 – – 3601.663 1080 – – 0

1085 159.5 47.288 – – 3600.017 1085 – – 0

1090 159.687 45.745 – – 3598.388 1090 – – 0

1095 159.869 44.216 – – 3596.776 1095 – – 0

1100 160.047 42.7 – – 3595.179 1100 – – 0

1105 160.221 41.196 – – 3593.597 1105 – – 0

1110 160.39 39.705 40 33.333 3592.03 1110 4310 1110 40

1115 160.556 38.226 50 26.667 3590.478 1115 4075 1115 50

1120 160.718 36.758 56.33 23.67 3588.939 1120 3972.122 1120 56.33

1125 160.876 35.302 61.736 21.597 3587.414 1125 3902.504 1125 61.736

1130 161.03 33.857 66.667 20 3585.903 1130 3850 1130 66.667

1135 161.182 32.423 71.3 18.7 3584.405 1135 3808.216 1135 71.3

1140 161.33 31.001 75.726 17.607 3582.919 1140 3773.864 1140 75.726
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C Q1 Q2 Q∗

1
(0) Q∗

1
G∗

1
E (Q∗

1
, G∗

1
) TC1 (Q

∗

1
, G∗

1
) E (Q∗

1
(0), 0) TC1 (Q

∗

1
(0), 0)

1145 161.475 29.588 80 16.667 3581.446 1145 3745 1145 80

1150 161.617 28.186 84.157 15.843 3579.985 1150 3720.366 1150 84.157

1155 161.756 26.794 88.22 15.114 3578.536 1155 3699.097 1155 88.22

1160 161.892 25.413 92.206 14.46 3577.098 1160 3680.572 1160 92.206

1165 162.026 24.041 96.13 13.87 3575.672 1165 3664.324 1165 96.13

1170 162.157 22.678 100 13.333 3574.257 1170 3650 1170 100

1175 162.285 21.325 103.824 12.842 3572.852 1175 3637.319 1175 103.824

1180 162.411 19.981 107.61 12.39 3571.458 1180 3626.057 1180 107.61

1185 162.535 18.646 111.36 11.973 3570.075 1185 3616.034 1185 111.36

1190 162.656 17.32 115.081 11.586 3568.701 1190 3607.099 1190 115.081

1195 162.775 16.002 118.774 11.226 3567.338 1195 3599.128 1195 118.774

1200 162.892 14.694 122.444 10.889 3565.984 1200 3592.016 1200 122.444

1205 163.006 13.393 126.092 10.574 3564.639 1205 3585.673 1205 126.092

1210 163.119 12.101 129.722 10.278 3563.304 1210 3580.023 1210 129.722

1215 163.23 10.817 133.333 10 3561.978 1215 3575 1215 133.333

1220 163.338 9.541 136.929 9.737 3560.661 1220 3570.546 1220 136.929

1225 163.445 8.272 140.511 9.489 3559.353 1225 3566.611 1225 140.511

1230 163.55 7.011 144.079 9.254 3558.053 1230 3563.15 1230 144.079

1235 163.653 5.758 147.635 9.031 3556.762 1235 3560.125 1235 147.635

1240 163.755 4.512 151.181 8.819 3555.479 1240 3557.501 1240 151.181

1245 163.855 3.274 154.715 8.618 3554.204 1245 3555.247 1245 154.715

1250 163.953 2.042 158.241 8.426 3552.937 1250 3553.335 1250 158.241

1255 164.05 0.818 161.757 8.243 3551.678 1255 3551.741 1255 161.757
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Table A.2 – continued from previous page

C Q1 Q2 Q∗

1
(0) Q∗

1
G∗

1
E (Q∗

1
, G∗

1
) TC1 (Q

∗

1
, G∗

1
) E (Q∗

1
(0), 0) TC1 (Q

∗

1
(0), 0)

1260 165.266 0 165.266 8.068 3550.442 1260 3550.442 1260 165.266

1265 168.766 0 168.766 7.9 3549.417 1265 3549.417 1265 168.766

1270 172.26 0 172.26 7.74 3548.649 1270 3548.649 1270 172.26

1275 175.747 0 175.747 7.587 3548.12 1275 3548.12 1275 175.747

1280 179.227 0 179.227 7.439 3547.816 1280 3547.816 1280 179.227

1285 182.574 0 182.702 7.298 3547.723 1284.816 3547.723 1284.816 182.574

1290 182.574 0 186.171 7.162 3547.723 1284.816 3547.723 1284.816 182.574

1295 182.574 0 189.636 7.031 3547.723 1284.816 3547.723 1284.816 182.574
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Table A.3: Behavior of TC1 (Q
∗
1, G

∗
1) for given β and varying values of α when A

h
> Â

ĥ

Instances with A
h
> Â

ĥ
, and C = 840

β = 0.001 β = 0.005 β = 0.01 β = 0.015 β = 0.02 β = 0.025

α TC1 (Q
∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
)

1.1 4787.638 2.4 4104.611 3.3 4329.701 4.1 4105.047 4.7 4164.155 5.2 4374.475

1.2 4167.901 2.5 3948.001 3.4 4026.946 4.2 3953.783 4.8 3988.236 5.3 4063.193

1.3 4034.937 2.6 3869.92 3.5 3908.663 4.3 3868.881 4.9 3893.591 5.4 3942.506

1.4 3962.513 2.7 3823.102 3.6 3839.646 4.4 3813.258 5 3831.44 5.5 3867.11

1.5 3913.912 2.8 3791.931 3.7 3794.725 4.5 3774.374 5.1 3787.395 5.6 3814.344

1.6 3877.9 2.9 3769.454 3.8 3763.789 4.6 3746.213 5.2 3754.937 5.7 3775.398

1.7 3849.639 3 3752.223 3.9 3741.571 4.7 3725.317 5.3 3730.467 5.8 3745.791

1.8 3826.612 3.1 3738.403 4 3724.966 4.8 3709.468 5.4 3711.735 5.9 3722.885

1.9 3807.346 3.2 3726.944 4.1 3712.063 4.9 3697.152 5.5 3697.204 6 3704.963

2 3790.905 3.3 3717.203 4.2 3701.679 5 3687.328 5.6 3685.766 6.1 3690.82

2.1 3776.655 3.4 3708.765 4.3 3693.068 5.1 3679.282 5.7 3676.598 6.2 3679.56

– – 3.5 3701.346 4.4 3685.755 5.2 3672.533 5.8 3669.098 6.3 3670.494

– – 3.6 3694.745 4.5 3679.423 5.3 3666.754 5.9 3662.833 6.4 3663.086

– – 3.7 3688.814 4.6 3673.856 5.4 3661.719 6 3657.497 6.5 3656.93

– – 3.8 3683.441 4.7 3668.9 5.5 3657.271 6.1 3652.872 6.6 3651.723

– – 3.9 3678.542 4.8 3664.442 5.6 3653.294 6.2 3648.804 6.7 3647.244

– – 4 3674.048 4.9 3660.398 5.7 3649.704 6.3 3645.181 6.8 3643.33

– – 4.1 3669.904 5 3656.704 5.8 3646.436 6.4 3641.921 6.9 3639.867

– – 4.2 3666.067 5.1 3653.307 5.9 3643.441 6.5 3638.962 7 3636.766
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Table A.3 – continued from previous page

β = 0.001 β = 0.005 β = 0.01 β = 0.015 β = 0.02 β = 0.025

α TC1 (Q
∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
)

– – 4.3 3662.498 5.2 3650.169 6 3640.68 6.6 3636.255 7.1 3633.964

– – 4.4 3659.169 5.3 3647.255 6.1 3638.122 6.7 3633.764 7.2 3631.411

– – 4.5 3656.053 5.4 3644.539 6.2 3635.74 6.8 3631.458 7.3 3629.068

– – 4.6 3653.129 5.5 3641.998 6.3 3633.515 6.9 3629.314 7.4 3626.905

– – 4.7 3650.376 5.6 3639.614 6.4 3631.428 7 3627.312 7.5 3624.898

– – – – 5.7 3637.37 6.5 3629.465 7.1 3625.435 7.6 3623.027

– – – – 5.8 3635.253 6.6 3627.613 7.2 3623.671 7.7 3621.276

– – – – 5.9 3633.25 6.7 3625.862 7.3 3622.006 7.8 3619.632

– – – – 6 3631.352 6.8 3624.202 7.4 3620.433 7.9 3618.082

– – – – 6.1 3629.55 6.9 3622.626 7.5 3618.941 8 3616.618

– – – – 6.2 3627.835 7 3621.125 7.6 3617.524 8.1 3615.232

– – – – 6.3 3626.201 7.1 3619.695 7.7 3616.175 8.2 3613.915

– – – – 6.4 3624.641 7.2 3618.33 7.8 3614.889 8.3 3612.663

– – – – 6.5 3623.151 7.3 3617.024 7.9 3613.661 8.4 3611.469

– – – – 6.6 3621.724 7.4 3615.774 8 3612.486 8.5 3610.329

– – – – – – 7.5 3614.575 8.1 3611.36 8.6 3609.239

– – – – – – 7.6 3613.424 8.2 3610.28 8.7 3608.194

– – – – – – 7.7 3612.318 8.3 3609.244 8.8 3607.193

– – – – – – 7.8 3611.254 8.4 3608.246 8.9 3606.231

– – – – – – 7.9 3610.229 8.5 3607.287 9 3605.306

– – – – – – 8 3609.241 8.6 3606.362 9.1 3604.415

– – – – – – 8.1 3608.288 8.7 3605.47 9.2 3603.557
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Table A.3 – continued from previous page

β = 0.001 β = 0.005 β = 0.01 β = 0.015 β = 0.02 β = 0.025

α TC1 (Q
∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
)

– – – – – – – – 8.8 3604.609 9.3 3602.729

– – – – – – – – 8.9 3603.777 9.4 3601.93

– – – – – – – – 9 3602.973 9.5 3601.158

– – – – – – – – 9.1 3602.195 9.6 3600.411

– – – – – – – – 9.2 3601.441 9.7 3599.688

– – – – – – – – 9.3 3600.711 9.8 3598.988

– – – – – – – – 9.4 3600.003 9.9 3598.31

– – – – – – – – – – 10 3597.652

– – – – – – – – – – 10.1 3597.013

– – – – – – – – – – 10.2 3596.393

– – – – – – – – – – 10.3 3595.79

– – – – – – – – – – 10.4 3595.204

– – – – – – – – – – 10.5 3594.634
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Table A.4: Behavior of TC1 (Q
∗
1, G

∗
1) for given β and varying values of α when A

h
< Â

ĥ

Instances with A
h
< Â

ĥ
, and C = 1700

β = 0.001 β = 0.005 β = 0.01 β = 0.015 β = 0.02 β = 0.025

α TC1 (Q
∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
)

0.9 3625.474 2 3429.838 2.8 3392.092 3.5 3349.68 4 3343.221 4.5 3329.756

1 3525.276 2.1 3395.96 2.9 3362.977 3.6 3336.633 4.1 3329.618 4.6 3319.507

1.1 3479.833 2.2 3377.754 3 3349.132 3.7 3327.768 4.2 3321.001 4.7 3312.4

1.2 3449.781 2.3 3364.757 3.1 3339.326 3.8 3320.899 4.3 3314.472 4.8 3306.836

1.3 3427.518 2.4 3354.572 3.2 3331.622 3.9 3315.249 4.4 3309.156 4.9 3302.223

1.4 3410.012 2.5 3346.187 3.3 3325.247 4 3310.434 4.5 3304.652 5 3298.268

1.5 3395.714 2.6 3339.067 3.4 3319.799 4.1 3306.233 4.6 3300.736 5.1 3294.8

1.6 3383.723 2.7 3332.888 3.5 3315.042 4.2 3302.506 4.7 3297.268 5.2 3291.709

1.7 3373.464 2.8 3327.44 3.6 3310.821 4.3 3299.156 4.8 3294.156 5.3 3288.921

1.8 3364.551 2.9 3322.577 3.7 3307.03 4.4 3296.116 4.9 3291.333 5.4 3286.382

1.9 3356.709 3 3318.192 3.8 3303.592 4.5 3293.334 5 3288.752 5.5 3284.05

2 3349.739 3.1 3314.206 3.9 3300.45 4.6 3290.771 5.1 3286.373 5.6 3281.896

2.1 3343.489 3.2 3310.559 4 3297.559 4.7 3288.397 5.2 3284.17 5.7 3279.895

2.2 3337.844 3.3 3307.201 4.1 3294.885 4.8 3286.187 5.3 3282.119 5.8 3278.027

2.3 3332.712 3.4 3304.095 4.2 3292.398 4.9 3284.121 5.4 3280.201 5.9 3276.277

2.4 3328.02 3.5 3301.208 4.3 3290.077 5 3282.183 5.5 3278.402 6 3274.632

2.5 3323.709 3.6 3298.516 4.4 3287.903 5.1 3280.359 5.6 3276.707 6.1 3273.079

2.6 3319.731 3.7 3295.996 4.5 3285.86 5.2 3278.638 5.7 3275.107 6.2 3271.611

2.7 3316.045 3.8 3293.63 4.6 3283.933 5.3 3277.008 5.8 3273.592 6.3 3270.218
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Table A.4 – continued from previous page

β = 0.001 β = 0.005 β = 0.01 β = 0.015 β = 0.02 β = 0.025

α TC1 (Q
∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
)

– – 3.9 3291.403 4.7 3282.113 5.4 3275.463 5.9 3272.154 6.4 3268.895

– – 4 3289.301 4.8 3280.388 5.5 3273.994 6 3270.786 6.5 3267.635

– – 4.1 3287.312 4.9 3278.751 5.6 3272.595 6.1 3269.483 6.6 3266.432

– – 4.2 3285.427 5 3277.194 5.7 3271.26 6.2 3268.24 6.7 3265.283

– – 4.3 3283.636 5.1 3275.71 5.8 3269.985 6.3 3267.051 6.8 3264.183

– – 4.4 3281.932 5.2 3274.294 5.9 3268.764 6.4 3265.912 6.9 3263.129

– – 4.5 3280.308 5.3 3272.94 6 3267.594 6.5 3264.82 7 3262.117

– – 4.6 3278.758 5.4 3271.644 6.1 3266.471 6.6 3263.772 7.1 3261.144

– – 4.7 3277.277 5.5 3270.402 6.2 3265.393 6.7 3262.764 7.2 3260.208

– – 4.8 3275.859 5.6 3269.209 6.3 3264.355 6.8 3261.794 7.3 3259.307

– – 4.9 3274.5 5.7 3268.064 6.4 3263.356 6.9 3260.86 7.4 3258.438

– – 5 3273.196 5.8 3266.962 6.5 3262.393 7 3259.959 7.5 3257.599

– – 5.1 3271.943 5.9 3265.901 6.6 3261.464 7.1 3259.089 7.6 3256.788

– – 5.2 3270.739 6 3264.879 6.7 3260.567 7.2 3258.249 7.7 3256.005

– – 5.3 3269.579 6.1 3263.892 6.8 3259.7 7.3 3257.437 7.8 3255.247

– – 5.4 3268.462 6.2 3262.94 6.9 3258.862 7.4 3256.651 7.9 3254.513

– – 5.5 3267.386 6.3 3262.02 7 3258.05 7.5 3255.89 8 3253.801

– – 5.6 3266.346 6.4 3261.13 7.1 3257.264 7.6 3255.152 8.1 3253.111

– – 5.7 3265.343 6.5 3260.269 7.2 3256.502 7.7 3254.437 8.2 3252.442

– – 5.8 3264.372 6.6 3259.435 7.3 3255.763 7.8 3253.743 8.3 3251.792

– – 5.9 3263.434 6.7 3258.626 7.4 3255.046 7.9 3253.069 8.4 3251.161

– – 6 3262.526 6.8 3257.843 7.5 3254.35 8 3252.414 8.5 3250.547
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Table A.4 – continued from previous page

β = 0.001 β = 0.005 β = 0.01 β = 0.015 β = 0.02 β = 0.025

α TC1 (Q
∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
)

– – 6.1 3261.646 6.9 3257.082 7.6 3253.673 8.1 3251.778 8.6 3249.95

– – – – 7 3256.344 7.7 3253.015 8.2 3251.159 8.7 3249.369

– – – – 7.1 3255.627 7.8 3252.375 8.3 3250.557 8.8 3248.803

– – – – 7.2 3254.93 7.9 3251.753 8.4 3249.97 8.9 3248.252

– – – – 7.3 3254.253 8 3251.147 8.5 3249.399 9 3247.716

– – – – 7.4 3253.593 8.1 3250.556 8.6 3248.843 9.1 3247.192

– – – – 7.5 3252.952 8.2 3249.981 8.7 3248.301 9.2 3246.682

– – – – 7.6 3252.327 8.3 3249.42 8.8 3247.772 9.3 3246.184

– – – – 7.7 3251.718 8.4 3248.873 8.9 3247.256 9.4 3245.697

– – – – 7.8 3251.125 8.5 3248.34 9 3246.752 9.5 3245.223

– – – – 7.9 3250.547 8.6 3247.819 9.1 3246.26 9.6 3244.759

– – – – 8 3249.982 8.7 3247.31 9.2 3245.78 9.7 3244.306

– – – – 8.1 3249.432 8.8 3246.813 9.3 3245.31 9.8 3243.863

– – – – 8.2 3248.895 8.9 3246.328 9.4 3244.851 9.9 3243.43

– – – – 8.3 3248.37 9 3245.854 9.5 3244.403 10 3243.006

– – – – 8.4 3247.857 9.1 3245.39 9.6 3243.964 10.1 3242.591

– – – – 8.5 3247.356 9.2 3244.936 9.7 3243.535 10.2 3242.185

– – – – 8.6 3246.867 9.3 3244.492 9.8 3243.115 10.3 3241.788

– – – – 8.7 3246.388 9.4 3244.058 9.9 3242.703 10.4 3241.399

– – – – – – 9.5 3243.633 10 3242.301 10.5 3241.018

– – – – – – 9.6 3243.217 10.1 3241.906 10.6 3240.645

– – – – – – 9.7 3242.809 10.2 3241.52 10.7 3240.279
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Table A.4 – continued from previous page

β = 0.001 β = 0.005 β = 0.01 β = 0.015 β = 0.02 β = 0.025

α TC1 (Q
∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
)

– – – – – – 9.8 3242.41 10.3 3241.141 10.8 3239.92

– – – – – – 9.9 3242.018 10.4 3240.77 10.9 3239.568

– – – – – – 10 3241.635 10.5 3240.406 11 3239.223

– – – – – – 10.1 3241.259 10.6 3240.049 11.1 3238.884

– – – – – – 10.2 3240.89 10.7 3239.699 11.2 3238.552

– – – – – – 10.3 3240.528 10.8 3239.355 11.3 3238.226

– – – – – – 10.4 3240.173 10.9 3239.018 11.4 3237.906

– – – – – – 10.5 3239.825 11 3238.687 11.5 3237.592

– – – – – – 10.6 3239.483 11.1 3238.362 11.6 3237.283

– – – – – – – – 11.2 3238.043 11.7 3236.98

– – – – – – – – 11.3 3237.73 11.8 3236.682

– – – – – – – – 11.4 3237.422 11.9 3236.389

– – – – – – – – 11.5 3237.12 12 3236.102

– – – – – – – – 11.6 3236.823 12.1 3235.819

– – – – – – – – 11.7 3236.53 12.2 3235.541

– – – – – – – – 11.8 3236.243 12.3 3235.267

– – – – – – – – 11.9 3235.961 12.4 3234.999

– – – – – – – – 12 3235.683 12.5 3234.734

– – – – – – – – 12.1 3235.41 12.6 3234.474

– – – – – – – – 12.2 3235.141 12.7 3234.218

– – – – – – – – 12.3 3234.877 12.8 3233.966

– – – – – – – – – – 12.9 3233.718
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Table A.4 – continued from previous page

β = 0.001 β = 0.005 β = 0.01 β = 0.015 β = 0.02 β = 0.025

α TC1 (Q
∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
) α TC1 (Q

∗

1
, G∗

1
)

– – – – – – – – – – 13 3233.473

– – – – – – – – – – 13.1 3233.233

– – – – – – – – – – 13.2 3232.996

– – – – – – – – – – 13.3 3232.763

– – – – – – – – – – 13.4 3232.533

– – – – – – – – – – 13.5 3232.307

– – – – – – – – – – 13.6 3232.084

– – – – – – – – – – 13.7 3231.865
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