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ABSTRACT

The output image of a digital camera is subject to a severe degra-

dation due to noise in the image sensor. This paper proposes a

novel technique to combine demosaicing and denoising procedures

systematically into a single operation by exploiting their obvious

similarities. We first design a filter as if we are optimally estimat-

ing a pixel value from a noisy single-color image. With additional

constraints, we show that the same filter coefficients are appropri-

ate for CFA interpolation (demosaicing) given noisy sensor data.

The proposed technique can combine many existing denoising al-

gorithms with the demosaicing operation. In this paper, a total least

squares denoising method is used to demonstrate the concept. The

algorithm is tested on color images with pseudo-random noise and

on raw sensor data from a real CMOS digital camera that we cali-

brated. The experimental results confirm that the proposed method

suppresses noise (CMOS image sensor noise model) while effec-

tively interpolating the missing pixel components, demonstrating a

significant improvement in image quality when compared to treat-

ing demosaicing and denoising problems independently.

1. INTRODUCTION

A typical digital camera is subject to influences from noise in the

image sensor. This sensor noise, often characterized as signal-

dependent noise, is amplified by a series of image processing steps

needed to produce a full-color representation of an image displayable

on a monitor or a printer. A cost-effective digital camera uses a

single-chip image sensor, with alternating patterns of red, green,

and blue color filters applied to each pixel location. A method for

reconstructing a full three-color representation of color image by

estimating the missing pixel components from the color filter ar-

ray (CFA) sampling pattern is called demosaicing. In demosaicing,

we would like to preserve the sharpness of the edges while inter-

polating the missing pixel components. In the presence of noise,

noise patterns form false edge structures, sharpening amplifies high

frequency noise, and interpolation adds a structure to the noise too

complicated to analyze. Removing noise after demosaicing, there-

fore, is impractical. Removing noise before the image processing

pipeline is equally problematic because determining an image struc-

ture, necessary for effective noise reduction, from a sparse sampling

lattice is difficult.

In recent years, many demosaicing algorithms have been pub-

lished [6] [5] [9] [14] [10]. None of them address the image sensor

noise problem explicitly (to the best of the knowledge of the au-

thors). Considerable work has also been done on image denoising

for signal-independent noise. While they are useful general meth-

ods, most neither take into account signal-dependent noise models

nor accommodate CFA sampling patterns.
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Fig. 1. (left) Standard deviation of noise vs. image sensor value.

(right) Histogram of noise.

Noting that image interpolation and image denoising are both

estimation problems, this paper proposes a unified approach to per-

forming demosaicing and image denoising simultaneously. The

novelty of our work is the development of a constraint, under which

an optimal filter for estimating a pixel value from a noisy single-

color image is also an optimal filter for demosaicing given noisy

sensor data. Furthermore, many existing image denoising algo-

rithms can be combined with the demosaicing operation using this

proposed technique because this constraint is not very restrictive.

For example, one may choose bilateral filtering because of compu-

tational efficiency, while another may choose a more sophisticated

image denoising method for higher image quality.

2. CMOS SENSOR NOISE

In order for the denoising method to be effective, it is important to

understand the noise characteristics in an image sensor. The CMOS

photodiode active pixel sensor (APS) typically uses a photodiode

and three transistors, all major sources of noise. While investigating

the source of noise is beyond the scope of this paper, the readout

noise takes the following general form [13]:

Y (i, j) = X(i, j) + (k0 + k1X(i, j))δ(i, j), (1)

where X(i, j) and Y (i, j) are the ideal and measured sensor values

at pixel location (i, j), respectively, δ(i, j) ∼ N (0, 1) is noise, and

k0, k1 ∈ R are parameters.

Define E{·} as the expectation operator. We independently

verified the relationship in (1) by calibrating Agilent Technologies

camera evaluation board HDCP-2000, equipped with a 300K pixel

CMOS sensor [2]. Inside a room with controlled lighting, the Mac-

beth color chart is placed in the view of the camera in a fixed po-

sition. Assuming that E{Y } = X and that the colors inside the

squares on the color chart are uniform, the average and the vari-

ance of 400 points measured from one square are taken to be the

true X value and the noise variance for that X value, respectively.

We repeat this experiment with varying levels of lighting. The

programmable gain amplifier is held constant throughout the cal-

ibration experiments. All images are captured in unprocessed raw

sensor data format. We assume that the variation among the pixel

sensors is small compared to the level of noise.



Fig. 2. Example n × n window, y0, cropped from noisy sensor.

In fig. 1, the standard deviation of noise is plotted against the

signal strength. It is clear that the standard deviation of the noise

and the pixel values are roughly related by an affine equation, as in

(1). Moreover, the histogram of noise reveals that it is not unrea-

sonable to call the shape of the noise distribution Gaussian.

3. FILTER DESIGN

In this section, motivation for combining denoising and demosaic-

ing methods is considered (the discussion is independent of the

choice of the denoising algorithm). In this paper, the task of es-

timating pixel values from sparsely-sampled noisy sensor data is

treated as a filter-design problem.

Let R, G, and B be the noise-free red, green, and blue images,

respectively. Define Rs, Gs, and Bs as the red, green, and blue

pixel values sampled by the image sensor according to the CFA

pattern. In this paper, we work with Bayer pattern CFA, although

the results extend to more general cases [1]. For ease of notation,

let X = Rs ∪ Gs ∪ Bs be the ideal image sensor output, Y is the

measured value or the noisy image sensor output, and we assume

they are related by (1). Our objective is to estimate R, G, and

B given Y . In this section, a technique to estimate G from Y is

presented (estimation of R and B is done in the same manner).

Consider a n×n window cropped from noisy sensor values, Y ,

as in fig. 2. Let us call this image patch y0 (the pixel at the center

of this patch is y0(0, 0)), and the corresponding ideal (i.e. noise

free) sensor values x0. Suppose the we are interested in estimating

the ideal green pixel value at the center (Ĝ(0, 0)) by taking a linear

combination of the measured values in this window:

Ĝ(0, 0) =
∑

i,j

α(i, j)y0(i, j) (2)

Note that even if the center of y0 is green, we must still estimate

the noise-free green pixel value. Therefore unlike the demosaic-

ing problem, the above formula applies regardless of the color of

the noisy center pixel y0(0, 0) (i.e. we do not draw a distinction

between the estimation of a missing pixel component from noisy

data and the estimation of ideal pixel value when the noisy pixel

value is already given). One obvious approach to choosing α is to

treat each color plane independently, i.e. use only green pixels to

estimate G(0, 0). However, many have argued that this is ineffec-

tive because it does not take advantage of the spatial redundancies

between the different colors [6] [5] [9] [14].

We instead begin by assuming that the difference images R −
G, B − G, R − B are bandlimited signals [6]. This is equiva-

lent to stating that the high-frequency components of R, G, and

B are similar, while the low-frequency components may be dissim-

ilar. Therefore, we impose a constraint that the coefficients corre-

sponding to noisy red and blue values ({α(i, j)}i,j∈{−2,0,2} and

{α(i, j)}i,j∈{−1,1} in fig. 2, respectively) add up to 0 when esti-

mating G(0, 0), respectively. These coefficients are high-pass fil-

ters, effectively, and this guarantees that the low-frequency compo-

nents of Rs and Bs do not contribute to the estimation of G.

But what should the filter coefficients be? Since only the high

frequency components of Rs and Bs gets passed by α,

Ĝ(0, 0) =
∑

i,j

α(i, j)[G(i, j) + (k0 + k1x0(i, j))δ(i, j)].

This substitution suggests that we design filter coefficients α(i, j)
as if we are optimally estimating a pixel value from a noisy single-

color image. Because the single-color image is unavailable from the

noisy sensor data Y , we adapt another generalization, motivated by

multi-resolution analysis [7]. If α is chosen such that

G(0, 0) ≃
∑

i,j

α(i, j)[G(2i, 2j) + (k0 + k1x0(i, j))δ(i, j)],

then

G(0, 0) ≃
∑

i,j

α(i, j)[G(i, j) + (k0 + k1x0(i, j))δ(i, j)].

That is, the filter α designed to estimate G(0, 0) from the down-

sampled green image, G(2i, 2j), would also yield a satisfactory

estimate if applied to full-resolution green image, G(i, j). Work-

ing with G(2i, 2j) is convenient since downsampling Y by two in

horizontal and vertical directions yields two smaller green images.

To summarize, the strategy for choosing the filter coefficients

consists of three major steps:

1. Design filter α as if we are estimating G(0, 0) by taking a

linear combination of {G(2i, 2j)}.

2. Add a restriction to the filter such that the coefficients cor-

responding to the noisy red and blue values add up to zero,

respectively.

3. Apply the filter to noisy image sensor output Y using (2).

We remind the readers that the same technique is used for estimat-

ing R(0, 0) and B(0, 0) from Y .

4. DENOISING METHOD

We are left with the task of designing a denoising algorithm that

will fulfill the constraints outlined in section 3. There are many

existing image denoising algorithms that are compatible with these

constraints, offering flexibilities and choices in the design of an im-

age processing pipeline. In this section, we describe a demosaic-

ing algorithm based on a total least squares (TLS) image denoising

method [7] as a proof-of-concept case study. Again, we focus ex-

clusively on the linear estimation of G(0, 0), although the same

techniques are used to estimate R(0, 0) and B(0, 0).

4.1. TLS Denoising Problem
In this section, we are interested in designing a filter α such that

Ĝ(0, 0) =
∑

α(i, j)[G(2i, 2j) + (k0 + k1x0(i, j))δ(i, j)] is an

optimal estimate of G(0, 0) in the TLS sense.

Let Y1, Y2, Y3, Y4 be the four noisy single-color images ob-

tained from downsampling Y by 2 in both horizontal and vertical

directions. Define {y1, . . . , ym} as a set of vectorized n×n image

patches cropped from Y1, . . . , Y4, let {x1, . . . , xm} be the ideal

red, green, and blue image patches (i.e. noise free) corresponding to

{y1, . . . , ym}, respectively, and zk = xk + k0δk + k1diag(x0)δk,

where δk is a noise vector, and x0 is as before. Suppose α ∈ R
n2

is chosen such that for all k, zk
T α is an optimal estimate for the

center value in xk. If this family of image patches is similar to y0

then it is reasonable to assume that α will be a good filter for (2),

also. A measure of similarity is introduced later.

Define Xd = [x1, . . . , xm]T , Y d = [y1, . . . , ym]T , Zd =
[z1, . . . , zm]T , and let xd be the column in Xd that corresponds to

the center pixels of {x1, . . . , xm}. In order that Zdα be an optimal

estimate for xd in the TLS sense, α solves the following:

min
α

‖A[E, e0]M
T B‖2

F , (3)



subject to (Zd + E)α = xd + e0, where α = Mβ. Note that α
is in the column space of M , constraining α such that coefficients

corresponding to red and blue pixels add up to zero, respectively.

Our strategy is to solve for optimal β, and set α = Mβ.

A variation of the TLS problem (3) using an affine approxima-

tion model was solved by de Groen [3]. He showed that the cost

function, ‖A[E, e]MB‖2
F , is reduced greatly when the column-

means of A[Zd, xd]MB are subtracted from their respective columns

first, suggesting a better model fit. In this paper, we modify the ap-

proach outlined in section 3 to take advantage of the affine approxi-

mation technique. More specifically, we solve for α that minimizes

(3) subject to (Z̃d+E)α = x̃d+e0. Here, Z̃d = Zd−[1, . . . , 1]T z̄
and x̃d = xd−[1, . . . , 1]T x̄d, where the entries in z̄ are the average

values of columns in Z, respectively, and x̄d is the average value of

xd. X̃d and Ỹ d are defined similarly. Note that the average of the

column in Y d corresponding to the center pixel is a good approx-

imation for x̄d. Once α is solved, our optimal estimate for xd is

x̂d = Z̃dα + x̄d. More importantly, let ȳ0 ∈ R
n2

be the vector

average of n × n image patches cropped from noisy sensor output

Y that are in the spatial vicinity of y0 and whose locations of red

and blue pixels match that of y0. Our best estimate for G(0, 0) is

Ĝ(0, 0) = ỹ0α + x̄d,

where ỹ0 = y0 − ȳ0.

4.2. Solution to TLS
Solving the TLS system is straightforward [7]. Let N = n2 − 1,

A = diag(a1, . . . , am), and B = diag(b1, . . . , bn2−1). Using

singular value decomposition A[Z̃d, x̃d]B = UΣV T , where Σ =
diag(σ1, . . . , σN ) and σ2

k > σ2
k+1, optimal β is [4]:

β = −diag(b1, . . . , bN−1)[v1,N , . . . , vN−1,N ]T v−1

N,NbN , (4)

where [v1,N , . . . , v1,N ]T is the right singular vector corresponding

to σN . However, x̃d is not available in the denoising problem, thus

making it difficult to compute V from singular value decomposi-

tion. Instead, define the matrix P :

P = (A[Z̃d, x̃d]MB)T (A[Z̃d, x̃d]MB)

= (UΣV T )T (UΣV T ) = V Σ2V T .

Our strategy is to estimate P and obtain V through its eigen decom-

position. Note that E{δk} = 0 and E{δkδl
T } = I if k = l and 0 if

otherwise. When m ≫ N , P = E{P}, and

P = BT MT

[

PZZ X̃gT A2x̃d

x̃gT A2X̃d x̃gT A2x̃d

]

MB, (5)

where PZZ = E{Z̃gT A2Z̃d}. With some manipulations,

PZZ = X̃gT A2X̃d + diag(k0 + k1x0)
2

(

m
∑

i=1

a2
i

)

. (6)

Given Y , P can be estimated. Let PY Y = Ỹ gT A2Ỹ d, and x̃i and

ỹi are the ith row of X̃d and Ỹ d, respectively (hence xi = x̄ + x̃i).

For m ≫ N , PY Y = E{PY Y }, and

PY Y = X̃gT A2X̃d +
m
∑

i=1

a2
i

(

diag(k0 + k1x̄)2 + k2
1diag(x̃i)

2

+ 2k1diag(k0 + k1x̄)diag(x̃i)
)

.

Using E{
∑

i
a2

i ỹi} =
∑

i
a2

i x̃i and the fact that diagonal entries

of X̃gT A2X̃d and
∑

i
a2

i diag(x̃i)
2 are identical, X̃gT A2X̃d is

estimated using the following procedure:

Fig. 3. An example using parrot picture: (left) method in [5], (mid-

dle) method in [5] and [11], (right) proposed method.

Fig. 4. An image captured with Agilent CMOS camera: (top)

method in [5], (bottom) proposed method.

1. Compute PY Y = Ỹ gT A2Ỹ d.

2. Compute PY Y −
∑

a2
i [diag(k0 + k1x̄)2 + 2k1diag(k0 +

k1x̄)diag(ỹi)].

3. Multiply the diagonal entries of step 2 by (1 + k2
1)

−1.

Call this estimate PXX . Estimates of X̃gT A2x̃d, x̃gT A2X̃d, and

x̃gT A2x̃d are obtained by taking appropriate rows and columns of

PXX . PZZ is computed from PXX using (6) and exchanging ȳ0 in

lieu of x0 (substitution is justified in [7]). Thus, P is computable.

Optimal β is computed from (4), where V is given by the eigen

decomposition of P in (5). Filter coefficients α = Mβ solves (3)

subject to (Z̃d + E)α = x̃d + e0. Our best estimate for G(0, 0) is

Ĝ(0, 0) = ỹT
0 α + x̄d = ỹT

0 Mβ + x̄d.

Same technique is used to estimate R(0, 0) and B(0, 0).

4.3. Denoising Improvements

Above, A and B are weighting matrices. The n × n image patches

{y1, . . . , ym} are taken from Y1, . . . , Y4 in the spatial vicinity of

G(0, 0) [7]. However, yk is not meaningful unless it is reason-

ably similar to x0. To prioritize {y1, . . . , ym} in the order of sim-

ilarity, larger weight is given if HT yk is similar to HT y0: ak =
exp(−(y0−yk)T HHT (y0−yk)/kA), where kA ∈ R is constant.

In our simulation, B is fixed (b1, ..., bN−1 = 1 and bN = 0.5) and

H is a highpass filter.

4.4. Pre-Processing

The effectiveness of the TLS denoising algorithm depends on the

ability to estimate P matrix accurately. Given δ(i, j) ∼ N(0, 1),

pixels occasionally stand out because δ(i, j) at that pixel position is

far greater than its standard deviation. This is problematic because

it degrades our estimate for P greatly. To work around this problem,

we propose to prune the outliers. For each pixel location in Y ,



Table 1. Performance of demosaicing and denoising algorithms on the “parrots” image, evaluated using average SCIELAB error [15]. Noise

levels considered were (k0, k1) = (0, 0), (25, 0), and (10, 0.1). n/a means not available or not necessary.

demosaicing method in [5] demosaicing method in [6] proposed method

(0, 0) (25, 0) (10, 0.1) (0, 0) (25, 0) (10, 0.1) (0, 0) (25, 0) (10, 0.1)
no denoising 0.8108 6.5052 4.6319 0.7768 6.4220 4.6731 0.9922 3.7504 2.9535

denoising method in [12] n/a 4.1660 n/a n/a 4.2926 n/a n/a n/a n/a

denoising method in [11] n/a 4.1166 n/a n/a 4.2271 n/a n/a n/a n/a

denoising method in [7] n/a 3.8954 3.0283 n/a 4.0702 3.1912 n/a n/a n/a

1. Let w be a set of pixels in Y that fall within the L × L
neighborhood of the pixel of interest, and whose color is the

same as the pixel of interest.

2. Find the kth largest and kth smallest pixel values in w.

3. If the pixel of interest is larger (smaller) than the kth largest

(smallest) value in w, replace it with the kth largest (small-

est) pixel value in w.

This pre-processing procedure is a particularly good match for work-

ing with image sensors because defective pixels (hot-pixels or dead-

pixels) due to manufacturing variabilities will be removed, also.

5. IMPLEMENTATION AND RESULTS

TLS algorithm is implemented by taking 5× 5 image patches from

a 25 × 25 neighborhood. Pre-processing had a window size of

11 × 11, and we picked the 4th largest (smallest) pixel values. Pa-

rameters k0 and k1 were available a priori. Experiments were per-

formed on color images corrupted according to (1) using pseudo-

random noise and sampled according to CFA. We compare our re-

sults to the state-of-the-art demosaicing algorithms [5] [6] followed

by denoising algorithms [11] [12] [7]. Denoising algorithms were

performed on each color plane independently ( [12] and [11] do not

work with signal-dependent noise). Table 1 clearly shows the bene-

fits to considering demosaicing and denoising as a single operation.

Note also that in the absence of noise, the other demosaicing al-

gorithms may perform better than the proposed algorithm. Fig. 3

shows example output images. The amplification of noise is seen

due to demosaicing, and while applying denoising algorithms helps

the overall image quality, the proposed algorithm is both sharper

and significantly less noisy.

Fig. 4 shows the images from an experiment using images taken

from an Agilent CMOS camera in low light. Images were captured

in a raw-data format with the same setup as above. The parameters

used were (k0, k1) = (3, 0.02). After demosaicing, the images

were processed with color space conversion and gamma correc-

tion (γ = 1.8). The illuminant was known a priori. The demo-

saicing methods in [5] maintain high contrast, but grainy noise is

highly visible in the dark regions. The proposed algorithm elimi-

nates graininess.

6. CONCLUSION

This paper presented a unified method to combine demosaicing

and image denoising procedures. The filtering coefficients were re-

stricted such that only the high frequency components of the image

signals contribute to the estimation of pixel values of different col-

ors. With substitutions, the multi-colored demosaicing/denoising

problem was simplified to a single-color denoising problem. A To-

tal Least Squares algorithm was developed as a proof-of-concept,

and it was tested on color images with pseudo-random noise and

on raw sensor data from a real CMOS digital camera. The exper-

imental results verify that performing demosaicing and denoising

simultaneously is far more effective than treating the demosaicing

and denoising problems independently.
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