
Joint Deep Learning for Pedestrian Detection

Wanli Ouyang and Xiaogang Wang
Department of Electronic Engineering, the Chinese University of Hong Kong

wlouyang, xgwang@ee.cuhk.edu.hk

Abstract

Feature extraction, deformation handling, occlusion
handling, and classi�cation are four important components
in pedestrian detection. Existing methods learn or design
these components either individually or sequentially. The
interaction among these components is not yet well ex-
plored. This paper proposes that they should be jointly
learned in order to maximize their strengths through coop-
eration. We formulate these four components into a joint
deep learning framework and propose a new deep network
architecture1. By establishing automatic, mutual interac-
tion among components, the deep model achieves a 9% re-
duction in the average miss rate compared with the cur-
rent best-performing pedestrian detection approaches on
the largest Caltech benchmark dataset.

1. Introduction

Pedestrian detection is a key technology in automotive
safety, robotics, and intelligent video surveillance. It has at-
tracted a great deal of research interest [2, 5, 12, 47, 8]. The
main challenges of this task are caused by the intra-class
variation of pedestrians in clothing, lighting, backgrounds,
articulation, and occlusion.
In order to handle these challenges, a group of interde-

pendent components are important. First, features should
capture the most discriminative information of pedestri-
ans. Well-known features such as Haar-like features [49],
SIFT [29], and HOG [5] are designed to be robust to intra-
class variation while remain sensitive to inter-class varia-
tion. Second, deformation models should handle the artic-
ulation of human parts such as torso, head, and legs. The
state-of-the-art deformable part-based model in [17] allows
human parts to articulate with constraint. Third, occlusion
handling approaches [13, 51, 19] seek to identify the oc-
cluded regions and avoid their use when determining the
existence of a pedestrian in a window. Finally, a classi�er
decides whether a candidate window shall be detected as

1 Code availablewww.ee.cuhk.edu.hk/˜wlouyang/projects/ouyangWiccv13Joint/index.html

Feature
extraction

Part deformation 
handling

Deformable
part-based

model
HOG

Occlusion
handling

Occlusion
handling
methods

Classification

SVM

Example

Components:

This paper jointly learns

Example Example Example

Figure 1. Motivation of this paper to jointly learn the four key
components in pedestrian detection: feature extraction, deforma-
tion handling models, occlusion handling models, and classi�ers.

enclosing a pedestrian. SVM [5], boosted classi�ers [11],
random forests [9], and their variations are often used.
Although these components are interdependent, their in-

teractions have not been well explored. Currently, they are
�rst learned or designed individually or sequentially, and
then put together in a pipeline. The interaction among these
components is usually achieved using manual parameter
con�guration. Consider the following three examples. (1)
The HOG feature is individually designed with its param-
eters manually tuned given the linear SVM classi�er being
used in [5]. Then HOG feature become �xed when people
design new classi�ers [31]. (2) A few HOG feature parame-
ters are tuned in [17] and �xed, and then different part mod-
els are learned in [17, 58]. (3) By �xing HOG features and
deformable models, occlusion handling models are learned
in [34, 36], using the part-detection scores as input.
As shown in Fig. 1, the motivation of this paper is to es-

tablish automatic interaction in learning these key compo-
nents. We hope that jointly learned components, like mem-
bers with team spirit, can create synergy through close in-
teraction, and generate performance that is greater than in-
dividually learned components. For example, well-learned

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.257

2056



features help to locate parts, meanwhile, well-located parts
help to learnmore discriminative features for different parts.
This paper formulates the learning of these key components
into a uni�ed deep learning problem. The deep model is
especially appropriate for this task because it can organize
these components into different layers and jointly optimize
them through back-propagation.
This paper makes the following three main contributions.

1. A uni�ed deep model for jointly learning feature extrac-
tion, a part deformation model, an occlusion model and
classi�cation. With the deep model, these components
interact with each other in the learning process, which
allows each component to maximize its strength when
cooperating with others.

2. We enrich the operation in deep models by incorporating
the deformation layer into the convolutional neural net-
works (CNN) [26]. With this layer, various deformation
handling approaches can be applied to our deep model.

3. The features are learned from pixels through interaction
with deformation and occlusion handling models. Such
interaction helps to learn more discriminative features.

2. Related Work
It has been proved that deep models are potentially more

capable than shallow models in handling complex tasks [3].
They have achieved spectacular progress in computer vi-
sion [20, 21, 40, 23, 25, 33, 24, 56, 30, 46, 16, 38]. Deep
models for pedestrian detection focus on feature learning
[44, 33], contextual information learning [57], and occlu-
sion handling [34].
Many features are utilized for pedestrian detection.

Haar-like features [49], HOG [5], and dense SIFT [48] are
designed to capture the overall shape of pedestrians. First-
order color features like color histograms [11], second-
order color features like color-self-similarity (CSS) [50] and
co-occurrence features [43] are also used for pedestrian de-
tection. Texture feature like LBP are used in [51]. Other
types of features include the covariance descriptor [47],
depth [15], segmentation results [13], 3D geometry [22],
and their combinations [27, 51, 11, 50, 13, 43]. All the
features mentioned above are designed manually. Recently,
researchers have become aware of the bene�t of learning
features from training data [1, 33, 44]. Similar to HOG,
they use local max pooling or average pooling to be robust
to small local misalignment. However, these approaches do
not learn the variable deformation properties of body parts.
The approach in [7] learns features and a part-based model
sequentially but not jointly.
Since pedestrians have non-rigid deformation, the abil-

ity to handle deformation improves detection performance.
Deformable part-based models are used in [17, 58, 37, 35]
for handling translational movement of parts. To handle
more complex articulations, size change and rotation of

parts are modeled in [18], and mixture of part appearance
and articulation types are modeled in [4, 55, 6]. In these
approaches, features are manually designed.
In order to handle occlusion, many approaches have been

proposed for estimating the visibility of parts [13, 51, 54,
53, 45, 27]. Some of them use the detection scores of blocks
or parts [51, 34, 13, 54] as input for visibility estimation.
Some use other cues like segmentation results [27, 13] and
depth [13]. However, all these approaches learn the occlu-
sion modeling separately from feature extraction and part
models.
The widely used classi�cation approaches include var-

ious boosting classi�ers [9, 11, 53], linear SVM [5], his-
togram intersection kernel SVM [31], latent SVM [17],
multiple kernel SVM [48], structural SVM [58], and prob-
abilistic models [2, 32]. In these approaches, classi�ers are
adapted to training data, but features are designedmanually.
If useful information has been lost at feature extraction, it
cannot be recovered during classi�cation. Ideally, classi-
�ers should guide feature learning.
In summary, previous works treat the components in-

dividually or sequentially. This paper takes a global view
of these components and is an important step towards joint
learning of them for pedestrian detection.

3. Method

3.1. Overview of the proposed deep model

An overview of our proposed deep model is shown in
Fig. 2. In this model:

1. Filtered data maps are obtained from the �rst convolu-
tional layer. This layer convolves the 3-channel input
image data with 9 × 9 × 3 �lters and outputs 64 maps.
|tanh(x)|, i.e. activation function tanh and absolution
value recti�cation, is used for each �lter response x.

2. Features maps are obtained by average pooling of the 64
�ltered data maps using 4× 4 boxcar �lters with a 4× 4
subsampling step.

3. Part detection maps are obtained from the second con-
volutional layer. This layer convolves the feature maps
with 20 part �lters of different sizes and outputs 20 part
detection maps. Details are given in Section 3.3.

4. Part scores are obtained from the 20 part detection maps
using a deformation handling layer. This layer outputs
20 part scores. Details are given in Section 3.4.

5. The visibility reasoning of 20 parts is used for estimating
the label y; that is, whether a given window encloses a
pedestrian or not. Details are given in Section 3.5.

At the training stage, all the parameters are optimized
through back-propagation (BP).

2057



Convolutional
layer 1

Image data

Average
pooling

64

Extracted
feature

map

Visibility
reasoning and 
classification

64

Filtered data map

Part
score

Convolutional
layer 2

Deformation
layer

20

Part
detection

map

9
9

28

84

20

76 5

19

...

20

3

...

...

...
4×4

y

Figure 2. Overview of our deep model. Image data is convolved with 64 9× 9× 3 �lters and averagely pooled to obtain 64 feature maps.
The feature maps are then processed by the second convolutional layer and the deformation layer to obtain 20 part scores. Finally the
visibility reasoning model is used to estimate the detection label y.

3.2. Input data preparation
The detection windows are extracted into images with

height 84 and width 28, in which pedestrians have height 60
and width 20. The input image data contains three channels.
(1) The �rst channel is a 84 × 28 Y-channel image after

the image is converted into the YUV color space.
(2) The three-channel 42× 14 images in the YUV color

space are concatenated into the second channel of size 84×
28 with zero padding.
(3) Four 42 × 14 edge maps are concatenated into the

third channel of size 84×28. Three edge maps are obtained
from the three-channel images in the YUV color space. The
magnitudes of horizontal and vertical edges are computed
using the Sobel edge detector. The fourth edge map is ob-
tained by choosing the maximum magnitudes from the �rst
three edge maps.
In this way, information about pixel values at different

resolutions and information of primitive edges are utilized
as the input of the �rst convlutional layer to extract features.
The �rst convolutional layer and its following average pool-
ing layer use the standard CNN settings.
We empirically �nd that it is better to arrange the images

and edge maps into three concatenated channels instead of
eight separate channels. In order to deal with illumination
change, the data in each channel is preprocessed to be zero
mean and unit variance.

3.3. Generating the part detection map
Normally, the �lter size of a convolutional layer is �xed

[26, 24]. Since the parts of pedestrians have different sizes,
we design the �lters in the second convolutional layer with
variable sizes. As shown in Fig. 3(a), we design parts at
three levels with different sizes. There are six small parts
at level 1, seven medium-sized parts at level 2, and seven

Level 3

Level 2

Level 1

(a)

(b)
Figure 3. The parts model (a) and the �lters (b) learned at the sec-
ond convolutional layer. We follow [14] and visualize the �lter
that optimizes the corresponding stimuli of the neurons, which is
also used in [25].

large parts at level 3, as shown in Fig. 3(a). A part at an
upper level is composed of parts at the lower level. Parts at
the top level are also the possible occlusion statuses. Gray
color indicates occlusion. The other two levels are body
parts. In the �gure, the head-shoulder part appears twice
(representing occlusion status at the top level and part at the

2058



middle level respectively) because this body part itself can
generate an occlusion status. Fig. 3(b) shows a few part
�lters learned with our deep model. They are visualized
using the activation maximization approach in [14]. The
�gure shows that the head-shoulder at level 2 and the head-
shoulder at level 3 extract different visual cues from the in-
put image. The head-shoulder �lters in Fig. 3(b) contain
more detailed silhouette information on heads and shoul-
ders than the head-shoulder �lter learned with HOG in Fig.
1. The two-legs �lter in Fig. 3(b) is visually more meaning-
ful than the one learned with HOG in Fig. 1.

3.4. The deformation layer
In order to learn the deformation constraints of different

parts, we propose the deformation handling layer (deforma-
tion layer for short) for the CNNs.
The deformation layer takes the P part detection maps

as input and outputs P part scores s = {s1, . . . , sP }, P =
20 in Fig. 2. The deformation layer treats the detection
maps separately and produces the pth part score sp from
the pth part detection map, denoted byMp. A 2D summed
map, denoted by Bp, is obtained by summing up the part
detection mapMp and the deformation maps as follows:

Bp =Mp +
N∑
n=1

cn,pDn,p. (1)

Dn,p denotes the nth deformationmap for the pth part, cn,p
denotes the weight forDn,p, and N denotes the number of
deformation maps. sp is globally max-pooled from Bp in
Eq. (1):

sp = max
(x,y)

b(x,y)p , (2)

where b(x,y)p denotes the (x, y)th element of Bp. The de-
tected part location can be inferred from the summed map
as follows:

(x, y)p = argmax
(x,y)

b(x,y)p . (3)

At the training stage, only the value at location (x, y)p of
Bp is used for learning the deformation parameters.
The cn,p and Dn,p in (1) are the key for designing dif-

ferent deformation models. Both cn,p andDn,p can be con-
sidered as the parameters to be learned. Three examples are
given below.
Example 1. Suppose N = 1, c1,p = 1 and the defor-

mation mapD1,p is to be learned. In this case, the discrete
locations of the pth part are treated as bins and the defor-
mation cost for each bin is learned. d(x,y)

1,p , which denotes
the (x, y)th element of D1,p, corresponds to the deforma-
tion cost of the pth part at location (x, y). The approach in
[39] treats deformation as bins of locations.
Example 2. D1,p can also be prede�ned. SupposeN = 1

and cn,p = 1. If d(x,y)
1,p is the same for any (x, y), then there

is no deformation cost. If d(x,y)
1,p = −∞ for (x, y) /∈ X,

d
(x,y)
1,p = 0 for (x, y) ∈ X, then the parts are only allowed to
move freely in the location set X. Max-pooling is a special

Part detection 
map

D1,p D2,p D3,p D4,pMp

Deformation maps

c1,p
c3 ,p c4,pc 2

, p

Summed map
Part score

Bp spHigh 
value

Low
value

Global max 
pooling

Figure 4. The deformation layer when deformation map is de�ned
in (4). Part detection map and deformation maps are summed up
with weights cn,p for n = 1, 2, 3, 4 to obtain the summed map
Bp. Global max pooling is then performed on the summed map to
obtain the score sp for the pth part.

case of this example by setting X to be a local region. The
disadvantage of max-pooling is that the hand-tuned local
region does not adapt to different deformation properties of
different parts.
Example 3. The deformation layer can represent the

widely used quadratic constraint of deformation in [17]. Be-
low, we skip the subscript p used in Eq. (1) to be concise.
The quadratic constraint of deformation can be represented
as follows:

b(x,y)=m(x,y) + c1(x−ax+
c3
2c1
)2+c2(y−ay+

c4
2c2
)2, (4)

where m(x,y) is the (x, y)th element of the part detection
map M, (ax, ay) is the prede�ned anchor location of the
pth part. They are adjusted by c3/2c1 and c4/2c2, which
are automatically learned. c1 and c2 (4) decide the defor-
mation cost. There is no deformation cost if c1 = c2 = 0.
Parts are not allowed to move if c1 = c2 = −∞. (ax, ay)
and ( c3

2c1
, c4
2c2

) jointly decide the center of the part. The
quadratic constraint in Eq. (4) can be represented using Eq.
(1) as follows:

B =M+ c1D1 + c2D2 + c3D3 + c4D4 + c5 · 1,
b(x,y)=m(x,y) + c1d

(x,y)
1 + c2d

(x,y)
2 + c3d

(x,y)
3 + c4d

(x,y)
4 +c5,

d
(x,y)
1 =(x− ax)

2, d
(x,y)
2 =(y − ay)

2, d
(x,y)
3 =x− ax,

d
(x,y)
4 =y − ay, c5 = c3

2/(4c1) + c4
2/(4c2), (5)

where 1 is a matrix with all elements being one, d
(x,y)
n is the

(x, y)th element of Dn. In this case, c1, c2, c3 and c4 are pa-
rameters to be learned andDn are prede�ned. c5 is the same in all
locations and need not be learned. Fig. 4 illustrates this example,
which is used as the deformation layer in this work.

3.5. Visibility reasoning and classi�cation
The deformation layer in Section 3.4 provides the part scores

s = {s1, . . . , sP} using Eq. (2). s is then used for visibility rea-

2059



3
1,1h

3
2,1h

3
3,1h

3
4,1h

3
5,1h

3
6,1h

3
7,1h

Level 3

Level 2

Level 1
1
1,1h

1
2,1h

1
3,1h 1

4,1h
1
5,1h

1
6,1h

h13

h11

h12

. . .

h3h1

. ..
.. ....

s

h2

. . .
.. .

y

2
1,1h 2

2,1h
2
3,1h

2
4,1h

2
5,1h

2
6,1h

2
7,1h

3
1,1s

2
1,1s

1
1,1s

Figure 5. The visibility reasoning and detection label estimation
model. For the ith part at the lth level, sli is the detection score and
hli is the visibility. For example, h1

1 indicates the visibility of the
left-head-shoulder part. Best viewed in color.
soning and classi�cation. We adopt the model in [34] to estimate
visibility.
Fig. 5 shows the model for the visibility reasoning and classi-

�cation in Fig. 2. Denote the score and visibility of the jth part at
level l as slj and hlj respectively. Denote the visibility of Pl parts
at level l by hl = [hl1 . . . hlPl

]T. Given s, the model for BP and
inference is as follows:

h̃1
j = σ(c1j + g1

j s
1
j),

h̃l+1
j = σ(h̃l

T
wl
∗,j + cl+1

j + gl+1
j sl+1

j ), l = 1, 2,

ỹ = σ(h̃3Twcls + b),

(6)

where σ(t) = (1 + exp(−t))−1 is the sigmoid function, glj is
the weight for slj , clj is its bias term,Wl models the correlation
between hl and hl+1,wl

∗,j is the jth column ofWl,wcls is con-
sidered as the linear classi�er for the hidden units h̃3, and ỹ is the
estimated detection label. Hidden variables at adjacent levels are
connected. wl

∗,j represents the relationship between h̃l and h̃l+1
j .

A part can have multiple parents and multiple children. The visi-
bility of one part is correlated with the visibility of other parts at
the same level through shared parents. glj , clj ,Wl,wcls, and b are
parameters to be learned.
The differences between the deep model in this paper and the

approach in [34] are as follows:
1. The parts at levels 1 and 2 propagate information to the

classi�er through the parts at level 3 in [34]. But the imperfect
part scores at level 3 may disturb the information from levels 1
and 2. This paper includes extra hidden nodes at levels 2 and 3.
These nodes provide branches that help parts at level 1 and level
2 to directly propagate information to the classi�er without being
disturbed by other parts. These extra hidden nodes do not use
detection scores and have the term gl+1

j sl+1
j = 0 in (6). They are

represented by white circles in Fig. 5, while the hidden nodes with
the term gl+1

j sl+1
j �= 0 in (6) are represented by gray circles.

2. The approach in [34] only learns the visibility relationship
from part scores. Both HOG features and the parameters for the
deformation model are �xed in [34]. In this paper, features, de-
formable models, and visibility relationships are jointly learned.
In order to learn the parameters in the two convolutional layers
and the deformation layer in Fig. 2, prediction error is back-
propagated through s. The gradient for s is:

∂L

∂sli
=

∂L

∂hli

∂hli
∂sli

=
∂L

∂hli
hli(1− hli)g

l
i, (7)

where ∂L

∂h3
i

=
∂L

∂ỹ
ỹ(1− ỹ)wcls

i ,

∂L

∂h2
i

= w2
i,∗

[
∂L

∂h3
� h3 � (1− h3)

]
,

∂L

∂h1
i

= w1
i,∗

[
∂L

∂h2
� h2 � (1− h2)

]
,

(8)

� denotes the Hadamard product; that is (U � V )i,j = Ui,jVi,j ,
wl
i,∗ is the ith row ofWl, and wcls

i is the ith element of thewcls.
L is the loss function. For example L = (ygnd − ỹ)2/2 is for the
square loss, and ygnd the ground-truth label. L = ygnd log ỹ +
(1 − ygnd) log(1 − ỹ) is for the log loss, which is chosen in this
work.
In order to train this deep architecture, we adopt a multi-stage

training strategy. We start with a 1-layer CNN using supervised
training. Since Gabor �lters are similar to the human visual sys-
tem, they are used for initialing the �rst CNN. We add one more
layer at each stage, the layers trained in the previous stage are
used for initialization and then all the layers at the current stage
are jointly optimized with BP.

4. Experimental Results
The proposed framework is evaluated on the Caltech dataset

[12] and the ETH dataset [15]. In order to save computation, a
detector using HOG+CSS and Linear SVM is utilized for pruning
candidate detection windows at both training and testing stages.
Approximately 60,000 training samples that are not pruned by the
detector are used for training the deep model. At the testing stage,
the execution time required by our deep model is less than 10%
of the execution time required by the HOG+CSS+SVM detector,
which has �ltered most samples. In the deep learning model, learn-
ing rate is �xed as 0.025 with batch size 60. Similar to [44, 24],
norm penalty is not used.
The labels and evaluation code provided by Dollár et al. on-

line are used for evaluation following the criteria proposed in [12].
As in [12], the log-average miss rate is used to summarize the de-
tector performance, and is computed by averaging the miss rate
at nine FPPI rates that are evenly spaced in the log-space in the
range from 10−2 to 100. In the experiments, we evaluate the per-
formance on the reasonable subset of the evaluated datasets. This
subset, which is the most popular portion of the datasets, consists
of pedestrians who are more than 49 pixels in height, and whose
occluded portions are less than 35%.
The compared approaches are VJ [49], Shapelet [42], PoseInv

[28], LatSVM-V1 [17], LatSVM-V2 [17], HikSVM [31], HOG
[5], MultiFtr [52], HogLbp [51], Pls [43], MultiFtr+CCS, Multi-
Ftr+Motion [50], FeatSynth [1] FPDW [10], ChnFtrs [11], Mul-
tiResC [37], CrossTalk [9], DN-HOG [34] and ConvNet-U-MS

2060



[44]. Existing approaches use various features, deformable part
models and different learning approaches. The features used in-
clude Haar (VJ), HOG (HOG, LatSvm-V2), CSS (MultiFtr+CCS),
LBP (HogLbP), motion (MultiFtr+Motion) and geometric con-
straint (MultiResC). Different part models are used in LatSVM-
V2, DN-HOG and MultiResC. Different deep models are used by
ConvNet-U-MS and DN-HOG. Our uni�ed deep net is denoted by
UDN.

4.1. Results of the Caltech-Test dataset
To evaluate on the Caltech-Test dataset, the Caltech-Train

dataset is used to train our model. The recent best performing ap-
proaches [8, 37] on Caltech-Test also use Caltech-Train as training
data. At the training stage, there are approximately 60,000 nega-
tive samples and 4,000 positive samples from the Caltech-Train
dataset.
Fig. 6 shows the overall experimental results on the Caltech-

Test. The current best performing approaches on the Caltech-Test
are the MultiResC [37] and the contextual boost [8], both of which
have an average miss rate of 48%. Our approach reduces the aver-
age miss rate by 9%.
Since Caltech-Test is the largest among commonly used

datasets, we investigate different designs of deep models on this
dataset. Comparisons are shown in Figure 7.
Layer design. A one-layer CNN (CNN-1layer in Fig. 7(a)) is

obtained by directly feeding the extracted features in Fig. 2 into
a linear classi�er. A two-layer CNN (CNN-2layer in Fig. 7(a)) is
constructed by convolving the extracted feature maps with another
convolutional layer and another pooling layer. Adding more con-
volutional and pooling layers on the top of the two-layer CNN does
not improve the performance. Both CNNs have the same input and
settings as the �rst convolutional layer and pooling layer of UDN,
but do not have the deformation layer or the visibility estimation
layer. This experiment shows that the usage of deformation and
visibility layers outperforms CNNs. The ConvNet-U-MS in [44],
which uses unsupervised feature learning for two-layer CNN, does
not perform well on Caltech-Test. It has an average miss rate of
77%.
Input channel design. Fig. 7(b) shows the experimental results

of investigating the in�uence of input channels introduced in Sec-
tion 3.2. When the input data only has the �rst Y-channel image,
the average miss rate is 47%. The inclusion of the second chennel
of color images with a lower resolution reduces the miss rate by
5%. Including the third channel of edge maps reduces the miss
rate by a further 3%.
Joint Learning. Fig. 7(c) shows the experimental results on

investigating different degrees of joint learning. The �rst convolu-
tional and pooling layers of UDN correspond to the feature extrac-
tion step. Therefore, the output of the two layers can be replaced
by any other features, either manually designed or pre-learned.
• LatSvm-V2 [17], with a miss rate of 63%, manually designs the
HOG feature, and then learns the deformation model. Visibility
reasoning is not considered.

• DN-HOG [34], with a miss rate of 53%, �xes the HOG feature
and the deformation model, and then learns the visibility model.

• UDN-HOG, with a miss rate of 50%, �xes the HOG feature,
and then jointly learns the deformation and visibility layers
with UDN. The difference between DN-HOG and UDN-HOG

10�2 10�1 100 101
.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s 
ra

te

95% VJ
91% Shapelet
86% PoseInv
80% LatSvm�V1
77% ConvNet�U�MS
74% FtrMine
73% HikSvm
68% HOG
68% MultiFtr
68% HogLbp
63% LatSvm�V2
62% Pls
61% MultiFtr+CSS
60% FeatSynth
57% FPDW
56% ChnFtrs
54% CrossTalk
53% DN�HOG
51% MultiFtr+Motion
48% MultiResC
39% UDN

Figure 6. Overall results on the Caltech-Test dataset.

10�2 100
.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s 
ra

te
77 ConvNet�U�MS
47 CNN�1layer
43 CNN�2layer
39 UDN

10�2 100
.20

.30

.40

.50

.64

.80
1

false positives per image

m
is

s 
ra

te

47 UDN�1Chn
42 UDN�2Chn
39 UDN

(a) (b)

10�2 100
.05

.10

.20

.30

.40

.50

.64

.80
1

false positives per image

m
is

s 
ra

te

63 LatSvm�V2
53 DN�HOG
50 UDN�HOG
47 UDN�HOGCSS
44 UDN�CNNFeat
41 UDN�DefLayer
39 UDN

(c)
Figure 7. Results of various designs of the deep model on the
Caltech-Test dataset.

is whether deformation and visibility models are jointly learned.
• UDN-HOGCSS, with a miss rate of 47%, �xes the HOG+CSS
feature, and jointly learns the deformation and visibility layers
with UDN. Compared with UDN-HOG, the extra CSS feature
reduces the miss rate by 3%.

• UDN-CNNFeat, with a miss rate of 44%, �rst learns the fea-
ture extraction layers using CNN-1layer in Fig. 7(a) and �xes
these layers, and then jointly learns the deformation and visibil-
ity. In this case, the feature extraction is not jointly learned with
the deformation and visibility. Compared with UDN-HOGCSS,
UDN-CNNFeat reduces the miss rate by 3% by using the fea-
tures learned from CNN-1layer.

• UDN-DefLayer, with a miss rate of 41%, jointly learns features
and deformation. Visiblity reasoning is not used.

• UDN jointly learns feature, deformation and visibility. Its
miss rate is 5% lower than UDN-CNNFeat. Therefore, the in-
teraction between deformation, visibility, and feature learning
clearly improves the detection ability of the model.

2061



10�2 10�1 100 101

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s 
ra

te
92% PoseInv
91% Shapelet
90% VJ
77% LatSvm�V1
72% HikSvm
64% HOG
61% MultiFtr+CSS
60% FPDW
60% MultiFtr+Motion
60% MultiFtr
57% ChnFtrs
55% HogLbp
55% Pls
52% CrossTalk
51% LatSvm�V2
50% ConvNet�U�MS
47% DN�HOG
45% UDN

Figure 8. Experimental results on the ETH dataset.

0 50 100
VJ

HOG
FtrMine

Shapelet
PoseInv
MultiFtr
HikSvm

LatSvm�V1
LatSvm�V2

ChnFtrs
FPDW

Pls
HogLbp

FeatSynth
MultiResC

MultiFtr+CSS
MultiFtr+Motion

CrossTalk
DN�HOG

ConvNet�U�MS
UDN

84
51

84
85

47
59

67
41
44
47

42
44

49
48

39
37
39

34

AUC (%) on ETH 
0 50 100

VJ
HOG

FtrMine
Shapelet
PoseInv
MultiFtr
HikSvm

LatSvm�V1
LatSvm�V2

ChnFtrs
FPDW

Pls
HogLbp

FeatSynth
MultiResC

MultiFtr+CSS
MultiFtr+Motion

CrossTalk
DN�HOG

ConvNet�U�MS
UDN

92
58

66
87

78
59
62

73
56

46
47

53
62

49
38

52
42
46

42
71

30

AUC (%) on CaltechTest

Figure 9. Comparisons of area under curve curve (AUC) on ETH
and Caltech-Test. The results of MultiResC, Feat-Synth, and Ftr-
Mine on ETH are not available.

4.2. Results of the ETH dataset
For a fair comparison on the ETH dataset, we follow the train-

ing setting commonly adopted by state-of-the-art approaches (in-
cluding the best performing approaches [34, 17, 44] on ETH); that
is, using the INRIA training dataset in [5] to train UDN. There
are approximately 60, 000 negative samples and 2, 000 positive
samples from the INRIA Training dataset, after the pruning of the
HOG+CSS+SVM detector. Fig. 8 shows the experimental results
on ETH. Our UDN has the best performance on this dataset. Many
studies (e.g., [24, 41]) have found that deep models favor large-
scale training data. The INRIA training set has fewer positive
training samples than Caltech-Train. Therefore, the difference of
miss rates between UDN and existing approaches is smaller than
that on Caltech-Test.
Area under curve [44] is another measurement commonly used

for evaluate the performance of pedestrian detection. Fig. 9 shows
the average miss rate computed from AUC, which indicates that
UDN also outperforms other sate-of-the-art methods under AUC.
The results of MultiResC, FeatSynth, and FtrMine on the ETH
dataset are not available.

5. Conclusion
This paper proposes a uni�ed deep model that jointly learns

four components – feature extraction, deformation handling, oc-
clusion handling and classi�cation – for pedestrian detection.
Through interaction among these interdependent components,

joint learning achieves the best performance on publicly available
datasets, outperforming the existing best performing approaches
by 9% on the largest Caltech dataset. Detailed experimental com-
parisons clearly show that the proposed new model can maximize
the strength of each component when all the components coop-
erate with each other. We enrich the deep model by introducing
the deformation layer, which has great �exibility to incorporate
various deformation handling approaches. We expect even larger
improvement by training our UDN on much larger-scale training
sets in the future work. This framework also has the potential for
general object detection.
Acknowledgment: This work is supported by the General

Research Fund sponsored by the Research Grants Council of
Hong Kong (Project No. CUHK 417110, CUHK 417011, CUHK
429412) and National Natural Science Foundation of China
(Project No. 61005057).

References
[1] A. Bar-Hillel, D. Levi, E. Krupka, and C. Goldberg. Part-

based feature synthesis for human detection. In ECCV, 2010.
2, 5

[2] O. Barinova, V. Lempitsky, and P. Kohli. On detection of
multiple object instances using hough transforms. In CVPR,
2010. 1, 2

[3] Y. Bengio. Learning deep architectures for AI. Foundations
and Trends in Machine Learning, 2(1):1–127, 2009. 2

[4] L. Bourdev and J. Malik. Poselets: body part detectors
trained using 3D human pose annotations. In ICCV, 2009.
2

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005. 1, 2, 5, 7

[6] C. Desai and D. Ramanan. Detecting actions, poses, and
objects with relational phraselets. In ECCV, 2012. 2

[7] M. Dikmen, D. Hoiem, and T. S. Huang. A data-driven
method for feature transformation. In CVPR, 2012. 2

[8] Y. Ding and J. Xiao. Contextual boost for pedestrian detec-
tion. In CVPR, 2012. 1, 6

[9] P. Dollár, R. Appel, and W. Kienzle. Crosstalk cascades for
frame-rate pedestrian detection. In ECCV, 2012. 1, 2, 5

[10] P. Dollár, S. Belongie, and P. Perona. The fastest pedestrian
detector in the west. In BMVC, 2010. 5

[11] P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel
features. In BMVC, 2009. 1, 2, 5

[12] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian
detection: an evaluation of the state of the art. IEEE Trans.
PAMI, 34(4):743 – 761, 2012. 1, 5

[13] M. Enzweiler, A. Eigenstetter, B. Schiele, and D. M. Gavrila.
Multi-cue pedestrian classi�cation with partial occlusion
handling. In CVPR, 2010. 1, 2

[14] D. Erhan, Y. Bengio, A.Courville, and P. Vincent. Visualiz-
ing higher-layer features of deep networks. Technical report,
University of Montreal, 2009. 3, 4

[15] A. Ess, B. Leibe, and L. V. Gool. Depth and appearance for
mobile scene analysis. In ICCV, 2007. 2, 5

[16] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning
hierarchical features for scene labeling. IEEE Trans. PAMI,
30:1915–1929, 2013. 2

2062



[17] P. Felzenszwalb, R. B. Grishick, D.McAllister, and D. Ra-
manan. Object detection with discriminatively trained part
based models. IEEE Trans. PAMI, 32:1627–1645, 2010. 1,
2, 4, 5, 6, 7

[18] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial struc-
tures for object recognition. IJCV, 61:55–79, 2005. 2

[19] T. Gao, B. Packer, and D. Koller. A segmentation-aware
object detection model with occlusion handling. In CVPR,
2011. 1

[20] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning al-
gorithm for deep belief nets. Neural Computation, 18:1527–
1554, 2006. 2

[21] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504 – 507, July 2006. 2

[22] D. Hoiem, A. A. Efros, and M. Hebert. Putting objects in
perspective. In CVPR, 2006. 2

[23] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun.
What is the best multi-stage architecture for object recog-
nition? In CVPR, 2009. 2

[24] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet clas-
si�cation with deep convolutional neural networks. In NIPS,
2012. 2, 3, 5, 7

[25] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S.
Corrado, J. Dean, and A. Y. Ng. Building high-level features
using large scale unsupervised learning. In ICML, 2012. 2,
3

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998. 2, 3

[27] B. Leibe, E. Seemann, and B. Schiele. Pedestrian detection
in crowded scenes. In CVPR, 2005. 2

[28] Z. Lin and L. Davis. A pose-invariant descriptor for human
detection and segmentation. In ECCV, 2008. 5

[29] D. Lowe. Distinctive image features from scale-invarian key-
points. IJCV, 60(2):91–110, 2004. 1

[30] P. Luo, X. Wang, and X. Tang. Hierarchical face parsing via
deep learning. In CVPR, 2012. 2

[31] S. Maji, A. C. Berg, and J. Malik. Classi�cation using inter-
section kernel support vector machines is ef�cient. In CVPR,
2008. 1, 2, 5

[32] K. Mikolajczyk, B. Leibe, and B. Schiele. Multiple object
class detection with a generative model. In CVPR, 2006. 2

[33] M. Norouzi, M. Ranjbar, and G. Mori. Stacks of convolu-
tional restricted boltzmann machines for shift-invariant fea-
ture learning. In CVPR, 2009. 2

[34] W. Ouyang and X. Wang. A discriminative deep model
for pedestrian detection with occlusion handling. In CVPR,
2012. 1, 2, 5, 6, 7

[35] W. Ouyang and X. Wang. Single-pedestrian detection aided
by multi-pedestrian detection. In CVPR, 2013. 2

[36] W. Ouyang, X. Zeng, and X. Wang. Modeling mutual vis-
ibility relationship in pedestrian detection. In CVPR, 2013.
1

[37] D. Park, D. Ramanan, and C. Fowlkes. Multiresolution mod-
els for object detection. In ECCV, 2010. 2, 5, 6

[38] H. Poon and P. Domingos. Sum-product networks: A new
deep architecture. In UAI, 2011. 2

[39] D. Ramanan. Learning to parse images of articulated bodies.
In NIPS, 2007. 4

[40] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. Lecun. Un-
supervised learning of invariant feature hierarchies with ap-
plications to object recognition. In CVPR, 2007. 2

[41] M. Ranzato, F.-J. Huang, Y.-L. Boureau, and Y. LeCun. Un-
supervised learning of invariant feature hierarchies with ap-
plications to object recognition. In CVPR, 2007. 7

[42] P. Sabzmeydani and G.Mori. Detecting pedestrians by learn-
ing shapelet features. In CVPR, 2007. 5

[43] W. Schwartz, A. Kembhavi, D. Harwood, and L. Davis. Hu-
man detection using partial least squares analysis. In ICCV,
2009. 2, 5

[44] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. Lecun.
Pedestrian detection with unsupervised and multi-stage fea-
ture learning. In CVPR, 2013. 2, 5, 6, 7

[45] V. D. Shet, J. Neumann, V. Ramesh, and L. S. Davis.
Bilattice-based logical reasoning for human detection. In
CVPR, 2007. 2

[46] Y. Sun, X. Wang, and X. Tang. Hybrid deep learning for
computing face similarities. In ICCV, 2013. 2

[47] O. Tuzel, F. Porikli, and P. Meer. Pedestrian detection via
classi�cation on riemannian manifolds. IEEE Trans. PAMI,
30(10):1713–1727, Oct. 2008. 1, 2

[48] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Mul-
tiple kernels for object detection. In ICCV, 2009. 2

[49] P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians
using patterns of motion and appearance. IJCV, 63(2):153–
161, 2005. 1, 2, 5

[50] S. Walk, N. Majer, K. Schindler, and B. Schiele. New fea-
tures and insights for pedestrian detection. In CVPR, 2010.
2, 5

[51] X. Wang, X. Han, and S. Yan. An hog-lbp human detector
with partial occlusion handling. In CVPR, 2009. 1, 2, 5

[52] C. Wojek and B. Schiele. A performance evaluation of single
and multi-feature people detection. In DAGM, 2008. 5

[53] B. Wu and R. Nevatia. Detection of multiple, partially oc-
cluded humans in a single image by bayesian combination
of edgelet part detectors. In ICCV, 2005. 2

[54] T. Wu and S. Zhu. A numeric study of the bottom-up
and top-down inference processes in and-or graphs. IJCV,
93(2):226–252, Jun. 2011. 2

[55] Y. Yang and D. Ramanan. Articulated pose estimation with
�exible mixtures-of-parts. In CVPR, 2011. 2

[56] M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive decon-
volutional networks for mid and high level feature learning.
In ICCV, 2011. 2

[57] X. Zeng, W. Ouyang, and X. Wang. Multi-stage contextual
deep learning for pedestrian detection. In ICCV, 2013. 2

[58] L. Zhu, Y. Chen, A. Yuille, and W. Freeman. Latent hier-
archical structural learning for object detection. In CVPR,
2010. 1, 2

2063


